JP2021525005A - 結合層とピンニング層の格子整合を用いた磁気トンネル接合 - Google Patents

結合層とピンニング層の格子整合を用いた磁気トンネル接合 Download PDF

Info

Publication number
JP2021525005A
JP2021525005A JP2020565356A JP2020565356A JP2021525005A JP 2021525005 A JP2021525005 A JP 2021525005A JP 2020565356 A JP2020565356 A JP 2020565356A JP 2020565356 A JP2020565356 A JP 2020565356A JP 2021525005 A JP2021525005 A JP 2021525005A
Authority
JP
Japan
Prior art keywords
layer
pinning
thickness
lattice matching
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020565356A
Other languages
English (en)
Other versions
JP7104809B2 (ja
Inventor
リン シュエ,
リン シュエ,
チー ホン チン,
チー ホン チン,
ロンジュン ワン,
ロンジュン ワン,
マヘンドラ パカラ,
マヘンドラ パカラ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2021525005A publication Critical patent/JP2021525005A/ja
Application granted granted Critical
Publication of JP7104809B2 publication Critical patent/JP7104809B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本明細書で説明される磁気トンネル接合(MTJ)構造の実施形態が、第1のピンニング層と第2のピンニング層の間に配置された合成反フェリ磁性結合層を伴った、第1のピンニング層と第2のピンニング層を採用する。シード層と接触している第1のピンニング層は、プラチナ又はパラジウムの単一の層であって、単独で、或いは、コバルトと、プラチナ(Pt)、ニッケル(Ni)、若しくはパラジウム(Pd)、又はそれらの組み合わせ若しくは合金と、の1以上の二重層と組み合わされた、プラチナ又はパラジウムの単一の層を含んでよい。第1のピンニング層と第2のピンニング層は、異なる組成又は構成を有してよい。それによって、第1のピンニング層は、第2のピンニング層より多い磁気材料含有量を有し、且つ/又は第2のピンニング層よりも厚い。本明細書で説明されるMTJ積層体は、高温アニーリングの後で所望の磁気特性を維持する。【選択図】図2A

Description

[0001] 本開示の実施形態は、広くは、磁気ランダムアクセスメモリ(MRAM)用途のための磁気トンネル接合構造を製造することに関する。
[0002] スピントランスファートルク磁気ランダムアクセスメモリ、すなわちSTT-MRAMは、そのメモリセルに磁気トンネル接合構造を採用し、2つの強磁性層が、薄い絶縁層又は「誘電体」層によって互いから離間されている。磁性層の一方は、固定された磁気極性を有し、他方は、2つの状態の間で選択的に変更可能な磁気極性を有する。磁性層が、垂直磁気異方性を有する場合、変更可能な極性層の極性は、磁気トンネル接合構造すなわち「MTJ」構造を含む膜層の積層体の深さ方向において、固定された極性層と同じ極性を有するか、又は固定された極性層とは逆の極性を有するかの間で切り替えることができる。MTJの両端間の電気抵抗は、固定された極性層に対して変更可能な極性層の極性の関数である。2つの層の極性が、MTJの深さ方向において同じである場合、MTJの両端間の電気抵抗は低く、MTJの深さ方向において互いに逆であるときに、MTJの両端間の電気抵抗は高くなる。したがって、セルの両端間の電気抵抗は、1又は0の値を示すために使用することができ、したがって、例えば、低抵抗状態を1のデータ値を有するものとして使用し、高抵抗状態を0のデータ値として使用することによって、データ値を記憶することができる。
