JPS638835B2 - - Google Patents

Info

Publication number
JPS638835B2
JPS638835B2 JP4383A JP4383A JPS638835B2 JP S638835 B2 JPS638835 B2 JP S638835B2 JP 4383 A JP4383 A JP 4383A JP 4383 A JP4383 A JP 4383A JP S638835 B2 JPS638835 B2 JP S638835B2
Authority
JP
Japan
Prior art keywords
activated carbon
human waste
granular activated
waste water
cod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4383A
Other languages
Japanese (ja)
Other versions
JPS59127691A (en
Inventor
Kenichi Nakamura
Hisamatsu Mizuno
Akira Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Engineering Co Ltd
Original Assignee
Showa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Engineering Co Ltd filed Critical Showa Engineering Co Ltd
Priority to JP4383A priority Critical patent/JPS59127691A/en
Publication of JPS59127691A publication Critical patent/JPS59127691A/en
Publication of JPS638835B2 publication Critical patent/JPS638835B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、複極活性炭充填電解法の複合シス
テムによつてCOD(化学的酸素要求量)を目標水
質レベルに低減するし尿二次処理水の高次処理方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-level treatment method for secondary treated human waste water that reduces COD (chemical oxygen demand) to a target water quality level using a complex system of bipolar activated carbon-filled electrolysis.

し尿処理施設よりの放流水排出基準は、わが国
の廃棄物の処理および清掃に関する法律施行規則
によつてBOD,SS及び大腸菌数の3項目が規定
されている。一方、水質汚濁防止法はし尿処理施
設を特定施設に指定し、放流先の利水状況によつ
ては上のせ基準も適用されて生活環境に係る環境
基準によつて放流先が湖沼や海域の場合には
BODに代つてCOD規制となり、水域の総量規制
はCOD値で規制されている。
The standards for discharge of effluent from human waste treatment facilities are stipulated in Japan's Waste Disposal and Cleaning Act Enforcement Regulations for three items: BOD, SS, and E. coli count. On the other hand, under the Water Pollution Control Act, human waste treatment facilities are designated as specified facilities, and depending on the water usage status of the discharge destination, additional standards may also be applied. for
COD regulations have replaced BOD, and the total amount of water in water bodies is regulated by COD values.

上記排出基準は標準希釈(20倍)を伴つた状態
で確保されるのが原則であるが、希釈水の確保の
困難さや大量の放流水の排出に伴う障害等のため
できるだけ低い希釈率で排出基準を満足すること
が必要になつて来ている。し尿処理施設を建設す
る際に省資源、立地条件により装置の小型化、低
希釈等の要望が強く、一方放流先関係住民の公害
意識等から切実に低希釈率によるし尿の高次処理
方法の出現が望まれている実情にある。
In principle, the above discharge standards are secured with standard dilution (20 times), but due to difficulties in securing dilution water and problems associated with discharging large amounts of effluent water, the discharge standards are discharged at the lowest dilution rate possible. It has become necessary to meet standards. When constructing human waste treatment facilities, there are strong demands for resource conservation, downsizing of equipment, and low dilution due to location conditions.On the other hand, due to the pollution awareness of the residents involved in the discharge destination, there is an urgent need for advanced processing methods for human waste using low dilution rates. The reality is that their appearance is desired.

本発明者らは、上記実情に対処すべく低希釈率
によるし尿二次処理水のCOD低減方法に就いて
研究を行なつた結果、公知のオゾン酸化方法、活
性炭吸着方法もしくはオゾン酸化方法と活性炭吸
着方法との併用の何ずれよりも経済的かつこれら
方法では到達し得ないCOD低減方法を完成する
に到つた。
In order to cope with the above situation, the present inventors conducted research on a method for reducing the COD of secondary treated human waste water using a low dilution rate. We have completed a COD reduction method that is more economical than any combination of adsorption methods and cannot be achieved with these methods.

この発明の基本的構成は、し尿二次処理水をオ
ゾン酸化した後、陰陽両極間に粒状活性炭を充填
した複極活性炭充填電解装置に通水、通電して有
機物を吸蔵・吸着し電解酸化させることにある。
かかる方法によつてし尿二次処理水中のCOD起
因物質を目標レベルに的確に低減除去することが
できる効果をもたらす。
The basic structure of this invention is that after secondary treated human waste water is oxidized with ozone, water and electricity are passed through a bipolar activated carbon-filled electrolyzer filled with granular activated carbon between the positive and negative electrodes to occlude and adsorb organic matter and electrolytically oxidize it. There is a particular thing.
This method brings about the effect that the COD-causing substances in the secondary treated human waste water can be accurately reduced and removed to the target level.

