JP2022017676A - 撮像装置及び電子機器 - Google Patents

撮像装置及び電子機器 Download PDF

Info

Publication number
JP2022017676A
JP2022017676A JP2020120361A JP2020120361A JP2022017676A JP 2022017676 A JP2022017676 A JP 2022017676A JP 2020120361 A JP2020120361 A JP 2020120361A JP 2020120361 A JP2020120361 A JP 2020120361A JP 2022017676 A JP2022017676 A JP 2022017676A
Authority
JP
Japan
Prior art keywords
current source
load current
signal line
transistors
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020120361A
Other languages
English (en)
Inventor
浩二 松浦
Koji Matsuura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2020120361A priority Critical patent/JP2022017676A/ja
Priority to US18/004,478 priority patent/US20230326940A1/en
Priority to PCT/JP2021/025475 priority patent/WO2022014412A1/ja
Publication of JP2022017676A publication Critical patent/JP2022017676A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Manipulation Of Pulses (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

Figure 2022017676000001
【課題】アナログの画素信号と所定の参照信号とを比較する際に、その比較結果の反転タイミングの誤差を抑制できる撮像装置を提供する。
【解決手段】本開示の撮像装置は、負荷電流源、画素から読み出されたアナログの画素信号を伝送する信号線と負荷電流源との間に設けられ、アナログの画素信号と所定の参照信号とを比較する比較器、及び、信号線に接続された負性容量回路を備える。負荷電流源は、カスコード接続された2つのトランジスタを有する。負性容量回路は、信号線の電圧を、論理を反転させることなく、負荷電流源の2つのトランジスタの共通接続ノードに容量素子を介して印加する。
【選択図】 図5

Description

本開示は、撮像装置及び電子機器に関する。
撮像装置には、画素から読み出されるアナログの画素信号をデジタル化するアナログ-デジタル変換部が搭載されている。アナログ-デジタル変換部は、画素列に対応して配置された複数のアナログ-デジタル変換器から成る、所謂、列並列型のアナログ-デジタル変換部である。
列並列型のアナログ-デジタル変換部を構成するアナログ-デジタル変換器としては、例えば、画素から読み出されるアナログの画素信号と所定の参照信号とを比較することによって、アナログの画素信号をデジタル化する、所謂、シングルスロープ型アナログ-デジタル変換器が知られている。
シングルスロープ型アナログ-デジタル変換器は、例えば、アナログの画素信号と所定の参照信号とを比較する比較器、及び、当該比較器の比較結果に基づいて計数を行うカウンタから構成される。シングルスロープ型アナログ-デジタル変換器を有する撮像装置として、例えば、ソース電極にアナログの画素信号が入力され、ゲート電極に所定の参照信号が入力されるPチャネルMOS(Metal-Oxide-Semiconductor)トランジスタとインバータとを比較器内に配置した撮像装置が提案されている(例えば、特許文献1参照)。
US 2018/0103222 A1
特許文献1に記載の撮像装置では、アナログ-デジタル変換器の比較器が、その電流源として、画素(画素回路)の負荷電流源を共用する構成となっており、この電流源の共用により、画素回路と別途に比較器にも電流源を設ける構成の場合と比較して、消費電力の削減を図っている。
しかしながら、特許文献1に記載の撮像装置におけるPチャネルMOSトランジスタに対する上記の接続構成では、アナログの画素信号と所定の参照信号とが一致する際に、PチャネルMOSトランジスタのドレイン電圧は、画素信号のレベルに応じて変動してしまう。このため、比較器の比較結果が反転するタイミングが、画素信号と参照信号とが一致する理想的なタイミングからずれてしまうことがある。この反転タイミングの誤差に起因して、画素信号をアナログ-デジタル変換したデジタル信号に誤差や非線形性が生じ、画像データの画質が低下するという問題がある。
本開示は、アナログの画素信号と所定の参照信号とを比較する際に、その比較結果の反転タイミングの誤差を抑制できる撮像装置、及び、当該撮像装置を有する電子機器を提供することを目的とする。
上記の目的を達成するための本開示の撮像装置は、
負荷電流源、
画素から読み出されたアナログの画素信号を伝送する信号線と負荷電流源との間に設けられ、アナログの画素信号と所定の参照信号とを比較する比較器、及び、
信号線に接続された負性容量回路、
を備え、
負荷電流源は、カスコード接続された2つのトランジスタを有し、
負性容量回路は、信号線の電圧を、論理を反転させることなく、負荷電流源の2つのトランジスタの共通接続ノードに容量素子を介して印加する。
また、上記の目的を達成するための本開示の電子機器は、上記の構成の撮像装置を有する。
図1は、本開示に係る技術が適用される撮像装置の一例であるCMOSイメージセンサのシステム構成の概略を模式的に示すブロック図である。 図2は、画素の回路構成の一例を示す回路図である。 図3は、アナログ-デジタル変換部の構成の一例を模式的に示すブロック図である。 図4Aは、平置型のチップ構造を模式的に示す斜視図であり、図4Bは、積層型の半導体チップ構造を模式的に示す分解斜視図である。 図5は、実施例1に係る比較器の回路構成例を示す回路図である。 図6は、基本形の回路構成を有する比較器の回路動作の一例の説明に供するタイミングチャートである。 図7は、PチャネルMOSトランジスタの特性の一例を示す特性図である。 図8は、信号線の配線容量の低減によってフレームレートを向上できることについて説明するタイミング波形図である。 図9は、実施例2に係る比較器の回路構成例を示す回路図である。 図10は、実施例3に係る比較器の回路構成例を示す回路図である。 図11は、実施例4に係る比較器の回路構成例を示す回路図である。 図12は、実施例5に係る比較器の回路構成例を示す回路図である。 図13は、実施例6に係る比較器の回路構成例を示す回路図である。 図14は、クランプトランジスタの作用について説明するための、信号線の電圧及び負性容量回路の電流源を構成するNチャネルMOSトランジスタのドレイン電圧の電圧変動の一例を示す特性図である。 図15は、本開示に係る技術の適用例を示す図である。 図16は、本開示の電子機器の一例である撮像システムの構成例の概略を示すブロック図である。 図17は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 図18は、移動体制御システムにおける撮像部の設置位置の例を示す図である。
以下、本開示に係る技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示に係る技術は実施形態に限定されるものではない。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示の撮像装置及び電子機器、全般に関する説明
2.本開示に係る技術が適用される撮像装置
2-1.CMOSイメージセンサの構成例
2-2.画素の回路構成例
2-3.アナログ-デジタル変換部の構成例
2-4.半導体チップ構造
2-4-1.平置型の半導体チップ構造
2-4-2.積層型の半導体チップ構造
3.本開示の実施形態
3-1.実施例1(負性容量回路を比較器の入力段の負荷電流源に接続する例)
3-1-1.比較器の回路構成例
3-1-2.比較器の回路動作例
3-1-3.負性容量回路について
3-2.実施例2(実施例1の変形例:負性容量回路の回路例)
3-3.実施例3(負性容量回路を比較器の出力段の負荷電流源に接続する例)
3-4.実施例4(負性容量回路を比較器の入力段及び出力段の各負荷電流源に接続する例)
3-5.実施例5(信号線用の負荷電流源を有する例)
3-6.実施例6(信号線の電圧をクランプするクランプトランジスタを有する例)
4.変形例
5.応用例
6.本開示に係る技術の適用例
6-1.本開示の電子機器(撮像システムの例)
6-2.移動体への応用例
7.本開示がとることができる構成
<本開示の撮像装置及び電子機器、全般に関する説明>
本開示の撮像装置及び電子機器にあっては、負荷電流源について、入力側負荷電流源及び出力側負荷電流源から成る構成とすることができる。また、比較器について、信号線と入力側負荷電流源との間に接続され、所定の参照信号をゲート入力とする入力トランジスタ、及び、信号線と出力側負荷電流源との間に接続され、入力トランジスタの出力をゲート入力とする出力トランジスタを有する構成とすることができる。
上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、負性容量回路について、信号線の電圧を、論理を反転させることなく、入力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、あるいは、出力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、あるいは、その両方の共通接続ノードに容量素子を介して印加する構成とすることができる。
