JP2022014827A - 給水装置 - Google Patents
給水装置 Download PDFInfo
- Publication number
- JP2022014827A JP2022014827A JP2020117410A JP2020117410A JP2022014827A JP 2022014827 A JP2022014827 A JP 2022014827A JP 2020117410 A JP2020117410 A JP 2020117410A JP 2020117410 A JP2020117410 A JP 2020117410A JP 2022014827 A JP2022014827 A JP 2022014827A
- Authority
- JP
- Japan
- Prior art keywords
- value
- flow rate
- pump
- detector
- inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Non-Positive-Displacement Pumps (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
【課題】異常を検出することが可能な給水装置を提供すること。【解決手段】給水装置10は、軸受37の振動または音圧を検出する検出器140と、異常を判断する為の閾値を記憶する記憶部150と、ポンプ32が設置現場に設置された後に、インバータ124の出力周波数が最高周波数であり、かつ、流量が定格流量範囲内にある初期の駆動時に、検出器140の検出値をフーリエ変換して所定周波数帯域の振幅スペクトルのピーク値を初期値として記憶部150に記憶し、初期の駆動時以降で、インバータ124の出力周波数が最高周波数であり、かつ、所定の揚程範囲内の最高揚程での定格流量以上で運転している状態で検出器140の検出値をフーリエ変換して所定周波数帯域の振動スペクトルのピーク値を求めてこのピーク値から初期値を減算した値が閾値以上であると、ポンプ装置30に異常が生じていると判定する制御部160と、を備える。【選択図】 図1
Description
本発明は、ポンプ装置を備える給水装置に関する。
従前から、ビル等の給水先に給水する給水装置として、起動圧力を検出するとポンプを起動し、停止流量を検出するとポンプを停止する構成が知られている。また、ポンプの吸い込み口より下方に配置される受水槽から中水を吸い込んで給水する吸い上げ仕様の給水装置では、流量の増加に応じて増加する、フート弁及び受水槽からポンプまでの配管抵抗により、大流量時に給水全揚程が増加し、ポンプの内にキャビテーションが生じる場合がある。
キャビテーションを検出する技術として、水力機械のケーシングに加速度センサを設け、さらに、水力機械を駆動する電動機の軸受の近傍、または、水力機械により発電する発電機の軸受の近傍に加速度センサを設け、これら加速度センサの検出結果に基づいてキャビテーションを検出する技術が知られている(例えば、特許文献1参照)。
給水装置では、キャビテーションを含むポンプ装置の異常を検出できることが求められている。
そこで本発明は、ポンプ装置の異常を検出できる給水装置を提供することを目的とする。
本発明の一実施形態に係る給水装置は、ポンプ、並びに、前記ポンプを駆動する軸及び前記軸を回転可能に支持する軸受を備えるモータを具備し、所定の揚程範囲内で吐出し圧力一定制御もしくは推定末端圧一定制御により運転可能なポンプ装置と、流量に比例した信号を出力する流量検出器と、前記モータに電力を供給するインバータと、前記軸受の振動または音圧を検出する検出器と、異常を判断する為の閾値を記憶する記憶部と、前記ポンプが設置現場に設置された後に、前記インバータの出力周波数が最高周波数であり、かつ、前記流量が定格流量範囲内にある初期の駆動時に、前記検出器の検出値をフーリエ変換して所定周波数帯域の振幅スペクトルのピーク値を初期値として前記記憶部に記憶し、前記初期の駆動時以降で、前記インバータの出力周波数が最高周波数であり、かつ、前記所定の揚程範囲内の最高揚程及び定格流量以上で運転している状態で前記検出器の検出値をフーリエ変換して前記所定周波数帯域の振動スペクトルのピーク値を求めてこのピーク値から前記初期値を引いた値が前記閾値以上であると、前記ポンプ装置に異常が生じていると判定する制御部と、を備える。
本発明によれば、ポンプ装置の異常を検出できる給水装置を提供できる。
以下、本発明の第1の実施形態に係る給水装置10を、図1乃至図8を用いて説明する。
図1は、給水装置10の構成を示す正面図である。図2は、給水装置10の構成を示す側面図である。図3は、給水装置10の構成を示すブロック図である。図4は、給水装置10の要部を示す断面図である。図5は、給水装置10に用いられる検出器110の構成を示す断面図である。図6は、同給水装置10の揚水性能を示す説明図である。図7は、給水装置10に異常が生じていない状態での検出器110の検出結果をフーリエ変換して求められる振動スペクトルを示す説明図である。図8は、給水装置10に異常が生じている状態での検出器110の検出結果をフーリエ変換して求められる振動スペクトル示す説明図である。図7及び図8では、横軸は周波数(Hz)を示し、縦軸は振動スペクトルの強さ(dB)を示す。
図1及び図2に示すように、給水装置10は、ベース20と、ベース20上に配置された複数のポンプ装置30と、複数のポンプ装置30の二次側にそれぞれ接続される複数の連結管40と、各連結管40に設けられる逆止弁50と、各連結管40に設けられる開閉弁60と、複数の連結管40を連結する合流管70と、合流管70に設けられる蓄圧装置90と、各連結管40に設けられる流量検出器100と、合流管70内の圧力を検出する圧力検出器110と、各ポンプ装置30の動作を制御する制御盤120と、を備える。図3に示すように、給水装置10は、また、給水装置10の異常を検出する異常検出装置130を備える。