この発明の方法によつてもたらす効果を発現さ
せる理由は、前段において亜硝酸イオン(NO- 2
が存在するとき、オゾンの注入接触により硝酸イ
オン(NO- 3)化と脱色および殺菌を行ない、前
段で除去し得なかつたCODの残分を後段の複極
活性炭充填電解装置(以下、ACEと呼ぶ)で処
理する。即ち、オゾン処理水は直流通電された活
性炭を充填した電解装置に導かれ水電解によつて
発生した水素と酸素の気泡で浮上する浮上帯域を
通じてスカムを浮上分離し、分離水は支持電極間
に粒状活性炭を充填した電解帯域に通し、溶存イ
オンは複極化した活性炭の細孔内に吸蔵され、有
機性コロイド物質は活性炭の細孔表面に吸着され
て濃縮される。一方水電解により発生した酸素は
細孔内にとりこまれた有機物質を酸化分解し、ま
た活性炭表面へ吸着濃縮することにより分解速度
を速めるものと考えられる。
The reason for the effect brought about by the method of this invention is that nitrite ions (NO - 2 ) are
When COD is present, ozone injection contact converts nitrate ions (NO - 3 ), decolorizes, and sterilizes, and removes the remaining COD that could not be removed in the first stage by using a bipolar activated carbon-filled electrolyzer (hereinafter referred to as ACE) in the second stage. call). That is, the ozonated water is led to an electrolyzer filled with activated carbon that is supplied with direct current, and the scum is floated and separated through a flotation zone that floats with hydrogen and oxygen bubbles generated by water electrolysis, and the separated water is separated between the supporting electrodes. Passed through an electrolysis zone filled with granular activated carbon, dissolved ions are occluded in the pores of the bipolar activated carbon, and organic colloidal substances are adsorbed and concentrated on the pore surface of the activated carbon. On the other hand, it is thought that oxygen generated by water electrolysis oxidizes and decomposes the organic substances trapped in the pores, and accelerates the decomposition rate by adsorbing and concentrating on the activated carbon surface.

ACEで複極化が起こるには、活性炭粒子同志
が直接接触して電子伝導が行なわれると電極反応
が起こらないので、これを避けるために接触抵抗
の大きい細孔をもつ吸着能のある活性炭を採用す
る必要があり、かつこのものが複極性となるため
には充填粒状活性炭に較べて処理水内に十分な電
位勾配が生じなければならず、印加電圧は十分大
であることが必要である。即ち、 活性炭側の電気抵抗≪処理水側の電気抵抗換言
すれば、 活性炭側の見掛けの電導度K1≫処理水側の電
導度K2 であることが必要である。
In order for bipolarization to occur in ACE, electrode reactions do not occur if activated carbon particles come into direct contact with each other and conduct electrons, so in order to avoid this, activated carbon with adsorption ability and pores with high contact resistance is used. In order for this product to be bipolar, a sufficient potential gradient must occur in the treated water compared to packed granular activated carbon, and the applied voltage must be sufficiently large. . That is, it is necessary that the electrical resistance on the activated carbon side <<the electrical resistance on the treated water side. In other words, the apparent conductivity K 1 of the activated carbon side >> the electrical conductivity K 2 of the treated water side.

かかる観点に立脚して本発明者らは複極活性炭
充填電解法に決定的影響を与える粒状活性炭に関
する性状・性能を鋭意考究し、上記K1/K2をパ
ラメータとしてCOD低減に要する電力原単位、
通電時間に対する活性炭の消耗量等に就いて試験
を行なつた結果、ACEに充填する導電性粒子と
して、()粒径5〜7mmの多孔性粒状活性炭で
あり、かつ通常のし尿二次処理水の電導度K2
対しては、()粒状活性炭の見掛けの電導度K1
=15〜35m/cmである多孔性粒状活性炭を用い
ることが有効であることを見出した。
Based on this point of view, the present inventors have diligently studied the properties and performance of granular activated carbon, which has a decisive influence on the bipolar activated carbon filling electrolysis method, and calculated the electric power consumption required for COD reduction using the above K 1 /K 2 as a parameter. ,
As a result of tests on the consumption of activated carbon with respect to energization time, we found that the conductive particles to be filled in ACE were () porous granular activated carbon with a particle size of 5 to 7 mm, and ordinary secondary treated human waste water. For the electrical conductivity K 2 of (), the apparent electrical conductivity of granular activated carbon K 1
It has been found that it is effective to use porous granular activated carbon having a particle size of 15 to 35 m/cm.