また、上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、信号線には、カスコード接続された2つのトランジスタを有する信号線用の負荷電流源が接続されている構成とすることができる。そして、負性容量回路について、信号線の電圧を、論理を反転させることなく、信号線用の負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する構成とすることができる。
また、上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、信号線には、第1の調整部及び第2の調整部を有する構成とすることができる。第1の調整部は、入力側負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧、及び、出力側負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧を調整する。第2の調整部は、信号線用の負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧を調整する。
また、上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、負性容量回路について、信号線に入力端が接続された非反転アンプを有する構成とすることができる。このとき、非反転アンプの他端は、一端が負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに接続された容量素子の他端に接続される。そして、非反転アンプについて、高電位側電源と容量素子の他端との間に接続され、ゲート電極が信号線に接続されたトランジスタ、及び、容量素子の他端と低電位側電源との間に接続された電流源を有する構成とすることができる。
また、上述した好ましい構成を含む本開示の撮像装置及び電子機器にあっては、信号線には、負性容量回路について、非反転アンプを構成するトランジスタに対して並列に接続されたクランプトランジスタを有する構成とすることができる。
<本開示に係る技術が適用される撮像装置>
本開示に係る技術が適用される撮像装置として、X-Yアドレス方式の撮像装置の一種であるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを例に挙げて説明する。CMOSイメージセンサは、CMOSプロセスを応用して、又は、部分的に使用して作製されたイメージセンサである。
[CMOSイメージセンサの構成例]
図1は、本開示に係る技術が適用される撮像装置の一例であるCMOSイメージセンサのシステム構成の概略を模式的に示すブロック図である。
本適用例に係るCMOSイメージセンサ1は、画素アレイ部11及び当該画素アレイ部11の周辺回路部を有する構成となっている。画素アレイ部11は、受光素子を含む画素(画素回路)20が行方向及び列方向に、即ち、行列状に2次元配置された構成となっている。ここで、行方向とは、画素行の画素20の配列方向を言い、列方向とは、画素列の画素20の配列方向を言う。画素20は、光電変換を行うことにより、受光した光量に応じた光電荷を生成し、蓄積する。
画素アレイ部11の周辺回路部は、例えば、行選択部12、アナログ-デジタル変換部13、信号処理部としてのロジック回路部14、及び、タイミング制御部15等によって構成されている。
画素アレイ部11において、行列状の画素配列に対し、画素行毎に画素制御線31(311~31m)が行方向に沿って配線されている。また、画素列毎に信号線32(321~32n)が列方向に沿って配線されている。画素制御線31は、画素20から信号を読み出す際の駆動を行うための駆動信号を伝送する。図1では、画素制御線31について1本の配線として図示しているが、1本に限られるものではない。画素制御線31の一端は、行選択部12の各行に対応した出力端に接続されている。
以下に、画素アレイ部11の周辺回路部の各構成要素、即ち、行選択部12、アナログ-デジタル変換部13、ロジック回路部14、及び、タイミング制御部15について説明する。
行選択部12は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部11の各画素20の選択に際して、画素行の走査や画素行のアドレスを制御する。この行選択部12は、その具体的な構成については図示を省略するが、一般的に、読出し走査系と掃出し走査系の2つの走査系を有する構成となっている。
読出し走査系は、画素20から画素信号を読み出すために、画素アレイ部11の画素20を行単位で順に選択走査する。画素20から読み出される画素信号はアナログ信号である。掃出し走査系は、読出し走査系によって読出し走査が行われる読出し行に対して、その読出し走査よりもシャッタスピードの時間分だけ先行して掃出し走査を行う。
この掃出し走査系による掃出し走査により、読出し行の画素20の光電変換素子から不要な電荷が掃き出されることによって当該光電変換素子がリセットされる。そして、この掃出し走査系による不要電荷の掃き出す(リセットする)ことにより、所謂、電子シャッタ動作が行われる。ここで、電子シャッタ動作とは、光電変換素子の光電荷を捨てて、新たに露光を開始する(光電荷の蓄積を開始する)動作のことを言う。
アナログ-デジタル変換部13は、画素アレイ部11の画素列に対応して(例えば、画素列毎に)設けられた複数のアナログ-デジタル変換器(ADC)の集合から成る。アナログ-デジタル変換部13は、画素列毎に信号線321~32nの各々を通して出力されるアナログの画素信号を、デジタル信号に変換する列並列型のアナログ-デジタル変換部である。
アナログ-デジタル変換部13におけるアナログ-デジタル変換器としては、例えば、参照信号比較型のアナログ-デジタル変換器の一例であるシングルスロープ型アナログ-デジタル変換器を用いることができる。
信号処理部であるロジック回路部14は、アナログ-デジタル変換部13でデジタル化された画素信号の読み出しや所定の信号処理を行う。具体的には、ロジック回路部14では、所定の信号処理として、例えば、縦線欠陥、点欠陥の補正、又は、信号のクランプ、更には、パラレル-シリアル変換、圧縮、符号化、加算、平均、及び、間欠動作などのデジタル信号処理が行われる。ロジック回路部14は、生成した画像データを、本CMOSイメージセンサ1の出力信号OUTとして後段の装置に出力する。
タイミング制御部15は、外部から与えられる同期信号に基づいて、各種のタイミング信号、クロック信号、及び、制御信号等を生成する。そして、タイミング制御部15は、これら生成した信号を基に、行選択部12、アナログ-デジタル変換部13、及び、ロジック回路部14等の駆動制御を行う。
[画素の回路構成例]
図2は、画素20の回路構成の一例を示す回路図である。画素20は、光電変換素子として、例えば、フォトダイオード21を有している。画素20は、フォトダイオード21の他に、転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25を有する構成となっている。
転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25の4つのトランジスタとしては、例えばNチャネルのMOS型電界効果トランジスタを用いている。但し、ここで例示した4つのトランジスタ22~25の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。
この画素20に対して、先述した画素制御線31(311~31m)として、複数の画素制御線が同一画素行の各画素20に対して共通に配線されている。これら複数の画素制御線は、行選択部12の各画素行に対応した出力端に画素行単位で接続されている。行選択部12は、複数の画素制御線に対して転送信号TRG、リセット信号RST、及び、選択信号SELを適宜出力する。
フォトダイオード21は、アノード電極が低電位側電源(例えば、グランド)に接続されており、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。フォトダイオード21のカソード電極は、転送トランジスタ22を介して増幅トランジスタ24のゲート電極と電気的に接続されている。ここで、増幅トランジスタ24のゲート電極が電気的に繋がった領域は、フローティングディフュージョン(浮遊拡散領域/不純物拡散領域)FDである。フローティングディフュージョンFDは、電荷を電圧に変換する電荷電圧変換部である。
転送トランジスタ22のゲート電極には、高レベル(例えば、VDDレベル)がアクティブとなる転送信号TRGが行選択部12から与えられる。転送トランジスタ22は、転送信号TRGに応答して導通状態となることで、フォトダイオード21で光電変換され、当該フォトダイオード21に蓄積された光電荷をフローティングディフュージョンFDに転送する。
リセットトランジスタ23は、高電位側電源電圧VDDのノードとフローティングディフュージョンFDとの間に接続されている。リセットトランジスタ23のゲート電極には、高レベルがアクティブとなるリセット信号RSTが行選択部12から与えられる。リセットトランジスタ23は、リセット信号RSTに応答して導通状態となり、フローティングディフュージョンFDの電荷を電圧VDDのノードに捨てることによってフローティングディフュージョンFDをリセットする。
増幅トランジスタ24は、ゲート電極がフローティングディフュージョンFDに、ドレイン電極が高電位側電源電圧VDDのノードにそれぞれ接続されている。増幅トランジスタ24は、フォトダイオード21での光電変換によって得られる信号を読み出すソースフォロワの入力部となる。すなわち、増幅トランジスタ24は、ソース電極が選択トランジスタ25を介して信号線32に接続される。
選択トランジスタ25は、ドレイン電極が増幅トランジスタ24のソース電極に接続され、ソース電極が信号線32に接続されている。選択トランジスタ25のゲート電極には、高レベルがアクティブとなる選択信号SELが行選択部12から与えられる。選択トランジスタ25は、選択信号SELに応答して導通状態となることで、画素20を選択状態として増幅トランジスタ24から出力される信号を信号線32に伝達する。
