JP2022018403A - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP2022018403A
JP2022018403A JP2020121487A JP2020121487A JP2022018403A JP 2022018403 A JP2022018403 A JP 2022018403A JP 2020121487 A JP2020121487 A JP 2020121487A JP 2020121487 A JP2020121487 A JP 2020121487A JP 2022018403 A JP2022018403 A JP 2022018403A
Authority
JP
Japan
Prior art keywords
wastewater
concentration
adsorbent
treatment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020121487A
Other languages
Japanese (ja)
Other versions
JP7365299B2 (en
Inventor
信一 中村
Shinichi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Inc
Original Assignee
Omega Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Inc filed Critical Omega Inc
Priority to JP2020121487A priority Critical patent/JP7365299B2/en
Publication of JP2022018403A publication Critical patent/JP2022018403A/en
Application granted granted Critical
Publication of JP7365299B2 publication Critical patent/JP7365299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide a wastewater treatment method that can provide more appropriate treatment than conventional methods.SOLUTION: A wastewater treatment method which is characterized in that it comprises an adsorption filtration step in which the concentration of contaminants contained in wastewater is leveled by effluent (W) treated by the method itself, and the leveled water is introduced into an adsorbent tank (C). In the absorption filtration step, the effluent (W) treated by the method itself is fed back and mixed with raw wastewater so that the concentration of contaminants is within the concentration range where proper treatment is possible. It is so adjusted that the time during which the concentration of contaminants contained in the effluent (W) rises to the discharge limit and the time during which the absorbent is regenerated do not overlap.SELECTED DRAWING: Figure 1

Description

この発明は、物理化学的に処理を行う排水処理方法に関するものである。 The present invention relates to a wastewater treatment method for physicochemical treatment.

従来、種々有機物を含有した排水を生物学的に除去するための生物処理装置に関する提案があった(特許文献1)。
すなわち、生物処理法の種類は種々あり、一般的には生物処理は高温・高圧を必要とせず、微生物の酵素による反応でBOD成分(有機成分)を分解してくれる最も合理的な方法で、このような生物処理法の代表的なものに活性汚泥法がある。
活性汚泥法とは曝気槽,沈殿槽(固液分離槽),返送汚泥ラインの三条件を満たしたプロセスにより、通常、排水を好気性下で微生物処理し、浄化する方法である。
活性汚泥法は前述したように、自然環境と同様、排水中の有機性成分を微生物により分解除去する最も合理的な方法であるが、活性汚泥法の操作条件や、排水の負荷変動により一旦処理が不安定になった場合、元の安定な状態に復帰させるのに時間を要する欠点を抱えている。
また、排水の量や性状はある程度変動するものであり、適正処理が行えない場合が多いという問題があった。
Conventionally, there has been a proposal regarding a biological treatment device for biologically removing wastewater containing various organic substances (Patent Document 1).
That is, there are various types of biological treatment methods, and in general, biological treatment does not require high temperature and high pressure, and is the most rational method that decomposes BOD components (organic components) by reaction with microbial enzymes. The activated sludge method is a typical example of such a biological treatment method.
The activated sludge method is a method in which wastewater is usually treated with microorganisms under aerobic conditions to purify it by a process that meets the three conditions of an aeration tank, a settling tank (solid-liquid separation tank), and a return sludge line.
As mentioned above, the activated sludge method is the most rational method for decomposing and removing organic components in wastewater by microorganisms, as in the natural environment. Has the drawback that it takes time to return to the original stable state when it becomes unstable.
In addition, the amount and properties of wastewater fluctuate to some extent, and there is a problem that proper treatment cannot be performed in many cases.

特開2003-103296Japanese Patent Application Laid-Open No. 2003-103296

そこで、この発明は、従来よりも適正処理をすることができる排水処理方法を提供しようとするものである。 Therefore, the present invention is intended to provide a wastewater treatment method capable of performing more proper treatment than before.

