JP2015009228A - Waste water treatment mechanism - Google Patents

Waste water treatment mechanism Download PDF

Info

Publication number
JP2015009228A
JP2015009228A JP2013138744A JP2013138744A JP2015009228A JP 2015009228 A JP2015009228 A JP 2015009228A JP 2013138744 A JP2013138744 A JP 2013138744A JP 2013138744 A JP2013138744 A JP 2013138744A JP 2015009228 A JP2015009228 A JP 2015009228A
Authority
JP
Japan
Prior art keywords
induction heating
waste water
activated carbon
tank
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013138744A
Other languages
Japanese (ja)
Other versions
JP5911457B2 (en
Inventor
中村 信一
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omega Inc
Original Assignee
Omega Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Inc filed Critical Omega Inc
Priority to JP2013138744A priority Critical patent/JP5911457B2/en
Publication of JP2015009228A publication Critical patent/JP2015009228A/en
Application granted granted Critical
Publication of JP5911457B2 publication Critical patent/JP5911457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a waste water treatment mechanism that can treat more simply than conventional one.SOLUTION: A waste water treatment mechanism includes a foul matter adsorption tank 5 where a foul matter in waste water is adsorbed by active carbon, and an induction heating mechanism 12 for activating the active carbon by induction heating. The waste water treatment mechanism includes both of the foul matter adsorption tank where the foul matter in waste water is adsorbed by active carbon, and the induction heating mechanism for activating the active carbon by induction heating (for example, heating up to 600°C or higher). Therefore, the active carbon at adsorption equilibrium is swiftly reactivated to be usable.

Description

この発明は、活性炭と誘導加熱を利用した排水処理機構に関するものである。   The present invention relates to a wastewater treatment mechanism using activated carbon and induction heating.

従来、塩類及び有機物を含んでいて再利用や河川などへの放流ができない有機性廃水から、有機性成分を除去するだけではなく、従来の処理では除去できない高濃度の塩類をあわせて除去することができ、処理水として再利用或いは放流を可能にする、有機性廃水の処理方法に関する提案があった(特許文献1)。
すなわち、し尿や、ゴミ埋め立て地からの浸出水などの塩類濃度が高い有機性廃水は、一般に、カルシウムイオンや塩素イオンなどの塩類や有機物などの汚濁物質を高濃度に含んでいる。このような有機性廃水は、しばしば生化学的酸素要求量(BOD)や化学的酸素要求量(COD)が高く、多くの懸濁固体(SS)を含み、さらにコロイド物質などに原因する色度を有している。そのため、通常はこれらを何らかの用途に直接再利用したり、河川などに直接放流したりすることはできない。
このような有機性廃水の処理方法として、従来は、有機汚濁物の除去を主体とした処理方法が用いられてきた。その主な処理方法は、例えばBOD除去を目的とした生物処理や、色度、COD及びSSなどの除去を目的とした凝集沈殿処理、SSなど濁質の除去を目的とした砂ろ過、精密ろ過膜(MF膜)処理などであり、実際には、これらの処理を組み合わせることにより、BODやCODなどの有機性成分を除去することが行われていた。しかし、このような処理によると、有機性廃水中の有機性成分を除去することができても、カルシウムイオンや塩素イオンなどの塩類を除去することはできなかった。
そこで、塩類を含む有機性廃水の処理方法として、塩類を含有する有機性廃水に軟化処理を行ってその中のカルシウム濃度を低下させた後、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなる処理を行い、次いで逆浸透膜を用いる逆浸透膜処理により脱塩処理して、逆浸透濃縮水と処理水とに分離し、処理水を回収するとともにその一方、前記逆浸透濃縮水を引き続いて電気透析処理を施して電気透析濃縮水と電気透析処理水とに分離し、その電気透析処理水は、逆浸透膜処理の供給側に戻す一方、電気透析濃縮水は、蒸発乾燥処理することによって水分と塩類とに分離し、塩類を単離するという、有機性廃水の処理方法が提案された。
ここで提案された処理方法は、電気透析処理で得られる濃縮水を、蒸発乾燥処理することによって水分と塩類とに分離し、塩類を単離する方法であった。しかし、この蒸発乾燥処理では、乾燥塩にするため、乾燥に伴う消費エネルギーが多く、運転コスト増大の要因となっていた。その一方、得られた乾燥塩類の利用先が少なく現実的に長期保管するか、再度最終処分場に埋め立て処分するかしかないため、回収塩類の有効利用が大きな課題となっている。
そこで、電気透析で得られる濃縮水を有効に再利用できる、新たな有機性廃水の処理方法を得んとし、塩類及び有機物を含有する有機性廃水に対して軟化処理を行ってカルシウム濃度を低減させる軟化処理を行った後、生物処理、凝集沈殿処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理を行う前処理工程と、電気透析処理により電気透析濃縮水と電気透析処理水とに分離する電気透析処理工程と、逆浸透膜処理により逆浸透濃縮水と逆浸透膜処理水とに分離する逆浸透膜処理工程とを備えた有機性廃水の処理方法において、電気透析処理工程から得られた電気透析濃縮水を電解処理装置に供給して電気分解を行い、次亜塩素酸ナトリウム溶液を生成することを特徴とする有機性廃水の処理方法が提案された。
この提案の有機性廃水の処理方法によれば、塩類を含有する有機性廃水に対して、先ずは軟化処理によってカルシウム溶解濃度を下げ、SS除去処理によって懸濁固体(SS)を除去することによって有機物の低減を図った後、逆浸透膜処理及び電気透析処理を施すため、SSや有機物の影響で逆浸透膜処理の水回収率が低下したり、電気透析処理水中へ有機物成分が漏洩したりするのを防止することができる、というものである。
しかし、この提案には処理の内容が煩瑣であるという問題があった。
Conventionally, not only organic components are removed from organic wastewater that contains salts and organic matter but cannot be reused or discharged into rivers, but also high-concentration salts that cannot be removed by conventional treatment. There has been a proposal regarding a method for treating organic wastewater that can be reused or discharged as treated water (Patent Document 1).
That is, organic wastewater having a high salt concentration such as human waste and leachate from a landfill site generally contains a high concentration of pollutants such as salts such as calcium ions and chlorine ions and organic matter. Such organic wastewater often has high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), contains many suspended solids (SS), and also has chromaticity caused by colloidal substances. have. For this reason, normally, these cannot be directly reused for some purpose or discharged directly into rivers.
Conventionally, as a method for treating such organic wastewater, a method mainly using organic contaminant removal has been used. The main treatment methods are, for example, biological treatment for the purpose of removing BOD, coagulation sedimentation treatment for the purpose of removing chromaticity, COD and SS, sand filtration and microfiltration for the purpose of removing turbidity such as SS. It is a membrane (MF membrane) treatment, and in practice, organic components such as BOD and COD have been removed by combining these treatments. However, according to such treatment, even if organic components in the organic wastewater can be removed, salts such as calcium ions and chlorine ions cannot be removed.
Therefore, as a method of treating organic wastewater containing salts, after softening the organic wastewater containing salts to reduce the calcium concentration therein, biological treatment, coagulation sedimentation treatment, sand filtration treatment, microfiltration One or more treatments selected from the group consisting of membrane treatment or a treatment comprising a combination of two or more are performed, followed by desalination treatment by reverse osmosis membrane treatment using a reverse osmosis membrane to separate into reverse osmosis concentrated water and treated water On the other hand, the treated water is recovered while the reverse osmosis concentrated water is subsequently subjected to electrodialysis to separate the electrodialyzed concentrated water and the electrodialyzed water, and the electrodialyzed water is treated with the reverse osmosis membrane treatment. On the other hand, a method for treating organic wastewater has been proposed in which the electrodialyzed concentrated water is separated into moisture and salts by evaporating and drying to isolate the salts.
The treatment method proposed here is a method of isolating the salt by separating the concentrated water obtained by the electrodialysis treatment into water and salts by evaporating and drying. However, in this evaporative drying treatment, a dry salt is used, so that much energy is consumed for drying, which increases operating costs. On the other hand, since the use of the obtained dried salt is few and it can only be practically stored for a long time or landfilled again at the final disposal site, effective utilization of the recovered salt is a major issue.
Therefore, a new organic wastewater treatment method that can effectively reuse the concentrated water obtained by electrodialysis is obtained, and the calcium concentration is reduced by softening the organic wastewater containing salts and organic substances. A pretreatment step of performing SS removal treatment consisting of one or more treatments selected from the group consisting of biological treatment, coagulation sedimentation treatment, sand filtration treatment, microfiltration membrane treatment, or a combination of two or more after performing softening treatment. An electrodialysis treatment step for separating electrodialysis concentrated water and electrodialysis treatment water by electrodialysis treatment, and a reverse osmosis membrane treatment step for separating reverse osmosis concentration water and reverse osmosis membrane treatment water by reverse osmosis membrane treatment In the organic wastewater treatment method, the electrodialysis concentrated water obtained from the electrodialysis treatment step is supplied to an electrolysis treatment apparatus to perform electrolysis to produce a sodium hypochlorite solution. That the method of treating organic waste water has been proposed.
According to the proposed organic wastewater treatment method, first, by reducing the calcium dissolution concentration by softening treatment and removing suspended solids (SS) by SS removal treatment for the organic wastewater containing salts. After reducing organic matter, reverse osmosis membrane treatment and electrodialysis treatment are performed, so the water recovery rate of reverse osmosis membrane treatment decreases due to the effects of SS and organic matter, and organic matter components leak into electrodialysis treatment water. It is possible to prevent this.
However, this proposal has a problem that the content of processing is cumbersome.