多孔性粒状活性炭の形態は、球状のほか円柱状
のものであつてもよい。また未吸着の多孔性粒状
活性炭のほか吸着済みのものでも使用することが
出来る。吸着済みの粒状活性炭は電解帯域で複極
して表面電解が起り、し尿二次処理水中の有機物
の酸化分解を促進するので活性炭側から観れば自
己再生をしていることであり、従つて充填した粒
状活性炭は活性炭吸着法における再生のための交
換・入替の必要がなく、補充のみで足りる特筆す
べき特長を有する。
The porous granular activated carbon may have a cylindrical shape as well as a spherical shape. In addition to unadsorbed porous granular activated carbon, adsorbed activated carbon can also be used. The adsorbed granular activated carbon becomes bipolar in the electrolytic zone and surface electrolysis occurs, promoting the oxidative decomposition of organic matter in the secondary treated human waste water. From the activated carbon's perspective, it is self-regenerating; The granular activated carbon has the remarkable feature that there is no need for replacement or replacement for regeneration in the activated carbon adsorption method, and only replenishment is sufficient.

ACEに関しては、特開昭52−94651号公報また
特公昭49−38138号公報及び特開昭55−116488号
公報等に報告されており、し尿二次処理水の高次
処理について経済的で実用に供し得るには、上記
()及び()項で述べられる条件を満す活性
炭が不可欠であり、効果的に複極化することによ
つて実効を期することが出来る。
Regarding ACE, it has been reported in JP-A-52-94651, JP-A-49-38138, JP-A-55-116488, etc., and is an economical and practical method for high-level treatment of secondary treated human waste water. Activated carbon that satisfies the conditions stated in the above () and () is essential in order to be able to be used for this purpose, and it can be made effective by effectively bipolarizing it.

第1図は、この発明の方法を実施する装置の概
略図であつて、同図を参照しながら具体的に説明
する。1は原液タンクを示し、このタンクに給水
管2を通してし尿処理水が供給される。3はオゾ
ン接触槽であつて、原液タンク1に設けた排出管
1aからし尿処理水が流入される。オゾナイザー
4で発生したオゾンは導管4aを通り、槽3内の
し尿処理水中に吹込まれて気−液接触させる。オ
ゾン酸化したし尿処理水はオーバーフロー管3a
よりその受入貯槽5に流入される。6は複極活性
炭充填電解装置(ACE)であつて、電解帯域6
aとスカム浮上帯域6bからなり、電解帯域は、
陰極7と陽極8間に粒状活性炭9が定められた充
填密度と充填高さに充填され、両極に直流電路1
0が接続される。このACEの頂部と処理水受入
貯槽5にわたつてポンプPを備えた揚水管11が
設けられると共にACEの頂部に、粒状活性炭9
の再生用薬液タンク12に設けた給液管12aが
連結される。ACEの下側部位に途中を〓状に折
曲された排水管13が連結される。この管の折曲
部の頂部はACEのスカム浮上帯域6bのオーバ
ーフロー管14の取付位置線上に位置するように
採られる。この排水管13にACEの運転休止時
にACE内の溜水を抜出す管13aが設けられる。
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, and will be specifically explained with reference to the same figure. Reference numeral 1 indicates a stock solution tank, and human waste treated water is supplied to this tank through a water supply pipe 2. Reference numeral 3 denotes an ozone contact tank, into which human waste treated water flows into the tank 1 through a discharge pipe 1a provided in the stock solution tank 1. Ozone generated in the ozonizer 4 passes through a conduit 4a and is blown into the human waste treated water in the tank 3 to bring it into gas-liquid contact. The ozone-oxidized human waste treated water is in the overflow pipe 3a.
The liquid then flows into the receiving tank 5. 6 is a bipolar activated carbon-filled electrolyzer (ACE), in which an electrolytic zone 6
a and scum floating zone 6b, and the electrolytic zone is:
Granular activated carbon 9 is filled between the cathode 7 and the anode 8 to a predetermined packing density and filling height, and a DC current line 1 is connected to both poles.
0 is connected. A pumping pipe 11 equipped with a pump P is provided between the top of the ACE and the treated water receiving storage tank 5, and a granular activated carbon 9 is provided at the top of the ACE.
A liquid supply pipe 12a provided in the regeneration chemical liquid tank 12 is connected. A drain pipe 13 bent in the middle is connected to the lower part of the ACE. The top of the bent portion of this pipe is positioned on the attachment position line of the overflow pipe 14 of the scum floating zone 6b of the ACE. This drain pipe 13 is provided with a pipe 13a for draining accumulated water in the ACE when the ACE is out of operation.