尚、上記の回路例では、画素20として、転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25から成る、即ち、4つのトランジスタ(Tr)から成る4Tr構成を例に挙げたが、これに限られるものではない。例えば、選択トランジスタ25を省略し、増幅トランジスタ24に選択トランジスタ25の機能を持たせる3Tr構成とすることもできるし、必要に応じて、トランジスタの数を増やした5Tr以上の構成とすることもできる。
[アナログ-デジタル変換部の構成例]
続いて、アナログ-デジタル変換部13の構成の一例について説明する。ここでは、アナログ-デジタル変換部13の各アナログ-デジタル変換器として、シングルスロープ型のアナログ-デジタル変換器を用いることとする。
アナログ-デジタル変換部13の構成の一例を図3に示す。CMOSイメージセンサ1において、アナログ-デジタル変換部13は、画素アレイ部11の各画素列に対応して設けられた複数のシングルスロープ型のアナログ-デジタル変換器の集合から成る。ここでは、n列目のシングルスロープ型のアナログ-デジタル変換器130を例に挙げて説明する。
アナログ-デジタル変換器130は、比較器131及びカウンタ132を有する回路構成となっている。そして、シングルスロープ型のアナログ-デジタル変換器130では、参照信号生成部16で生成される参照信号が用いられる。参照信号生成部16は、例えば、デジタル-アナログ変換器(DAC)から成り、時間の経過に応じてレベル(電圧)が単調減少するランプ(RAMP)波の参照信号VRAMPを生成し、画素列毎に設けられた比較器131に基準信号として与える。
比較器131は、画素20から読み出されるアナログの画素信号VVSLを比較入力とし、参照信号生成部16で生成されるランプ波の参照信号VRAMPを基準入力とし、両信号を比較する。そして、比較器131は、例えば、参照信号VRAMPが画素信号VVSLよりも大きいときに出力が第1の状態(例えば、高レベル)になり、参照信号VRAMPが画素信号VVSL以下のときに出力が第2の状態(例えば、低レベル)になる。これにより、比較器131は、画素信号VVSLの信号レベルに応じた、具体的には、信号レベルの大きさに対応したパルス幅を持つパルス信号を比較結果として出力する。
カウンタ132には、比較器131に対する参照信号VRAMPの供給開始タイミングと同じタイミングで、タイミング制御部15からクロック信号CLKが与えられる。そして、カウンタ132は、クロック信号CLKに同期してカウント動作を行うことによって、比較器131の出力パルスのパルス幅の期間、即ち、比較動作の開始から比較動作の終了までの期間を計測する。カウンタ132のカウント結果(カウント値)は、アナログの画素信号VVSLをデジタル化したデジタル値として、ロジック回路部14へ供給される。
上述したシングルスロープ型のアナログ-デジタル変換器130の集合から成るアナログ-デジタル変換部13によれば、参照信号生成部16で生成されるランプ波の参照信号VRAMPと、画素20から信号線32を通して読み出されるアナログの画素信号VVSLとの大小関係が変化するまでの時間情報からデジタル値を得ることができる。
尚、上記の例では、アナログ-デジタル変換部13として、画素アレイ部11の画素列に対して1対1の対応関係でアナログ-デジタル変換器130が配置されて成る構成を例示したが、複数の画素列を単位としてアナログ-デジタル変換器130が配置されて成る構成とすることも可能である。
上述したシングルスロープ型のアナログ-デジタル変換器130において、比較器131としては、一般的に、差動アンプ構成の比較器が用いられる。しかし、差動アンプ構成の比較器の場合、画素20の信号量に応じた入力レンジを確保する必要があるため、電源電圧VDDを相対的に高めに設定する必要があり、従って、アナログ-デジタル変換器130の消費電力、ひいては、CMOSイメージセンサ1の消費電力が相対的に高くなるという問題がある。
[半導体チップ構造]
上記の構成のCMOSイメージセンサ1の半導体チップ構造としては、平置型の半導体チップ構造及び積層型の半導体チップ構造を例示することができる。また、画素構造については、配線層が形成される側の基板面を表面(正面)とするとき、その反対側の裏面側から照射される光を取り込む裏面照射型の画素構造とすることもできるし、表面側から照射される光を取り込む表面照射型の画素構造とすることもできる。
以下に、平置型の半導体チップ構造及び積層型の半導体チップ構造の概略について説明する。
(平置型の半導体チップ構造)
図4Aは、CMOSイメージセンサ1の平置型のチップ構造を模式的に示す斜視図である。図4Aに示すように、平置型の半導体チップ構造は、画素20が行列状に配置されて成る画素アレイ部11と同じ半導体基板41上に、画素アレイ部11の周辺回路部の各構成要素を形成した構造となっている。具体的には、画素アレイ部11と同じ半導体基板41上に、行選択部12、アナログ-デジタル変換部13、ロジック回路部14、及び、タイミング制御部15等が形成されている。1層目の半導体チップ41の例えば左右両端部には、外部接続用や電源用のパッド42が設けられている。
(積層型の半導体チップ構造)
図4Bは、CMOSイメージセンサ1の積層型の半導体チップ構造を模式的に示す分解斜視図である。図4Bに示すように、積層型の半導体チップ構造、所謂、積層構は、1層目の半導体チップ43及び2層目の半導体チップ44の少なくとも2つの半導体チップが積層された構造となっている。
この積層型の半導体チップ構造において、1層目の半導体チップ43は、光電変換素子(例えば、フォトダイオード21)を含む画素20が行列状に2次元配置されて成る画素アレイ部11が形成された画素チップである。1層目の半導体チップ43の例えば左右両端部には、外部接続用や電源用のパッド42が設けられている。
2層目の半導体チップ44は、画素アレイ部11の周辺回路部、即ち、行選択部12、アナログ-デジタル変換部13、ロジック回路部14、及び、タイミング制御部15等が形成された回路チップである。尚、行選択部12、アナログ-デジタル変換部13、ロジック回路部14、及び、タイミング制御部15の配置については、一例であって、この配置例に限られるものではない。
1層目の半導体チップ43上の画素アレイ部11と、2層目の半導体チップ44上の周辺回路部とは、Cu-Cu接合を含む金属-金属接合、シリコン貫通電極(Through Silicon Via:TSV)、マイクロバンプ等から成る接合部72,73を介して電気的に接続される。
上述した積層型の半導体チップ構造によれば、1層目の半導体チップ43には画素アレイ部11の作製に適したプロセスを適用でき、2層目の半導体チップ44には回路部分の作製に適したプロセスを適用できる。これにより、CMOSイメージセンサ1の製造に当たって、プロセスの最適化を図ることができる。これにより、CMOSイメージセンサ1の製造に当たって、プロセスの最適化を図ることができる。特に、回路部分の作製に当たっては、先端プロセスの適用が可能になる。
<本開示の実施形態>
本開示の実施形態に係るCMOSイメージセンサ1は、アナログ-デジタル変換器130の比較器131を、差動アンプ構成の比較器をシングル化し、信号線32に電流を供給する負荷電流源と、信号線32との間に比較器131を有する回路構成となっている。すなわち、本実施形態に係るCMOSイメージセンサ1は、比較器131で用いる電流源として、信号線32に電流を供給する負荷電流源を共用した回路構成となっている。この回路構成の比較器131によれば、アナログ-デジタル変換器130の消費電力、ひいては、CMOSイメージセンサ1の低消費電力化を図ることができる。
本実施形態に係るCMOSイメージセンサ1は、更に、回路的に負の容量を実現する負性容量回路を備えている。負性容量回路は、信号線32に接続されており、信号線32の電圧を、論理を反転させることなく、負荷電流源を構成するカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する。この負性容量回路の作用により、信号線32の配線容量を低減させることができる。そして、信号線32の配線容量の低減により、信号線32によって伝送される画素信号のセトリングを高速にすることができ、その結果、フレームレートの向上を図ることができる。
以下に、低消費電力化を目的として、信号線32に電流を供給する負荷電流源を、比較器131の電流源として共用した回路構成を有し、画素信号のセトリングの高速化を目的として、信号線32に接続された負性容量回路を備える本開示の実施形態に係る比較器131の具体的な実施例について説明する。
[実施例1]
実施例1は、比較器131の基本形の回路構成の例であり、負性容量回路を比較器131の入力段(1段目)の負荷電流源に接続する例である。実施例1に係る比較器の回路構成例を図5に示す。ここでは、図面の簡略化のために、1画素列分の回路構成について図示している。この点については、後述する各実施例においても同様である。
(比較器の回路構成例)
実施例1に係る比較器131は、第1の容量素子C11、入力トランジスタPT11、入力側負荷電流源I11、第2の容量素子C12、出力トランジスタPT12、出力側負荷電流源I12、クランプトランジスタPT13、オートゼロスイッチSWAZ、及び、負性容量回路50を備える構成となっている。
入力トランジスタPT11は、PチャネルのMOSトランジスタから成り、信号線32と入力側負荷電流源I11との間に接続されている。具体的には、入力トランジスタPT11のソース電極が信号線32に接続され、ドレイン電極が入力側負荷電流源I11の一端に接続されている。これにより、入力トランジスタPT11のソース電極には、信号線32を通して画素信号VVSLが入力される。
入力側負荷電流源I11の他端は、低電位側電源、例えばグランドGNDに接続されている。入力側負荷電流源I11は、カスコード接続された2つのトランジスタ、即ち、電流源トランジスタNT11及びカスコードトランジスタNT12から成る。電流源トランジスタNT11のゲート電極には、所定のバイアス電圧bias1が印加され、カスコードトランジスタNT12のゲート電極には、所定のバイアス電圧bias2が印加される。これにより、入力側負荷電流源I11は、入力トランジスタPT11と信号線32との直列接続回路に対して一定の電流を供給する。電流源トランジスタNT11及びカスコードトランジスタNT12としては、例えば、NチャネルのMOSトランジスタを用いることができる。