特開2012−130891号公報JP 2012-130891 A

そこでこの発明は、処理の内容が従来のように煩瑣ではない排水処理機構を提供しようとするものである。   Therefore, the present invention intends to provide a wastewater treatment mechanism in which the content of treatment is not as cumbersome as in the prior art.

前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の排水処理機構は、排水の汚れ物質を活性炭に吸着させる汚れ物質吸着槽と、前記活性炭を誘導加熱により賦活する誘導加熱機構とを有することを特徴とする。
ここで、排水中に含有される汚れ物質として、有機物や無機物を例示することが出来る。
In order to solve the above problems, the present invention takes the following technical means.
(1) The wastewater treatment mechanism of the present invention is characterized by having a dirt substance adsorption tank for adsorbing dirt substances of wastewater to activated carbon and an induction heating mechanism for activating the activated carbon by induction heating.
Here, organic substances and inorganic substances can be exemplified as the dirt substances contained in the waste water.

この発明は、排水の汚れ物質を活性炭に吸着させる汚れ物質吸着槽を有しているところ、前記活性炭を誘導加熱(例えば600℃以上に昇温)により賦活する誘導加熱機構を有するようにしたので、吸着平衡が立った活性炭を迅速に再生して使用可能に復元することが出来る。
誘導加熱では、導線(例えば銅パイプ製のコイル)に交流電流を流すと、その周りに向き、強度の変化する磁力線が発生する。その近くに電気を通す物質を置くとこの変化する磁力線の影響を受けて、金属(例えばコイル内の誘導加熱機構)の中に渦電流が流れる。金属には通常電気抵抗があるため、金属に電流が流れると、電力=電流2×抵抗 分のジュール熱が発生して、金属が自己発熱する。そして、前記誘導加熱機構内に、使用後の活性炭を入れて復元するようにする。
Since the present invention has a dirt substance adsorption tank for adsorbing the dirt substance of the waste water to the activated carbon, it has an induction heating mechanism for activating the activated carbon by induction heating (for example, raising the temperature to 600 ° C. or higher). The activated carbon in which the adsorption equilibrium is established can be quickly regenerated and restored to be usable.
In induction heating, when an alternating current is passed through a conducting wire (for example, a coil made of copper pipe), magnetic lines of force are generated around it and changing in strength. When a substance that conducts electricity is placed in the vicinity thereof, an eddy current flows in a metal (for example, an induction heating mechanism in a coil) under the influence of the changing magnetic field lines. Since metal usually has electrical resistance, when current flows through the metal, Joule heat is generated by power = current 2 x resistance, and the metal self-heats. Then, the activated carbon after use is put into the induction heating mechanism to restore it.

(2)前記誘導加熱機構の下方に汚れ物質吸着槽を配置するようにしてもよい。
このように構成すると、自然法則(重力落下)を利用して動力を用いることなしに、誘導加熱機構で賦活された活性炭を下方の汚れ物質吸着槽へと供給することが出来る。
(2) A dirt substance adsorption tank may be arranged below the induction heating mechanism.
If comprised in this way, activated carbon activated with the induction heating mechanism can be supplied to a lower dirt substance adsorption tank, without using power using the law of nature (gravity fall).

(3)前記汚れ物質吸着槽の活性炭の一部を抜き出して上方の誘導加熱機構に移送するようにしてもよい。
このように構成すると、汚れ物質吸着槽の活性炭の一部を抜き出して上方の誘導加熱機構に移送し、バッチ方式ないし準バッチ方式ないし連続方式で処理を略継続して行うことが出来る。
(3) A part of the activated carbon in the dirt substance adsorption tank may be extracted and transferred to the upper induction heating mechanism.
If comprised in this way, a part of activated carbon of a dirt substance adsorption tank will be extracted and transferred to an induction heating mechanism above, and processing can be performed almost continuously by a batch system, a semi-batch system, or a continuous system.