給水装置10は、ポンプ装置30により水源の水を圧送し、連結管40及び合流管70を介して給水先に給水する。本実施形態では、水源は、例えば、ポンプ装置30のポンプ32の吸い込み口よりも下方に配置される受水槽である。
ポンプ装置30は、図1、図2及び図4に示すように、モータ31と、ポンプ32と、モータ31及びポンプ32を接続する主軸と、軸封装置34と、を備える。ポンプ装置30は、一次側が、受水槽等の水源に接続される。ポンプ装置30は、例えば、主軸が重力方向に沿って延設され、モータ31がポンプ32の上部に配置された、所謂立型多段タービンポンプである。ポンプ装置30は、例えば3台設けられる。3台のポンプ装置30は、ベース20上に、例えば一方向に並んで配置される。
モータ31は、制御盤120の後述する制御基板122に収納されたインバータ124に電気的に接続される。モータ31は、例えば、モータフレーム35と、固定子と、回転子と、回転軸36と、ポンプ32側の軸受37と、ポンプ32とは反対側の軸受と、を備える。
モータフレーム35は、例えば、内部に固定子及び回転子を収納するフレーム本体38と、フレーム本体38のポンプ32側に固定され、ポンプ32側の軸受37が固定され、ポンプ32の上部に固定されるモータブラケット39と、を備える。
フレーム本体38は、ポンプ32側が開口を有する筒状に構成される。
図4に示すように、モータブラケット39は、筒状に構成されるブラケット本体39aと、ブラケット本体39aの一端に設けられる底壁部39bと、を有する。
図4に示すように、モータブラケット39は、筒状に構成されるブラケット本体39aと、ブラケット本体39aの一端に設けられる底壁部39bと、を有する。
ブラケット本体39aは、例えば、円筒状に構成される。ブラケット本体39aの内周面は、例えば嵌め合いにより軸受37を固定可能に形成される。ブラケット本体39aは、例えばフランジ39cを有する。フランジ39cは、図1及び図2に示すように、例えばボルト等の固定部材39dにより、フレーム本体38に固定される。底壁部39bは、回転軸36の一部を配置する孔が形成される。
固定子及び回転子は、フレーム本体38内に収容される。
回転軸36は、回転子に固定される。回転軸36は、主軸に連結される。
固定子及び回転子は、フレーム本体38内に収容される。
回転軸36は、回転子に固定される。回転軸36は、主軸に連結される。
図4に示すように、軸受37は、転がり軸受である。軸受37は、外輪37aと、内輪37bと、玉等の複数の転動体37cと、を備える。
外輪37aは、例えば嵌め合いによりモータブラケット39の内周面に固定される。また、外輪37aは、例えば、押え板37dにより、モータブラケット39に固定される。具体的には、外輪37aは、押え板37dが回転軸36の軸方向に当接することで、回転軸36の軸方向に固定される。押え板37dは、ボルト等の固定部材37eにより、モータブラケット39に固定される。外輪37aの内周面には、転動体37cが移動する軌道面が構成される。
内輪37bは、内側に回転軸36を挿通し、回転軸36に固定される。内輪37bの外周面には、転動体37cが移動する軌道面が構成される。複数の転動体37cは、外輪37aの軌道面及び内輪37bの軌道面間に設置され、外輪37a及び内輪37bに保持される。
ポンプ32は、図1及び図2に示すように、例えば、下端側に吸込口32a及び吐出口32bを有する。ポンプ32は、吸込口32aが受水槽に流体的に接続され、吐出口32bが連結管40に接続される。
ポンプ32は、図1、図2、及び図4に示すように、例えば、吸込口32a及び吐出口32bを構成するケーシング32cと、ケーシング32c上に複数配置される中間ケーシングと、中間ケーシング上に配置されるケーシングカバー32dと、複数の中間ケーシング内に配置され、主軸に固定される複数のインペラと、ケーシングカバー32dに設けられ、複数の中間ケーシングを覆う管ケーシング32eと、を備える。
ケーシングカバー32dは、ポンプ32の上面を覆うとともに、例えば、ボルト等の固定部材32fを介してモータ31のモータブラケット39が固定される。具体的には、ケーシングカバー32dは、その上部に、モータブラケット39が載置される。固定部材32fは、例えば、ケーシングカバー32dの上部とモータ31の下部を固定する。
管ケーシング32eは、ケーシング32c及びケーシングカバー32d間に設けられ、内周面と複数のポンプケーシングの外周面との間に、ケーシングカバー32dからケーシング32cの吐出口32bへの流路を構成する。
主軸は、例えば、軸継手等を介してモータ31の回転軸36に連結される。軸封装置34は、ケーシングカバー32d及び主軸の間を軸封する。軸封装置34は、例えば、メカニカルシールである。
図2に示すように、連結管40は、一端が各ポンプ32の吐出口32bに、他端が合流管70に、それぞれ接続される。連結管40は、例えば、少なくとも一部が重力方向に沿って延設される。
逆止弁50は、ポンプ32の二次側であって、且つ、合流管70の一次側に、例えば、各連結管40にそれぞれ設けられる。逆止弁50は、連結管40内でポンプ32へ向かう水の流れを防止する。
開閉弁60は、例えば、連結管40と合流管70との接続部に隣接する位置に設けられる。開閉弁60は、連結管40から合流管70に連続する流路を開放または閉止する。
図1及び図2に示すように、合流管70は、複数の連結管40の他端を連結する。また、合流管70は、給水先に連通する配管が接続される。合流管70は、各連結管40を通過した水を合流させ、接続された配管に連通する二次側への流路を形成する。
図1に示すように、蓄圧装置90は、接続管80に例えば複数設けられる。蓄圧装置90は、接続管80を介して合流管70に流体的に連続する。