第1の容量素子C11は、ランプ波の参照信号VRAMPの入力端子T11と入力トランジスタPT11のゲート電極との間に接続されており、参照信号VRAMPに対する入力容量となる。これにより、入力トランジスタPT11には、画素信号VVSLが信号線32を通してソース電極に入力され、ランプ波の参照信号VRAMPが第1の容量素子C11を介してゲート電極に入力されることになる。
入力トランジスタPT11は、ゲート電極に入力される参照信号VRAMPと、ソース電極に入力される画素信号VVSLとの差、即ち、入力トランジスタPT11のゲート-ソース間電圧Vgsを増幅し、ドレイン電極からドレイン電圧として出力する。
オートゼロスイッチSWAZは、入力トランジスタPT11のゲート電極とドレイン電極との間に接続され、図1に示すタイミング制御部15から入力端子T12を介して入力される駆動信号AZによってオン(閉)/オフ(開)の制御が行われる。オートゼロスイッチSWAZは、オン状態になることにより、入力トランジスタPT11のゲート電極とドレイン電極との間を短絡するオートゼロ(初期化動作)を行う。オートゼロスイッチSWAZについては、Pチャネル又はNチャネルのMOSトランジスタを用いて構成することができる。
第2の容量素子C12は、入力トランジスタPT11に対して並列に接続されている。具体的には、第2の容量素子C12の一端が入力トランジスタPT11のソース電極に接続され、第2の容量素子C12の他端が入力トランジスタPT11のドレイン電極に接続されている。
出力トランジスタPT12は、例えば、PチャネルのMOSトランジスタから成り、信号線32と出力側負荷電流源I12との間に接続されている。具体的には、出力トランジスタPT12のソース電極が信号線32に接続され、ドレイン電極が出力側負荷電流源I12の一端に接続されている。これにより、出力トランジスタPT12のソース電極には、信号線32を通して画素信号VVSLが入力される。
出力側負荷電流源I12の他端は、低電位側電源、例えばグランドGNDに接続されている。出力側負荷電流源I12は、カスコード接続された2つのトランジスタ、即ち、電流源トランジスタNT13及びカスコードトランジスタNT14から成る。電流源トランジスタNT13のゲート電極には、所定のバイアス電圧bias3が印加され、カスコードトランジスタNT14のゲート電極には、所定のバイアス電圧bias4が印加される。これにより、出力側負荷電流源I12は、出力トランジスタPT12と信号線32との直列接続回路に対して一定の電流を供給する。電流源トランジスタNT13及びカスコードトランジスタNT14としては、例えば、NチャネルのMOSトランジスタを用いることができる。
出力トランジスタPT12のゲート電極は、入力トランジスタPT11のドレイン電極に接続されている。これにより、出力トランジスタPT12のゲート電極には、入力トランジスタPT11のドレイン電圧が入力される。
出力トランジスタPT12は、信号線32を通してソース電極に入力される画素信号VVSLと、ゲート電極に入力される入力トランジスタPT11のドレイン電圧との電圧差が所定の閾値電圧を超えるか否かを示す信号OUTを、アナログの画素信号VVSLとランプ波の参照信号VRAMPとの比較結果として、ドレイン電極から出力端子T13を通して出力する。
クランプトランジスタPT13は、例えば、PチャネルのMOSトランジスタから成り、入力トランジスタPT11のソース電極とドレイン電極との間に接続されている。クランプトランジスタPT13は、ゲート電極とソース電極とが共通に接続されたダイオード接続の構成となっており、入力トランジスタPT11が非導通状態のときの入力トランジスタPT11のドレイン電圧の低下を抑制する作用をなす。
上述したように、実施例1に係る比較器131は、比較器131の電流源として、信号線32に電流を供給する負荷電流源I11を共用した回路構成を基本形としている。この基本形の回路構成を有する比較器131によれば、アナログ-デジタル変換器130の消費電力、ひいては、CMOSイメージセンサ1の低消費電力化を図ることができる。更に、入力トランジスタPT11が、ドレイン-ソース間電圧を出力トランジスタPT12のゲート-ソース間に供給するため、アナログの画素信号VVSLとランプ波の参照信号VRAMPとが一致するタイミングで比較結果を反転させることができる。これにより、反転タイミングの誤差に起因するノイズを低減し、画像データの画質を向上させることができる。
(比較器の回路動作例)
続いて、上記の基本形の回路構成を有する比較器131の回路動作の一例について説明する。図6は、実施例1に係る比較器131の回路動作の一例の説明に供するタイミングチャートである。図6のタイミングチャートには、アナログの画素信号VVSL、ランプ波の参照信号VRAMP、入力トランジスPT11のドレイン電圧Vd、比較器131の比較結果COMP、及び、オートゼロスイッチSWAZの駆動信号AZの各波形のタイミング関係を示している。
アナログ-デジタル変換(AD変換)の開始直前の時刻t1で、オートゼロスイッチSWAZの駆動信号AZが、所定のオートゼロ期間に亘ってアクティブ状態(高レベル状態)になる。これにより、オートゼロスイッチSWAZが、駆動信号AZに応答してオン(閉)状態となり、入力トランジスPT11のゲート電極とドレイン電極とを短絡し、比較器131の初期化動作、即ち、オートゼロ動作を行う。
オートゼロ動作後、時刻t2で、参照信号生成部16から参照信号VRAMPの出力が開始される。参照信号VRAMPは、時間の経過に応じてレベル(電圧)が単調減少するランプ波の信号である。
ところで、CMOSイメージセンサ1では、一般的に、画素20のリセット動作時のノイズを除去するために、相関二重サンプリング(Correlated Double Sampling:CDS)によるノイズ除去処理が行わる。このため、画素20からは、画素信号として、例えば、リセットレベル(P相)VVSL_P及び信号レベル(D相)VVSL_Dが読み出される。
リセットレベルVVSL_Pは、画素20のフローティングディフュージョンFDをリセットしたときの当該フローティングディフュージョンFDの電位に相当する。信号レベルVVSL_Dは、フォトダイオード21での光電変換によって得られる電位、即ち、フォトダイオード21に蓄積された電荷をフローティングディフュージョンFDへ転送したときの当該フローティングディフュージョンFDの電位に相当する。
時刻t3で、時間の経過に応じて電圧が徐々に減少する参照信号VRAMPが、リセットレベルVVSL_Pと交差するものとする。ここで、時刻t3での入力トランジスPT11のドレイン電圧VdをVd_pとし、ドレイン電圧Vd_p未満を低レベルとし、ドレイン電圧Vd_p以上を高レベルとすると、入力トランジスPT11のドレイン電圧Vdは、時刻t3で低レベルから高レベルに反転する。
その後、参照信号VRAMPの初期化が行われ、時刻t4から、参照信号VRAMPが徐々に低下を開始する。一方、画素20では、フォトダイオード21からフローティングディフュージョンFDへ電荷が転送され、画素信号として信号レベルVVSL_Dが出力される。この信号レベルVVSL_Dは、リセットレベルVVSL_PよりもΔVだけ低いレベルとする。
そして、時刻t5で、時間の経過に応じて電圧が徐々に減少する参照信号VRAMPが、信号レベルVVSL_Dと交差するものとする。ここで、時刻t5での入力トランジスPT11のドレイン電圧VdをVd_dとする。このドレイン電圧Vd_dは、ドレイン電圧Vd_pよりもΔVだけ低い値となる。すなわち、時刻t5でのドレイン電圧Vd_dは、そのときの画素信号である信号レベルVVSL_Dが低いほど、低い値となる。
入力トランジスPT11のドレイン電圧Vd_dが、リセットレベルVVSL_Pの変換時のドレイン電圧Vd_pよりもΔVだけ降下している。従来技術では、このドレイン電圧Vdが反転したと判定されるのは、時刻t5の後の時刻t6となる。このため、仮に、このドレイン電圧Vdを、比較器131の比較結果COMPとして用いると、比較結果COMPが反転するタイミング(時刻t6)は、参照信号VRAMPが信号レベルVVSL_Dと交差する理想的なタイミング(時刻t5)からずれてしまう。この結果、アナログ-デジタル変換器130において、リニアリティ誤差やオフセットが生じ、この誤差に起因して画像データの画質が低下してしまうおそれがある。
これに対して、実施例1に係る比較器131では、入力トランジスタPT11の後段に出力トランジスタPT12が設けられ、入力トランジスタPT11のソース電極及びドレイン電極が、出力トランジスタPT12のソース電極及びゲート電極に接続されている。この接続により、入力トランジスタPT11のドレイン-ソース間電圧Vdsが、出力トランジスタPT12にそのゲート-ソース間電圧として入力される。
図6のタイミングチャートに例示したように、参照信号VRAMPが画素信号VVSLと交差する時刻t3及び時刻t5において、画素信号VVSLの電圧降下量ΔVは、入力トランジスPT11のドレイン電圧Vdの電圧降下量と同一である。このため、これらのタイミングにおいて、ドレイン-ソース間電圧Vdsは同一の値となる。このとき(即ち、時刻t3及び時刻t5)のドレイン-ソース間電圧Vdsの値は、オートゼロ時と同じになる。入力トランジスPT11のドレイン-ソース間電圧Vdsは、出力トランジスタPT12のゲート-ソース間電圧であるため、時刻t3及び時刻t5で、出力トランジスタPT12のドレイン電圧が反転する。
比較器131の比較結果COMPの反転タイミングが、参照信号VRAMPが信号レベルVVSL_Dと交差する理想的なタイミングであるため、反転タイミングの誤差が抑制される。これにより、入力トランジスPT11のドレイン電圧Vdを比較結果COMPとして用いる場合と比較して、リニアリティ誤差やオフセットを小さくして、画像データの画質を向上させることができる。
続いて、時刻t3及び時刻t5で、入力トランジスPT11のドレイン電圧Vdの電圧降下量ΔVが、入力トランジスPT11のソース電極に入力される画素信号VVSLの電圧降下量と同一になる理由について説明する。
図7は、実施例1に係る比較器131における入力トランジスPT11として用いられるPチャネルMOSトランジスタの特性の一例を示す特性図である。図8の特性図において、縦軸は、ドレイン電流であり、横軸は、ドレイン-ソース間電圧である。また、破線は、線形領域と飽和領域との境界を示している。
一般的に、PチャネルMOSトランジスタは、オートゼロ時に飽和領域で動作するように動作点が定められる。PチャネルMOSトランジスタの飽和領域のドレイン電流Idは、次式(1)によって表される。
d=(1/2)・μCOX(W/L)・(VGS-Vth2(1+λVds)・・・(1)
ここで、μは、電子の移動度であり、COXは、MOSキャパシタの単位面積当たりの容量であり、Wは、ゲート幅であり、Lは、ゲート長であり、Vthは、閾値電圧であり、λは、所定の係数である。
入力トランジスPT11は、PチャネルMOSトランジスタであるから、飽和領域において、式(1)が成立する。このとき入力トランジスPT11Kのドレイン電流Idは、入力側負荷電流源I11が供給する一定の値Id1である。また、電子移動度μ、単位容量COX、ゲート幅W、ゲート長L、閾値電圧Vth、及び、係数λは、一定の値である。
また、入力トランジスタPT11のゲート電極に入力される参照信号VRAMPが、ソース電極に入力される画素信号VVSLと交差するとき、ゲート-ソース間電圧Vgsは、オートゼロ時に定まる一定の値である。
従って、入力トランジスタPT11のゲート電極に入力される参照信号VRAMPが、ソース電極に入力される画素信号VVSLと交差するときは、式(1)より、ドレイン-ソース間電圧Vdsも一定の値となる。その一定のドレイン-ソース間電圧をVds1とすると、時刻t3及び時刻t5において次式(2),(3)が成立する。
ds1=VVSL_P-Vd_p ・・・(2)
ds1=VVSL_D-Vd_d ・・・(3)
式(2)及び式(3)からドレイン-ソース間電圧Vds1を消去すると、次の式(4)が得られる。
VSL_P-Vd_p=Vd_p-Vd_d ・・・(4)
尚、PチャネルMOSトランジスタをオートゼロ時に線形領域となるように動作点を定めた場合、式(1)は違う形となるが、式(4)は同様に成り立つ。
式(4)より、入力トランジスタPT11のドレイン電圧Vdの電圧降下量ΔVは、そのソース電極に入力される画素信号VVSLの電圧降下量と同一になる。従って、図6のタイミングチャートに例示したタイミング関係が得られる。
(負性容量回路について)
上記の基本形の回路構成において、実施例1に係る比較器131は、信号線32に接続された負性容量回路50を備えている。負性容量回路50は、非反転アンプ51及び容量素子C13を有する構成となっている。容量素子C13の一端は、負荷電流源I11を構成するカスコード接続された2つのトランジスタ(NT11,NT12)の共通接続ノードN11に接続されている。非反転アンプ51は、入力端が信号線32に接続され、出力端が容量素子C13の他端に接続されている。
非反転アンプ51を含む負性容量回路50は、信号線32の電圧を、論理を反転させることなく、入力段の負荷電流源I11を構成するカスコード接続された2つのトランジスタ(NT11,NT12)の共通接続ノードN11に容量素子C13を介して印加する。この負性容量回路50は、回路的に負の容量を実現することにより、換言すれば、負の容量の回路として機能することにより、信号線32の配線容量を低減することができる。
一般に、信号線32に寄生容量が生じて配線容量が増大すると、その配線容量の増大に起因して、信号線32の電位が一定になるまでのセトリング時間が長くなってしまい、画素信号の読出し速度が低下するおそれがある。これに対して、実施例1に係る比較器131では、信号線32に負性容量回路50が接続されていることにより、信号線32の配線容量を低減できるため、信号線32の電位のセトリング時間を短縮することができ、その結果、フレームレートの向上を図ることができる。
信号線32の配線容量の低減によってフレームレートを向上できることについて、図8のタイミング波形図を用いて説明する。図8のタイミング波形図には、水平同期信号XHS、信号線32の電位、ランプ波の参照信号VRAMP、及び、比較器131の入力段(入力トランジスタPT11)出力のタイミング関係を示している。
負性容量回路50の作用によって、信号線32の配線容量を低減できることにより、図8(a),(b)に示すように、信号線32の電位のセトリング時間を短縮することができる。これに対応して、図8(c),(d)に示すように、ランプ波の参照信号VRAMPの立ち上がりタイミングを早めることができる。これにより、図8(e),(f)に示すように、比較器131の入力段出力、即ち、入力トランジスタPT11の出力の反転タイミングが早まる。その結果、図8(g),(h)に示すように、タイミングのマージンが拡大し、画素信号の読出し速度の高速化、即ち、フレームレートの向上を図ることができる。
信号線32の配線容量の低減については、信号線32の材質を誘電率の低いものに変更したり、プロセスルールを微細化したりすることによっても信号線32の配線容量を低減することができるが、プロセス開発に多大な時間や費用がかかり、困難を伴う。これに対して、実施例1に係る比較器131のように、信号線32に負性容量回路50を接続する構成によれば、信号線32の材質の変更などが不要であるため、信号線32の配線容量の低減を容易に実現できる。
[実施例2]
実施例2は、実施例1の変形例であり、負性容量回路50の具体的な回路例である。負性容量回路50の具体的な回路例を含む実施例2に係る比較器131の回路構成例を図9に示す。
実施例2に係る比較器131において、負性容量回路50は、容量素子C13の他に、NチャネルMOSトランジスタNT15及び電流源I13を有する構成となっている。NチャネルMOSトランジスタNT15及び電流源I13は、実施例1の非反転アンプ51を構成している。この点については、後述する各実施例においても同様である。
負性容量回路50において、NチャネルMOSトランジスタNT15は、ゲート電極が信号線32に接続され、ドレイン電極が高電位側電源電圧VDDのノードに接続されている。容量素子C13は、一端が入力側負荷電流源I11の電流源トランジスタNT11とカスコードトランジスタNT12との共通接続ノードN11に接続され、他端がNチャネルMOSトランジスタNT15のソース電極に接続されている。電流源I13は、NチャネルMOSトランジスタNT15のソース電極と低電位側電源(例えば、グランド)との間に接続されている。
NチャネルMOSトランジスタNT15及び電流源I13によって非反転アンプ51が構成された実施例2に係る比較器131においても、実施例1に係る比較器131と同様の作用、効果を得ることができる。すなわち、負性容量回路50の作用によって信号線32の配線容量を低減できるため、信号線32の電位のセトリング時間を短縮することができ、その結果、フレームレートの向上を図ることができる。
[実施例3]
実施例3は、負性容量回路50を比較器131の出力段(2段目)の負荷電流源に接続する例である。実施例3に係る比較器131のAutomobile_template1_ver_1.0 回路構成例を図10に示す。
実施例3に係る比較器131において、NチャネルMOSトランジスタNT15、電流源I13、及び、容量素子C13から成る負性容量回路50は、比較器131の出力段(2段目)の出力側負荷電流源I12に接続されている。具体的には、負性容量回路50において、容量素子C13の一端は、負荷電流源I12の電流源トランジスタNT13とカスコードトランジスタNT14との共通接続ノードN12に接続されている。容量素子C13の他端は、NチャネルMOSトランジスタNT15のソース電極に接続されている。
上記の回路構成の実施例3に係る比較器131において、負性容量回路50は、信号線32の電圧を、論理を反転させることなく、出力側負荷電流源I12を構成するカスコード接続された2つのトランジスタ(NT13,NT14)の共通接続ノードN12に容量素子C13を介して印加する。これにより、実施例1の場合と同様の作用、効果を得ることができる。すなわち、負性容量回路50の作用により、信号線32の配線容量を低減できるため、信号線32の電位のセトリング時間を短縮することができ、その結果、フレームレートの向上を図ることができる。
[実施例4]
実施例4は、負性容量回路50を比較器131の入力段及び出力段の各負荷電流源に接続する例である。実施例4に係る比較器131の回路構成例を図11に示す。
実施例4に係る比較器131において、負性容量回路50は、容量素子として、2つの容量素子C13_1,C13_2を備えている。2つの容量素子C13_1,C13_2は、各一端がNチャネルMOSトランジスタNT15のソース電極に接続されている。そして、一方の容量素子C13_1の他端は、入力側負荷電流源I11の電流源トランジスタNT11とカスコードトランジスタNT12との共通接続ノードN11に接続されている。また、他方の容量素子C13_2の他端は、出力側負荷電流源I12の電流源トランジスタNT13とカスコードトランジスタNT14との共通接続ノードN12に接続されている。
上記の回路構成の実施例4に係る比較器131において、負性容量回路50は、信号線32の電圧を、論理を反転させることなく、入力側負荷電流源I11の共通接続ノードN11に容量素子C13_1を介して印加すると共に、出力側負荷電流源I12の共通接続ノードN12に容量素子C13_2を介して印加する。これにより、実施例1の場合と同様の作用、効果を得ることができる。すなわち、負性容量回路50の作用により、信号線32の配線容量を低減できるため、信号線32の電位のセトリング時間を短縮することができ、その結果、フレームレートの向上を図ることができる。
[実施例5]
実施例5は、信号線用の負荷電流源を有する例である。比較器131本体側のセトリングと信号線32のセトリングとを別々に最適化したい場合がある。そこで、比較器131の負荷電流源(入力側負荷電流源I11及び出力側負荷電流源I12)とは別に、信号線32用の負荷電流源を設ける。これにより、比較器131本体側のセトリングと信号線32のセトリングとを別々に最適化することができる。実施例5に係る比較器131の回路構成例を図12に示す。
図12に示すように、実施例5に係る比較器131は、比較器131本体側のセトリングと信号線32のセトリングとを別々に最適化することを目的として、信号線32に直接接続された信号線用の負荷電流源I13を有している。負荷電流源I13の一端は信号線32に直接接続され、負荷電流源I13の他端は低電位側電源、例えばグランドGNDに接続されている。
実施例5に係る比較器131において、入力側負荷電流源I11の電流源トランジスタNT11のゲート電極には、所定のバイアス電圧bias1が印加され、カスコードトランジスタNT12のゲート電極には、所定のバイアス電圧bias2が印加される。出力側負荷電流源I12の電流源トランジスタNT13のゲート電極には、所定のバイアス電圧bias3が印加され、カスコードトランジスタNT14のゲート電極には、所定のバイアス電圧bias4が印加される。バイアス電圧bias1~バイアス電圧bias4は、第1の調整部52から与えられる。第1の調整部52は、バイアス電圧bias1~バイアス電圧bias4の各電圧値を調整することにより、比較器131に流す電流値を設定することができる。
信号線用の負荷電流源I13は、カスコード接続された2つのトランジスタ、即ち、電流源トランジスタNT15及びカスコードトランジスタNT16から成る。電流源トランジスタNT15のゲート電極には、所定のバイアス電圧bias5が印加され、カスコードトランジスタNT16のゲート電極には、所定のバイアス電圧bias6が印加される。電流源トランジスタNT15及びカスコードトランジスタNT16としては、例えば、NチャネルのMOSトランジスタを用いることができる。バイアス電圧bias5及びバイアス電圧bias6は、第2の調整部53から与えられる。第2の調整部53は、バイアス電圧bias5及びバイアス電圧bias6の各電圧値を調整することにより、信号線32に流す電流値を設定することができる。
信号線32には更に、負性容量回路50が接続されている。負性容量回路50は、NチャネルMOSトランジスタNT16、電流源I14、及び、容量素子C14を有する構成となっている。
負性容量回路50において、NチャネルMOSトランジスタNT16は、ゲート電極が信号線32に接続され、ドレイン電極が高電位側電源電圧VDDのノードに接続されている。容量素子C14は、一端がNチャネルMOSトランジスタNT16のソース電極に接続され、他端が負荷電流源I13の電流源トランジスタNT15とカスコードトランジスタNT16との共通接続ノードN13に接続されている。電流源I14は、NチャネルMOSトランジスタNT15のソース電極と低電位側電源(例えば、グランド)との間に接続されている。
上記の回路構成の実施例5に係る比較器131では、第1の調整部52によってバイアス電圧bias1~バイアス電圧bias4の各電圧値を調整し、第2の調整部53によってバイアス電圧bias5及びバイアス電圧bias6の各電圧値を調整することで、比較器131本体側のセトリングと信号線32のセトリングとを別々に最適化することができる。例えば、信号線32のセトリングについて高速化を図りたいが、比較器131としては、帯域を絞って低ノイズ化を図りたい場合がある。このような場合は、第1の調整部52によって比較器131に流す電流値を絞る一方、第2の調整部53によって信号線32に流す電流値を大きくし、ブーストをかけるようにすればよい。
負性容量回路50は、信号線32の電圧を、論理を反転させることなく、比較器131本体側のセトリングと信号線32のセトリングとを別々に最適化することを目的として設けられた信号線用の負荷電流源I13の共通接続ノードN13に容量素子C14を介して印加する。これにより、実施例1の場合と同様の作用、効果を得ることができる。すなわち、負性容量回路50の作用により、信号線32の配線容量を低減できるため、信号線32の電位のセトリング時間を短縮することができ、その結果、フレームレートの向上を図ることができる。
[実施例6]
実施例6は、信号線32の電圧を所定の電圧にクランプするクランプトランジスタを有する例である。実施例6に係る比較器131の回路構成例を図13に示す。
図13に示すように、実施例6に係る比較器131において、負性容量回路50は、図9に示す実施例2に係る比較器131の構成要素に加えて、クランプトランジスタNT17を有する構成となっている。
クランプトランジスタNT17は、高電位側電源電圧VDDと電流源I13との間において、非反転アンプ51を構成するNチャネルMOSトランジスタNT15に対して並列に接続されている。具体的には、クランプトランジスタNT17のドレイン電極は、高電位側電源電圧VDDのノードに接続され、ソース電極は、NチャネルMOSトランジスタNT15のソース電極に接続されている。
クランプトランジスタNT17としては、例えば、NチャネルMOSトランジスタを用いることができる。クランプトランジスタNT17のゲート電極には、所定のクランプVclampが印加される。尚、全ての画素列について、同一のクランプVclampが印加される。
クランプトランジスタNT17の作用について、図14を用いて説明する。ここでは、負性容量回路50の電流源I13が、例えば、NチャネルMOSトランジスタNT18から構成されるものとする。図14は、信号線32の電圧、及び、電流源I13を構成するNチャネルMOSトランジスタNT18のドレイン電圧Vdの電圧変動の一例を示す特性図である。図14において、縦軸は、信号線32の電圧、又は、NチャネルMOSトランジスタNT18のドレイン電圧Vdを表し、横軸は、時間を表している。
図14において、太い実線(a)は、信号線32の電圧の変動を示し、破線(b)は、クランプトランジスタNT17を設けない実施例2に係る比較器131の場合のNチャネルMOSトランジスタNT18のドレイン電圧Vdの変動を示している。また、細い実線(c)は、クランプトランジスタNT17を設けた実施例6に係る比較器131の場合のNチャネルMOSトランジスタNT18のドレイン電圧Vdの変動を示している。
図2に示す画素回路において、時刻t11で、転送信号TRGがアクティブ状態になり、フォトダイオード21で光電変換された電荷がフローティングディフュージョンFDへ転送されると、信号線32の電圧は、時刻t12以降において、電圧DKから電圧OFに低下する。電圧DKは、ダークカレントに応じた電圧であり、電圧OFは、フォトダイオード21への入射光量に応じた電圧である。
入射光量が非常に大きいと、電圧DKから電圧OFへの低下量は大きくなる。この場合であっても、入力側負荷電流源I11は、飽和領域で動作するように設計されている。一方、負性容量回路50の電流源I13を構成するNチャネルMOSトランジスタNT18のドレイン電圧Vdは、信号線32の電圧よりもゲート-ソース間電圧Vgsだけ低い。このため、クランプトランジスタNT17を設けない実施例2に係る比較器131の場合、ドレイン電圧Vdの低下により、電流源I13が飽和領域でなく、線形領域で動作してしまうおそれがある。そして、電流源I13が線形領域で動作すると、電流源I13の電流I2が小さくなる。この電流I2の変動により、入力側負荷電流源I11の電流I1及び電流源I13の電流I2の合計のグランド電流が変動し、ストリーキング特性が悪化してしまう。
そこで、実施例6に係る比較器131の負性容量回路50では、非反転アンプ51を構成するNチャネルMOSトランジスタNT15に対して並列にクランプトランジスタNT17を設けている。この構成の負性容量回路50によれば、信号線32の電圧が、電流源I13を構成するNチャネルMOSトランジスタNT18のドレイン電圧Vdよりも低下すると、電流源I13の電流I2においてクランプトランジスタNT17を流れる電流が支配的となる。信号線32の電圧が低くなるほど、クランプトランジスタNT17を流れる電流の割合が大きくなり、NチャネルMOSトランジスタNT18のドレイン電圧Vdは、ゲート電極に印加されるクランプ電圧Vclampに応じた一定の電圧CLPに固定(クランプ)される。
<変形例>
以上、本開示に係る技術について、好ましい実施形態に基づき説明したが、本開示に係る技術は当該実施形態に限定されるものではない。上記の実施形態において説明した撮像装置の構成、構造は例示であり、適宜、変更することができる。例えば、負性容量回路50の回路構成については、図9に示した回路構成は一例であって、これに限られるものではなく、種々の変形が考えられる。例えば、負性容量回路50の容量素子C13として、アナログ-デジタル変換器130で用いる容量素子を共有する回路構成や、撮像装置が有するサンプルホールド回路で用いる容量素子を共有する回路構成等が考えられる。
<応用例>
以上説明した本実施形態に係る撮像装置は、例えば図15に示すように、可視光、赤外光、紫外光、X線等の光をセンシングする様々な装置に使用することができる。様々な装置の具体例について以下に列挙する。
・デジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供され装置
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
<本開示に係る技術の適用例>
本開示に係る技術は、様々な製品に適用することができる。以下に、より具体的な適用例について説明する。
[本開示の電子機器]
ここでは、デジタルスチルカメラやビデオカメラ等の撮像システムや、携帯電話機などの撮像機能を有する携帯端末装置や、画像読取部に撮像装置を用いる複写機などの電子機器に適用する場合について説明する。
(撮像システムの例)
図16は、本開示の電子機器の一例である撮像システムの構成例を示すブロック図である。
図16に示すように、本例に係る撮像システム100は、レンズ群等を含む撮像光学系101、撮像部102、DSP(Digital Signal Processor)回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108等を有している。そして、DSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108がバスライン109を介して相互に接続された構成となっている。