(4)前記誘導加熱機構にコイルと被加熱槽を具備せしめ、前記コイルと被加熱槽との間に砂を介在させるようにしてもよい。
このように構成すると、誘導加熱機構で発生した水蒸気により活性炭に昇温作用を及ぼして予備加熱すると共に、前記水蒸気を賦活剤として機能せしめることが出来る。
(4) The induction heating mechanism may be provided with a coil and a heated tank, and sand may be interposed between the coil and the heated tank.
If comprised in this way, while heating up activated carbon with the water vapor | steam which generate | occur | produced with the induction heating mechanism and preheating it, the said water vapor | steam can be functioned as an activator.

すなわち、高温雰囲気では活性炭(C)と水蒸気(H2O)により、C+H2O→CO+H2 の反応が生じ、活性炭の表面の炭素(C)が水蒸気(H2O)と反応して、一酸化炭素(CO)と水素(H2)とに変化して離脱し、これらはさらに二酸化炭素(CO2)と水(H2O)とに変化する。こうして熱と水蒸気によって賦活化すると、活性炭の細孔の表皮層が剥離して新しい界面が再生する。 That is, activated carbon (C) and water vapor (H 2 O) cause a reaction of C + H 2 O → CO + H 2 , and carbon (C) on the surface of the activated carbon reacts with water vapor (H 2 O). It changes into carbon oxide (CO) and hydrogen (H 2 ) and leaves, and these further change into carbon dioxide (CO 2 ) and water (H 2 O). When activated by heat and steam in this way, the skin layer of the pores of the activated carbon peels off and a new interface is regenerated.

(5) 前記誘導加熱機構にコイルと被加熱槽を具備せしめ、前記コイルと被加熱槽との間に砂を介在させるようにしてもよい。
このように構成し、誘導加熱機構にコイル(例えば、銅パイプ製コイル)と被加熱槽(例えば、金属筒)とを具備せしめるようにすると、排水で保水した活性炭(被加熱槽に供給する)を誘導加熱によって昇温させることが出来る。これにより、活性炭の水分を乾燥させて高温下で賦活することが出来る。
(5) The induction heating mechanism may be provided with a coil and a heated tank, and sand may be interposed between the coil and the heated tank.
When configured in this way and the induction heating mechanism is provided with a coil (for example, a copper pipe coil) and a heated tank (for example, a metal cylinder), activated carbon retained in the drainage (supplied to the heated tank) Can be raised by induction heating. Thereby, the water | moisture content of activated carbon can be dried and activated at high temperature.

そして、前記コイルと被加熱槽との間に砂を介在させるようにしたので、砂に断熱機能を発揮させて外部空間への放熱による損失(熱エネルギーの散逸)を抑制することが出来る(熱効率に優れる)と共に、コイルと被加熱槽との周囲に介在させた砂によって相互間のショート(電気的短絡)の発生を空間的・物理的に抑制することが出来る。   And since sand was interposed between the said coil and a to-be-heated tank, the heat | fever (dissipation of a thermal energy) by heat-radiating to external space can be suppressed by making the sand exhibit a heat insulation function (thermal efficiency) And the occurrence of a short circuit (electrical short circuit) between them can be spatially and physically suppressed by sand interposed between the coil and the heated tank.

被加熱槽は導電体(金属材料など)で形成することができ、その内部に被加熱物(活性炭)を配置することになる。例えば、誘導加熱によって被加熱槽を1000℃前後に昇温させることにより、活性炭に吸着された有機物を熱分解し賦活化して再生させることが出来る。   The heated tank can be formed of an electric conductor (such as a metal material), and an object to be heated (activated carbon) is disposed therein. For example, by raising the temperature of the heated tank to about 1000 ° C. by induction heating, the organic matter adsorbed on the activated carbon can be thermally decomposed, activated, and regenerated.

(6) 前記誘導加熱機構内の空間を真空吸引するようにしてもよい。
このように構成すると、誘導加熱機構内から湿気・水分を外部に吸い出して、コイルと被加熱槽のショートが発生し難くすることが出来る。
(6) You may make it vacuum-suck the space in the said induction heating mechanism.
If comprised in this way, moisture and a water | moisture content will be sucked outside from the inside of an induction heating mechanism, and it can be made hard to generate | occur | produce a short of a coil and a to-be-heated tank.

(7) 前記コイル内に冷却水を流すようにしてもよい。
前記コイルとして、銅製のパイプを例示することが出来る。誘導加熱により昇温(例えば1000℃前後)した被加熱槽から及ぼされる輻射熱でコイル自体も加熱されることとなり、コイルは昇温すると柔かくなって撓み易くなって被加熱槽に接触し易くなる傾向が増大するが、このように構成すると、冷却水でコイルを冷却して変形し難くして、コイルと被加熱槽とのショートを発生し難くすることが出来る。
(7) Cooling water may flow through the coil.
An example of the coil is a copper pipe. The coil itself is also heated by the radiant heat exerted from the heated tank heated by induction heating (for example, around 1000 ° C.), and the coil tends to be flexible and bend easily when heated, and easily contact the heated tank. However, when configured in this way, the coil is hardly cooled and deformed by the cooling water, and a short circuit between the coil and the tank to be heated can be made difficult to occur.

(8) 前記排水は電気分解をした後に汚れ物質吸着槽に供給するようにしてもよい。
このように構成すると、排水の汚染度(例えばCOD、TOCなどの評価指標)を電気分解で予め低減した後に活性炭吸着へと移行することができ、活性炭への負担を軽減することが出来る。また、排水を電気分解する際に生成する次亜塩素酸や活性酸素(・OHラジカル等)などの作用によって活性炭に吸着された汚れ物質を分解して浄化することが出来る。
(8) The waste water may be supplied to the dirt substance adsorption tank after electrolysis.
If comprised in this way, it can transfer to activated carbon adsorption | suction after reducing the pollution degree (for example, evaluation indexes, such as COD, TOC) of wastewater beforehand by electrolysis, and can reduce the burden on activated carbon. In addition, dirt substances adsorbed on the activated carbon can be decomposed and purified by the action of hypochlorous acid and active oxygen (.OH radicals, etc.) generated when the waste water is electrolyzed.

(9) 前記排水の汚染度への相当量の計算値を越える次亜塩素酸が生成するように電気分解し、この電解処理後の排水の残留塩素濃度を測定しその測定結果に応じて次亜塩素酸を追加するようにしてもよい。
このように構成し、排水の汚染度への相当量の計算値を越える次亜塩素酸が生成するように電気分解するようにすると、必要量以上の次亜塩素酸を供給することが出来る。
(9) Electrolyze so as to produce hypochlorous acid exceeding the calculated value corresponding to the degree of pollution of the wastewater, measure the residual chlorine concentration of the wastewater after this electrolytic treatment, and depending on the measurement result You may make it add chlorous acid.
If it comprises in this way and it electrolyzes so that the hypochlorous acid exceeding the calculation value of the considerable amount to the pollution degree of waste_water | drain produces | generates, a more than required amount of hypochlorous acid can be supplied.