前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の排水処理方法は、排水の汚れ成分の濃度を自己処理放流水により平準化して吸着剤槽に通す吸着濾過工程を有し、前記吸着濾過工程では排水の濃度を適正処理可能な濃度域になるように自己処理放流水をフィードバックして排水原水側に混合し、自己処理放流水の濃度が放流基準値の濃度に上昇するまでの時間帯と吸着剤を賦活再生する時間帯とが重複しないようにしたことを特徴とする。
この排水処理方法は、排水の汚れ成分の濃度を自己処理放流水により平準化して吸着剤槽に通す吸着濾過工程を有するので、排水の汚れ成分の濃度が高いう状態ではなく自己処理放流水により平準化して低濃度化すると共に経時的な濃度のアップ・ダウンが少ないように時間的な平均化をして吸着剤への負担を軽減することが出来る。
また、前記吸着濾過工程では排水の濃度を適正処理可能な濃度域になるように自己処理放流水をフィードバックして排水原水側に混合するようにしたので、フィードバックした清浄な自己処理放流水を排水原水側に混合することにより吸着剤の吸着平衡が立ちにくい低い濃度で処理することが出来る。
さらに、自己処理放流水の濃度が放流基準値の濃度に上昇するまでの時間帯と吸着剤を賦活再生する時間帯とが重複しないようにしたので、自己処理放流水の濃度が規定の濃度に上昇するまでの時間に、吸着剤を賦活再生する時間を合わせることが出来る。
これにより、吸着剤の量をできるだけ少ない量に最適化して処理することができることとなる。
ここで、前記「排水」とは、狭義の排水、廃水、排液、廃液を含む上位概念とする。狭義の排水、廃水は汚れ成分の濃度が比較的低いものであり(例えばCOD 3,000ppm未満)、狭義の排液、廃液は汚れ成分の濃度が比較的高いものである(例えばCOD 3,000ppm以上)。そして、これら全てを含む上位概念を、「排水」として広義に総称することとする。
前記汚れ成分は、主として有機成分である。汚れ成分の濃度を測る指標として、TOC(全有機炭素)、COD(化学的酸素要求量)、NH3(アンモニア性窒素)、N‐ヘキサン値、ss成分(有機系粒子)などを例示することが出来る。
In order to solve the above problems, the following technical measures are taken in the present invention.
(1) The wastewater treatment method of the present invention has an adsorption filtration step of leveling the concentration of dirt components of wastewater with self-treated discharged water and passing it through an adsorbent tank, and the concentration of wastewater can be appropriately treated in the adsorption filtration step. The time zone until the concentration of the self-treated discharged water rises to the concentration of the discharge standard value and the time zone when the adsorbent is activated and regenerated by feeding back the self-treated discharged water so that it becomes a concentration range and mixing it with the drainage raw water side. The feature is that and do not overlap.
This wastewater treatment method has an adsorption filtration step in which the concentration of the dirt component of the wastewater is leveled by the self-treated discharged water and passed through the adsorbent tank. It is possible to reduce the burden on the adsorbent by leveling and lowering the concentration and averaging over time so that the concentration does not increase or decrease over time.
Further, in the adsorption filtration step, the self-treated discharged water is fed back and mixed with the drainage raw water side so that the concentration of the wastewater becomes a concentration range that can be properly treated, so that the fed-back clean self-treated discharged water is drained. By mixing it on the raw water side, it is possible to treat at a low concentration where the adsorption equilibrium of the adsorbent is difficult to establish.
Furthermore, since the time zone until the concentration of the self-treated discharged water rises to the concentration of the discharge standard value and the time zone of activating and regenerating the adsorbent do not overlap, the concentration of the self-treated discharged water becomes the specified concentration. It is possible to adjust the time for activating and regenerating the adsorbent to the time until it rises.
As a result, the amount of the adsorbent can be optimized to be as small as possible for processing.
Here, the above-mentioned "drainage" is a superordinate concept including drainage, wastewater, drainage, and wastewater in a narrow sense. Wastewater and wastewater in the narrow sense have a relatively low concentration of dirt components (for example, COD less than 3,000 ppm), and drainage and wastewater in the narrow sense have a relatively high concentration of dirt components (for example, COD 3,000 ppm or more). .. And, the superordinate concept including all of them will be generically referred to as "drainage" in a broad sense.
The dirt component is mainly an organic component. Examples of indicators for measuring the concentration of dirt components include TOC (total organic carbon), COD (chemical oxygen demand), NH 3 (ammonia nitrogen), N-hexane value, and ss component (organic particles). Can be done.

(2)前記排水中の汚れ成分を酸化分解してその濃度を低減する前処理工程を有するようにしてもよい。
このように、排水中の汚れ成分を酸化分解してその濃度を低減する前処理工程を有するようにすると、排水中の汚れ成分の濃度を予めある程度低減しておくことができるので吸着濾過工程での負荷を軽減することが出来る。
(2) It may have a pretreatment step of oxidatively decomposing the dirt component in the wastewater to reduce its concentration.
In this way, by having a pretreatment step of oxidatively decomposing the dirt component in the wastewater to reduce the concentration thereof, the concentration of the dirt component in the wastewater can be reduced to some extent in advance, so that in the adsorption filtration step. The load can be reduced.

(3)前記前処理工程では汚れ成分の濃度が高い状態で処理してからより低い濃度に低減するようにしてもよい。
このように、前処理工程で汚れ成分の濃度が高い状態で処理してからより低い濃度に低減するようにすると、汚れ成分の濃度が高い状態で効率よく処理してから吸着濾過工程における適正な濃度に低減することが出来る。
(3) In the pretreatment step, the stain component may be treated in a high concentration state and then reduced to a lower concentration.
In this way, if the pretreatment step is performed in a state where the concentration of the dirt component is high and then reduced to a lower concentration, the treatment is efficiently performed in the state where the concentration of the dirt component is high, and then the appropriate treatment in the adsorption filtration step is performed. It can be reduced to a concentration.

(4)前記吸着剤の賦活再生時の排水中の汚れ成分の炭化成分を吸着剤として利用するようにしてもよい。
このように、吸着剤の賦活再生時(例えば900℃)の排水中の炭化成分を吸着剤として利用するようにすると、排水処理中に吸着剤に付着した排水中の有機成分の炭化物を吸着剤として有効利用することが出来る。
(4) The carbonized component of the dirt component in the wastewater during activation and regeneration of the adsorbent may be used as the adsorbent.
In this way, if the carbonized component in the wastewater during activation and regeneration of the adsorbent (for example, 900 ° C.) is used as the adsorbent, the carbonized substance of the organic component in the wastewater adhering to the adsorbent during the wastewater treatment is used as the adsorbent. Can be effectively used as.

(5)前記排水処理を全有機炭素の測定値を介して吸着剤槽に通す排水量を遠隔制御で調節するようにしてもよい。
このように、排水処理を全有機炭素の測定値を介して吸着剤槽に通す排水量を遠隔制御で調節するようにすると、全有機炭素(TOC)の測定値を介したリモートの遠隔操作により、工場現場のエンド・ユーザーではなく、遠方の排水処理の専門家によるリアルタイムの判断によって現地人材のバック・アップを図ることが、予定通りの運転を行うことが出来る。
(5) The amount of wastewater passed through the adsorbent tank in the wastewater treatment via the measured value of total organic carbon may be adjusted by remote control.
In this way, if the amount of wastewater passed through the adsorbent tank is controlled by remote control via the measured value of total organic carbon (TOC), the remote control can be performed by remote control via the measured value of total organic carbon (TOC). It is possible to operate as planned by backing up local human resources by making real-time judgments by distant wastewater treatment experts, not by end users at the factory site.