撮像光学系101は、被写体からの入射光(像光)を取り込んで撮像部102の撮像面上に結像する。撮像部102は、光学系101によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。DSP回路103は、一般的なカメラ信号処理、例えば、ホワイトバランス処理、デモザイク処理、ガンマ補正処理などを行う。
フレームメモリ104は、DSP回路103での信号処理の過程で適宜データの格納に用いられる。表示装置105は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置から成り、撮像部102で撮像された動画または静止画を表示する。記録装置106は、撮像部102で撮像された動画または静止画を、可搬型の半導体メモリや、光ディスク、HDD(Hard Disk Drive)等の記録媒体に記録する。
操作系107は、ユーザによる操作の下に、本撮像装置100が持つ様々な機能について操作指令を発する。電源系108は、DSP回路103、フレームメモリ104、表示装置105、記録装置106、及び、操作系107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
上記の構成の撮像システム100において、撮像部102として、先述した実施形態に係る撮像装置を用いることができる。当該撮像装置によれば、アナログ-デジタル変換器の消費電力を低減できるために、撮像装置の低消費電力化を図ることができる。更に、撮像装置の信号線の配線容量の低減により、信号線によって伝送される画素信号のセトリングを高速にすることができため、フレームレートの向上を図ることができる。37
[移動体への応用例]
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される撮像装置として実現されてもよい。
図17は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図17に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図17の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図18は、撮像部12031の設置位置の例を示す図である。
図18では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図18には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031等に適用され得る。そして、撮像部12031等に本開示に係る技術を適用することにより、アナログ-デジタル変換器の消費電力、ひいては、撮像装置の低消費電力化を図ることができるために、車両制御システムの低消費電力化に寄与できる。更に、撮像装置の信号線の配線容量の低減により、信号線によって伝送される画素信号のセトリングを高速にすることができため、フレームレートの向上を図ることができる。
<本開示がとることができる構成>
尚、本開示は、以下のような構成をとることもできる。
≪A.撮像装置≫
[A-01]負荷電流源、
画素から読み出されたアナログの画素信号を伝送する信号線と負荷電流源との間に設けられ、アナログの画素信号と所定の参照信号とを比較する比較器、及び、
信号線に接続された負性容量回路、
を備え、
負荷電流源は、カスコード接続された2つのトランジスタを有し、
負性容量回路は、信号線の電圧を、論理を反転させることなく、負荷電流源の2つのトランジスタの共通接続ノードに容量素子を介して印加する、
撮像装置。
[A-02]負荷電流源は、入力側負荷電流源及び出力側負荷電流源から成り、
比較器は、
信号線と入力側負荷電流源との間に接続され、所定の参照信号をゲート入力とする入力トランジスタ、及び、
信号線と出力側負荷電流源との間に接続され、入力トランジスタの出力をゲート入力とする出力トランジスタ、
を有する、
上記[A-01]に記載の撮像装置。
[A-03]負性容量回路は、信号線の電圧を、論理を反転させることなく、入力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
上記[A-02]に記載の撮像装置。
[A-04]負性容量回路は、信号線の電圧を、論理を反転させることなく、出力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
上記[A-02]に記載の撮像装置。
[A-05]負性容量回路は、信号線の電圧を、論理を反転させることなく、入力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノード、及び、出力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
上記[A-02]に記載の撮像装置。
[A-06]信号線には、カスコード接続された2つのトランジスタを有する信号線用の負荷電流源が接続されており、
負性容量回路は、信号線の電圧を、論理を反転させることなく、信号線用の負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
上記[A-02]に記載の撮像装置。
[A-07]入力側負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧、及び、出力側負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧を調整する第1の調整部、並びに、
信号線用の負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧を調整する第2の調整部を有する、
上記[A-06]に記載の撮像装置。
[A-08]負性容量回路は、信号線に入力端が接続された非反転アンプを有し、
非反転アンプの他端は、一端が負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに接続された容量素子の他端に接続されている、
上記[A-01]乃至上記[A-07]のいずれかに記載の撮像装置。
[A-09]非反転アンプは、高電位側電源と容量素子の他端との間に接続され、ゲート電極が信号線に接続されたトランジスタ、及び、容量素子の他端と低電位側電源との間に接続された電流源を有する、
上記[A-08]に記載の撮像装置。
[A-10]負性容量回路は、非反転アンプを構成するトランジスタに対して並列に接続されたクランプトランジスタを有する、
上記[A-09]に記載の撮像装置。
≪B.電子機器≫
[B-01]負荷電流源、
画素から読み出されたアナログの画素信号を伝送する信号線と負荷電流源との間に設けられ、アナログの画素信号と所定の参照信号とを比較する比較器、及び、
信号線に接続された負性容量回路、
を備え、
負荷電流源は、カスコード接続された2つのトランジスタを有し、
負性容量回路は、信号線の電圧を、論理を反転させることなく、負荷電流源の2つのトランジスタの共通接続ノードに容量素子を介して印加する、
撮像装置を有する電子機器。
[B-02]負荷電流源は、入力側負荷電流源及び出力側負荷電流源から成り、
比較器は、
信号線と入力側負荷電流源との間に接続され、所定の参照信号をゲート入力とする入力トランジスタ、及び、
信号線と出力側負荷電流源との間に接続され、入力トランジスタの出力をゲート入力とする出力トランジスタ、
を有する、
上記[B-01]に記載の電子機器。
[B-03]負性容量回路は、信号線の電圧を、論理を反転させることなく、入力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
上記[B-02]に記載の電子機器。
[B-04]負性容量回路は、信号線の電圧を、論理を反転させることなく、出力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
上記[B-02]に記載の電子機器。
[B-05]負性容量回路は、信号線の電圧を、論理を反転させることなく、入力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノード、及び、出力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
上記[B-02]に記載の電子機器。
[B-06]信号線には、カスコード接続された2つのトランジスタを有する信号線用の負荷電流源が接続されており、
負性容量回路は、信号線の電圧を、論理を反転させることなく、信号線用の負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
上記[B-02]に記載の電子機器。
[B-07]入力側負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧、及び、出力側負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧を調整する第1の調整部、並びに、
信号線用の負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧を調整する第2の調整部を有する、
上記[B-06]に記載の電子機器。
[B-08]負性容量回路は、信号線に入力端が接続された非反転アンプを有し、
非反転アンプの他端は、一端が負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに接続された容量素子の他端に接続されている、
上記[B-01]乃至上記[B-07]のいずれかに記載の電子機器。
[B-09]非反転アンプは、高電位側電源と容量素子の他端との間に接続され、ゲート電極が信号線に接続されたトランジスタ、及び、容量素子の他端と低電位側電源との間に接続された電流源を有する、
上記[B-08]に記載の電子機器。
[B-10]負性容量回路は、非反転アンプを構成するトランジスタに対して並列に接続されたクランプトランジスタを有する、
上記[B-09]に記載の電子機器。