また、この電解処理後の排水の残留塩素濃度を測定しその測定結果に応じて次亜塩素酸を追加するようにしたので、残留塩素濃度により排水の浄化度合いを把握し、この排水の浄化度合いが適正値となるような必要最低限の量の次亜塩素酸を補充することが出来る。
ここで、排水の汚染度への相当量の計算値とは、排水のCOD(化学的酸素要求量)が仮に500ppmで量が100kgであった場合、COD(酸素O)の必要量は100×1000×500÷1000000=50gとなる。したがって、この場合、COD(酸素O)の必要量50gを越える次亜塩素酸が生成するように電気分解することとなる。
In addition, since the residual chlorine concentration of the wastewater after this electrolytic treatment was measured and hypochlorous acid was added according to the measurement result, the degree of purification of wastewater was grasped based on the residual chlorine concentration, and the degree of purification of this wastewater. Can be replenished with a minimum amount of hypochlorous acid so that becomes an appropriate value.
Here, the calculated value of the amount of wastewater pollution is calculated as follows: If the COD (chemical oxygen demand) of the wastewater is 500 ppm and the amount is 100 kg, the required amount of COD (oxygen O) is 100 × 1000 × 500 ÷ 1000000 = 50g. Therefore, in this case, electrolysis is performed so as to produce hypochlorous acid exceeding the required amount of COD (oxygen O) of 50 g.

(10)前記汚れ物質吸着槽内に撹拌羽根ポンプを内装し、該槽内に洗浄用電解水を注入して活性炭を撹拌・洗浄するようにしてもよい。
このように構成すると、汚れ物質吸着槽内に洗浄用電解水を注入して活性炭を撹拌・洗浄することにより、該槽内の活性炭を復活させることができ、誘導加熱機構の負荷を軽減することが出来る。
(10) A stirring blade pump may be provided in the dirt substance adsorption tank, and the electrolytic water for washing may be poured into the tank to stir and wash the activated carbon.
If comprised in this way, the activated carbon in this tank can be revived by inject | pouring the electrolysis water for washing | cleaning in a dirt substance adsorption tank, stirring and washing | cleaning activated carbon, and reducing the load of an induction heating mechanism I can do it.

この発明は上述のような構成であり、次の効果を有する。
吸着平衡が立った活性炭を迅速に再生して使用可能に復元することが出来るので、処理の内容が従来のように煩瑣ではない排水処理方法を提供することが出来る。
The present invention is configured as described above and has the following effects.
Since the activated carbon in which the adsorption equilibrium is established can be quickly regenerated and restored to be usable, it is possible to provide a wastewater treatment method in which the content of the treatment is not as cumbersome as in the prior art.

以下、この発明の実施の形態を図面を参照して説明する。
(実施例1)
図1乃至図3に示すように、この実施形態では、先ず排水の原水を受水調整槽1に流入させる。ここからポンプPにより3連の電解直接酸化装置2に供給する。必要に応じて、次亜塩素酸ソーダをその貯留槽3から添加する。そして、電解後の処理水を中間槽(1)4へと導く。電解直接酸化装置2における電気分解処理により、原水のCODは低減する。
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
As shown in FIG. 1 thru | or FIG. 3, in this embodiment, first, the raw | natural water of a waste_water | drain is made to flow in into the water-receiving adjustment tank 1. From here, it supplies with the pump P to the triple electrolysis direct oxidation apparatus 2. FIG. If necessary, sodium hypochlorite is added from the storage tank 3. Then, the treated water after electrolysis is led to the intermediate tank (1) 4. The electrolysis process in the electrolytic direct oxidation apparatus 2 reduces the COD of raw water.

排水は、中間槽(1)4からポンプPで汚れ物質吸着槽5の下方の入り口へと送られ、活性炭で浄化されて上方の出口から出て中間槽(2)6に導かれる。次いで、ポンプPで2連のUF膜濾過装置7を経て、中間槽(3)8へと導かれる。一方、汚れ物質吸着槽5の下側には吸着平衡炭槽9を設けている。
さらに、中間槽(3)8からポンプPで2連のRO膜濾過装置10に導かれ、浄化された処理水は最終的に処理水槽11に貯留され、再利用水としてポンプPで導出される。また、誘導加熱機構12の冷却水として再利用するようにしている。RO膜の濃縮水は塩濃縮槽13に貯留され、高濃度食塩水として電解直接酸化装置2で再利用される。
The drainage is sent from the intermediate tank (1) 4 to the lower entrance of the dirt substance adsorption tank 5 by the pump P, purified by activated carbon, exits from the upper outlet, and led to the intermediate tank (2) 6. Subsequently, it is led to the intermediate tank (3) 8 through the two UF membrane filtration devices 7 by the pump P. On the other hand, an adsorption equilibrium coal tank 9 is provided below the dirt substance adsorption tank 5.
Further, the treated water purified and led to the two RO membrane filtration devices 10 by the pump P from the intermediate tank (3) 8 is finally stored in the treated water tank 11 and is derived by the pump P as reused water. . Further, it is reused as cooling water for the induction heating mechanism 12. The RO membrane concentrated water is stored in the salt concentration tank 13 and reused in the electrolytic direct oxidation apparatus 2 as high-concentration saline.

この排水処理機構は、排水の汚れ物質を活性炭に吸着させる汚れ物質吸着槽5と、前記活性炭を誘導加熱により賦活する誘導加熱機構12とを有する。排水中に含有される汚れ物質として、有機物や無機物を例示することが出来る。
前記誘導加熱機構12の下方に、汚れ物質吸着槽5を配置するようにしている。前記汚れ物質吸着槽5の活性炭の一部を抜き出して、吸着平衡炭投入ダクト14により上方の誘導加熱機構12に移送するようにしている。図1の例では、モータMで撹拌羽根コンベア15を駆動して活性炭を上方に移送するようにしている。
そして、前記誘導加熱機構12にコイル16と被加熱槽17を具備せしめ、前記コイル16と被加熱槽17との間に砂(図示せず)を介在させるようにした。
This waste water treatment mechanism has a dirt substance adsorption tank 5 for adsorbing dirt substances of waste water to activated carbon, and an induction heating mechanism 12 for activating the activated carbon by induction heating. Organic substances and inorganic substances can be exemplified as dirt substances contained in the waste water.
A dirty substance adsorption tank 5 is arranged below the induction heating mechanism 12. A part of the activated carbon in the dirt substance adsorption tank 5 is extracted and transferred to the induction heating mechanism 12 above by the adsorption equilibrium charcoal charging duct 14. In the example of FIG. 1, the stirring blade conveyor 15 is driven by the motor M to transfer the activated carbon upward.
The induction heating mechanism 12 is provided with a coil 16 and a heated tank 17, and sand (not shown) is interposed between the coil 16 and the heated tank 17.