図1及び図2に示すように、合流管70は、複数の連結管40の他端を連結する。また、合流管70は、給水先に連通する配管が接続される。合流管70は、各連結管40を通過した水を合流させ、接続された配管に連通する二次側への流路を形成する。
図1に示すように、蓄圧装置90は、接続管80に例えば複数設けられる。蓄圧装置90は、接続管80を介して合流管70に流体的に連続する。
流量検出器100は、各ポンプ32の二次側の流量を検出可能に、例えば各連結管40にそれぞれ設けられる。流量検出器100は、流量に比例した応じた信号を出力可能に構成される。流量検出器100は、例えば羽根車式の流量検出器である。流量検出器100は、信号線等を介して制御基板122に電気的に接続される。流量検出器100は、信号を制御基板122に送信する。
圧力検出器110は、合流管70内の圧力を検出可能に構成される。圧力検出器110は、信号線等を介して制御基板122に電気的に接続される。圧力検出器110は、検出した圧力を信号に変換し、信号を制御基板122に送信する。
制御盤120は、ボックス121と、ボックス121内に収容される記憶部123と、ボックス121内に収容される制御部の一例である制御基板122と、インバータ124と、を備える。
記憶部123は、停止流量、駆動圧力、及びモータ31を駆動する為のプログラムが記憶される。
制御基板122は、流量検出器100と、圧力検出器110とが、電気的に接続される。制御基板122は、流量検出器100及び圧力検出器110の検出結果に基づいて、ポンプ装置30を制御する。制御基板122は、例えば、圧力検出器110により駆動圧力を検出すると、記憶部123に記憶されたプログラムに従ってインバータ124を制御してモータ31を駆動し、流量検出器100により停止流量を検出すると、モータ31の駆動を停止する。
制御基板122は、所定の揚程範囲内で、吐出し圧力一定制御もしくは推定末端圧一定制御により、複数のポンプ装置30を制御する。制御基板122は、本実施形態では、一例として、図6に示すように、高圧設定側、及び、低圧設定側の間で、推定末端圧一定制御により、複数のポンプ装置30を制御する。
ここで、高圧設定側は、定格圧力120mで、定格流量0.9m3/minとする推定末端圧力一定制御である。低圧設定側は、定格圧力90mで、定格流量1.5m3/minとなる推定末端圧力一定制御である。
制御基板122は、例えば、複数のポンプ装置30をロータリー運転制御する。ロータリー運転制御は、複数のポンプ装置30が1台ずつ順番に駆動される制御である。
また、制御基板122は、異常検出装置130の後述する制御部160に、流量検出器100の結果、及び、インバータ124の出力周波数を送信する。また、制御基板122は、運転しているポンプ装置30を示す情報を送信する。運転しているポンプ装置30を示す情報について説明する。複数のポンプ装置30のそれぞれは、例えば、番号が付されている。本実施形態では、一例として3台のポンプ装置30が用いられており、1つのポンプ装置30は一号機、他の1つのポンプ装置30は二号機、残りの1つのポンプ装置30は三号機に設定される。本実施形態では、運転しているポンプ装置30を示す情報は、運転しているポンプ装置30に設定された号機である。
インバータ124は、例えば制御基板122に設けられる。インバータ124は、例えば、ポンプ装置30と同数が設けられる。インバータ124は、ポンプ装置30のモータ31に電気的に接続される。
図3に示すように、異常検出装置130は、各モータ31のポンプ32側の軸受37の振動、もしくは軸受37の音圧を検出可能に構成される検出器140と、ポンプ装置30の異常の判断に用いるための閾値等を記憶する記憶部150と、通信部155と、検出器140の検出結果に基づいてポンプ装置30の異常の判定を行う制御部160と、を備える。
軸受37は、異常が生じると、正常な状態に比較して大きく振動する。軸受37の異常は、例えば、外輪37aの軌道面、内輪37bの軌道面、及び転動体37cの少なくとも1つに傷が生じることや、複数の転動体37cの間に塵埃等の異物が浸入することにより発生する。
軸受37の振動は、軸受37が固定されるモータブラケット39に伝わり、モータブラケット39を振動させる。また、軸受37は、ポンプ32内にキャビテーションが発生すると、キャビテーションが生じていない状態に比較して大きく振動する。
なお、軸受37の振動は、直接的にまたは間接的に検出可能である。軸受37の振動を直接的に検出するとは、軸受37の例えば外輪37aの振動を検出することである。軸受37の振動を間接的に検出するとは、軸受37の振動が伝播して振動する部材例えばモータブラケット39の振動を検出することである。
軸受37の音圧を検出することは、軸受37の振動により生じる空気の振動を直接的または間接的に検出することである。軸受37の振動により生じる空気の振動を間接的に検出するとは、軸受37の振動により生じる他の部材の振動により生じる空気の振動を検出することである。
本実施形態では、検出器140は、軸受37の振動が伝播するモータブラケット39の振動による空気の振動を検出することで、軸受37の振動による空気の振動を間接的に検出する構成を、一例として用いる。
図4及び図5に示すように、検出器140は、マイクロフォン141と、基板143と、マイクロフォン141及び基板143を収容するケース142と、ケース142に設けられる密閉カバー148と、を備える。検出器140は、検出値を例えばデジタル信号で出力する。
マイクロフォン141は、空気の振動を検出可能に構成される。本実施形態では、マイクロフォン141は、一例としてチップとして構成されており、基板143に実装される。マイクロフォン141は、外郭を構成するケース141aの内部に振動板141b等を有している。このケース141aには振動板141bに空気の振動を伝播する為の孔141cが形成される。孔141cは、所謂検出孔である。マイクロフォン141は、この孔141cが基板143側に向く姿勢で、基板143に実装される。マイクロフォン141は、振動板141bの振動により、空気の振動を検出する。マイクロフォン141は、検出結果に応じた信号を出力する。