(6)前記吸着剤の賦活再生時の排気をスクラバーするようにしてもよい。
このように、吸着剤の賦活再生時(例えば900℃)の排気をスクラバーするようにすると、浄化した清浄なガスを排出することが出来る。
例えば、排気・排ガスを電解水中に曝気し、さらにこれに電解水ミストをシャワーし、最終は活性炭フィルターに通して外部へと排出することが出来る。
(6) The exhaust gas during activation and regeneration of the adsorbent may be scrubbed.
In this way, by scrubbing the exhaust gas during activation and regeneration of the adsorbent (for example, 900 ° C.), purified clean gas can be discharged.
For example, the exhaust gas / exhaust gas can be aerated in the electrolyzed water, the electrolyzed water mist can be showered therein, and finally the electrolyzed water mist can be passed through an activated carbon filter and discharged to the outside.

(7)前記吸着剤槽との間を循環する電解槽を有するようにしてもよい。
このように、吸着剤槽との間を循環する電解槽を有するようにすると、排水中に残存する汚れ成分を電解槽における電気分解で低減することが出来る。なお、電気分解により生成して残留する有効塩素は吸着剤で消すことが出来る。
(7) An electrolytic cell that circulates between the adsorbent tank and the adsorbent tank may be provided.
In this way, by having an electrolytic cell that circulates between the adsorbent tank and the adsorbent tank, the dirt component remaining in the waste water can be reduced by electrolysis in the electrolytic cell. The effective chlorine generated and remaining by electrolysis can be eliminated with an adsorbent.

この発明は上述のような構成であり、次の効果を有する。
吸着剤の量をできるだけ少ない量に最適化して処理することができるので、従来よりも適正処理をすることができる排水処理方法を提供することが出来る。
The present invention has the above-mentioned configuration and has the following effects.
Since the amount of the adsorbent can be optimized to be as small as possible for the treatment, it is possible to provide a wastewater treatment method capable of performing more appropriate treatment than before.

この発明の排水処理方法の実施形態を説明するシステム・フロー図。The system flow diagram explaining the embodiment of the wastewater treatment method of this invention.

以下、この発明の実施の形態を図面を参照して説明する。
〔実施形態1〕
図1に示すように、この排水処理方法は、排水の汚れ成分の濃度を自己処理放流水W…図示右下側(COD 20~100ppm程度)により平準化して、2連並列の吸着剤槽C…図示右よりの下側(交互運転する)に通す吸着濾過工程を有する。吸着剤として、この実施形態では活性炭を使用した。
排水とは、狭義の排水、廃水、排液、廃液を含む上位概念である。狭義の排水、廃水は汚れ成分の濃度が比較的低いものであり(COD 3,000ppm未満)、狭義の排液、廃液は汚れ成分の濃度が比較的高いものである(COD 3,000ppm以上)。そして、これら全てを含む上位概念を、排水として広義に総称する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
As shown in FIG. 1, in this wastewater treatment method, the concentration of the dirt component of the wastewater is leveled by the self-treated discharged water W ... ... Has an adsorption filtration step of passing through the lower side (alternate operation) from the right side of the figure. Activated carbon was used as the adsorbent in this embodiment.
Drainage is a superordinate concept including wastewater, wastewater, wastewater, and wastewater in a narrow sense. Wastewater and wastewater in the narrow sense have a relatively low concentration of dirt components (COD less than 3,000 ppm), and drainage and wastewater in the narrow sense have a relatively high concentration of dirt components (COD 3,000 ppm or more). And, the superordinate concept including all of them is generically referred to as wastewater in a broad sense.

前記汚れ成分は、主として有機成分である。汚れ成分の濃度を測る指標としては、TOC(全有機炭素)、COD(化学的酸素要求量)、NH3(アンモニア性窒素)、N‐ヘキサン値、ss成分(有機系粒子)などである。
排水の原水(COD 19,400ppm)は、TOCセンサーS1を介して原水槽1…図示左端 に受け入れるようにしている。TOCセンサーS1は、排水の汚れ成分の濃度が規定の濃度(COD 20,000ppm)以上であると信号を発するようにしており、これにより異常排水の受け入れを制限して、排水処理装置を自動停止するように制御することが出来る。
この実施形態では、排水の原水COD 約20,000ppm(元々はより高濃度であるが適正処理のため希釈した)で受け入れて処理するようにしたが、排水の性状に応じて、15,000ppm、10,000ppmなどで受け入れた方が全体としての処理のバランスが良好になる場合がある。
The dirt component is mainly an organic component. Indexes for measuring the concentration of dirt components include TOC (total organic carbon), COD (chemical oxygen demand), NH 3 (ammonia nitrogen), N-hexane value, and ss component (organic particles).
Raw wastewater (COD 19,400ppm) is received in the raw water tank 1 ... at the left end of the figure via the TOC sensor S1. The TOC sensor S1 emits a signal when the concentration of the wastewater pollution component is higher than the specified concentration (COD 20,000ppm), which limits the acceptance of abnormal wastewater and automatically stops the wastewater treatment equipment. Can be controlled as such.
In this embodiment, the raw water COD of the wastewater is about 20,000 ppm (originally higher concentration but diluted for proper treatment) and treated, but depending on the properties of the wastewater, 15,000 ppm and 10,000 ppm. In some cases, the balance of processing as a whole may be better if it is accepted.