図4及び図5に示すように、作業者が上方の誘導加熱機構12の方に上って調整などをし易いように階段18と手摺り19を設けてもよい。
被加熱槽17は導電体(金属材料など)で形成することができ、その内部に被加熱物(活性炭)を配置することになる。例えば、誘導加熱によって被加熱槽17を1000℃前後に昇温させることにより、活性炭に吸着された有機物を熱分解し賦活化して再生させることが出来る。
As shown in FIGS. 4 and 5, a staircase 18 and a handrail 19 may be provided so that an operator can easily go up to the induction heating mechanism 12 and make adjustments.
The heated tank 17 can be formed of a conductor (such as a metal material), and an object to be heated (activated carbon) is disposed therein. For example, by raising the temperature of the heated tank 17 to about 1000 ° C. by induction heating, the organic matter adsorbed on the activated carbon can be thermally decomposed, activated, and regenerated.

誘導加熱機構12における誘導加熱では、導線(銅パイプ製のコイル16)に交流電流を流すと、その周りに向き、強度の変化する磁力線が発生する。その近くに電気を通す物質を置くとこの変化する磁力線の影響を受けて、コイル16内の誘導加熱機構12の被加熱槽17(金属)の中に渦電流が流れる。金属には通常電気抵抗があるため、金属に電流が流れると、電力=電流2×抵抗 分のジュール熱が発生して、金属が自己発熱する。そして、前記誘導加熱機構12の被加熱槽17内に、使用後の活性炭を入れて復元するようにする。 In induction heating in the induction heating mechanism 12, when an alternating current is passed through a conducting wire (coil 16 made of copper pipe), magnetic lines of force that change in strength are generated around the alternating current. When a substance that conducts electricity is placed near the eddy current, an eddy current flows in the heated tank 17 (metal) of the induction heating mechanism 12 in the coil 16 under the influence of the changing magnetic field lines. Since metal usually has electrical resistance, when current flows through the metal, Joule heat is generated by power = current 2 x resistance, and the metal self-heats. Then, the activated carbon after use is placed in the heated tank 17 of the induction heating mechanism 12 to be restored.

高温雰囲気では活性炭(C)と水蒸気(H2O)により、C+H2O→CO+H2 の反応が生じ、活性炭の表面の炭素(C)が水蒸気(H2O)と反応して、一酸化炭素(CO)と水素(H2)とに変化して離脱し、これらはさらに二酸化炭素(CO2)と水(H2O)とに変化する。こうして熱と水蒸気によって賦活化すると、活性炭の細孔の表皮層が剥離して新しい界面が再生する。 In a high-temperature atmosphere, activated carbon (C) and water vapor (H 2 O) cause a reaction of C + H 2 O → CO + H 2 , and carbon (C) on the surface of the activated carbon reacts with water vapor (H 2 O) to produce carbon monoxide. It changes into (CO) and hydrogen (H 2 ) and leaves, and these further change into carbon dioxide (CO 2 ) and water (H 2 O). When activated by heat and steam in this way, the skin layer of the pores of the activated carbon peels off and a new interface is regenerated.

前記誘導加熱機構12内の空間を真空吸引するようにした(図示せず)。また、前記コイル16内に冷却水を流すようにした。前記コイル16として、銅製のパイプを例示することが出来る。誘導加熱により昇温(例えば1000℃前後)した被加熱槽17から及ぼされる輻射熱でコイル16自体も加熱されることとなり、コイル16は昇温すると柔かくなって撓み易くなって被加熱槽17に接触し易くなる傾向が増大するが、この実施形態のものは、冷却水でコイル16を冷却して変形し難くして、コイル16と被加熱槽17とのショートを発生し難くすることが出来る。   The space in the induction heating mechanism 12 was vacuumed (not shown). Further, cooling water is allowed to flow through the coil 16. An example of the coil 16 is a copper pipe. The coil 16 itself is also heated by the radiant heat applied from the heated tank 17 that has been heated by induction heating (for example, around 1000 ° C.). However, in this embodiment, the coil 16 is cooled with cooling water to make it difficult to be deformed, and a short circuit between the coil 16 and the tank 17 to be heated can be made difficult to occur.

前記排水は、電気分解をした後に汚れ物質吸着槽5に供給するようにした。そして、前記排水の汚染度への相当量の計算値を越える次亜塩素酸が生成するように電気分解し、この電解処理後の排水の残留塩素濃度を測定しその測定結果に応じて次亜塩素酸を追加するようにした。
排水の汚染度への相当量の計算値とは、排水のCOD(化学的酸素要求量)が仮に500ppmで量が100kgであった場合、COD(酸素O)の必要量は100×1000×500÷1000000=50gとなる。したがって、この場合、COD(酸素O)の必要量50gを越える次亜塩素酸が生成するように電気分解することとなる。
The waste water was supplied to the dirt substance adsorption tank 5 after electrolysis. Then, electrolysis is performed so that hypochlorous acid exceeding the calculated value corresponding to the pollution degree of the wastewater is generated, and the residual chlorine concentration of the wastewater after the electrolytic treatment is measured, and hypochlorous acid is determined according to the measurement result. Added chloric acid.
The calculated value of the amount of wastewater pollution is calculated as follows: If the COD (chemical oxygen demand) of the wastewater is 500 ppm and the amount is 100 kg, the required amount of COD (oxygen O) is 100 x 1000 x 500 ÷ 1000000 = 50g. Therefore, in this case, electrolysis is performed so as to produce hypochlorous acid exceeding the required amount of COD (oxygen O) of 50 g.

次に、この実施形態の排水処理方法の使用状態を説明する。
この排水処理方法は、排水の汚れ物質を活性炭に吸着させる汚れ物質吸着槽5を有しているところ、前記活性炭を誘導加熱(例えば600℃以上に昇温)により賦活する誘導加熱機構12を有するようにしたので、吸着平衡が立った活性炭を迅速に再生して使用可能に復元することができ、処理の内容が従来のように煩瑣ではないという利点を有する。
Next, the use state of the waste water treatment method of this embodiment will be described.
This waste water treatment method has a dirt substance adsorption tank 5 for adsorbing dirt substances of waste water to activated carbon, and has an induction heating mechanism 12 for activating the activated carbon by induction heating (for example, raising the temperature to 600 ° C. or higher). Since it did in this way, the activated carbon in which adsorption | suction equilibrium was established can be reproduced | regenerated rapidly and can be restored | restored, and there exists an advantage that the content of a process is not troublesome like before.

また、前記誘導加熱機構12の下方に汚れ物質吸着槽5を配置するようにしたので、自然法則(重力落下)を利用して動力を用いることなしに、誘導加熱機構12で賦活された活性炭を下方の汚れ物質吸着槽5へと供給することが出来る。   Further, since the dirt substance adsorption tank 5 is disposed below the induction heating mechanism 12, the activated carbon activated by the induction heating mechanism 12 can be used without using power by utilizing the law of nature (gravity drop). It can be supplied to the lower dirt substance adsorption tank 5.