基板143は、例えば、電源ノイズ対策の為のコンデンサや、マイクロフォン141の検出結果を増幅する増幅回路が設けられる。基板143は、信号線143bが接続される。また、基板143は、マイクロフォン141の検出結果に応じた信号を、信号線143bを介して出力する。
また、基板143のマイクロフォン141と対向する部位には、孔143aが形成される。孔143aは、基板143を貫通する。孔143aは、マイクロフォン141の孔141cを介して振動板141bと対向する。マイクロフォン141の孔141c及び振動板141bは、例えば、孔143aの軸線上に配置される。孔143aは、例えば、基板143のマイクロフォン141が実装される主面と反対側の主面からマイクロフォン141が実施される主面に向かって縮径する孔に形成される。孔143aのマイクロフォン141側の一端の内径は、例えば、マイクロフォン141のケースの、振動板141bに対向する孔141cと同径または略同径に形成される。
ケース142は、例えば取付金具144により、モータブラケット39の外周面に接触する位置に固定される。
ケース142は、内部に、マイクロフォン141及び基板143を収容する収容スペースSを有する。ケース142は、例えば、ケース本体146と、ケースカバー147と、を備える。
ケース本体146は、ケースカバー147との間に収容スペースSを構成する。ケース本体146は、例えば一面が開口する矩形の箱状に形成される。ケース本体146の内面には、例えば、リブ146aが形成される。リブ146aは、ケースカバー147との間に基板143を狭持することで、基板143をケース142に固定する。
ケースカバー147は、ケース本体146の開口端面に設けられる。ケースカバー147は、ケース本体146との間を密閉する。ケースカバー147は、例えば、ねじ等の固定部材147aにより、ケースカバー147に固定される。ケースカバー147には、密閉カバー148の一部を配置する孔147bが形成される。孔147bは、ケースカバー147を貫通しており、収容スペースSに連通する。また、孔147bは、その軸方向で、基板143の孔143aと並ぶ。
密閉カバー148は、ケースカバー147に設けられる。密閉カバー148は、モータブラケット39の外周面等の接触対象に密着可能な弾性体から形成される。密閉カバー148は、例えばゴムから形成される。
密閉カバー148は、例えば、一部がケースカバー147の孔147bに配置される筒状の本体148aと、本体148aの孔147bからケース142外に出る部分に設けられるフランジ部148bと、を有する。
本体148aは、孔147bの内面との間を密閉する。本体148aの基板143側の端面は、基板143の、マイクロフォン141が実装される一方の主面に対して他方の主面に当接する。本体148aは、例えば、円筒状に構成される。本体148aの内径は、基板143側に向かって漸次縮径する。
本体148aは、基板143の孔143aと同軸に配置される。本体148aの基板143側の一端の内径は、孔143aの密閉カバー148側の内径と同径または略同径に形成される。このように、本体148aの孔148d、及び基板143の孔143aは、互いに連続する。
フランジ部148bは、例えば環状に構成される。フランジ部148bは、ケースカバー147との間を密閉する。
本体148a及びフランジ部148bのモータブラケット39側の端面148cは、軸受37または軸受37の振動を受けて振動する部材に密着される面に構成される。本実施形態では、端面148cは、一例として、モータブラケット39の外周面に密着する面に構成される。端面148cは、例えば、モータブラケット39の外周面に押し付けられることでモータブラケット39の外周面に倣って変形してモータブラケット39の外周面に密着する。端面148cは、例えば、モータブラケット39の外周面など、接触対象にならう曲面に形成されてもよい。
このように、本実施形態では、孔148d及び孔143aにより、密閉カバー148のモータブラケット39の外周面に密着する端面148cから、ケース142内まで延びる孔が構成される。
このように構成される検出器140は、密閉カバー148の端面148cがモータブラケット39の外周面に密着する位置に設置された状態で、モータブラケット39の外周面からマイクロフォン141の振動板141bまでの距離が、マイクロフォン141の最高応答周波数の半波長以下となる長さとなるよう、構成される。
このように構成される検出器140は、例えば、モータブラケット39に、取付金具144により固定される。モータブラケット39は、検出器140が固定されるポンプ32側の軸受37側の一例である。
取付金具144は、図5に示すように、モータ31側に固定されることで、検出器140を、孔148d,143aの軸方向が回転軸36に直交する方向に平行となる姿勢で、密閉カバー148の端面148cをモータブラケット39の外周面に密着させる。
取付金具144は、図4に示すように、例えば、ポンプ32のケーシングカバー32dをモータ31に固定する固定部材32fにより、ケーシングカバー32dに固定される。ケーシングカバー32dは、モータ31側の一例である。モータ31側は、モータ31に限定されず、モータ31の周囲の構成も含む。
取付金具144は、例えば、側面視でL字形状に構成される。具体的には、取付金具144は、第1部分144aと、第2部分144bと、を有する。
第1部分144aは、固定部材32fが挿通される孔144cが形成される。第2部分144bは、検出器140が固定される。検出器140は、図5に示すように、例えば、ねじ等の固定部材144dにより、第2部分144bに固定される。
記憶部150は、例えば、制御部160と同じ基板に搭載され、ボックス121内に収容される。制御部160と同じ基板とは、例えば、制御部160が搭載される基板である。
記憶部150は、ポンプ装置30の異常の判断に用いられる閾値Tを記憶する。閾値Tは、一例として、キャビテーションの判断に用いられる閾値である。記憶部150は、閾値に加えて、ポンプ装置30の異常の有無の判定に用いられる値であり、検出器140の検出値をフーリエ変換して得られた振幅スペクトルに基づく初期値Fを記憶可能に構成される。また、記憶部150は、軸受37の異常を判断する為の情報や値を記憶可能に構成される。
初期値Fとは、給水装置10が設置現場に設置された後の、インバータ124の出力周波数が最高周波数であり、かつポンプ装置30の吐出流量が定格流量範囲内である初期の駆動時での検出器140の検出値をフーリエ変換してえられる所定周波数帯域の振幅スペクトルに基づいて決定される。本実施形態では、所定周波数帯域の振動スペクトルの最大ピーク値を、初期値とする。
ここで言う初期の駆動とは、例えば、給水装置10が設置現場に設置された後であって、インバータ124の出力周波数が最高周波数で、かつ、ポンプ装置30の吐出流量が定格流量範囲内となる初回の駆動、または、当該初回を含む、インバータ124の出力周波数が最高周波数で、かつ、ポンプ装置30の吐出流量が定格流量範囲内となる複数回の駆動である。ここで言う、所定の複数回は、例えば3~10回であり、任意に決定できる。
例えば、初期の駆動が初回の駆動に設定される場合は、インバータ124の出力周波数が最高周波数で、かつ、ポンプ装置30の吐出流量が定格流量範囲内となる最初の駆動時の検出器140の検出値に基づく所定の周波数帯域の振幅スペクトルの最大ピーク値が初期値Fとして記憶部150に記憶される。
初期の駆動として複数回の駆動が設定されている場合は、初期値Fは、例えば、これら複数回のそれぞれで求められる振幅スペクトルの最大ピーク値の平均値である。初期の駆動として複数回の駆動が設定されている場合の、初期値Fについて、一例を説明する。
初期の駆動として、3回の駆動が設定されている場合では、まず、インバータ124の出力周波数が最高周波数で、かつ、ポンプ装置30の吐出流量が定格流量範囲内となる最初の駆動時の検出器140の検出値に基づく所定の周波数帯域の振幅スペクトルの最大ピーク値が求められる。そして、インバータ124の出力周波数が最高周波数で、かつ、ポンプ装置30の吐出流量が定格流量範囲内となる2回目の駆動時の検出器140の検出値に基づく所定の周波数帯域の振幅スペクトルの最大ピーク値が求められる。そして、インバータ124の出力周波数が最高周波数で、かつ、ポンプ装置30の吐出流量が定格流量範囲内となる3回目の駆動時の検出器140の検出値に基づく所定の周波数帯域の振幅スペクトルの最大ピーク値が求められる。
そして、初回の駆動時に求められた最大ピーク値、2回目の駆動時に求められた最大ピーク値、及び、3回目の駆動時に求められた最大ピーク値の平均値が、初期値Fとして記憶部150に記憶される。
所定周波数帯域は、異常の検出に適した周波数帯域である。本実施形態では、所定周波数帯域は、ポンプ装置30の異常の一例として、ポンプ装置30のポンプ32内にキャビテーションが発生したことを検出するのに適した周波数帯域である。本実施形態では、一例として、6000(Hz)を含む6000(Hz)近傍の周波数帯域である。
図7乃至図8に示すように、ポンプ32内にキャビテーションが発生すると、検出器140の検出値をフーリエ変換して求められる振動スペクトルは、正常な状態に比較して、6000(Hz)で大きくなる。
なお、このように構成される記憶部150は、例えば、ポンプ装置30の制御盤120が備える記憶部と共通の構成であってもよい。
通信部155は、無線または有線により、ポンプ装置30の制御盤120と通信可能に構成される。また、通信部155は、外部装置156と通信可能に構成される。ここで、外部装置156は、ポンプ装置30以外の装置である。外部装置156は、例えば、給水装置10を管理する給水装置管理サーバである。
制御部160は、例えばボックス121内に収容される。制御部160は、信号線143bを介して、マイクロフォン141の検出値が送信される。また、制御部160は、制御基板122から通信部155を介して、流量、駆動しているポンプ装置30のインバータ124の出力周波数、及び、駆動しているポンプ装置30に関する情報を受信する。駆動しているポンプ装置30に関する情報は、駆動しているポンプ装置30を示す号機ナンバーである。
制御部160は、流量の情報から、定格流量の範囲内であるか否かを判断する。また、制御部160は、検出器140の検出値から初期値Fを算出する。制御部160は、算出した初期値Fを、ポンプ装置30に紐づけて記憶部150に記憶する。
制御部160は、具体的には、通信部155を介して制御盤120から受信する、運転しているポンプ装置30の号機ナンバーに基づいて、インバータ124の出力周波数が最高周波数で、かつ、ポンプ装置30の吐出流量が定格流量範囲内となる初期の駆動時の検出器140の検出値に基づく所定の周波数帯域の振幅スペクトルの最大ピーク値を求める。そして、この値を、初期値Fとして、ポンプ装置30にひもづけて記憶部150に記憶する。
また、制御部160は、初期値Fを記憶部150に記憶した後に、インバータ124の出力周波数が最高周波数で、かつ、ポンプ装置30の吐出流量が高圧運転側の定格流量以上となる駆動時に、検出器140の検出値に基づいて所定の周波数帯域の振幅スペクトルの最大ピーク値を算出する。そして、この最大ピーク値から初期値Fを減算した減算値Uを算出し、減算値U及び閾値Tを比較する。制御部160は、減算値Uが閾値T以上であると、ポンプ装置30に異常が生じていると判定する。
また、制御部160は、ポンプ装置30に異常が生じていると判定すると、インバータ124の出力周波数を、所定値減少する。ここで、減少する所定値は、減少後の出力周波数が、異常を生じない周波数となる値である。本実施形態では、一例として、所定値は、減少後の出力周波数が、キャビテーションが生じない周波数となる値である。減少する所定値は、実験等によって得られる。減少する所定値は、例えば6Hzである。
そして、制御部160は、インバータ124の出力周波数を所定値減少すると、再度、減算値Uを算出し、閾値Tと比較する。制御部160は、減算値Uが閾値T未満であると、ポンプ装置30の異常は、キャビテーションであると判定する。
そして、制御部160は、インバータ124の出力周波数を所定値減少すると、再度、減算値Uを算出し、閾値Tと比較する。制御部160は、減算値Uが閾値T未満であると、ポンプ装置30の異常は、キャビテーションであると判定する。
また、制御部160は、減算値Uが閾値T以上であると、ポンプ装置30に生じている異常がキャビテーション以外の異常であると判定する。キャビテーション以外の異常は、例えば、軸受37の異常である。制御部160は、キャビテーション以外の異常を判断すると、例えば、駆動しているポンプ装置30の駆動を停止させる信号を、制御盤120に送信する。
また、制御部160は、流量が高圧設定側の定格流量範囲内まで減少すると、インバータ124の出力周波数を下げる制御を解除する。インバータ124の出力周ハウスを下げる制御が解除されることで、制御基板122は、記憶部123に記憶されたプログラムに従って、ポンプ装置30を制御する。
次に、異常検出装置130の動作の一例を説明する。
モータ31の駆動により軸受37が振動すると、軸受37の振動は、モータブラケット39に伝わる。モータブラケット39の振動は、検出器140のケース142の孔148d、及び基板143の孔143a内の空気を振動させる。孔148d、143a内の空気の振動は、マイクロフォン141の振動板141bに伝わる。マイクロフォン141は、振動板141bの振動を検出することで、空気の振動を検出する。検出器140は、検出値を、制御部160に送信する。
モータ31の駆動により軸受37が振動すると、軸受37の振動は、モータブラケット39に伝わる。モータブラケット39の振動は、検出器140のケース142の孔148d、及び基板143の孔143a内の空気を振動させる。孔148d、143a内の空気の振動は、マイクロフォン141の振動板141bに伝わる。マイクロフォン141は、振動板141bの振動を検出することで、空気の振動を検出する。検出器140は、検出値を、制御部160に送信する。
制御部160は、制御盤120からの受信した情報に基づいて、インバータ124の出力周波数が最高周波数であって、かつ、定格流量範囲内での初期の運転時に、検出器140の検出値に基づいて初期値Fを求めて記憶部150に記憶する。
制御部160は、初期値Fを記憶部150に記憶したポンプ装置30において、その後、インバータ124の出力周波数が最高周波数であり、かつ、高圧設定側の定格流量以上の流量での駆動時に、検出器140の検出結果をフーリエ変換することで所定の周波数帯域の振動スペクトルのピーク値を算出する。
そして、制御部160は、このピーク値から初期値Fを減算した減算値Uを算出する。そして、制御部160は、減算値Uが閾値T以上であると、ポンプ装置30に異常が生じていると判定して、インバータ124の出力周波数を所定値減少するよう、制御盤120に信号を送信する。制御盤120は、制御部160から信号を受信すると、インバータ124の出力周波数を、最高周波数から所定値減少する。
制御部160は、制御盤120から受信した情報に基づいてインバータ124の出力周波数が最高周波数から所定値減少されたことを検出すると、再度、減算値Uを算出して閾値Tと比較する。制御部160は、減算値Uが閾値T未満であると、ポンプ装置30の異常がキャビテーションであると判定する。制御部160は、減算値Uが閾値T以上であると、キャビテーション以外の異常であると判定する。
制御部160は、キャビテーション以外の異常を判定すると、ポンプ装置30の駆動を停止する指示を、制御盤120に送信する。
また、制御部160は、流量が高圧設定側の定格流量範囲内まで減少すると、インバータ124の出力周波数を下げる制御を解除する。
このように構成される異常検出装置130によれば、ポンプ装置30のキャビテーションを含む異常を検出できる。
さらに、制御部160は、ポンプ装置30の異常を判定すると、インバータの出力周波数を、最高周波数からあらかじめ定めた所定値減少する。所定値減少された後の出力周波数は、キャビテーションが生じない周波数である。この為、ポンプ装置30の異常がキャビテーションである場合、キャビテーションの発生を抑制できる。
さらに、制御部160は、流量が高圧設定側の定格流量範囲内まで減少すると、インバータ124の出力周波数を下げる制御を解除する。この為、給水効率が低下することを抑制できる。
なお、上述の例では、異常検出装置130は、検出器140を用いて軸受37の音圧を検出する構成が一例として説明されたが、これに限定されない。他の例では、異常検出装置130は、軸受37の振動に基づいてポンプ装置30の異常を判定する構成であってもよい。
異常検出装置130は、軸受37の振動に基づいてポンプ装置30の異常を判定する構成の場合、検出器140に代えて、軸受37の振動を直接または間接的に検出する検出器が用いられる。
図9は、検出器140に代えて軸受37の振動を直接または間接的に検出する検出器を用いた構成において、軸受37の振動を直接または間接的に検出する検出器が検出した軸受37の振動をフーリエ変換して求めた振動スペクトルを示す線図である。図9では、横軸は周波数(Hz)を示し、縦軸は振動スペクトルの強さ(dB)を示す。図9は、ポンプ装置30に異常がない状態を示している。
図10は、初期の駆動時以降で、ポンプ装置30にキャビテーションが生じている状態での、インバータ124の出力周波数が最高周波数であり、かつ、高圧設定側の定格流量以上で運転している状態で検出器140の検出値をフーリエ変換して求めた、所定周波数帯域の振動スペクトルのピーク値を示している。図10に示すように、4000(Hz)及び8000(Hz)において、振動スペクトルのピーク値が大きくなっていることがわかる。
このように、軸受37の振動を検出する構成であっても、検出器140を用いた構成と同様に、ポンプ装置30の異常を検出することが可能となる。
また、上述の例では、給水装置10の異常の判定は、異常検出装置130の制御部160が行う構成が一例として説明されたが、これに限定されない。他の例では、制御盤120が行ってもよい。ここで、制御盤120が行うとは、例えば、制御盤120の制御部の一例である制御基板122が行うことである。
また、上述の例では、流量検出器100は、流量に比例した信号を出力可能な構成であり、制御部160は、流量検出器100の検出結果に基づいて、定格流量内の初期での駆動時に初期値を求め、さらに、初期の駆動時以降に、高圧設定側の定格流量以上となると、初期値と比較する、所定周波数帯域の振動スペクトルのピーク値を求める構成が一例として説明されたが、これに限定されない。
他の例では、流量検出器100は、例えば、流量に比例した信号を出力可能な構成ではなく、停止流量、及び、停止流量より大きい流量を検出する構成であってもよい。停止流量を検出する構成としては、例えば、パドル式の流量検出器がある。例えば、停止流量を検出するパドル、及び、停止流量より大きい流量を検出するパドルを備える構成であってもよい。または、停止流量を検出可能な流量検出器、及び、停止流量より大きな流量を検出可能な流量検出器を備える構成であってもよい。
この構成の場合では、制御部160は、インバータ124の出力周波数が最高周波数であり、流量が停止流量より大きく、かつ、吐出し圧力が定格圧力範囲内の初期の駆動時に、初期値Fを求める。なお、吐き出し圧力が定格圧力範囲内とは、高圧設定側の定格圧力以下である。
そして、制御部160は、初期の駆動時以降で、インバータ124の出力周波数が最高周波数であり、流量が停止流量より大きく、かつ、吐出し圧力が、高圧設定側の最高揚程以下であるときに、初期値と比較する、所定周波数帯域の振動スペクトルのピーク値を求める構成であってもよい。制御部160は、具体的には、このピーク値から初期値Fが減算して減算値Uを求める。
なお、インバータ124の出力周波数が最高周波数であり、流量が停止流量より大きく、かつ、吐出し圧力が定格圧力範囲内の初期の駆動時に、初期値Fを求める構成に用いられる流量検出器100として、例えば、停止流量を検出するパドル、及び、停止流量より大きい流量を検出するパドルを備える構成、または、停止流量を検出可能な流量検出器、及び、停止流量より大きな流量を検出可能な流量検出器を備える構成を説明したが、これに限定されない。流量検出器100は、上述した実施形態で説明したように、流量に比例した信号を出力する構成であってもよい。
また、上述の例では、制御部160は、減算値Uが閾値T以上であると、ポンプ装置30に異常が生じていると判定してインバータ124の出力周波数を所定値減少させる構成が一例として説明された。そして、インバータ124の出力周波数から減少させる所定値は、減少後の出力周波数が、異常を生じない周波数となる値であり、本実施形態では、一例として、所定値は、減少後の出力周波数が、キャビテーションが生じない周波数となる値である。しかしながら、これに限定されない。
他の例では、制御部160は、ポンプ装置30に異常が生じていると判定すると、インバータ124の出力周波数を、予め設定された所定値減少させるのではなく、インバータ124の出力周波数を、予め設定された所定値にする構成であってもよい。ここで、予め設定された所定値は、例えばキャビテーションが生じない周波数である。
なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
10…給水装置、30…ポンプ装置、31…モータ、32…ポンプ、36…回転軸、37…軸受、37a…外輪、37b…内輪、37c…転動体、130…異常検出装置、140…検出器、150…記憶部、160…制御部、170…センサ。
Claims (4)
- ポンプ、並びに、前記ポンプを駆動する軸及び前記軸を回転可能に支持する軸受を備えるモータを具備し、所定の揚程範囲内で吐出し圧力一定制御もしくは推定末端圧一定制御により運転可能なポンプ装置と、
流量に比例した信号を出力する流量検出器と、
前記モータに電力を供給するインバータと、
前記軸受の振動または音圧を検出する検出器と、
異常を判断する為の閾値を記憶する記憶部と、
前記ポンプが設置現場に設置された後に、前記インバータの出力周波数が最高周波数であり、かつ、前記流量が定格流量範囲内にある初期の駆動時に、前記検出器の検出値をフーリエ変換して所定周波数帯域の振幅スペクトルのピーク値を初期値として前記記憶部に記憶し、前記初期の駆動時以降で、前記インバータの出力周波数が最高周波数であり、かつ、前記所定の揚程範囲内の最高揚程での定格流量以上で運転している状態で前記検出器の検出値をフーリエ変換して前記所定周波数帯域の振動スペクトルのピーク値を求めて、このピーク値から前記初期値を減算した値が前記閾値以上であると、前記ポンプ装置に異常が生じていると判定する制御部と、
を備える給水装置。 - 前記閾値は、キャビテーションの判断する為の閾値であり、
前記制御部は、前記ポンプ装置の異常を判定すると、前記インバータの出力周波数を所定値に減少させて前記インバータの出力周波数をキャビテーションが生じない周波数にし、前記検出器の検出結果をフーリエ変換して前記所定周波数帯域の振動スペクトル値のピーク値を求め、このピーク値から前記初期値を減算した値が前記閾値未満であると、前記異常をキャビテーションの発生と判定する、請求項1に記載の給水装置。 - 前記制御部は、前記流量が、前記所定の揚程範囲内の最高揚程の定格流量範囲内に減少すると、前記インバータの出力周波数を前記所定値にする制御を解除する、