[0003] MTJ積層体を形成するために、第1のピンニング層及び第2のピンニング層、並びに第1のピンニング層と第2のピンニング層との間にある合成反フェリ磁性(SyF)結合層を含む、膜層積層体が製造される。SyF結合層により、第1のピンニング層及び第2のピンニング層の表面原子は、磁場に曝露されると、SyF結合層の表面原子と整列し、これにより第1のピンニング層及び第2のピンニング層のそれぞれの磁気モーメントの配向をピンニング(ピン止め)する。第1のピンニング層と第2のピンニング層は、それぞれ、同様な磁気モーメントを含み、したがって、外部磁場が従来のMTJ積層体100Aに印加されたときに、同様に反応することとなる。SyF結合層は、第1のピンニング層と第2のピンニング層の磁気モーメントの逆平行(anti-parallel)位置合わせを維持する。
[0004] MTJが、非磁性層によって分離された2つ以上の強磁性層を含む合成反フェリ磁性(SyF)層を採用する場合、SyF結合は、その高温処理、例えば、摂氏約400度以上の温度での処理の後に失われ得る。更に、磁場がMTJ積層体に印加されるときに、双極子場が生成され得る。磁気双極子は電流の閉循環であり、双極子場が、MTJ積層体の磁気記憶層を含むMTJ積層体の性能を妨害する可能性がある。
[0005] したがって、処理温度に耐え、双極子場の影響を低減させることができる改善されたMTJ積層体が、依然として必要とされている。
[0006] 本開示は、広くは、メモリセルに使用される磁気トンネル接合(MTJ)積層体の設計及び製造に関する。
[0007] 一実施例では、デバイスが、磁気トンネル接合積層体を備え、磁気トンネル接合積層体が、第1の二重層と第1の二重層の上に形成された第1の格子整合層とを含む第1のピンニング層を含み、第1の格子整合層は、プラチナ又はパラジウムを含む。デバイスのMTJ積層体は、第1のピンニング層の第1の格子整合層に接触している合成反フェリ磁性(SyF)結合層、及びSyF結合層に接触している第2のピンニング層を更に含む。第2のピンニング層は、プラチナ又はパラジウムから形成された第2の格子整合層を含み、第2の格子整合層は、SyF結合層に接触している。
[0008] 一実施例では、磁気トンネル接合積層体が、第1の複数の二重層と第1の複数の二重層の上に形成された第1の格子整合層とを含む第1のピンニング層であって、第1の格子整合層が、プラチナ又はパラジウムを含み、第1の複数の二重層の各二重層が、第1のコバルト中間層と、プラチナ、ニッケル、パラジウム、又はそれらの合金若しくは組み合わせの第2の中間層とを含む、第1のピンニング層、第1のピンニング層上に形成された合成反フェリ磁性(SyF)結合層、及びSyF結合層上に形成された第2のピンニング層であって、SyF結合層上に形成された第2の格子整合層を含む第2のピンニング層を含む。
[0009] 別の一実施例では、磁気トンネル接合(MTJ)積層体が、緩衝層、緩衝層の上に形成され且つクロムから形成されたシード層、及びシード層に接触している第1のピンニング層を含む。第1のピンニング層は、第1の二重層と第1の二重層の上に形成された第1の格子整合層を含み、第1の格子整合層は、プラチナ又はパラジウムのうちの少なくとも1つから形成されている。第1の二重層は、コバルト中間層と、プラチナ、ニッケル、又はパラジウムを含む少なくとも1つの中間層とを含む。MTJ積層体は、第1のピンニング層上に形成された合成反フェリ磁性(SyF)結合層、及びSyF結合層上に形成された第2のピンニング層を更に含み、第2のピンニング層は、SyF結合層上に形成された第2の格子整合層を含み、第2の格子整合層は、プラチナ又はパラジウムを含む。MTJ積層体は、第2のピンニング層上に形成された構造ブロッキング層であって、タンタル、モリブデン、又はタングステンのうちの少なくとも1つを含む構造ブロッキング層、構造ブロッキング層上に形成された磁気基準層、磁気基準層上に形成されたトンネルバリア層、及びトンネルバリア層上に形成された磁気記憶層を更に含む。