先ず、排水の原水(1,000cc)を原水槽1に流入させ、吸着剤槽C…図示左側(活性炭量360g)、次亜水混合槽2を介して中間槽3に移行させるようにしている。排水は活性炭槽に対し13.2cc/分で通水した。吸着剤槽を出た時点のCODは、4,200ppmであった。なお、吸着剤槽Cを出た排水を原水槽1に戻して再度 吸着剤槽Cで処理する再処理ラインRを設けている。この再処理ラインRを利用することにより、吸着剤の処理性を排水の性状に合わせてアジャストすることが出来る。
次亜水混合槽2には、12%NaOCl(次亜塩素酸ナトリウム)に希釈水(工業用水、地下水、蒸留水)を混合して次亜水貯留槽4に貯留したものを添加するようにしている。そして、次亜水(排水500ccに対して12%NaOCl 8cc と希釈水42ccの割合)を混合したことにより中間槽3がアルカリ性に傾いた際には、HCl(塩酸)を適宜量 添加して中性域に戻すようにしている。
First, the raw water (1,000 cc) of the drainage is made to flow into the raw water tank 1 and transferred to the intermediate tank 3 via the adsorbent tank C ... on the left side of the figure (activated carbon amount 360 g) and the hypochlorite mixing tank 2. The drainage was passed through the activated carbon tank at 13.2 cc / min. The COD at the time of leaving the adsorbent tank was 4,200 ppm. A reprocessing line R is provided in which the wastewater discharged from the adsorbent tank C is returned to the raw water tank 1 and treated again in the adsorbent tank C. By using this reprocessing line R, the processability of the adsorbent can be adjusted according to the properties of wastewater.
Diluted water (industrial water, groundwater, distilled water) is mixed with 12% NaOCl (sodium hypochlorite) and stored in the hypochlorous acid storage tank 4 is added to the hypochlorous acid mixing tank 2. ing. Then, when the intermediate tank 3 becomes alkaline due to mixing hypochlorite water (ratio of 12% NaOCl 8cc and diluted water 42cc to 500cc of wastewater), add an appropriate amount of HCl (hydrochloric acid) to the middle. I try to return to the sexual area.

次いで、中間槽3から電解装置Eを介して次の中間槽3に送るようにしている。電解装置Eでは、約6A/dm2の電流で電解した。そして、中間槽3に排水中の有機成分を凝集させる液中バインダー剤を添加し、砂濾過装置Sへと送るようにしている。砂濾過装置Sから原水槽1へは、逆洗浄水ラインLを設けている。
すなわち、前記排水中の汚れ成分は、次亜水と電解装置Eにより酸化分解してその濃度を低減する前処理工程を有するようにしている。
次いで、中間槽3からss成分等を除去する砂濾過装置S、TOCセンサーS2を介して中間混合槽5に導く。砂濾過装置Sを出た時点のCODは、3,229ppmであった。砂濾過装置Sでは、ss成分と共に液中バインダー剤により凝集した有機成分も除去する。すなわち、高分子量の有機汚れ成分は、液中バインダー剤で凝集させて砂濾過装置Sで濾別するようにしている。
Next, it is sent from the intermediate tank 3 to the next intermediate tank 3 via the electrolytic device E. In the electrolyzer E, electrolysis was performed with a current of about 6 A / dm2. Then, an in-liquid binder agent that aggregates the organic components in the wastewater is added to the intermediate tank 3 and sent to the sand filtration device S. A backwash water line L is provided from the sand filtration device S to the raw water tank 1.
That is, the dirt component in the wastewater has a pretreatment step of oxidatively decomposing it with hypohydric water and the electrolytic device E to reduce its concentration.
Next, the mixture is guided to the intermediate mixing tank 5 via the sand filtration device S for removing the ss component and the like from the intermediate tank 3 and the TOC sensor S2. The COD at the time of leaving the sand filter S was 3,229 ppm. In the sand filter S, the organic component aggregated by the submerged binder agent is removed together with the ss component. That is, the high molecular weight organic contaminants are aggregated with a submerged binder and filtered by the sand filter S.

前記中間混合槽5から、TOCセンサーS3を介して2連並列の吸着剤槽C(交互運転する)に移行するようにしている(吸着濾過工程)。
そして、2連の各吸着剤槽Cに次ぐ吸着処理水槽6には、これとの間を循環する電解装置を設けるようにしている。必要に応じて、この電解装置を使用することが出来る。この電解装置により、吸着処理水槽6中に残留する排水の汚れ成分を電気分解して除去することが出来る。この電気分解による汚れ成分の除去の態様として、陽極電極による直接電解と電解生成塩素による酸化分解とがある。電解装置Eへは、12%NaOClを希釈して供給できるようにしている。
The intermediate mixing tank 5 is transferred to the adsorbent tank C (alternate operation) in parallel via the TOC sensor S3 (adsorption filtration step).
Then, the adsorption treatment water tank 6 next to each of the two adsorbent tanks C is provided with an electrolytic device that circulates between them. If necessary, this electrolyzer can be used. With this electrolytic device, the dirt component of the waste water remaining in the adsorption treatment water tank 6 can be electrolyzed and removed. As an embodiment of the removal of the dirt component by this electrolysis, there are direct electrolysis by the anode electrode and oxidative decomposition by the electrolytically generated chlorine. 12% NaOCl is diluted and supplied to the electrolyzer E.

吸着濾過工程では、排水の濃度を適正処理可能な濃度域になるように自己処理放流水Wを最終処理水槽7からフィードバックラインFで分岐して、TOCセンサーS4を介して排水原水側の中間混合槽5に混合させるようにしている。砂濾過装置S後のCODが約3,000ppmの場合、FB 150して処理開始当初の希釈CODが20ppm程度になるようにしている。
一方、系外に排出する自己処理放流水Wは、TOCセンサーS5で最終の水質(COD換算で<100ppm)を測定してから放流するようにしている。
そして、自己処理放流水Wの濃度が放流基準値の濃度(<COD100ppm)に上昇するまでの時間帯と、吸着剤を賦活再生装置8による賦活再生(900℃)する時間帯とが重複しないようにしている。この賦活再生装置8は、LNGガスによる熱風発生機構と熱分解路とを有する。賦活再生装置8から取り出した吸着剤は、吸着剤貯留槽9に移行してエアーで冷却するようにしている。
吸着剤槽C中の活性炭は、吸着剤貯留槽9との間で往復するようにしている。図中、点線で吸着剤貯留槽9→吸着剤槽Cの経路、太い破線で吸着剤槽C→吸着剤貯留槽9の経路を示す。
In the adsorption filtration step, the self-treated effluent W is branched from the final treated water tank 7 at the feedback line F so that the concentration of the wastewater is in the concentration range that can be properly treated, and is intermediately mixed on the wastewater raw water side via the TOC sensor S4. It is mixed in the tank 5. If the COD after the sand filter S is about 3,000 ppm, FB 150 is used so that the diluted COD at the beginning of the treatment is about 20 ppm.
On the other hand, the self-treated effluent W discharged to the outside of the system is discharged after the final water quality (<100 ppm in terms of COD) is measured by the TOC sensor S5.
Then, the time zone until the concentration of the self-treated discharged water W rises to the concentration of the discharge reference value (<COD100ppm) and the time zone in which the adsorbent is activated and regenerated (900 ° C.) by the activating and regenerating device 8 do not overlap. I have to. The activation / regeneration device 8 has a hot air generation mechanism using LNG gas and a pyrolysis path. The adsorbent taken out from the activation / regeneration device 8 is transferred to the adsorbent storage tank 9 and cooled by air.
The activated carbon in the adsorbent tank C reciprocates with the adsorbent storage tank 9. In the figure, the dotted line shows the route of the adsorbent storage tank 9 → the adsorbent tank C, and the thick broken line shows the route of the adsorbent tank C → the adsorbent storage tank 9.