請求項2に記載の給水装置。 - ポンプ、並びに、前記ポンプを駆動する軸及び前記軸を回転可能に支持する軸受を備えるモータを具備し、所定の揚程範囲内で吐出し圧力一定制御もしくは推定末端圧一定制御により運転可能なポンプ装置と、
前記ポンプ装置の駆動を停止する停止流量、及び、前記停止流量より大きい流量を検出する流量検出器と、
吐出し圧力を検出する圧力センサと、
前記モータに電力を供給するインバータと、
前記軸受の振動または音圧を検出する検出器と、
異常を判断する為の閾値を記憶する記憶部と、
前記ポンプが設置現場に設置された後に、前記インバータの出力周波数が最高周波数であり、流量が前記停止流量より大きく、かつ、前記吐出し圧力が定格圧力範囲内にある初期の駆動時に、前記検出器の検出値をフーリエ変換して所定周波数帯域の振幅スペクトルのピーク値を初期値として前記記憶部に記憶し、前記初期の駆動時以降で、前記インバータの出力周波数が最高周波数であり、流量が前記停止流量より大きく、かつ、前記吐出し圧力が前記所定の揚程範囲内の最高揚程以下で運転している状態で前記検出器の検出値をフーリエ変換して前記所定周波数帯域の振動スペクトルのピーク値を求めてこのピーク値から前記初期値を減算した値が前記閾値以上であると、前記ポンプ装置に異常が生じていると判定する制御部と、
を備える給水装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020117410A JP2022014827A (ja) | 2020-07-07 | 2020-07-07 | 給水装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020117410A JP2022014827A (ja) | 2020-07-07 | 2020-07-07 | 給水装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022014827A true JP2022014827A (ja) | 2022-01-20 |
Family
ID=80120400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020117410A Pending JP2022014827A (ja) | 2020-07-07 | 2020-07-07 | 給水装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022014827A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114790991A (zh) * | 2022-04-14 | 2022-07-26 | 国家电投集团电站运营技术(北京)有限公司 | 给水泵汽蚀检测系统及方法 |
-
2020
- 2020-07-07 JP JP2020117410A patent/JP2022014827A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114790991A (zh) * | 2022-04-14 | 2022-07-26 | 国家电投集团电站运营技术(北京)有限公司 | 给水泵汽蚀检测系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110017290B (zh) | 泵装置、泵装置的试验运转方法、电动机组装体及确定电动机组装体异常振动的方法 | |
KR102040176B1 (ko) | 스마트 감시제어유니트 및 이를 구비한 펌프 | |
US20190301480A1 (en) | Pump apparatus | |
JP6805314B1 (ja) | 軸受異常検出装置 | |
KR101457051B1 (ko) | 수중펌프의 침수방지 장치 | |
KR102208830B1 (ko) | 모터펌프의 모니터링 장치 및 방법 | |
JP2022014827A (ja) | 給水装置 | |
KR101124078B1 (ko) | 감시카메라가 구비된 수중모터펌프 | |
JP2019120145A (ja) | ポンプ装置およびポンプ装置の試験運転方法 | |
JP7025205B2 (ja) | 電動機組立体 | |
JP6942836B1 (ja) | 異常検出装置 | |
JP2019120146A (ja) | 電動機組立体、ポンプ装置、および、電動機組立体の異常振動を特定する方法 | |
JP6918893B2 (ja) | 異常検出装置 | |
JP3906507B2 (ja) | 液化ガス用ポンプ装置 | |
JP7055737B2 (ja) | 複数の電動機組立体を備えた駆動装置 | |
JP2016056738A (ja) | 真空ポンプシステム及びそれを用いた湿式真空スプリンクラーシステム | |
JP6581806B2 (ja) | ポンプユニット、給水装置 | |
JP5188130B2 (ja) | 水中ポンプ装置 | |
JP5497425B2 (ja) | 増圧給水システム | |
WO2021002067A1 (ja) | ポンプ装置、ポンプ装置の制御方法及びポンプシステム | |
JP7146831B2 (ja) | 給水装置 | |
JP6805299B1 (ja) | 給水装置及び給水装置の制御方法 | |
JP2020099166A (ja) | 複数の電動機組立体を備えた駆動装置 | |
JP7550618B2 (ja) | ポンプシステム及び監視装置 | |
JP2022117271A (ja) | 給水装置及び該給水装置の異常検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20230104 |