さらに、前記汚れ物質吸着槽5の活性炭の一部を抜き出して上方の誘導加熱機構12に移送するようにしたので、汚れ物質吸着槽5の活性炭の一部を抜き出して上方の誘導加熱機構12に移送し、バッチ方式ないし準バッチ方式ないし連続方式で処理を略継続して行うことが出来る。
その上、前記誘導加熱機構12にコイル16と被加熱槽17を具備せしめ、前記コイル16と被加熱槽17との間に砂を介在させるようにしたので、誘導加熱機構12で発生した水蒸気により活性炭に昇温作用を及ぼして予備加熱すると共に、前記水蒸気を賦活剤として機能せしめることが出来る。
Further, since a part of the activated carbon in the dirt substance adsorption tank 5 is extracted and transferred to the upper induction heating mechanism 12, a part of the activated carbon in the dirt substance adsorption tank 5 is extracted to the upper induction heating mechanism 12. It can be transferred and processed almost continuously in batch, semi-batch or continuous mode.
In addition, the induction heating mechanism 12 is provided with a coil 16 and a heated tank 17, and sand is interposed between the coil 16 and the heated tank 17, so that water vapor generated in the induction heating mechanism 12 is used. The activated carbon can be heated and preheated to allow the water vapor to function as an activator.

前記誘導加熱機構12にコイル16と被加熱槽17を具備せしめ、前記コイル16と被加熱槽17との間に砂を介在させるようにしたので、誘導加熱機構12にコイル16(銅パイプ製コイル)と被加熱槽17(例えば、金属筒)とを具備せしめるようにすると、排水で保水した活性炭(被加熱槽17に供給する)を誘導加熱によって昇温させることが出来る。これにより、活性炭の水分を乾燥させて高温下で賦活することが出来る。   Since the induction heating mechanism 12 includes the coil 16 and the heated tank 17 and sand is interposed between the coil 16 and the heated tank 17, the induction heating mechanism 12 includes the coil 16 (coil made of copper pipe). ) And the heated tank 17 (for example, a metal cylinder), the activated carbon retained in the waste water (supplied to the heated tank 17) can be heated by induction heating. Thereby, the water | moisture content of activated carbon can be dried and activated at high temperature.

そして、前記コイル16と被加熱槽17との間に砂を介在させるようにしたので、砂に断熱機能を発揮させて外部空間への放熱による損失(熱エネルギーの散逸)を抑制することが出来る(熱効率に優れる)と共に、コイル16と被加熱槽17との周囲に介在させた砂によって相互間のショート(電気的短絡)の発生を空間的・物理的に抑制することが出来る。   And since sand was interposed between the said coil 16 and the to-be-heated tank 17, the loss (thermal energy dissipation) by heat dissipation to an external space can be suppressed by making sand exhibit a heat insulation function. (Excellent in thermal efficiency), and the sand interposed between the coil 16 and the heated tank 17 can suppress the occurrence of a short circuit (electrical short circuit) between them spatially and physically.

前記誘導加熱機構12内の空間を真空吸引するようにしたので、誘導加熱機構12内から湿気・水分を外部に吸い出して、コイル16と被加熱槽17のショートが発生し難くすることが出来る。
前記排水は電気分解をした後に汚れ物質吸着槽5に供給するようにしたので、排水の汚染度(例えばCOD、TOCなどの評価指標)を電気分解で予め低減した後に活性炭吸着へと移行することができ、活性炭への負担を軽減することが出来る。また、排水を電気分解する際に生成する次亜塩素酸や活性酸素(・OHラジカル等)などの作用によって活性炭に吸着された汚れ物質を分解して浄化することが出来る。
Since the space in the induction heating mechanism 12 is vacuum-sucked, moisture and moisture are sucked out from the induction heating mechanism 12 to make it difficult for the coil 16 and the heated tank 17 to be short-circuited.
Since the waste water is electrolyzed and then supplied to the dirt substance adsorption tank 5, the degree of pollution of the waste water (e.g., evaluation indexes such as COD and TOC) is reduced in advance by electrolysis and then shifted to activated carbon adsorption. Can reduce the burden on activated carbon. In addition, dirt substances adsorbed on the activated carbon can be decomposed and purified by the action of hypochlorous acid and active oxygen (.OH radicals, etc.) generated when the waste water is electrolyzed.

前記排水の汚染度への相当量の計算値を越える次亜塩素酸が生成するように電気分解し、この電解処理後の排水の残留塩素濃度を測定しその測定結果に応じて次亜塩素酸を追加するようにし、排水の汚染度への相当量の計算値を越える次亜塩素酸が生成するように電気分解するようにすると、必要量以上の次亜塩素酸を供給することが出来る。
また、この電解処理後の排水の残留塩素濃度を測定しその測定結果に応じて次亜塩素酸を追加するようにしたので、残留塩素濃度により排水の浄化度合いを把握し、この排水の浄化度合いが適正値となるような必要最低限の量の次亜塩素酸を補充することが出来る。
Electrolysis is performed so that hypochlorous acid is generated that exceeds the calculated value corresponding to the pollution degree of the wastewater, and the residual chlorine concentration of the wastewater after the electrolytic treatment is measured, and hypochlorous acid is determined according to the measurement result. If the electrolysis is performed so that hypochlorous acid is generated in excess of the calculated value corresponding to the degree of pollution of the wastewater, it is possible to supply more hypochlorous acid than necessary.
In addition, since the residual chlorine concentration of the wastewater after this electrolytic treatment was measured and hypochlorous acid was added according to the measurement result, the degree of purification of wastewater was grasped based on the residual chlorine concentration, and the degree of purification of this wastewater. Can be replenished with a minimum amount of hypochlorous acid so that becomes an appropriate value.

(実施例2)
図6に示すように、この実施例では、前記汚れ物質吸着槽5内に撹拌羽根ポンプ20を内装し、該槽内に洗浄用電解水を下方側の入り口から注入して活性炭を撹拌・洗浄し、上方の出口から処理水を排出するようにしている。汚れ物質吸着槽5の下側には、吸着平衡炭槽を設けている。
汚れ物質吸着槽5からその上方の誘導加熱機構12へは吸着平衡炭投入ダクト14により供給するようにしている。一方、誘導加熱機構12からその下方の汚れ物質吸着槽5へは、再生炭投入ダクト21を介して賦活した活性炭を供給するようにしている。
したがって、汚れ物質吸着槽5内に洗浄用電解水を注入して活性炭を撹拌・洗浄することにより、該槽内の活性炭を復活させることができ、誘導加熱機構12の負荷を軽減することが出来るという利点を有する。
(Example 2)
As shown in FIG. 6, in this embodiment, a stirring blade pump 20 is provided in the dirt substance adsorption tank 5, and electrolytic water for washing is injected into the tank from the lower side entrance to stir and wash the activated carbon. The treated water is discharged from the upper outlet. An adsorption equilibrium coal tank is provided below the dirt substance adsorption tank 5.
The dirt substance adsorption tank 5 is supplied to the induction heating mechanism 12 thereabove by an adsorption equilibrium charcoal charging duct 14. On the other hand, activated charcoal is supplied from the induction heating mechanism 12 to the dirt material adsorption tank 5 below the activated charcoal charging duct 21 through the recycled charcoal charging duct 21.
Therefore, the activated carbon in the tank can be restored by injecting cleaning electrolyzed water into the dirt substance adsorption tank 5 and stirring and washing the activated carbon, and the load on the induction heating mechanism 12 can be reduced. Has the advantage.