吸着剤を賦活再生する際には、吸着剤が脱水して高温となり微細経路が形成されていく過程と、この過程において吸着された排水中の汚れ成分が分解炭化されていく過程とがある。吸着剤の賦活再生時(900℃)の排水中の汚れ成分の炭化成分を、吸着剤(活性炭)として利用するようにした。
前記吸着剤の賦活再生時の排気ガス(流路を細い破線で示す)を、吸着剤貯留槽9を介して浄化するスクラバー装置10を設けるようにしている。排気・排ガスを電解水中に曝気し、さらに電解水ミストをシャワーし、活性炭を充填したガス濾過装置で清浄化したうえで大気解放するようにしている。
ここで、実機で排水処理する際には、全有機炭素の測定値(TOCセンサーS1-5)を介して吸着剤槽Cに通す排水量を遠隔制御で調節することも出来る。すなわち、排水の経路に流量計を設置し、遠隔操作でフィードバックする流量の調整を行うことにより、FB量を増減し、排水の汚れ成分の濃度を平準化して、吸着剤の負荷をコントロールすることが出来る。
When the adsorbent is activated and regenerated, there are a process in which the adsorbent is dehydrated to a high temperature and a fine path is formed, and a process in which the dirt component in the wastewater adsorbed in this process is decomposed and carbonized. The carbonized component of the dirt component in the wastewater during the activation and regeneration of the adsorbent (900 ° C) is used as the adsorbent (activated carbon).
A scrubber device 10 is provided to purify the exhaust gas (the flow path is shown by a thin broken line) at the time of activation and regeneration of the adsorbent via the adsorbent storage tank 9. Exhaust gas and exhaust gas are aerated in the electrolyzed water, and the electrolyzed water mist is showered, cleaned with a gas filtration device filled with activated carbon, and then released to the atmosphere.
Here, when treating wastewater with an actual machine, the amount of wastewater passed through the adsorbent tank C via the measured value of total organic carbon (TOC sensor S1-5) can be adjusted by remote control. That is, by installing a flow meter in the drainage route and adjusting the flow rate to be fed back by remote control, the amount of FB is increased or decreased, the concentration of the dirt component of the drainage is leveled, and the load of the adsorbent is controlled. Can be done.

次に、この実施形態の排水処理方法の使用状態を説明する。
この排水処理方法(原水COD 19,400ppm)は、前処理工程後の排水の汚れ成分の濃度(COD 3,000~4,000ppm程度)を自己処理放流水W(COD 20~100ppm程度)により平準化して吸着剤槽Cに通す吸着濾過工程を有するので、排水の汚れ成分の濃度が高い状態ではなく自己処理放流水Wにより平準化して低濃度化(中間混合槽5)すると共に、経時的な濃度のアップ・ダウンが少ないように時間的な平均化をして吸着剤への負担を軽減することが出来た。
Next, the usage state of the wastewater treatment method of this embodiment will be described.
In this wastewater treatment method (raw water COD 19,400ppm), the concentration of dirt components (COD about 3,000 to 4,000ppm) in the wastewater after the pretreatment step is leveled by the self-treated discharged water W (COD about 20 to 100ppm) and the adsorbent. Since it has an adsorption filtration step that passes it through tank C, it is not in a state where the concentration of dirt components in the wastewater is high, but it is leveled by the self-treated discharged water W to lower the concentration (intermediate mixing tank 5), and the concentration increases over time. It was possible to reduce the burden on the adsorbent by averaging over time so that there was little down.

また、前記吸着濾過工程では排水の濃度を適正処理可能な濃度域(中間混合槽5)になるように自己処理放流水W(COD 20~100ppm程度)をフィードバックして排水原水側に混合(中間混合槽5)するようにしたので、フィードバックした清浄な自己処理放流水Wを排水原水側に混合することにより吸着剤の吸着平衡が立ちにくい低い濃度で処理することが出来た。 Further, in the adsorption filtration step, the self-treated discharged water W (COD of about 20 to 100 ppm) is fed back and mixed with the wastewater raw water side so that the concentration of the wastewater is in the concentration range (intermediate mixing tank 5) that can be appropriately treated (intermediate). Since the mixing tank 5) was used, the clean self-treated discharged water W fed back was mixed with the wastewater raw water side, so that the adsorbent could be treated at a low concentration at which the adsorption equilibrium was difficult to establish.