同図に見られるように、前段工程にオゾン酸化
法が後段工程にACEが設けられており、し尿二
次処理水にNO- 2イオンが存在するときは、COD
の当量分のO3を注入してNO- 3イオンへの酸化と
着色成分の脱色を完了し、同時に有機物の低分子
化を促し一部有機酸まで酸化することによつて有
機物は親水性を帯びるに至り、一部イオンにまで
解離してくるものと思われる。また複極活性炭充
填電解法は“活性炭吸着法”よりも高能率であ
り、イオン化された親水性有機物は酸化分解する
に当り積極的に活性炭の細孔内に吸蔵される。吸
蔵・濃縮された粒状活性炭表面上の有機物は電解
酸化反応にとつては効果的であり、オゾン酸化で
は期待し得ない。水電解によつて発生した酸素に
よる酸化反応、処理水中に含有される塩素イオン
が電解されて生ずる有効塩素による酸化反応及び
電子の授受による酸化反応等が電解反応の際に生
じ、複極活性炭充填電解法による酸化力はオゾン
による酸化力よりも強力となり、“オゾン酸化法”
では除去し得なかつた有機物を酸化分解し得るも
のと思料される。
As seen in the figure, the ozone oxidation method is installed in the first step and the ACE is installed in the second step, and when NO - 2 ions are present in the secondary treated human waste water, the COD
The equivalent amount of O 3 is injected to complete the oxidation to NO - 3 ions and decolorization of the colored components, and at the same time, the organic matter becomes hydrophilic by promoting the reduction of the organic matter to lower molecular weight and oxidizing some of the organic acids. It is thought that some of the ions will dissociate into ions. Furthermore, the bipolar activated carbon filling electrolysis method has higher efficiency than the "activated carbon adsorption method", and ionized hydrophilic organic substances are actively occluded in the pores of the activated carbon during oxidative decomposition. Occluded and concentrated organic matter on the surface of granular activated carbon is effective for electrolytic oxidation reactions, but cannot be expected for ozone oxidation. Oxidation reactions due to oxygen generated by water electrolysis, oxidation reactions due to available chlorine generated by electrolysis of chlorine ions contained in the treated water, oxidation reactions due to transfer of electrons, etc. occur during electrolytic reactions, and bipolar activated carbon filling The oxidizing power of the electrolytic method is stronger than the oxidizing power of ozone, and it is called the “ozone oxidation method”.
It is thought that it is possible to oxidize and decompose organic substances that could not be removed.

スカムは処理水の電解の際に発生するH2とO2
の気泡に吸着されて浮上し、オーバーフロー管1
4から排出される。
Scum is H 2 and O 2 generated during electrolysis of treated water.
It is adsorbed by the air bubbles and floats up, and the overflow pipe 1
It is discharged from 4.