吸着平衡が立った活性炭を迅速に再生して使用可能に復元することができ、処理の内容が従来のように煩瑣ではない排水処理方法を提供することが出来ることによって、種々の排水処理の用途に適用することができる。   The activated carbon in which the adsorption equilibrium is established can be quickly regenerated and restored to be usable, and the wastewater treatment method in which the content of the treatment is not as cumbersome as before can be provided. Can be applied to.

この発明の排水処理機構の実施形態を説明するシステム・フロー図。The system flow figure explaining embodiment of the waste water treatment mechanism of this invention. この発明の排水処理機構の実施例1を説明する正面図。BRIEF DESCRIPTION OF THE DRAWINGS The front view explaining Example 1 of the waste water treatment mechanism of this invention. この発明の排水処理機構の実施例1を説明する側面図。The side view explaining Example 1 of the waste water treatment mechanism of this invention. この発明の排水処理機構の実施例1の他の実施形態を説明する正面図。The front view explaining other embodiment of Example 1 of the waste water treatment mechanism of this invention. この発明の排水処理機構の実施例1の他の実施形態を説明する側面図。The side view explaining other embodiment of Example 1 of the waste water treatment mechanism of this invention. この発明の排水処理機構の実施例2を説明する正面図。The front view explaining Example 2 of the waste water treatment mechanism of this invention.

5 汚れ物質吸着槽
12 誘導加熱機構
16 コイル
17 被加熱槽
20 撹拌羽根ポンプ
5 Dirty substance adsorption tank
12 Induction heating mechanism
16 coils
17 Heated tank
20 Stirring blade pump

Claims (10)

排水の汚れ物質を活性炭に吸着させる汚れ物質吸着槽(5)と、前記活性炭を誘導加熱により賦活する誘導加熱機構(12)とを有することを特徴とする排水処理機構。   A wastewater treatment mechanism comprising a dirt substance adsorption tank (5) for adsorbing dirt substances of wastewater on activated carbon and an induction heating mechanism (12) for activating the activated carbon by induction heating. 前記誘導加熱機構(12)の下方に汚れ物質吸着槽(5)を配置するようにした請求項1記載の排水処理機構。   The waste water treatment mechanism according to claim 1, wherein a dirt substance adsorption tank (5) is arranged below the induction heating mechanism (12). 前記汚れ物質吸着槽(5)の活性炭の一部を抜き出して上方の誘導加熱機構(12)に移送するようにした請求項1又は2記載の排水処理機構。   The wastewater treatment mechanism according to claim 1 or 2, wherein a part of the activated carbon of the dirt substance adsorption tank (5) is extracted and transferred to the upper induction heating mechanism (12). 前記活性炭を上方に移送する際に前記誘導加熱機構(12)で発生した水蒸気を及ぼすようにした請求項3記載の排水処理機構。   The wastewater treatment mechanism according to claim 3, wherein water vapor generated by the induction heating mechanism (12) is exerted when the activated carbon is transferred upward. 前記誘導加熱機構(12)にコイル(16)と被加熱槽(17)を具備せしめ、前記コイル(16)と被加熱槽(17)との間に砂を介在させるようにした請求項1乃至4のいずれかに記載の排水処理方法。   The induction heating mechanism (12) includes a coil (16) and a heated tank (17), and sand is interposed between the coil (16) and the heated tank (17). The wastewater treatment method according to any one of 4. 前記誘導加熱機構(12)内の空間を真空吸引するようにした請求項1乃至5記載の排水処理機構。   The wastewater treatment mechanism according to any one of claims 1 to 5, wherein the space in the induction heating mechanism (12) is vacuum-sucked. 前記コイル(16)内に冷却水を流すようにした請求項5又は6記載の排水処理機構。   The waste water treatment mechanism according to claim 5 or 6, wherein cooling water is allowed to flow through the coil (16). 前記排水は電気分解をした後に汚れ物質吸着槽(5)に供給するようにした請求項1乃至7記載の排水処理機構。   The waste water treatment mechanism according to claim 1, wherein the waste water is electrolyzed and then supplied to the dirt substance adsorption tank (5). 前記排水の汚染度への相当量の計算値を越える次亜塩素酸が生成するように電気分解し、この電解処理後の排水の残留塩素濃度を測定しその測定結果に応じて次亜塩素酸を追加するようにした請求項1乃至8記載の排水処理機構。   Electrolysis is performed so that hypochlorous acid is generated that exceeds the calculated value corresponding to the pollution degree of the wastewater, and the residual chlorine concentration of the wastewater after the electrolytic treatment is measured, and hypochlorous acid is determined according to the measurement result. The waste water treatment mechanism according to claim 1, wherein a waste water treatment mechanism is added. 前記汚れ物質吸着槽(5)内に撹拌羽根ポンプ(20)を内装し、該槽内に洗浄用電解水を注入して活性炭を撹拌・洗浄するようにした請求項1乃至9記載の排水処理機構。   The waste water treatment according to any one of claims 1 to 9, wherein a stirring blade pump (20) is provided in the dirt substance adsorption tank (5), and the electrolytic water for washing is injected into the tank to stir and wash the activated carbon. mechanism.
JP2013138744A 2013-07-02 2013-07-02 Wastewater treatment mechanism Expired - Fee Related JP5911457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138744A JP5911457B2 (en) 2013-07-02 2013-07-02 Wastewater treatment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138744A JP5911457B2 (en) 2013-07-02 2013-07-02 Wastewater treatment mechanism

Publications (2)

Publication Number Publication Date
JP2015009228A true JP2015009228A (en) 2015-01-19
JP5911457B2 JP5911457B2 (en) 2016-04-27

Family

ID=52302917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138744A Expired - Fee Related JP5911457B2 (en) 2013-07-02 2013-07-02 Wastewater treatment mechanism

Country Status (1)