さらに、自己処理放流水Wの濃度(COD 20~100ppm程度)が放流基準値の濃度(<COD100ppm)に上昇するまでの時間帯と吸着剤を賦活再生する時間帯とが2連の吸着剤槽C(交互運転する)で重複しないようにしたので、自己処理放流水Wの濃度(COD 20~100ppm程度)が規定の濃度(<COD100ppm)に上昇するまでの時間に、吸着剤を賦活再生する時間を合わせることが出来た。
これにより、吸着剤の量をできるだけ少ない量に最適化して処理することができることとなり、従来よりも適正処理をすることが出来た。
Furthermore, there are two adsorbent tanks, one is the time until the concentration of the self-treated discharged water W (COD 20 to 100 ppm) rises to the concentration of the discharge standard value (<COD 100 ppm), and the other is the time to activate and regenerate the adsorbent. Since it is prevented from overlapping in C (alternate operation), the adsorbent is activated and regenerated in the time until the concentration of the self-treated effluent W (COD 20 to 100 ppm) rises to the specified concentration (<COD 100 ppm). I was able to set the time.
As a result, the amount of the adsorbent can be optimized to be as small as possible for the treatment, and the treatment can be performed more appropriately than before.

また、前記排水中の汚れ成分(COD 20,000ppm程度)を酸化分解してその濃度を低減(COD 3,000~4,000ppm程度)する前処理工程を有するようにしたので、排水中の汚れ成分の濃度を予めある程度低減しておくことができるので吸着濾過工程での負荷を軽減することが出来た。
なお、前記前処理工程では汚れ成分の濃度が高い状態で処理してからより低い濃度に低減するようにすると、汚れ成分の濃度が高い状態で効率よく処理してから吸着濾過工程における適正な濃度に低減することが出来る。
In addition, since it has a pretreatment process that oxidatively decomposes the dirt component (COD of about 20,000 ppm) in the wastewater to reduce its concentration (COD of about 3,000 to 4,000 ppm), the concentration of the dirt component in the wastewater can be reduced. Since it can be reduced to some extent in advance, the load in the adsorption filtration step can be reduced.
In the pretreatment step, if the stain component is treated in a high concentration state and then reduced to a lower concentration, the stain component is efficiently treated in a high concentration state and then the appropriate concentration in the adsorption filtration step. Can be reduced to.

また、吸着剤の賦活再生時(900℃)の排水中の炭化成分を吸着剤として利用するようにしたので、排水処理中に吸着剤に付着した排水中の有機成分の炭化物を吸着剤として有効利用することが出来た。
さらに、吸着剤の賦活再生時(900℃)の排気をスクラバーするようにしたので、浄化した清浄なガスを排出することが出来た。
実機で排水処理する際、排水処理を全有機炭素の測定値(TOCセンサーS1-5)を介して吸着剤槽Cに通す排水量を遠隔制御で調節するようにすると、全有機炭素(TOC)の測定値を介したリモートの遠隔操作により、工場現場のエンド・ユーザーではなく、遠方の排水処理の専門家によるリアルタイムの判断によって現地人材のバック・アップを図ることが、予定通りの運転を行うことが出来ることとなる。
In addition, since the carbonized component in the wastewater during activation and regeneration of the adsorbent (900 ° C) is used as the adsorbent, the carbonized organic component in the wastewater adhering to the adsorbent during the wastewater treatment is effective as the adsorbent. I was able to use it.
Furthermore, since the exhaust gas at the time of activation and regeneration of the adsorbent (900 ° C.) was scrubbed, it was possible to discharge the purified and clean gas.
When treating wastewater with an actual machine, if the amount of wastewater passed through the adsorbent tank C via the measured value of total organic carbon (TOC sensor S1-5) is controlled remotely, the total organic carbon (TOC) can be adjusted. By remote control via measured values, it is possible to back up local human resources by making real-time judgments by distant wastewater treatment experts, not by end users at the factory site, so that the operation can be performed as planned. Will be possible.

〔実施形態2〕
排水原水のCOD 19,200ppmに対し、前処理工程後の排水の汚れ成分の濃度(COD 3,000~4,000ppm程度)を自己処理放流水(COD 20~100ppm程度)により平準化して吸着剤槽C(7kg)に通した(3L/時)。
そして、排水の濃度を適正処理可能な濃度域になるように自己処理放流水(COD 20~100ppm程度)をフィードバック(FB倍数 約200)して排水原水側に混合した。
[Embodiment 2]
The concentration of dirt components in the wastewater after the pretreatment process (COD 3,000 to 4,000 ppm) is leveled with the self-treated discharged water (COD 20 to 100 ppm) with respect to the COD of 19,200 ppm of the wastewater raw water, and the adsorbent tank C (7 kg) ) (3L / hour).
Then, self-treated effluent (COD of about 20 to 100 ppm) was fed back (FB multiple of about 200) and mixed with the wastewater raw water side so that the concentration of the wastewater could be adjusted to a concentration range that can be properly treated.

排水原水COD:19,200ppm
前処理工程後の排水COD:3,650ppm
自己処理放流水のCOD(処理開始時):19.5ppm
先ず、中間混合槽の排水のCODの変移は次の通りである。
処理開始3時間後:32ppm
処理開始6時間後:50ppm
処理開始9時間後:61ppm
処理開始12時間後:73ppm
処理開始15時間後:83ppm
処理開始18時間後:99ppm
処理開始21時間後:100ppm
一方、最終処理水槽(自己処理放流水)の排水のCODの変移は次の通りである。
処理開始3時間後:14ppm
処理開始6時間後:28ppm
処理開始9時間後:44ppm
処理開始12時間後:62ppm
処理開始15時間後:70ppm
処理開始18時間後:86ppm
処理開始21時間後:93ppm
自己処理放流水の濃度が放流基準値の濃度(<COD 100ppm)に上昇するまでの時間帯(21時間)と吸着剤を賦活再生する時間帯(21時間)とが多連の吸着剤槽(交互運転する)で重複しないようにすることができた。
Wastewater raw water COD: 19,200ppm
Wastewater COD after pretreatment process: 3,650ppm
COD of self-treated effluent (at the start of treatment): 19.5ppm
First, the change in COD of the wastewater from the intermediate mixing tank is as follows.
3 hours after the start of treatment: 32ppm
6 hours after the start of treatment: 50ppm
9 hours after the start of treatment: 61ppm
12 hours after the start of treatment: 73ppm
15 hours after the start of treatment: 83ppm
18 hours after the start of treatment: 99ppm
21 hours after the start of treatment: 100ppm
On the other hand, the change in COD of the wastewater from the final treatment tank (self-treated effluent) is as follows.
3 hours after the start of treatment: 14ppm
6 hours after the start of treatment: 28ppm
9 hours after the start of treatment: 44ppm
12 hours after the start of treatment: 62ppm
15 hours after the start of treatment: 70ppm
18 hours after the start of treatment: 86ppm
21 hours after the start of treatment: 93ppm
The time zone (21 hours) until the concentration of the self-treated discharged water rises to the concentration of the discharge standard value (<COD 100ppm) and the time zone (21 hours) for activating and regenerating the adsorbent are multiple adsorbent tanks (21 hours). It was possible to prevent duplication by (alternate operation).

排水原水COD:19,200ppm
前処理工程後の排水COD:4,250ppm
自己処理放流水のCOD(処理開始時):20.5ppm
先ず、中間混合槽の排水のCODの変移は次の通りである。
処理開始3時間後:41ppm
処理開始6時間後:56ppm
処理開始9時間後:73ppm
処理開始12時間後:81ppm
処理開始15時間後:79ppm
処理開始18時間後:110ppm
処理開始21時間後:113ppm
一方、最終処理水槽(自己処理放流水)の排水のCODの変移は次の通りである。
処理開始3時間後:17ppm
処理開始6時間後:33ppm
処理開始9時間後:46ppm
処理開始12時間後:59ppm
処理開始15時間後:79ppm
処理開始18時間後:85ppm
処理開始21時間後:98ppm
自己処理放流水の濃度が放流基準値の濃度(<COD 100ppm)に上昇するまでの時間帯(21時間)と吸着剤を賦活再生する時間帯(21時間)とが多連の吸着剤槽(交互運転する)で重複しないようにすることができた。
Wastewater raw water COD: 19,200ppm
Wastewater COD after pretreatment process: 4,250ppm
COD of self-treated effluent (at the start of treatment): 20.5ppm
First, the change in COD of the wastewater from the intermediate mixing tank is as follows.
3 hours after the start of treatment: 41ppm
6 hours after the start of treatment: 56ppm
9 hours after the start of treatment: 73ppm
12 hours after the start of treatment: 81ppm
15 hours after the start of treatment: 79ppm
18 hours after the start of treatment: 110ppm
21 hours after the start of treatment: 113ppm
On the other hand, the change in COD of the wastewater from the final treatment tank (self-treated effluent) is as follows.
3 hours after the start of treatment: 17ppm
6 hours after the start of treatment: 33ppm
9 hours after the start of treatment: 46ppm
12 hours after the start of treatment: 59ppm
15 hours after the start of treatment: 79ppm
18 hours after the start of treatment: 85ppm
21 hours after the start of treatment: 98ppm
The time zone (21 hours) until the concentration of the self-treated discharged water rises to the concentration of the discharge standard value (<COD 100ppm) and the time zone (21 hours) for activating and regenerating the adsorbent are multiple adsorbent tanks (21 hours). It was possible to prevent duplication by (alternate operation).

排水原水COD:19,200ppm
前処理工程後の排水COD:4,100ppm
自己処理放流水のCOD(処理開始時):19.5ppm
先ず、中間混合槽の排水のCODの変移は次の通りである。
処理開始3時間後:36ppm
処理開始6時間後:45ppm
処理開始9時間後:60ppm
処理開始12時間後:79ppm
処理開始15時間後:93ppm
処理開始18時間後:91ppm
処理開始21時間後:105ppm
一方、最終処理水槽(自己処理放流水)の排水のCODの変移は次の通りである。
処理開始3時間後:12ppm
処理開始6時間後:26ppm
処理開始9時間後:39ppm
処理開始12時間後:61ppm
処理開始15時間後:67ppm
処理開始18時間後:73ppm
処理開始21時間後:89ppm
自己処理放流水の濃度が放流基準値の濃度(<COD 100ppm)に上昇するまでの時間帯(21時間)と吸着剤を賦活再生する時間帯(21時間)とが多連の吸着剤槽(交互運転する)で重複しないようにすることができた。
Wastewater raw water COD: 19,200ppm
Wastewater COD after pretreatment process: 4,100ppm
COD of self-treated effluent (at the start of treatment): 19.5ppm
First, the change in COD of the wastewater from the intermediate mixing tank is as follows.
3 hours after the start of treatment: 36ppm
6 hours after the start of treatment: 45ppm
9 hours after the start of treatment: 60ppm
12 hours after the start of treatment: 79ppm
15 hours after the start of treatment: 93ppm
18 hours after the start of treatment: 91ppm
21 hours after the start of treatment: 105ppm
On the other hand, the change in COD of the wastewater from the final treatment tank (self-treated effluent) is as follows.
3 hours after the start of treatment: 12ppm
6 hours after the start of treatment: 26ppm
9 hours after the start of treatment: 39ppm
12 hours after the start of treatment: 61ppm
15 hours after the start of treatment: 67ppm
18 hours after the start of treatment: 73ppm
21 hours after the start of treatment: 89ppm
The time zone (21 hours) until the concentration of the self-treated discharged water rises to the concentration of the discharge standard value (<COD 100ppm) and the time zone (21 hours) for activating and regenerating the adsorbent are multiple adsorbent tanks (21 hours). It was possible to prevent duplication by (alternate operation).

従来よりも適正処理をすることができることによって、種々の排水処理方法の用途に適用することができる。 It can be applied to various wastewater treatment methods because it can be treated more appropriately than before.

C 吸着剤槽
W 自己処理放流水
C Adsorbent tank
W Self-treated effluent

Claims (7)

排水の汚れ成分の濃度を自己処理放流水(W)により平準化して吸着剤槽(C)に通す吸着濾過工程を有し、前記吸着濾過工程では排水の濃度を適正処理可能な濃度域になるように自己処理放流水(W)をフィードバックして排水原水側に混合し、自己処理放流水(W)の濃度が放流基準値の濃度に上昇するまでの時間帯と吸着剤を賦活再生する時間帯とが重複しないようにしたことを特徴とする排水処理方法。 It has an adsorption filtration step in which the concentration of the dirt component of the wastewater is leveled by the self-treated discharged water (W) and passed through the adsorbent tank (C). The time zone until the concentration of the self-treated discharged water (W) rises to the concentration of the discharge standard value and the time for activating and regenerating the adsorbent by feeding back the self-treated discharged water (W) and mixing it on the wastewater raw water side. A wastewater treatment method characterized in that it does not overlap with the belt. 前記排水中の汚れ成分を酸化分解してその濃度を低減する前処理工程を有するようにした請求項1記載の排水処理方法。 The wastewater treatment method according to claim 1, further comprising a pretreatment step of oxidatively decomposing the dirt component in the wastewater to reduce the concentration thereof. 前記前処理工程では汚れ成分の濃度が高い状態で処理してからより低い濃度に低減するようにした請求項1又は2記載の排水処理方法。 The wastewater treatment method according to claim 1 or 2, wherein in the pretreatment step, the stain component is treated in a high concentration state and then reduced to a lower concentration. 前記吸着剤の賦活再生時の排水中の汚れ成分の炭化成分を吸着剤として利用するようにした請求項1乃至3のいずれかに記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 3, wherein the carbonized component of the dirt component in the wastewater during activation and regeneration of the adsorbent is used as the adsorbent. 前記排水処理を全有機炭素の測定値を介して吸着剤槽(C)に通す排水量を遠隔制御で調節するようにした請求項1乃至4のいずれかに記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 4, wherein the amount of wastewater passed through the adsorbent tank (C) via the measured value of total organic carbon is adjusted by remote control. 前記吸着剤の賦活再生時の排気をスクラバーするようにした請求項1乃至5のいずれかに記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 5, wherein the exhaust gas at the time of activation and regeneration of the adsorbent is scrubbed. 前記吸着剤槽(C)との間を循環する電解装置(E)を有するようにした請求項1乃至6のいずれかに記載の排水処理方法。 The wastewater treatment method according to any one of claims 1 to 6, further comprising an electrolytic device (E) that circulates between the adsorbent tank (C).
JP2020121487A 2020-07-15 2020-07-15 Wastewater treatment method Active JP7365299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020121487A JP7365299B2 (en) 2020-07-15 2020-07-15 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020121487A JP7365299B2 (en) 2020-07-15 2020-07-15 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2022018403A true JP2022018403A (en) 2022-01-27
JP7365299B2 JP7365299B2 (en) 2023-10-19

Family

ID=80203310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020121487A Active JP7365299B2 (en) 2020-07-15 2020-07-15 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP7365299B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038349A (en) * 1999-07-29 2001-02-13 Kurita Water Ind Ltd Apparatus for removing toc
JP2015009228A (en) * 2013-07-02 2015-01-19 株式会社オメガ Waste water treatment mechanism
JP2015181970A (en) * 2014-03-20 2015-10-22 株式会社オメガ wastewater treatment method
JP2016019933A (en) * 2014-07-14 2016-02-04 株式会社オメガ Drainage treatment unit and treatment method
WO2017119441A1 (en) * 2016-01-08 2017-07-13 東洋紡株式会社 Water treatment apparatus, adsorption element, and water treatment method
JP2020093234A (en) * 2018-12-14 2020-06-18 株式会社オメガ Wastewater treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038349A (en) * 1999-07-29 2001-02-13 Kurita Water Ind Ltd Apparatus for removing toc
JP2015009228A (en) * 2013-07-02 2015-01-19 株式会社オメガ Waste water treatment mechanism
JP2015181970A (en) * 2014-03-20 2015-10-22 株式会社オメガ wastewater treatment method
JP2016019933A (en) * 2014-07-14 2016-02-04 株式会社オメガ Drainage treatment unit and treatment method
WO2017119441A1 (en) * 2016-01-08 2017-07-13 東洋紡株式会社 Water treatment apparatus, adsorption element, and water treatment method
JP2020093234A (en) * 2018-12-14 2020-06-18 株式会社オメガ Wastewater treatment method

Also Published As

Publication number Publication date
JP7365299B2 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
US7175765B2 (en) Method for treating for-treatment water containing organic matter and nitrogen compound
JP2002011498A (en) Device for treating leachate
WO1991013834A1 (en) Method and apparatus for treatment of liquid photographic pr ocessing wastes
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JP2005218983A (en) Wastewater treatment method and apparatus using electrolytic oxidation
JP7365299B2 (en) Wastewater treatment method
JPH10277568A (en) Treatment of organic matter-containing waste water
JPH07124593A (en) Highly advanced water purifying treatment method
Schulhof An evolutionary approach to activated carbon treatment
JP5126926B2 (en) Ultra-high water treatment method and water treatment system used therefor
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
RU2394777C1 (en) Method of purifying water from organic contaminants using ozone in presence of catalyst
JPS638835B2 (en)
US20040134862A1 (en) Device and method for tertiary treatment of wastewater and other contaminated aqueous media (CAM)
JPS6036835B2 (en) How to purify human waste water
JPH1147589A (en) Regeneration pretreatment of activated carbon
JP4831782B2 (en) Wastewater treatment method and system
JP4062690B2 (en) Organic wastewater treatment method
JP3601673B2 (en) Electrolytic treatment method for water containing oxidizable pollutants and electrode for electrolytic treatment
JP2006272081A (en) Ultrahigh-level method for treating water and water treatment system to be used therein
JPH11165180A (en) Method for treating scrubber drainage
JP2883009B2 (en) Organic wastewater treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230804

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7365299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150