電解帯域6a内に充填された粒状活性炭は、上
述のように溶存イオンや有機物を吸蔵・吸着して
いるので、これを脱離させて活性能を再生する必
要がある。そのために再生薬液として塩化ナトリ
ウム、塩化カルシウム、硫酸ナトリウムのような
アルカリ金属、アルカリ土類金属の電解質溶液を
薬液タンク12に設けた給液管12aを通して供
給することによつて、再生薬液は粒状活性炭の細
孔内に流入して吸蔵・吸着物質を拡散溶出させて
粒状活性炭を再生することができる。再生薬液の
濃度、散液密度(/m2)、滴流量などは、実験
的に定められる。
Since the granular activated carbon filled in the electrolysis zone 6a absorbs and adsorbs dissolved ions and organic substances as described above, it is necessary to desorb them to regenerate the active ability. For this purpose, by supplying an electrolyte solution of alkali metals and alkaline earth metals such as sodium chloride, calcium chloride, and sodium sulfate as a regenerating chemical solution through the liquid supply pipe 12a provided in the chemical tank 12, the regenerating chemical solution is produced using granular activated carbon. The granular activated carbon can be regenerated by flowing into the pores and diffusing and eluting the occluded and adsorbed substances. The concentration, liquid dispersion density (/m 2 ), droplet flow rate, etc. of the regenerating chemical solution are determined experimentally.

この発明の目的と利益は次の試験例によつて明
確になるであろう。
The purpose and benefits of this invention will become clear through the following test examples.

試験例 (1) 試験条件 粒状活性炭の充填量350g、陰極(ステンレス
鋼材で15×18cm)、陽極(フエライト材で15×18
cm)、電流密度0.2A/dm2、電圧7.5V、供試処理
水3/H(CODMn、22mg/) (2) 試験方法 第2図に示すように、本発明の方法と従来の方
法とを比較試験した。
Test example (1) Test conditions Filled amount of granular activated carbon 350g, cathode (15 x 18 cm made of stainless steel material), anode (15 x 18 cm made of ferrite material)
cm), current density 0.2A/dm 2 , voltage 7.5V, sample treated water 3/H (CODMn, 22mg/) (2) Test method As shown in Figure 2, the method of the present invention and the conventional method A comparative test was conducted.

O3の吹込量は処理水1に対して70mgO3とし
た。
The amount of O 3 blown was 70 mg O 3 per 1 part of treated water.

CODは100℃における過マンガン酸カリウム法
による。
COD is by potassium permanganate method at 100℃.

(3) 試験結果 第2図及び第3図に示した。(3) Test results It is shown in FIGS. 2 and 3.

(4) 考察 し尿二次処理水に対する粒状活性炭の吸着能に
ついては、縦軸をCOD処理到達レベル、横軸を
除去COD重量当りの消費電力量(使用電力量
(使用電力量+活性炭の消耗費および再生費を電
力費に見做し電力量に換算した値)とした第2図
に示されるように、単に粒状活性炭に吸着させた
方法(符号)よりもACEによる方法(符号V)
の方が、CODの低減について優れている。
(4) Discussion Regarding the adsorption capacity of granular activated carbon for secondary treated human waste water, the vertical axis is the COD treatment level achieved, and the horizontal axis is the amount of electricity consumed per weight of removed COD (energy consumption (energy consumption + consumption cost of activated carbon). As shown in Figure 2, the method using ACE (code V) is better than the method of simply adsorbing it on granular activated carbon (code V).
is better in reducing COD.

オゾン法との比較に就いては、オゾン法単独
(符号)では、CODを22mg/まで低減させる
ことができた。またACEで処理した後、オゾン
法を併用した方法(符号)では、オゾン法単独
()の場合と有意差のない結果が得られた。
In comparison with the ozone method, the ozone method alone (code) was able to reduce COD to 22mg/. Furthermore, after treatment with ACE, the method using the ozone method in combination (code) yielded results that were not significantly different from those using the ozone method alone ().

オゾン法で処理した後、ACEで処理を併用し
た本発明の方法(符号)によると、CODは著
しく低減した。またオゾン法で処理した後、粒状
活性炭吸着方を併用した方法(符号)では、オ
ゾン法単独()の処理と有意差は無い。この試
験結果が示すように、この発明の方法によれば、
顕著なCODの低減が図られることが確認された。
According to the method (code) of the present invention in which the ozone method was followed by the ACE treatment, COD was significantly reduced. In addition, in the case of a method in which a granular activated carbon adsorption method is used in combination after treatment with the ozone method (code), there is no significant difference from the treatment with the ozone method alone ( ). As this test result shows, according to the method of this invention,
It was confirmed that a significant reduction in COD was achieved.

次に、いくつかの粒状活性炭の電導度に対する
COD到達レベルとの試験を行ない、その結果を
第3図に示した。
Next, for the electrical conductivity of some granular activated carbons,
A test was conducted with the COD attainment level, and the results are shown in Figure 3.