Country Link
JP (1) JP5911457B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109162A (en) * 2015-12-16 2017-06-22 株式会社オメガ Water treatment method
JP2018008245A (en) * 2016-07-15 2018-01-18 株式会社オメガ Regeneration device of absorbent
JP2020075217A (en) * 2018-11-08 2020-05-21 株式会社オメガ Wastewater treatment method
JP2020185549A (en) * 2019-05-16 2020-11-19 株式会社オメガ Wastewater treatment method
JP2022018403A (en) * 2020-07-15 2022-01-27 株式会社オメガ Wastewater treatment method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848382A (en) * 1971-10-18 1973-07-09
JPS5192568A (en) * 1975-02-10 1976-08-13
JPS5266896A (en) * 1975-11-29 1977-06-02 Shin Etsu Chem Co Ltd Method for regeneration of activated carbon
JPS5645711A (en) * 1979-09-07 1981-04-25 Exxon Research Engineering Co Separating method for pollutant from fed material current which use bed magnetically stabilized
JPS57150434A (en) * 1981-01-30 1982-09-17 Indakuteibu Rikabarii Shisutem Device for regenerating or reactivating sorption substance
JPS57151896U (en) * 1981-03-18 1982-09-24
JPS6219242A (en) * 1985-05-20 1987-01-28 コンパニ−・ジエネラル・デ・マチエ−ル・ニユクレエ−ル(セ・オ・ジエ・ウ・エム・ア) Device and method of regenerating activated carbon
JP2001327857A (en) * 2000-05-22 2001-11-27 Hitachi Ltd Microwave drying device
FR2832078A1 (en) * 2001-11-12 2003-05-16 Electricite De France Gas purification filter comprises induction coil to allow even induction heating during desorption
JP2005125200A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Regeneration method for carbon based adsorbent and exhaust gas treatment device having regeneration function of carbon based adsorbent
JP2007160196A (en) * 2005-12-13 2007-06-28 Wakamiya Kogyo Kk Electrolytic sterilizer for water tank
JP2008279435A (en) * 2007-04-09 2008-11-20 Hitachi Ltd Method, apparatus and system for treating organic matter contained in wastewater, and bitumen recovery system
JP2009055821A (en) * 2007-08-31 2009-03-19 Nagasaki Prefecture Seawater-purifying apparatus for making fish or shellfish to live and method for purifying the seawater
JP2012000577A (en) * 2010-06-18 2012-01-05 Kyowa Kogyo Kk Filtering device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848382A (en) * 1971-10-18 1973-07-09
JPS5192568A (en) * 1975-02-10 1976-08-13
JPS5266896A (en) * 1975-11-29 1977-06-02 Shin Etsu Chem Co Ltd Method for regeneration of activated carbon
JPS5645711A (en) * 1979-09-07 1981-04-25 Exxon Research Engineering Co Separating method for pollutant from fed material current which use bed magnetically stabilized
JPS57150434A (en) * 1981-01-30 1982-09-17 Indakuteibu Rikabarii Shisutem Device for regenerating or reactivating sorption substance
JPS57151896U (en) * 1981-03-18 1982-09-24
JPS6219242A (en) * 1985-05-20 1987-01-28 コンパニ−・ジエネラル・デ・マチエ−ル・ニユクレエ−ル(セ・オ・ジエ・ウ・エム・ア) Device and method of regenerating activated carbon
JP2001327857A (en) * 2000-05-22 2001-11-27 Hitachi Ltd Microwave drying device
FR2832078A1 (en) * 2001-11-12 2003-05-16 Electricite De France Gas purification filter comprises induction coil to allow even induction heating during desorption
JP2005125200A (en) * 2003-10-22 2005-05-19 Nippon Steel Corp Regeneration method for carbon based adsorbent and exhaust gas treatment device having regeneration function of carbon based adsorbent
JP2007160196A (en) * 2005-12-13 2007-06-28 Wakamiya Kogyo Kk Electrolytic sterilizer for water tank
JP2008279435A (en) * 2007-04-09 2008-11-20 Hitachi Ltd Method, apparatus and system for treating organic matter contained in wastewater, and bitumen recovery system
JP2009055821A (en) * 2007-08-31 2009-03-19 Nagasaki Prefecture Seawater-purifying apparatus for making fish or shellfish to live and method for purifying the seawater
JP2012000577A (en) * 2010-06-18 2012-01-05 Kyowa Kogyo Kk Filtering device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017109162A (en) * 2015-12-16 2017-06-22 株式会社オメガ Water treatment method
JP2018008245A (en) * 2016-07-15 2018-01-18 株式会社オメガ Regeneration device of absorbent
JP2020075217A (en) * 2018-11-08 2020-05-21 株式会社オメガ Wastewater treatment method
JP2020185549A (en) * 2019-05-16 2020-11-19 株式会社オメガ Wastewater treatment method
JP7079557B2 (en) 2019-05-16 2022-06-02 株式会社オメガ Wastewater treatment method
JP2022018403A (en) * 2020-07-15 2022-01-27 株式会社オメガ Wastewater treatment method
JP7365299B2 (en) 2020-07-15 2023-10-19 株式会社オメガ Wastewater treatment method

Also Published As

Publication number Publication date
JP5911457B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5911457B2 (en) Wastewater treatment mechanism
CN106687417B (en) Method and apparatus for treating industrial waste water using oxidizing agent produced from waste water
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP5828969B2 (en) Coal gasification wastewater treatment system and coal gasification wastewater treatment method
JP5567468B2 (en) Method and apparatus for treating organic wastewater
KR20080091699A (en) Treatment method of organic materials included in waste water, treatment device of organic meterials, treatment system of organic materials and recovery system of bitumen
CN111039477A (en) Method for recycling and comprehensively utilizing reverse osmosis concentrated water of coking wastewater
KR100893565B1 (en) Desalinaton system according to salty of brackish water and method for desalinating using the same
JP6242761B2 (en) Waste water treatment apparatus and treatment method
CN104671607A (en) System and method of power station boiler for treating and recycling heavy oil wastewater
KR101256132B1 (en) Apparatus for desalinating seawater in container
JP2015123442A (en) Wastewater treatment mechanism
CN103508607B (en) Improve the method for advanced treatment of wastewater producing water ratio
JP2017109162A (en) Water treatment method
JP6657720B2 (en) Steam power plant wastewater recovery method and device
JP2023547264A (en) Systems and methods for desalination of liquids
KR20090086158A (en) Method and apparatus for water treatment
JP7292113B2 (en) Water treatment device and method
CN109160657A (en) A kind of processing method of polyelectrolyte waste water
CN104860435A (en) Hotel softened water and direct drinking water processing system
KR101289766B1 (en) Apparatus and method for treating and reusing wastewater having inorganic ions
TW201206838A (en) Waste water recycling/processing method and system thereof
Mozia et al. Hybridization of advanced oxidation processes with membrane separation for treatment and reuse of industrial laundry wastewater
RU2468456C1 (en) Method for obtaining demineralised water and high-purity water for nuclear power plants of research centres
Seidmohammadi et al. The Efficiency of Electrocoagulation Process Using Iron Electrode in Removal of Humic Acid from Water in the Presence of Chitosan as a Coagulant Aid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160329

R150 Certificate of patent or registration of utility model

Ref document number: 5911457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees