JP2022025993A - スパークプラグの製造方法 - Google Patents

スパークプラグの製造方法 Download PDF

Info

Publication number
JP2022025993A
JP2022025993A JP2020129236A JP2020129236A JP2022025993A JP 2022025993 A JP2022025993 A JP 2022025993A JP 2020129236 A JP2020129236 A JP 2020129236A JP 2020129236 A JP2020129236 A JP 2020129236A JP 2022025993 A JP2022025993 A JP 2022025993A
Authority
JP
Japan
Prior art keywords
electrode surface
view
center
center electrode
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020129236A
Other languages
English (en)
Inventor
弘樹 沖野
Hiroki Okino
洋樹 山本
Hiroki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2020129236A priority Critical patent/JP2022025993A/ja
Publication of JP2022025993A publication Critical patent/JP2022025993A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spark Plugs (AREA)

Abstract

【課題】スパークプラグの製造工程中の、中心電極、接地電極間の放電ギャップの検査で、接地電極面に、側面視だけでなく正面視で傾斜があるとしても、高精度にその測定ができるようにして品質を高める。【解決手段】側面視撮影工程で得られた画像データにおける両電極面間の間隔のうち、中心電極面13の中心で、中心電極面13に垂直な見通し間隔Gaを、基準ギャップ寸法としてコンピュータ制御で測定する。正面視撮影工程で得られた画像データ(図4)から、正面視における接地電極面23の傾斜によって側面視撮影工程では視認できないか、判別できない寸法Ge´を、正面側補正値としてコンピュータ制御により求める。検査における放電ギャップ寸法を、基準ギャップ寸法(間隔Ga)と、正面側補正値(寸法Ge´)との合算値としてコンピュータ制御により求める。【選択図】図4