使用した原液はオゾン処理後の処理水
(CODMn=22mg/)である。
The stock solution used was treated water (CODMn = 22 mg/) after ozone treatment.

使用した粒状活性炭(AC)の粒径は、1.5mm
(比較例)と粒径5〜7mmのものである。
The particle size of the granular activated carbon (AC) used was 1.5 mm.
(Comparative Example) and those with a particle size of 5 to 7 mm.

同図が示すように、活性炭層の見掛電導度〔m
/cm〕が15〜35の範囲において、粒径5〜7mm
のACは良好なCOD到達レベルを発現した。
As shown in the figure, the apparent conductivity of the activated carbon layer [m
/cm] in the range of 15 to 35, the particle size is 5 to 7 mm.
AC expressed good COD attainment level.

この発明の方法に従えば、公知のオゾン酸化
法、活性炭吸着法もしくはこれらの併用において
は、低希釈率処理水でCOD30〜20mg/が得ら
れるが、本発明はこれら公知の方法では到達し得
ないCODの低減が図られ、当該分野において要
望されているCOD10〜15mg/を達成すること
ができる。
According to the method of this invention, a COD of 30 to 20 mg/kg can be obtained with low dilution rate treated water using the known ozone oxidation method, activated carbon adsorption method, or a combination thereof, but the present invention achieves a COD of 30 to 20 mg/kg with low dilution rate treated water. It is possible to achieve a COD of 10 to 15 mg/, which is desired in this field.

この発明の方法は、し尿二次処理水の含有成分
の分離、除去及び酸化分解の過程、それを実行分
担する固有の単一技術の組合せ手順は標準希釈率
し尿二次処理水に対しても容易に実施することが
できる。
The method of this invention includes the process of separation, removal and oxidative decomposition of the components contained in the secondary treated human waste water, and the combination procedure of a unique single technology for carrying out the process, even for the standard dilution ratio of the secondary treated human waste water. It can be easily implemented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の概略
図、第2図は試験結果を示す図表、第3図は粒状
活性炭の電導度の変化に対するCOD到達レベル
を示す試験結果の図表である。 符号の説明、3……オゾン接触槽、6……複極
活性炭充填電解装置、12…再生用薬液タンク。
FIG. 1 is a schematic diagram of an apparatus for implementing the method of the present invention, FIG. 2 is a chart showing test results, and FIG. 3 is a chart showing test results reaching COD levels with respect to changes in electrical conductivity of granular activated carbon. Explanation of symbols, 3...Ozone contact tank, 6...Bipolar activated carbon filled electrolyzer, 12...Regeneration chemical tank.

Claims (1)

【特許請求の範囲】 1 し尿二次処理水をオゾン酸化した後、陰陽両
極間に粒状活性炭を充填した複極活性炭充填電解
装置に通水、通電して活性炭に有機物を吸蔵・吸
着させて電解酸化させることにより、し尿二次処
理水中のCODを低減することを特徴とするし尿
二次処理水の高次処理方法。 2 粒状活性炭の粒子径が5〜7mmの多孔性粒状
活性炭であり、見掛けの電導度が15〜35m/cm
である特許請求の範囲第1項記載のし尿二次処理
水の高次処理方法。 3 粒状活性炭充填層に電解質溶液を流通して粒
状活性炭を再生する特許請求の範囲第1項記載の
し尿二次処理水の高次処理方法。
[Scope of Claims] 1 After ozone-oxidizing the secondary treated human waste water, water and electricity are passed through a bipolar activated carbon-filled electrolyzer in which granular activated carbon is filled between the positive and negative electrodes to occlude and adsorb organic matter in the activated carbon, thereby performing electrolysis. A method for high-level treatment of secondary treated human waste water, characterized in that COD in the secondary treated human waste water is reduced by oxidation. 2 The granular activated carbon is porous granular activated carbon with a particle size of 5 to 7 mm and an apparent electrical conductivity of 15 to 35 m/cm.
A method for higher-level treatment of secondary treated human waste water according to claim 1. 3. The method for higher-level treatment of secondary treated human waste water according to claim 1, wherein the granular activated carbon is regenerated by passing an electrolyte solution through the granular activated carbon packed bed.
JP4383A 1983-01-05 1983-01-05 Advanced treatment of secondary treated water of night soil Granted JPS59127691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4383A JPS59127691A (en) 1983-01-05 1983-01-05 Advanced treatment of secondary treated water of night soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4383A JPS59127691A (en) 1983-01-05 1983-01-05 Advanced treatment of secondary treated water of night soil