1・・・CMOSイメージセンサ、11・・・画素アレイ部、12・・・行選択部、13・・・アナログ-デジタル変換部、14・・・ロジック回路部(信号処理部)、15・・・タイミング制御部、16・・・参照信号生成部、20・・・画素、21・・・フォトダイオード、22・・・転送トランジスタ、23・・・リセットトランジスタ、24・・・増幅トランジスタ、25・・・選択トランジスタ、31(311~31m)・・・画素制御線、32(321~32n)・・・信号線、50・・・負性容量回路、51・・・非反転アンプ、52・・・第1の調整部、53・・・第2の調整部、130・・・アナログ-デジタル変換器、131・・・比較器、132・・・カウンタ、C11,C12,C13・・・容量素子、I11・・・・・・入力側負荷電流源、I12・・・出力側負荷電流源、PT11・・・入力トランジスタ、PT12・・・出力トランジスタ

Claims (11)

  1. 負荷電流源、
    画素から読み出されたアナログの画素信号を伝送する信号線と負荷電流源との間に設けられ、アナログの画素信号と所定の参照信号とを比較する比較器、及び、
    信号線に接続された負性容量回路、
    を備え、
    負荷電流源は、カスコード接続された2つのトランジスタを有し、
    負性容量回路は、信号線の電圧を、論理を反転させることなく、負荷電流源の2つのトランジスタの共通接続ノードに容量素子を介して印加する、
    撮像装置。
  2. 負荷電流源は、入力側負荷電流源及び出力側負荷電流源から成り、
    比較器は、
    信号線と入力側負荷電流源との間に接続され、所定の参照信号をゲート入力とする入力トランジスタ、及び、
    信号線と出力側負荷電流源との間に接続され、入力トランジスタの出力をゲート入力とする出力トランジスタ、
    を有する、
    請求項1に記載の撮像装置。
  3. 負性容量回路は、信号線の電圧を、論理を反転させることなく、入力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
    請求項2に記載の撮像装置。
  4. 負性容量回路は、信号線の電圧を、論理を反転させることなく、出力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
    請求項2に記載の撮像装置。
  5. 負性容量回路は、信号線の電圧を、論理を反転させることなく、入力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノード、及び、出力側負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
    請求項2に記載の撮像装置。
  6. 信号線には、カスコード接続された2つのトランジスタを有する信号線用の負荷電流源が接続されており、
    負性容量回路は、信号線の電圧を、論理を反転させることなく、信号線用の負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに容量素子を介して印加する、
    請求項2に記載の撮像装置。
  7. 入力側負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧、及び、出力側負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧を調整する第1の調整部、並びに、
    信号線用の負荷電流源のカスコード接続された2つのトランジスタの各バイアス電圧を調整する第2の調整部を有する、
    請求項6に記載の撮像装置。
  8. 負性容量回路は、信号線に入力端が接続された非反転アンプを有し、
    非反転アンプの他端は、一端が負荷電流源のカスコード接続された2つのトランジスタの共通接続ノードに接続された容量素子の他端に接続されている、
    請求項1に記載の撮像装置。
  9. 非反転アンプは、高電位側電源と容量素子の他端との間に接続され、ゲート電極が信号線に接続されたトランジスタ、及び、容量素子の他端と低電位側電源との間に接続された電流源を有する、
    請求項8に記載の撮像装置。
  10. 負性容量回路は、非反転アンプを構成するトランジスタに対して並列に接続されたクランプトランジスタを有する、
    請求項9に記載の撮像装置。
  11. 負荷電流源、
    画素から読み出されたアナログの画素信号を伝送する信号線と負荷電流源との間に設けられ、アナログの画素信号と所定の参照信号とを比較する比較器、及び、
    信号線に接続された負性容量回路、
    を備え、
    負荷電流源は、カスコード接続された2つのトランジスタを有し、
    負性容量回路は、信号線の電圧を、論理を反転させることなく、負荷電流源の2つのトランジスタの共通接続ノードに容量素子を介して印加する、
    撮像装置を有する電子機器。
JP2020120361A 2020-07-14 2020-07-14 撮像装置及び電子機器 Pending JP2022017676A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020120361A JP2022017676A (ja) 2020-07-14 2020-07-14 撮像装置及び電子機器
US18/004,478 US20230326940A1 (en) 2020-07-14 2021-07-06 Imaging device and electronic apparatus
PCT/JP2021/025475 WO2022014412A1 (ja) 2020-07-14 2021-07-06 撮像装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020120361A JP2022017676A (ja) 2020-07-14 2020-07-14 撮像装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2022017676A true JP2022017676A (ja) 2022-01-26

Family

ID=79555362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020120361A Pending JP2022017676A (ja) 2020-07-14 2020-07-14 撮像装置及び電子機器

Country Status (3)

Country Link
US (1) US20230326940A1 (ja)
JP (1) JP2022017676A (ja)
WO (1) WO2022014412A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042862A1 (ja) * 2022-08-25 2024-02-29 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651647B2 (ja) * 1998-01-16 2005-05-25 株式会社東芝 固体撮像装置
JP2014120860A (ja) * 2012-12-14 2014-06-30 Sony Corp Da変換器、固体撮像素子およびその駆動方法、並びに電子機器
US9967489B2 (en) * 2016-10-06 2018-05-08 Semiconductor Components Industries, Llc Image pixels with in-column comparators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042862A1 (ja) * 2022-08-25 2024-02-29 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Also Published As

Publication number Publication date
US20230326940A1 (en) 2023-10-12
WO2022014412A1 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
KR102520518B1 (ko) 촬상 소자, 촬상 소자의 제어 방법, 및 전자기기
US11418749B2 (en) Solid-state image pick-up device and electronic device
JP7331180B2 (ja) 撮像素子及び電子機器
WO2022030207A1 (ja) 撮像装置及び電子機器
US11606522B2 (en) Comparator and imaging device
WO2022009530A1 (ja) 撮像装置及び電子機器
US11381764B2 (en) Sensor element and electronic device
WO2022118564A1 (en) Image capturing device and electronic apparatus
WO2019193801A1 (ja) 固体撮像素子、電子機器および固体撮像素子の制御方法
WO2022014412A1 (ja) 撮像装置及び電子機器
JP2021170691A (ja) 撮像素子、制御方法、および電子機器
WO2022118630A1 (ja) 撮像装置及び電子機器
US20230254607A1 (en) Imaging apparatus and electronic device
TW202147826A (zh) 固態攝像元件
WO2022091755A1 (ja) 撮像装置及び電子機器
WO2023218774A1 (ja) 撮像素子および電子機器
WO2022004125A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
WO2021261367A1 (ja) 撮像装置及び電子機器
WO2023276199A1 (ja) 固体撮像素子、電子機器、および、固体撮像素子の制御方法
WO2023166848A1 (ja) 撮像装置、画像処理装置および撮像装置の制御方法
WO2021157263A1 (ja) 撮像装置及び電子機器
JP2023110120A (ja) 撮像装置及び電子機器
CN116195268A (zh) 固态摄像装置