Description

この発明は、内燃機関用のスパークプラグの製造方法に関する。
図6は、内燃機関用のスパークプラグ100の一例を示したものである。スパークプラグ100は、中空軸状の絶縁体40の先端42において突出して設けられている中心電極10と、該絶縁体40を包囲して固定する金具本体50の先端52に固着されてなる接地電極20とを備えている。図6は、中心電極10と接地電極20とのなす放電ギャップGを上にし、中心電極10の外部端子30を下にして示した外観図である。スパークプラグ100では、放電ギャップGが適正な寸法精度に保持されないと、各電極の偏摩耗による寿命低下や着火性能の低下につながる。このため、放電ギャップ(以下、「ギャップ」ともいう)Gには寸法公差が厳しく設定されており、その検査が行われる。放電ギャップGは、全部品が組み付けられたスパークプラグ100の製造の最終段階において、金具本体50の先端52に溶接された、図6の部分拡大図中に2点鎖線で示される真っ直ぐな接地電極用棒材29を、中心電極10側に曲げ形成(加工)して接地電極20とすることで、その形成がなされている。放電ギャップGの検査は、その曲げ加工後に行われている。なお、図7は、図6の部分拡大図を右側から見た図、すなわち、中心電極10が手前にあり、接地電極20のうち、金具本体50の先端52に固着されている側の基部21を、中心電極10の真後ろに位置させて、放電ギャップGを見通した図(本願の正面図)である。
図6のスパークプラグ100の放電ギャップGは、中心電極10の先端の平坦な円形の電極面である中心電極面13と、接地電極20のうち、該中心電極面13と対向して位置する平坦な電極面である接地電極面23との、両電極面間の間隔である。従来の検査では、従来、図7の正面に対し、図6に示したように、その左又は右側の側面視において、接地電極20の基部21と中心電極10とが左右に位置するようにして、放電ギャップGを見通すよう両電極部分をカメラで撮影し、その画像データ(側面視の画像データ)から、両電極間(電極面間)における間隔(見通し間隔)が測定される。見通し間隔のうち、例えば最小値を測定値(ギャップ測定値)とし(特許文献1参照)、これが許容寸法範囲内にある場合には、放電ギャップ「合格」と判定し、それ以外のものについて、放電ギャップ「不合格」と判定することが行われていた。
ここで、側面視における放電ギャップの最小値を測定値とするのは、接地電極面23は側面視において中心電極面13と平行となるべきところ、その曲げ加工時のスプリングバック等に起因して、接地電極面23が中心電極面13に対し、微小ではあるが、傾斜し得ることによる。このような接地電極20の側面視における傾斜(側面視傾斜)には、図8の両電極の模式的拡大側面図において誇張して示したように、接地電極面23が、自身の先端22に向かって中心電極面13との間隔が大となるよう角度αで傾斜している場合と、これとは逆にその間隔が小となる傾斜の場合がある。図8においてその「傾斜」は前者であるから、上記最小値(寸法)は、図8における中心電極面13の左端縁点での両電極面間の見通し間隔「Gm」となる。
特開2001-176640号公報
ところで、接地電極20の曲げ加工で生じる誤差は、接地電極面23の側面視傾斜だけとは限らない。図9において誇張して示した模式的拡大縦断面図(図8の中心電極面13の径の中心Ceを通るA-A断面図)から理解されるように、図7の正面視における傾斜(正面視傾斜)もある。そして、これに加え、接地電極面23の中心電極面13に対する偏心(誤差)Zがある場合もある。このような場合には、側面視における上記ギャップ測定値Gmが、許容寸法範囲内にあるとしても、放電ギャップ「合格」と判定することが適切でない場合がある。すなわち、正面視傾斜の角度(傾斜角)βの大きさや、正面視における接地電極面23の中心電極面13に対する偏心(誤差)Zの大きさによっては、中心電極面13が「円形」であることからして、三次元的に見ると、両電極面間の間隔については、側面視における中心電極面13の中心又はその近傍において最小となることがあるためである。こうしたことや、接地電極面23には、側面視において左右いずれへの傾斜もあり、また、側面視、正面視の両傾斜の大きさのバラツキをも考慮すると、側面視におけるギャップの測定においては、中心電極面13の側面視における中心(又は該中心の近傍位置)を測定の基準位置としておくのが、測定作業の標準化のために好ましいといえる。
そして、図9からも明らかなように、両電極部分の正面視において、接地電極面23は、その幅Wが、中心電極10の径Dより十分に大きく、正面視における接地電極面23の左右の端縁点が、常に、中心電極面13の端縁点より張出す。このため、図9に示したように、正面視における接地電極面23の傾斜(角度β)があると、側面視(図8)では見通せない空隙部分(反対の側面から見たときは判別できない大きさの空隙部分)Gbが存在する。これにより、両電極面間の間隔が、側面視における中心電極面13の中心において最小のとき、中心電極面13に垂直なギャップの最小値(寸法)は、図8における中心電極面13の中央での両電極面間の見通し間隔Gaに、このGbを「正面側補正値」として加えた数値Gcとなる。よって、そのような場合には、側面視に加え、正面視において、そのGbの測定が必要となるが、接地電極面23に側面視傾斜があるときは、正面視において、それを直接測定することはできない。一方、この場合には、図9における中心電極面13の左端の端縁点Q3を通るよう、接地電極面23に垂直に引いた垂直線Lsに沿う両電極面間の間隔(点Q3と点P5との間隔)が「最小の間隔」となる。そして、図9の垂直線Lsに沿う「最小の間隔(点Q3と点P5との間隔)」は、間隔Gaに、Gbを加えた数値Gcより微量とはいえ、小さい。他方、接地電極面23が、正面視傾斜が小さく、図8における側面視傾斜(角度α)が大きく、正面視の後方において下がるような場合には、接地電極面23における、側面視(図8)の中心電極面13の中心Ceよりも後方が図9の拡大図中に2点鎖線で示したような位置関係となるため、両電極面間の「最小の間隔」は、他の位置において存在し、垂直線Lsに沿う、点Q3と点P5との間隔よりも小さくなる場合もある。