Publications (2)

Publication Number Publication Date
JPS59127691A JPS59127691A (en) 1984-07-23
JPS638835B2 true JPS638835B2 (en) 1988-02-24

Family

ID=11463264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4383A Granted JPS59127691A (en) 1983-01-05 1983-01-05 Advanced treatment of secondary treated water of night soil

Country Status (1)

Country Link
JP (1) JPS59127691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11903901B2 (en) 2014-04-21 2024-02-20 Becton Dickinson and Company Limited System for closed transfer of fluids

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083819A (en) * 1999-08-13 1999-12-06 김기준 Inorganic chemical treatment of waste water
KR20030084526A (en) * 2002-04-24 2003-11-01 윤철종 The removal of nitrogen compounds by electrolytic cell packed activated carbon
CN101284704A (en) 2007-04-09 2008-10-15 株式会社日立制作所 A treatment method, device and system of organic compounds included in waste water, and asphaltum recovering system
EP2649014B1 (en) * 2010-12-06 2017-10-25 Council of Scientific & Industrial Research Carbon bed electrolyser for treatment of liquid effluents and a process thereof
RU168719U1 (en) * 2016-04-18 2017-02-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) ELECTROFLOTOMEMBRANE DEVICE WITH CORRECTION OF ACID ACID FOR THE WATER TREATMENT FROM COMPOUNDS OF HEAVY METALS
KR101967057B1 (en) * 2017-07-31 2019-08-14 장성만 Laver waste water treatment apparatus
CN116143243A (en) * 2021-11-17 2023-05-23 爱思开海力士有限公司 Apparatus and method for selectively removing perfluorinated compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11903901B2 (en) 2014-04-21 2024-02-20 Becton Dickinson and Company Limited System for closed transfer of fluids

Also Published As

Publication number Publication date
JPS59127691A (en) 1984-07-23

Similar Documents

Publication Publication Date Title
US4294697A (en) Apparatus for treatment of sewage
AU2008200884B2 (en) A treatment method of organic compounds included in waste water, a treatment apparatus of organic compounds included in waste water, a treatment system of organic compounds included in waste water, and a bitumen collecting system
US6274028B1 (en) Electrolytic wastewater treatment method and apparatus
CN110143774B (en) Sea sand purification system
KR101842552B1 (en) Electrolytic Carbon Filter and Equipment of Water Treatment using the same
CN103043753B (en) Electrochemical wastewater treatment method and device capable of continuously separating oil, water and residue
US4619745A (en) Process for the electrochemical decontamination of water polluted by pathogenic germs with peroxide formed in situ
WO2015165234A1 (en) Method for decontamination treatment and utilization as resource of ion exchange resin desorption solution
JPS638835B2 (en)
CN108439540B (en) A kind of reverse osmosis concentrated saline water treatment device of cold rolling wastewater and method
CN103041775B (en) Graphene oxidation reactor based on graphene macro-body and application of graphene oxidation reactor
CN217077244U (en) Movable multifunctional three-dimensional electrode reaction device
JP2923108B2 (en) Method for removing impurities from printed circuit board washing wastewater
CN108033524B (en) Double-layer mixed bed membraneless electrodeionization system and method for heavy metal wastewater treatment
JPS6244995B2 (en)
KR101914027B1 (en) Method for electrochemical water treatment using carbon electrodes and system thereof
JP2000334462A (en) Packed bed type electrochemical water treating device and method therefor
JPS6036835B2 (en) How to purify human waste water
RU2087423C1 (en) Method of cleaning water streams
JPS637117B2 (en)
JPH05185072A (en) Energizing regeneration type waste liquid treatment and equipment therefor
JP2002018443A (en) Method and apparatus for water treatment
JPH05309362A (en) Treatment of object water for treatment and multiple-electrodes-type electrolytic bath for treatment of object water for treatment
CN114436373A (en) Movable multifunctional three-dimensional electrode reaction device and method for treating sewage
CN115520939A (en) Multipole type electric control coupling ozone air flotation water treatment device