本発明は、放電ギャップの測定における上記問題点、及び如上の知見に基づいてなされたもので、スパークプラグの製造工程中の接地電極の曲げ加工により形成される放電ギャップの検査、測定において、正面視における傾斜がある場合でも、従来よりも高精度に、その検査、測定ができる放電ギャップ測定工程を採用して、スパークプラグの質を高めることをその目的とする。
請求項1に記載の本発明は、中空軸状の絶縁体の先端において突出して設けられている中心電極と、該絶縁体を包囲して固定する金具本体の先端に固着され、該中心電極側に曲げ形成されてなる接地電極と、を備えるスパークプラグの製造方法であって、
当該スパークプラグ製造仕掛品における前記中心電極の先端の平坦な電極面である中心電極面と、前記接地電極のうち、該中心電極面と対向して位置する平坦な電極面である接地電極面との両電極面間の放電ギャップの検査において、
前記中心電極が手前にあり、前記接地電極のうち、前記金具本体の先端に固着されている側の基部が、該中心電極の真後ろに位置するのを正面として、この正面視において、前記放電ギャップを見通して両電極を撮影する正面視撮影工程と、
その正面に対する左側又は右側における側面視において、該放電ギャップを見通して両電極を撮影する側面視撮影工程と、を含み、
該側面視撮影工程で得られる画像データにおける前記両電極面間の間隔のうち、前記中心電極面の径方向における中心又は該中心の近傍の所定位置での間隔Gaを、基準ギャップ寸法として、コンピュータ制御により測定する基準ギャップ寸法測定工程と、
前記正面視撮影工程で得られた画像データにおいて、
前記両電極面間の間隔が小さい側に位置する前記中心電極面の端縁点Q3を通るよう、前記接地電極面に垂直に引いた垂直線Lsと、該接地電極の先端における該両電極面間の間隔が小さい側に位置する前記接地電極面の端縁点Q1を通るよう、前記中心電極面に平行に引いた横直線XLとの交点P3と、該垂直線Lsが前記接地電極の先端における接地電極面と交差する交点P4と、を結ぶ、該垂直線Lsにおける線分長さGe´に相当する寸法を、正面側補正値として、コンピュータ制御により測定する正面側補正値測定工程と、を含み、
放電ギャップ寸法を、前記基準ギャップ寸法Gaに該正面側補正値Ge´を加算した合算値として、コンピュータ制御により求める、放電ギャップ測定工程を含むことを特徴とするスパークプラグの製造方法である。
請求項2に記載の本発明は、前記正面視撮影工程又は前記側面視撮影工程において得られた前記画像データにおける前記中心電極面が、画像上の水平に対して傾斜している場合に、該中心電極面が該水平と一致するよう、該中心電極面の傾斜の角度分、該画像データを回転する画像処理を行う画像処理工程を含めることを特徴とする請求項1に記載のスパークプラグの製造方法である。
請求項3に記載の本発明は、前記中心電極面及び前記接地電極面の少なくとも一方が、当該電極面をなすよう溶接された貴金属チップにて形成されていることを特徴とする請求項1又は2のいずれか1項に記載のスパークプラグの製造方法である。
本発明では、放電ギャップの測定において、従来におけるような、側面視撮影工程で得られた画像データから、両電極面間の間隔(見通し間隔)のうちの中心電極面に垂直な最小値を基準として、合否の判定をするのではなく、上記したように、基準ギャップ寸法(以下、基準ギャップ寸法Gaともいう)に、正面側補正値(以下、正面側補正値Ge´ともいう)を加算した合算値として放電ギャップ寸法を求めることとしている。このため、接地電極面に、側面視における傾斜に加え、正面視における傾斜や偏心があるとしても、放電ギャップの合否の判定基準を従来におけるよりも高精度のものとすることができる。
しかも、本発明では、「正面側補正値」を割り出すための垂直線について、前記両電極面間の間隔が小さい側に位置する前記中心電極面の端縁点Q3を通る「該中心電極面」に垂直に引いた縦直線(垂直線)ではなく、図4に示したように、前記両電極面間の間隔が小さい側に位置する前記中心電極面の端縁点Q3を通るよう、「前記接地電極面」に垂直に引いた垂直線Lsとしている。すなわち、本発明では、この垂直線Lsと、該接地電極の先端における該両電極面間の間隔が小さい側に位置する前記接地電極面の端縁点Q1を通るよう、前記中心電極面に平行に引いた横直線XLとの交点P3と、該垂直線Lsが前記接地電極の先端における接地電極面と交差する交点P4と、を結ぶ、該垂直線における線分長さGe´寸法を、正面側補正値としている。この正面側補正値Ge´は、該接地電極の「先端」における値であるが、接地電極面の正面視の傾斜角は、接地電極面のうち中心電極面と対面する部位の先後長において一定と見てよい。すなわち、上記した従来技術の課題からすれば、正面側補正値は、「中心電極面に垂直に引いた縦直線」のうち、側面視では見通せず、視認できない(反対側から見たときは判別できない)線分長さ(図9の「Gb」)とし、これをそのまま、Gaに合算したもの、とすることもできる。
しかし、本発明では、この正面側補正値は、前記のような「接地電極面に垂直に引いた垂直線Ls」のうち、側面視において見通せない(反対の側面からは判別できない)線分長さ(交点P3、交点P4間の線分長さGe´)としている。そして、この正面側補正値Ge´は、「中心電極面に垂直に引いた縦直線」のうち、側面視では見通せず、視認できない線分長さGb´より小さい。このため、側面視、正面視の両傾斜の大きさ次第で、上記したように、最小の間隔が、正面視における垂直線Lsに沿う間隔よりも小さい場合があることを考慮すると、従来におけるよりも高精度に、放電ギャップの検査、測定をすることができる。
すなわち、スパークプラグの正面視における接地電極面の幅は、上記したように両電極面が確実に対向(対面)するよう、中心電極面の径よりも十分大きく、接地電極面の左右の端縁点は、常に、中心電極面の左右の端縁点より外側に張り出す。このため、従来におけるよう、側面視の画像データにおいて、中心電極面と接地電極面との間隔のうちの最小値を測定し、これをそのまま放電ギャップ寸法として求めると、側面視傾斜が無いとしても、正面視において接地電極(接地電極面)に傾斜がある場合には、その傾斜がある分、その測定値は本来測定されるべき測定値よりも小さいものとなる。
一方、正面視における接地電極の先端(先端部)において、該両電極面間の間隔が小さい側に位置する中心電極面の端縁点で、該中心電極面または該接地電極面に垂直に縦直線を引き、その端縁点と、該縦直線が前記接地電極の先端における接地電極面と交差する交点とを結ぶ、該縦直線における線分長さを測定するだけでは、それは、接地電極面の「先端」におけるその寸法に止まるから、接地電極面に側面視傾斜がある場合には、その傾斜に起因して、その測定値では、適切な測定値(放電ギャップ寸法)とはならない。
これに対して、本発明では、コンピュータ制御により、該側面視撮影工程で得られる画像データにおける前記両電極面間の間隔のうち、前記中心電極面の径方向における中心又は該中心の近傍の所定位置での間隔を、基準ギャップ寸法Gaとして測定すると共に、前記正面視撮影工程で得られた画像データにおいて、上記線分長さGe´に相当する寸法を、正面側補正値Ge´として測定することとし、そして、前記基準ギャップ寸法Gaに該正面側補正値Ge´を加算した合算値として放電ギャップ寸法を求めることとしている。よって、従来のように側面視における最小値や、基準ギャップ寸法を、そのまま、ギャップ測定値としていた場合に比べると、接地電極面に正面視の傾斜や偏心誤差があっても、本来、測定値とされるべきギャップにより近い値を得ることができる。すなわち、本発明によれば、上記合算値に基づき、それが許容寸法範囲内にあるか否かで、放電ギャップの「合格、不合格」を判定することができるから、従来よりも高い放電ギャップ精度を有するスパークプラグを得ることができる。なお、本発明において、該側面視撮影工程で得られる画像データにおける前記両電極面間の間隔のうち、前記中心電極面の径方向における「中心」とは、「略中心」を含む概念であり、間隔Gaを、該中心の近傍の所定位置とするときは、中心電極面の径方向における左右の端よりも、該中心に近い位置において、両電極の寸法誤差(公差)、中心電極面の形状等を考慮して、適宜に設定すればよい。
本発明において、前記正面視撮影工程又は前記側面視撮影工程において得られた前記画像データにおける前記中心電極面が、画像上の水平に対して傾斜している場合には、該中心電極面が該水平と一致するよう、該中心電極面の傾斜の角度分、該画像データを回転する画像処理を行う画像処理工程を含めることで、基準ギャップ寸法Ga、又は正面側補正値Ge´の演算を簡易にできる。また、本発明では、請求項3に記載のように、当該電極面をなすよう溶接された貴金属チップにて形成されているスパークプラグにも広く適用できる。
中心電極と接地電極とのなす放電ギャップを上にし、中心電極の外部端子を下にして表したスパークプラグを上から見た状態において、両電極を測定するカメラの配置を説明する概念図。 Aは、図1のカメラによる側面視撮影工程の説明図と、正面視撮影に用いるカメラの配置を示した図であり、Bは、図1のカメラによる正面視撮影工程の説明図と、側面視撮影に用いるカメラの配置を示した図。 側面視撮影工程で両電極を、放電ギャップを見通して撮影した画像の模式的拡大側面図。 正面視撮影工程で両電極を、放電ギャップを見通して撮影した画像の模式的拡大正面図、及びその要部のさらなる拡大図。 図3における中心電極面の中心を通る縦断面図(図3のA-A断面図)、及びその要部のさらなる拡大図。 スパークプラグの一例を、中心電極と接地電極とのなす放電ギャップを上にし、中心電極の外部端子を下にして表した外観図(側面図)、及びその両電極部分の部分拡大図。 図6の部分拡大図を右側から見た図(正面図)。 両電極を誇張して示した模式的拡大側面図。 図8のA-A断面図、及びその要部のさらなる拡大図。
本発明を具体化した実施の形態例について、図1-図5を参照しながら説明する。ただし、本例では、図6に示したスパークプラグ100を製造する場合とする。このスパークプラグ100は、上述したように、中空軸状の絶縁体40の先端42において突出して設けられている中心電極10と、該絶縁体40を包囲して固定する金具本体50の先端52に固着され、中心電極10と対向配置にあって放電ギャップを形成するよう中心電極10側に曲げ形成されてなる接地電極20とを備えるものである。
本例での放電ギャップGの検査におけるその測定は、このスパークプラグ100の製造の最終段階において接地電極20が曲げ形成された仕掛品(以下、ワーク)を図示しないジグにて両電極を上にして、中心電極面13が水平となるように位置決め支持をして行われる。すなわち、その測定においては、その支持状態において、図1に示したように、カメラCa,Cbが、側面視と、正面視において、放電ギャップを見通し(図2参照)、両電極部分をそれぞれ撮影するよう配置され、図示しない撮影用の照明(光源)を用い、その撮影が行われる。画像データ等は、それぞれディスプレイ(図示せず)に出力(表示)され、測定者において視認できるように設定されている。
正面視の撮影(正面視撮影工程)は、図1のカメラCbによる撮影であり、図2のBに示したように、中心電極10が手前にあり、接地電極20のうち、金具本体50の先端52に固着されている側の基部21が、中心電極10の真後ろに位置する状態としての撮影となり、カメラによる撮影中心軸(撮影方向)は、中心電極面13に平行に放電ギャップを見通し、かつ、正面視の中心電極面13の中心において、中心電極面13に垂直な軸と交差するように設定される。
そして、側面視の撮影(側面視撮影工程)は、この正面視の撮影を行うカメラCbを、上から見て(図1参照)、90度回転させた配置であり、図1のカメラCaによる撮影である。すなわち、図2のAに示したように、接地電極20の基部21と、中心電極10とが左右に並ぶ状態としての撮影となり、カメラによる撮影中心軸(撮影方向)は、中心電極面13に平行に放電ギャップを見通し、かつ、側面視の中心電極面13の中心において、中心電極面13に垂直な軸と交差するように設定される。
図3は、側面視撮影工程で撮影した画像データを模式的に示した模式的拡大側面図であり、図4は、正面視撮影工程で撮影した画像データを模式的に示した模式的拡大正面図である。なお、本例では、側面視、正面視の画像データにおいて、中心電極面13に傾斜はないが、接地電極面23には、それぞれ図示のような傾斜がある。すなわち、接地電極20は、側面視(図3参照)では、その先端22に向かうに従い、中心電極面13との間隔を広げるように、中心電極面13に対して角度αで傾斜している。そして、正面視(図4参照)では、接地電極20は、両電極面相互の間隔が、接地電極面23が図4の左の端縁点Q1側において小さくなるよう、中心電極面13に対して角度βで傾斜している。
このような本例では、基準ギャップ寸法測定工程として、側面視撮影工程で得られた画像データ(図3の模式的拡大側面図)から、両電極面間の間隔のうち、中心電極面13の直径方向における中心(中心位置)Ceでの間隔を基準ギャップ寸法Gaとして測定する。本例では、画像データにおける中心電極面13の直径方向における中心Ceにおいて、中心電極面13に垂直に縦直線YLaを引き、それの中心電極面13との交点と、接地電極面23との交点とを結ぶ線分長さGaを、コンピュータ制御によって測定し、基準ギャップ寸法Gaとして出力している。なお、基準ギャップ寸法Gaの測定位置は、中心電極面13の径方向における中心Ceとするのが基本であるが、その近傍の所定位置としてもよい。なお、中心Ceの近傍は、中心Ceの設計上の寸法公差の範囲内、或いは、中心電極面13中心Ceから、側面視、その径に対し、左右、10%以内、20%以内又は30%以内とすることが例示されるなど、測定位置の設定や検査の簡易性等に応じて決めればよい。
そして、正面側補正値測定工程として、正面視撮影工程で得られた画像データ(図4の模式的拡大正面図)において、両電極面間の間隔が小さい側(図4の左側)に位置する中心電極面13の端縁点Q3を通るよう、接地電極面23に垂直に引いた垂直線(1点鎖線)Lsと、該接地電極20の先端(図4の実線)22における該両電極面間の間隔が小さい側に位置する前記接地電極面23の端縁点Q1を通るよう、前記中心電極面13に平行に引いた横直線XLとにおける交点P3と、該垂直線Lsが前記接地電極20の先端22における接地電極面23と交差する交点P4と、を結ぶ、該垂直線Lsにおける線分長さ(P3、P4)寸法Ge´を、コンピュータ制御によって測定し、正面側補正値Ge´として出力している。なお、図3、及び図4中におけるGa´は、中心電極面13に垂直に引いた線分のうち、図4の接地電極20の先端22における該両電極面間の間隔が小さい側に位置する接地電極面23の端縁点Q1において、中心電極面13に平行に引いた横直線XLと、中心電極面13との間隔(線分長さ)である。このGa´は、本例の接地電極20の上記した側面視傾斜により、基準ギャップ寸法Gaより大である。
このような本例の放電ギャップ測定工程においては、以上のようにして基準ギャップ寸法測定工程で得られた基準ギャップ寸法Gaに、この正面側補正値測定工程で得られた正面側補正値Ge´とをコンピュータ制御により、加算してその合算値を求め、これをその検査、測定における放電ギャップ寸法とすればよい。そして、この合算値が、許容寸法範囲内にあるか否かで、放電ギャップの「合格、不合格」を判定する。かくして、従来よりも高い放電ギャップ精度を有するスパークプラグを得ることができる。
本例では、側面視、接地電極20がその先端22に向うに従い、中心電極面13との間隔を広げるように傾斜しているが、基準ギャップ寸法Gaは、側面視の画像データから、中心電極面13の中心Ceにおける両電極面間の間隔として特定される。一方、正面側補正値測定工程において得られる正面側補正値Ge´(図4参照)は、接地電極20の先端22における数値であるが、接地電極20の正面視における幅W方向における傾斜は、正面視、右上がりの角度βであり、この角度βは、側面視、基準ギャップ寸法Gaの測定位置においても同じか、略同じと見られる。したがって、側面視、同測定位置(中心電極面13の中心Ce位置)においては見通せないため、直接は視認できない本来の補正値とされるべき寸法Geは、正面側補正値Ge´と、同じか、略同じと見ることができる(図5参照)。よって、基準ギャップ寸法Gaと、正面側補正値Ge´とをプラスした数値(合算値)は、図3の模式的拡大側面図における中心電極面13の径の中心Ceを通る縦断面(図5)において、測定されるべき放電ギャップ寸法(Ga+Ge)と、同じか、略同じといえる(図5参照)。
すなわち、このような合算値を、放電ギャップの検査における合否の判断基準としているため、従来のように側面視における最小値(基準ギャップ寸法)Gmを、そのまま、検査、測定における放電ギャップ寸法としていた場合に比べると、接地電極面23の正面視傾斜や偏心誤差があっても、本来測定されるべき位置のギャップ寸法により近い値を得ることができる。しかも、正面側補正値Ge´を割り出すための垂直線について、上記したように、中心電極面13の端縁点Q3を通るよう、「前記接地電極面23」に垂直に引いた垂直線Lsとし、正面側補正値Ge´を、上記した交点P3と、交点P4と、を結ぶ、垂直線Lsにおける線分長さGe´としている。この線分長さGe´は、正面側補正値を割り出すための垂直線について、中心電極面13の端縁点Q3を通る「該中心電極面13」に垂直に引いた縦直線(垂直線)を用い、上記したのと同様に定める交点P3と、交点P4とを結ぶ、その線分長さGb´よりも短い。すなわち、Ga+Ge´を測定値としたことで、側面視傾斜が大きいために実際の両電極面間の最小の間隔が、図5における垂直線Lsの、中心電極面13の端縁点Q3と、接地電極面23と垂直線Lsの交点P5とを結ぶ線分長さより短いような場合でも、より最小の間隔に近い数値を、放電ギャップ寸法として測定できる。このため、その検査、測定の高精度化が図られる。結果、放電ギャップ精度の高いスパークプラグ100を得ることができる。
なお、正面側補正値Ge´については、コンピュータ制御により、正面視の画像データから求められるように制作された適宜のプログラムを用いて演算すればよい。例えば、正面視における画像データにおいて、中心電極面13をx軸とし、点Q3を原点(座標0,0)とする座標を設定し、コンピュータ制御により、同座標における点P3、P4、それぞれのx,y座標を求め、これらの値に基づいて点P3、点P4間の寸法(距離)Ge´を演算するようにすればよい。
前記例では、側面視、接地電極20がその先端22に向うに従い、中心電極面13との間隔を広げるように傾斜している場合を例示したが、逆に、側面視、接地電極20がその先端22に向うに従い、中心電極面13との間隔を狭めるように傾斜している場合においても、前記例と同様にすればよい。また、前記例と逆に、正面視における接地電極20の先端22の傾斜が左上がりであれば、接地電極20の先端22における該両電極面間の間隔が小さい側が、前例と左右逆になるだけであり、他に異なる点は無く、前例と同様にすることでよい。なお、正面視の画像データにおけるところの、中心電極面13と接地電極面23とが平行であれば、正面側補正値Ge´は、0となる。
上記例において、前記正面視撮影工程又は前記側面視撮影工程において得られた前記画像データにおける前記中心電極面13が、画像上の水平に対して傾斜している場合には、該中心電極面13が該水平と一致するよう、該中心電極面13の傾斜の角度分、該画像データを回転する画像処理を行う画像処理工程を加えた上で、Ga,Ge´の測定をすればよい。
上記各例では、貴金属チップが各電極面をなすものでないスパークプラグ100の製造において説明したが、例えば、中心電極面13、又は中心電極面13及び接地電極面23が、当該電極面をなすよう、電極母材に溶接された貴金属チップにて形成されているスパークプラグにおいても、本発明は同様に適用できる。
上記したように、測定結果において、その「Ge´+Ga」が、設計上の寸法の寸法公差内にある場合には、放電ギャップ「合格」となるが、設計上の寸法の寸法公差内に無い場合には、放電ギャップ「不合格」として、ギャップ調整工程に送って、調整、補正をし、再度、上記した測定方法によって放電ギャップを測定して、その再検査をすればよい。かくして、その「合格」判定が得られたワークは、最終の検査工程等を経ることで、所望とするスパークプラグとなる。
なお、上記した放電ギャップの検査における測定は、ワークの接地電極(接地電極面)の正面視、側面視における少なくとも一方の傾斜の角度(α又はβ)が、設計上の許容範囲に有るものについて行われるようにすればよい。すなわち、放電ギャップの測定にあたり、前記正面視撮影工程又は前記側面視撮影工程において得られた前記画像データから、それらのいずれかが、設計上の許容範囲を超えていることが判明したものについては、放電ギャップの測定対象外のものとして、調整工程に送って、その調整、補正をしてから、前記したのと同様にして、放電ギャップの検査、測定を行えばよい。
さらに、放電ギャップの測定に当たり、ワークの正面視における、中心電極面13の中心Ceに対する接地電極面23の中心の偏心量Zが大きく、接地電極面23の左右いずれかの端縁点が、中心電極面13の対応する端縁点から張出していないような場合や、同偏心量Zが設計上の寸法公差内に無い場合等、正面視、側面視に限られず、両電極が所定の精度に維持されておらず、設計上の許容範囲を超えていることが判明したものについても、放電ギャップの測定対象外のものとして、調整工程に送って、その調整、補正をしてから、前記したのと同様にして、放電ギャップの検査、測定を行えばよい。本発明は、上記例示した内容に限定されるものではなく、その要旨を逸脱しない範囲において、適宜に変更を加えて、実施することができる。
10 中心電極
13 中心電極面
20 接地電極
21 接地電極の基部
22 接地電極の先端
23 接地電極面
40 絶縁体
50 金具本体
100 スパークプラグ
G 放電ギャップ
Ce 側面視撮影工程で得られた画像データにおける中心電極面の径方向における中心
Ga 側面視撮影工程で得られた画像データの、両電極面間の間隔のうち、中心電極面の径方向における中心での間隔(基準ギャップ寸法)
Q1 正面視撮影工程で得られた画像データの、両電極面間の間隔が小さい側に位置する接地電極面の端縁点
Q3 正面視撮影工程で得られた画像データの、両電極面間の間隔が小さい側に位置する中心電極面の端縁点
Ls 端縁点Q3を通り、中心電極面に垂直に引いた垂直線
XL 端縁点Q1を通り、中心電極面に平行に引いた横直線
P3 垂直線Lsと、横直線XLとの交点
P4 垂直線Lsが接地電極の先端における接地電極面と交差する交点
Ge´ 垂直線Lsにおける交点P3と交点P4とを結ぶ線分長さ寸法(正面側補正値)

Claims (3)

  1. 中空軸状の絶縁体の先端において突出して設けられている中心電極と、該絶縁体を包囲して固定する金具本体の先端に固着され、該中心電極側に曲げ形成されてなる接地電極と、を備えるスパークプラグの製造方法であって、
    当該スパークプラグ製造仕掛品における前記中心電極の先端の平坦な電極面である中心電極面と、前記接地電極のうち、該中心電極面と対向して位置する平坦な電極面である接地電極面との両電極面間の放電ギャップの検査において、
    前記中心電極が手前にあり、前記接地電極のうち、前記金具本体の先端に固着されている側の基部が、該中心電極の真後ろに位置するのを正面として、この正面視において、前記放電ギャップを見通して両電極を撮影する正面視撮影工程と、
    その正面に対する左側又は右側における側面視において、該放電ギャップを見通して両電極を撮影する側面視撮影工程と、を含み、
    該側面視撮影工程で得られる画像データにおける前記両電極面間の間隔のうち、前記中心電極面の径方向における中心又は該中心の近傍の所定位置での間隔Gaを、基準ギャップ寸法として、コンピュータ制御により測定する基準ギャップ寸法測定工程と、
    前記正面視撮影工程で得られた画像データにおいて、
    前記両電極面間の間隔が小さい側に位置する前記中心電極面の端縁点Q3を通るよう、前記接地電極面に垂直に引いた垂直線Lsと、該接地電極の先端における該両電極面間の間隔が小さい側に位置する前記接地電極面の端縁点Q1を通るよう、前記中心電極面に平行に引いた横直線XLとの交点P3と、該垂直線Lsが前記接地電極の先端における接地電極面と交差する交点P4と、を結ぶ、該垂直線Lsにおける線分長さGe´に相当する寸法を、正面側補正値として、コンピュータ制御により測定する正面側補正値測定工程と、を含み、
    放電ギャップ寸法を、前記基準ギャップ寸法Gaに該正面側補正値Ge´を加算した合算値として、コンピュータ制御により求める、放電ギャップ測定工程を含むことを特徴とするスパークプラグの製造方法。
  2. 前記正面視撮影工程又は前記側面視撮影工程において得られた前記画像データにおける前記中心電極面が、画像上の水平に対して傾斜している場合に、該中心電極面が該水平と一致するよう、該中心電極面の傾斜の角度分、該画像データを回転する画像処理を行う画像処理工程を含めることを特徴とする請求項1に記載のスパークプラグの製造方法。
  3. 前記中心電極面及び前記接地電極面の少なくとも一方が、当該電極面をなすよう溶接された貴金属チップにて形成されていることを特徴とする請求項1又は2のいずれか1項に記載のスパークプラグの製造方法。
JP2020129236A 2020-07-30 2020-07-30 スパークプラグの製造方法 Pending JP2022025993A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020129236A JP2022025993A (ja) 2020-07-30 2020-07-30 スパークプラグの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020129236A JP2022025993A (ja) 2020-07-30 2020-07-30 スパークプラグの製造方法

Publications (1)

Publication Number Publication Date
JP2022025993A true JP2022025993A (ja) 2022-02-10

Family

ID=80264895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020129236A Pending JP2022025993A (ja) 2020-07-30 2020-07-30 スパークプラグの製造方法

Country Status (1)

Country Link
JP (1) JP2022025993A (ja)

Similar Documents

Publication Publication Date Title
JP4653604B2 (ja) スパークプラグの検査方法およびそれを用いた製造方法
US8212462B2 (en) Spark plug and manufacturing method therefor
JP2022025993A (ja) スパークプラグの製造方法
JP3566222B2 (ja) 突起状付着物検出方法及びそれを用いたスパークプラグの製造方法
US7346983B2 (en) Method for manufacturing spark plug
JP2020145055A (ja) スパークプラグの製造方法
JP6136877B2 (ja) プラグギャップ測定装置、プラグギャップ測定方法、および点火プラグの製造方法
US10355458B2 (en) Production method of spark plug
US10439368B2 (en) Production method of spark plug
JP5443362B2 (ja) 部材の接合位置のずれ量の測定方法、スパークプラグの製造方法
US10868409B2 (en) Spark plug
JP4037374B2 (ja) スパークプラグの検査方法及びそれを用いたスパークプラグの製造方法
EP3244500A1 (en) Method of manufacturing spark plug
US9899806B2 (en) Method for manufacturing spark plug
JP3479591B2 (ja) スパークプラグ検査方法及び装置
JP2007327824A (ja) 端子リード検査方法
JP6611746B2 (ja) 点火プラグの製造方法
EP3182535A1 (en) Apparatus and method for manufacturing spark plug
JP2002286426A (ja) 画像処理による寸法計測方法およびその装置
US20220214376A1 (en) Contact probe
JP2008068619A (ja) 成形レンズの偏心測定方法
CN117206607A (zh) 一种提高电极加工精度的方法、装置、终端设备及介质
JP3572867B2 (ja) 電子銃偏芯測定装置および電子銃偏芯測定方法
CN114396873A (zh) 梯形钢丝几何尺寸测量方法及装置
JP2002324495A (ja) 電子銃、およびその検査方法、およびその評価方法、およびその組立方法、およびその生産管理システム、およびカラーディスプレイ管