[0010] 上述の本開示の特徴を詳細に理解し得るように、上記で簡単に要約された本開示のより具体的な説明が、実施形態を参照することによって得られ、一部の実施形態は、付随する図面に例示されている。しかし、添付図面は例示的な実施形態のみを示すものであり、したがって、本開示の範囲を限定すると見なすべきではなく、その他の等しく有効な実施形態も許容され得ることに留意されたい。
[0011] 例示的な磁気トンネル接合(MTJ)積層体の概略図である。 [0012] 本開示の実施形態による、図1Aの磁気トンネル接合(MTJ)積層体を含むメモリデバイスを製造する方法のフロー図である。 [0013] 本開示の実施形態による、MTJ積層体の概略図である。 [0014] 本開示の実施形態による、MTJ積層体の緩衝層の拡大図である。 [0015] 本開示の実施形態による、MTJ積層体の第1のピンニング層の拡大図である。 [0016] 本開示の実施形態による、MTJ積層体の第2のピンニング層の拡大図である。 [0017] 本開示の実施形態による、MTJ積層体の例示的な磁気記憶層の拡大図である。 [0018] 本開示の実施形態による、MTJ積層体の例示的なキャッピング層の拡大図である。
[0019] 理解を容易にするために、可能な場合には、図面に共通する同一要素を指し示すのに同一の参照番号を使用した。一実施形態の要素及び特徴は、更なる記述がなくとも、他の実施形態に有益に組み込まれ得ると考えられている。
[0020] 本開示の実施形態は、磁気トンネル接合(MTJ)積層体、並びにSTT MRAMメモリセル及びメモリに関する。ここで、MTJ積層体は、MTJ積層体が上部電極と下部電極との間に挟まれるように、上部及び下部電極を含む膜積層体内に組み込まれる。MTJ積層体をパターニングして、磁気抵抗ランダムアクセスメモリ(MRAM)内で使用される複数の個別メモリセルを形成することができる。MRAMセルの各MTJ積層体内には、2つの磁性層が存在し、一方の磁性層は固定された極性を有し、他方は、層の両端間に電圧を印加するか、又はその磁性層に電流を印加することによって切り替えることができる極性を有する。MRAMの両端間の電気抵抗は、第1の磁性層と第2の磁性層との間の相対的な極性に基づいて変化する。第1の磁性層と第2の磁性層は、それぞれ、本明細書では、磁気基準層と磁気記憶層と称される。MTJ積層体から形成されたメモリセルは、セルの両端間に印加された電圧が存在するとき、又はセルを通過する電流が存在するときに動作する。十分な強度の電圧の印加に応じて、切り替え可能な磁性層の極性が変更され得る。加えて、セルの抵抗は、磁気記憶層の磁気極性を切り替えるために必要とされる閾値を下回る比較的低い電圧で、セルの両端間の電流対電圧の関係性を測定することによって特定され得る。
[0021] 本明細書で説明される基本的なMTJ積層体は、基板上に薄膜層を堆積させ、究極的にはそれらの堆積した膜層をパターニングし、エッチングするために、複数の堆積チャンバを使用して形成される。本明細書で説明されるMTJ積層体を形成するために使用される堆積チャンバは、物理的気相堆積(PVD)チャンバを含む。ここで、PVDチャンバを使用して、MTJ積層体の複数の薄膜層を形成する。MTJ積層体は、緩衝層、緩衝層上のシード層、シード層上の第1のピンニング層、第1のピンニング層上の合成反フェリ磁性(SyF)結合層、SyF結合層上の第2のピンニング層、及び第2のピンニング層上のブロッキング層を含む。本明細書で説明されるPVDの動作では、チャンバが減圧状態に維持されている間に、アルゴン(Ar)、ヘリウム(He)、クリプトン(Kr)、及び/又はキセノン(Xe)などの不活性ガス又は希ガスから、プラズマが生成される。PVDプロセスチャンバは、少なくとも1つのスパッタリングターゲットを更に含み、基板が、スパッタリングターゲットの概して平坦な表面に対向して内部に配置される。スパッタリングターゲットは、電気的に駆動されるように電源に接続されるか、又は、プラズマを介して電源の回路内の陰極状態を自己確立して、例えば、スパッタリングチャンバの接地部分を接地する。基板は、スパッタリングチャンバ内のペデスタル又は他の構造上に配置され、ペデスタル又は他の構造は、浮遊電位であっても、接地に接続されても、又はバイアスされて、アノード若しくは接地回路にプラズマを誘導するためにカソードターゲット内にアノードを形成してもよい。スパッタリングチャンバ内の不活性ガス原子の正にイオン化された部分は、負にバイアスされたターゲットに電気的に引き付けられ、したがって、プラズマのイオンがターゲットに衝突し、それによって、ターゲット材料の原子を放出させ、基板上に堆積させて、基板上の(1以上の)ターゲット材料から成る薄膜を形成する。
[0022] 化合物の薄膜を形成するために、この化合物を含むスパッタリングターゲットを、Arプラズマを使用して、PVDチャンバ内でスパッタリングすることができる。別の一実施例では、基板上に化合物層を堆積させるために複数のスパッタリングターゲットが使用され、各スパッタリングターゲットは、基板上に薄膜として形成される化合物の1以上の元素を含む。複数のスパッタリングターゲットが、PVDチャンバ中に存在し、Arプラズマ又は他のガスベースのプラズマを使用してスパッタリングされて、基板上に所望の化合物層を形成することができる。更に、MTJ積層体の層を形成するための本明細書で使用されるPVDの動作では、金属-酸化物と金属-窒化物が、金属-酸化物スパッタリングターゲット又は金属-窒化物スパッタリングターゲットの何れかを使用して形成される。代替的な実施形態では、Arプラズマと酸素(O2)又は窒素(N2)の何れかとがPVDチャンバ内に存在する間に、金属酸化物又は金属窒化物の金属から成る1以上の金属スパッタリングターゲットをスパッタリングすることによって、MTJ積層体の金属-酸化物層又は金属-窒化物層が、PVDチャンバ内で形成される。一実施例では、PVDチャンバが、内部に配置された複数のスパッタリングターゲットを有し、PVDチャンバ内の各スパッタリングターゲットは、電源によってバイアスされて、負のDCバイアスを直接印加することによって、若しくはターゲット上にカソード状態を電気的に駆動若しくは自己確立するための波形を使用することによって、又はそれらの組み合わせの何れかによって、その上に負のバイアスを確立する。この実施例では、PVDチャンバの内側のシールドが、複数のターゲットのうちの1以上のターゲットをプラズマから遮断するように構成され、基板上に薄膜を形成するために、PVDチャンバ内に形成されたプラズマのイオンが、ターゲットのうちの少なくとも1つに衝突してそこからターゲット材料原子を放出又はスパッタリングすることを可能にしている。この実施例では、1以上のスパッタリングターゲットが、Arプラズマに曝露され、それらのスパッタリングは、連続的に又は同時に基板上に所望の膜組成を形成し、O2又はN2が、それぞれ基板上の膜層生成のためにArプラズマに加えて使用されるときに、別のPVDチャンバが使用されて、金属-酸化物層及び金属-窒化物層を形成する。
[0023] PVDシステムは、中央ロボット基板移送チャンバに結合された1以上のPVDスパッタリングチャンバを含んでよい。中央ロボット基板移送チャンバは、それに結合された装填ステーションと、それに連結されたスパッタリングチャンバとの間で、基板を移動させるように構成されている。PVDシステムは、例えば、10×10−9Torrのベース減圧に維持される。それによって、その上にMTJが形成されている基板は、MTJ膜層積層体の製造中にPDVチャンバの間で及びPVD間で移動されるときに、外部の雰囲気に曝露されない。基板上にMTJ膜層積層体の最初の薄膜を形成する前に、基板は、減圧チャンバ内でガス抜きされ、Arガスプラズマを使用して、又は中央ロボット移送チャンバに連結された専用の予洗浄チャンバ内のHe/Hガスプラズマ内で予洗浄される。1以上のPVDチャンバを使用してMTJ積層体を製造中に、Ar、Kr、He、又はXeなどの1以上の希スパッタリングガス又は不活性スパッタリングガスを、PVDチャンバのそれぞれの中に配置することができる。ガスはイオン化されてチャンバ内にプラズマを生成し、プラズマのイオンは負にバイアスされた(1以上の)スパッタリングターゲットに衝突して、ターゲットから表面原子を放出させ、PVDスパッタリングチャンバ内に位置付けられた基板上に(1以上の)ターゲット材料の薄膜を堆積させる。一実施形態では、1以上のPVDチャンバ内の処理圧力が、約2mTorrから約3mTorrであってよい。実施形態に応じて、PVDプラットフォーム内の基板支持ペデスタル(又は基板がその上に配置され得る他の構造)は、MTJ積層体の少なくともシード層、第1及び第2のピンニング層、SyF結合層、並びに緩衝層の製造中に摂氏−200度から摂氏600度に保持される。
[0024] 図1Aは、磁気トンネル接合(MTJ)積層体の概略図である。図1Aは、タングステン(W)、窒化タンタル(TaN)、窒化チタン(Tin)の導電層、又はそれらの他の金属層を含む、基板102を含むMTJ積層体100Aを示している。幾つかの実施例では、基板102が、1以上のトランジスタ、ビット若しくはソースライン、及び他のメモリライン(前もってその中又はその上に製造されている)、又はMRAMメモリを形成するために使用され、前もってその上に製造若しくは形成される他の素子を含む。その上にMTJ積層体が形成される基板は、200mm未満の直径、200mmの直径、約300mm、約450mmの直径、又は他の直径を含む寸法を有してよく、円形又は矩形若しくは正方形の板を有してよい。
[0025] 従来のMTJ積層体100A内の緩衝層104は、内部に基板を有するPVDチャンバ内で1以上のターゲットをスパッタリングすることによって基板102上に形成され、ここでは、CoxFeyBz、TaN、Ta、又はそれらの組み合わせのうちの1以上の層を含む。シード層106は、PVDチャンバ内でのスパッタリングを介して、緩衝層104の上に堆積される。緩衝層104は、基板へのシード層106の接着を改善するために、従来のMTJ積層体100A内で使用される。ここで、シード層106は、プラチナ(Pt)又はルテニウム(Ru)を含み、内部に基板を有するPVDチャンバ内で、Pt若しくはRu又はそれらの合金のターゲットをスパッタリングすることによって形成される。シード層106は、緩衝層104とシード層106との間の格子不整合を低減させ又は排除することによって、従来のMTJ積層体100A内で続いて堆積する層の接着及びシーディング(seeding)を改善するために使用される。
[0026] 第1のピンニング層108が、スパッタリングによってシード層106上に形成される。第1のピンニング層108は、ここで、コバルト(Co)層、1以上のCo含有二重層、又はコバルト層と1以上のCo含有二重層との組み合わせを含む。合成反フェリ磁性(SyF)結合層110は、ここで、スパッタリングによって第1のピンニング層108の上に形成される。SyF結合層110は、そのターゲットからスパッタリングされたルテニウム(Ru)、ロジウム(Rh)、Cr、又はイリジウム(Ir)から形成されてよい。第2のピンニング層112は、スパッタリングによってSyF結合層110の上に形成される。第2のピンニング層112は、ここでは、単一のコバルト(Co)層から形成される。SyF結合層110は、第1のピンニング層108と第2のピンニング層112との間に位置付けられ、第1のピンニング層108と第2のピンニング層112の表面原子を、磁場に曝露すると、SyF結合層110の表面原子と整列し、それによって、第1のピンニング層108と第2のピンニング層112のそれぞれの磁気モーメントの配向をピンニング(ピン止め)する。第1のピンニング層108と第2のピンニング層112は、それぞれ、同様な磁気モーメントを含み、したがって、外部磁場が従来のMTJ積層体100Aに印加されたときに、同様に反応することとなる。SyF結合層110は、第1のピンニング層108と第2のピンニング層112の磁気モーメントの逆平行(anti-parallel)位置合わせを維持する。
[0027] 第2のピンニング層112の上には、ここで、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、又はこれらの組み合わせを含む構造ブロッキング層114が形成される。構造ブロッキング層114は、第1のピンニング層108及び第2のピンニング層112の結晶構造とは異なるその結晶構造のために採用される。構造ブロッキング層114は、従来のMTJ積層体100Aと、MRAMメモリセルを形成するために従来のMTJ積層体100Aに接続され得る金属接点と、の間の短絡の形成を防止する。
[0028] 更に、従来のMTJ積層体100Aでは、磁気基準層116が、PVDチャンバ内でスパッタリングすることによって、構造ブロッキング層114の上に形成される。トンネルバリア層118が、磁気基準層116の上に形成され、磁気記憶層120が、トンネルバリア層118の上に形成される。トンネルバリア層118、磁気基準層116、及び磁気記憶層120のそれぞれは、1以上のPVDチャンバ内で、Arプラズマを使用して、ターゲットをスパッタリングすることによって形成される。磁気基準層116と磁気記憶層120は、それぞれ、組成が異なり得るCoxFeyBz合金を含む。更に、磁気記憶層120は、Ta、Mo、W、若しくはHf、又はそれらの組み合わせのうちの1以上の層を含んでよい。トンネルバリア層118は、絶縁材料を含み、MgOのような誘電体材料から製造されてよい。従来のMTJ積層体100Aのトンネルバリア層118内で大きなトンネル磁気抵抗比(TMR)を生成するように、トンネルバリア層118の組成及び厚さが選択される。TMRは、従来のMTJ積層体100A内の抵抗の逆平行状態(Rap)から平行状態(Rp)への変化を測定したものであり、式((Rap-Rp)/Rp)を使用してパーセントで表すことができる。従来のMTJ積層体100Aにバイアスを印加すると、トンネルバリア層118は、スピン偏極電子によって横断され、このトンネルバリア層118を通る電子の透過は、磁気基準層116と磁気記憶層120との間の導電性をもたらす。
[0029] PVDチャンバ内でのスパッタリングによって、キャッピング層122が、磁気記憶層120上に形成され、ここで、複数の中間層を含む。キャッピング層122は、MgOなどの誘電体材料から製造された第1のキャッピング中間層122Aを含む。Ru、Ir、Ta、又はそれらの組み合わせなどの金属材料を含む第2のキャッピング中間層122Bが、第1のキャッピング中間層122Aの上に形成される。第1のキャッピング中間層122Aは、ハードマスクエッチングのためのエッチング停止層として作用し、MTJ積層体100Aを腐食から保護する。第2のキャッピング中間層122Bは、図1Bに関して以下で説明されるように、従来のMTJ積層体100Aが後でパターニングされるときに、トランジスタ又は接点と電気的に通じるように構成されている。ハードマスク層124は、スパッタリングによって、PVDチャンバ内で形成される。ハードマスク層124は、第2のキャッピング中間層122Bの上に形成されて、従来のMTJ積層体100Aを保護し、その後の動作中にパターニングされてよい。
[0030] 図1Bは、MTJ積層体100A、及び、本開示の実施形態に従って製造され図2A〜図2Fで示されるMTJ積層体を含む、メモリデバイスを製造する方法100Bのフロー図である。方法100Bは、スパッタリングによって薄膜層を堆積させるように構成されたPVDシステムの複数のPVDチャンバ内で部分的に実行される。基板102は、PVDシステムの中央ロボット移送チャンバを介して、スパッタリングチャンバの間及びスパッタリングチャンバ間で移動されてよく、図1AのMTJ積層体100A及び本開示の実施形態に従って製造される以下で示され説明されるMTJ積層体を含む、様々な薄膜層を形成することができる。別の一実施例では、上述のように、複数のスパッタリングターゲットが、PVDチャンバ内に配置され、PVDチャンバの内側のシールドが、複数のスパッタリングターゲットを、プラズマへの曝露から選択的に保護し、又はあるターゲットをプラズマに選択的に曝露するように構成されている。シールドは、方法100Bの種々の動作で回転されて、連続的に又は同時に、1以上のターゲットをPVDチャンバ内のプラズマに曝露する。
[0031] したがって、図1Aの層は、方法100Bに関して本明細書で参照される。方法100Bの動作は、アルゴン(Ar)、ヘリウム(He)、クリプトン(Kr)、キセノン(Xe)、酸素(O2)、又は窒素(N2)を含む1以上のガスをプラズマ種として使用して、1以上のPVDチャンバ内で実行される。PVDチャンバ内の処理圧力は、方法100B中に、約2mTorrから約3mTorrであってよい。実施形態に応じて、PVDプラットフォーム内の基板支持ペデスタル(又は基板がその上に配置され得る他の構造)は、MTJ積層体のピンニング層及びシード層の製造中に、摂氏−200度から摂氏600度に保持される。
[0032] 基板102は、MTJ積層体100Aの各層に使用される(1以上の)スパッタリングターゲットの組成に応じて、PVDチャンバの間及びPVDチャンバ間で移動することができ、又は本明細書で説明されるように、複数のターゲットが電源に接続され、シールドがターゲットの一部を選択的に保護するように構成され、それによって、1以上のターゲットが、連続的に若しくは同時に露出され、所望の膜組成を形成するか、又は両方の技法を実行することができる。PVDチャンバ内でのスパッタリング中に、Arがスパッタリングガスとして使用されるときに、プラズマのArイオンが、1以上の露出したスパッタリングターゲットに衝突し、スパッタリングターゲットの表面原子を放出させ、基板上に薄膜として堆積させる。方法100Bでは、動作128Aにおいて、図1Aの基板102などの基板が、ガス抜き及びArガスプラズマ内又はHe/Hプラズマ内での予洗浄を含む動作を受ける。方法100B中、基板は、中央ロボット基板移送チャンバを通るか又は介して処理チャンバ間で移動される。動作128Bでは、基板102が、中央ロボット基板移送チャンバから複数のPVDチャンバのうちのPVDチャンバに移送される。続いて、動作130では、、緩衝層104が、PVDチャンバのターゲットにおけるスパッタリングによって、基板102上に堆積される。1kWから100kWの電力が、本明細書で説明される1以上のPVDチャンバに印加されて、Arの一部分をイオン化し、動作130で使用されるプラズマを生成する。ターゲットの放出された表面原子は、基板102上に堆積して、緩衝層104を形成する。
[0033] 動作130で緩衝層104を形成する間、CoxFeyBz、TaN、及び/又はTaを含む1以上のスパッタリングターゲットが、Arプラズマを使用して、PVDチャンバ内でスパッタリングされて、緩衝層104を形成する。緩衝層104がTaであるか又はTaを含む一実施形態では、緩衝層104が、Taターゲット及びArプラズマを使用して、PVDチャンバ内でスパッタリングされる。緩衝層104がTaNであるか又はTaNを含む一実施例では、TaN緩衝層104を形成するために、窒素ガス(N2)がPVDチャンバ中に存在し、TaスパッタリングターゲットをスパッタリングするためにArプラズマが使用されるときに、動作130が実行される。緩衝層104がTaNであるか又はTaNを含む別の一実施例では、緩衝層104を形成するために、TaNスパッタリングターゲット及びArプラズマを使用して、PVDチャンバ内で動作130が実行される。緩衝層104及びそれに続く層の形成中に、使用される1以上のPVDチャンバは、減圧に維持される。
[0034] 続いて、動作132では、シード層106が、PVDチャンバ内でターゲットをスパッタリングすることによって緩衝層104上に堆積される。動作132の一実施形態では、シード層106が、緩衝層104を堆積させるために使用されるスパッタリングターゲットとは異なるスパッタリングターゲットを使用して、緩衝層104を形成するために使用されたPVDチャンバと同じPVDチャンバ内で形成される。第1のピンニング層108は、動作134において、PVDチャンバ内でターゲットをスパッタリングすることによって、シード層106上に堆積される。第1のピンニング層108は、従来のMTJ積層体100Aにおける一実施例として示されており、Arプラズマを使用して1以上のターゲットをスパッタリングすることによって、動作134において、PVDチャンバ内で形成されてよい。第1のピンニング層108がCo層である一実施例では、PVDチャンバ内でArプラズマを使用してCoターゲットがスパッタリングされる。第1のピンニング層108が1以上の二重層を含む一実施例では、動作134が、二重層の第1の中間層を形成するためにCoスパッタリングターゲットを使用し、二重層の第2の中間層を形成するために異なる元素から成る別のスパッタリングターゲットを使用する。実施形態に応じて、Coスパッタリングターゲットと他の元素のスパッタリングターゲットは、同じPVDチャンバ内でArプラズマを使用してスパッタリングされてよく、又は二重層の各層が個別のPVDチャンバ内で形成されてよい。
[0035] 本明細書の他の実施例と組み合わされ得る本開示の実施形態による一実施例では、図2A及び図2Cで示されているような第1のピンニング層208が、動作134において、PDVチャンバを使用して形成される。この実施例では、第1のピンニング層208が、1以上のスパッタリングターゲットを使用して、動作134においてPVDチャンバ内で形成される。第1のピンニング層208を堆積させるために、キセノン(Xe)又はアルゴン(Ar)ガスが、約2sccm〜40sccmの流量でPVDチャンバに導入される。Xe又はArガスは、50W〜10000Wの電力が負電圧でターゲットに印加されてプラズマを生成する間、PVDチャンバに導入される。別の一実施例では、Xe又はArガスが、5sccmから20sccmの流量で、幾つかの実施例では、10sccmの流量で、PVDチャンバに導入される。別の一実施例では、第1のピンニング層208を形成するために使用される1以上のスパッタリングターゲットに印加される電力が、100Wから800Wであり、別の一実施例では、1以上のスパッタリングターゲットに印加される電力が、400Wであってよい。
[0036] 第1のピンニング層208の組成に応じて、Xeガスを、動作134におけるPVDチャンバ内でのスパッタリング動作において使用して、プラズマを生成することができる。というのも、Xeガスは、Arよりも重いガスであり、したがって、Ar又は他のより軽いガスを使用して生成されたイオンよりも高い原子量を有するイオンを生成するからである。したがって、Xeプラズマは、Arプラズマよりも大きいエネルギーでターゲットに衝突し、Ptなどの層をスパッタリング堆積させるために使用されてよい。本開示における第1のピンニング層208の一実施例では、Xe、Ar、又はそれらの混合物が、約10sccmからの流量でPVDチャンバの中に導入され、400Wの電力が、負電圧でターゲットに印加されて、Ar又はXeプラズマを生成する。一実施例では、第1のピンニング層208が、Pdターゲット又はPtターゲットをスパッタリングすることによって、Pd又はPtの格子整合層から製造される。第1のピンニング層208の格子整合層は、約1Åから約3Åの厚さを有する。
[0037] 別の一実施例では、第1のピンニング層208が、2つの中間層を含む少なくとも1つの二重層を含み、Pt又はPdを含む格子整合層が、図2Cで示されているように、少なくとも1つの二重層の上に形成される。少なくとも1つの二重層が、格子整合層に加えて第1のピンニング層208を形成するために使用される一実施例では、二重層が、Coの第1の中間層と、Pt、Pd、若しくはNi、又はそれらの組み合わせ若しくは合金などの別の元素の第2の中間層とを含む。第1のピンニング層208の二重層は、動作134において、Coターゲットと、Pt、Pd、若しくはNi、又はそれらの組み合わせ若しくは合金から形成されたターゲットとを含む、複数のターゲットを含むPVDチャンバ内、又は個別のPVDチャンバ内で形成されてよい。個別のPVDチャンバでは、1つのPVDチャンバが、Coターゲットを含み、他のPVDチャンバが、Pt、Pd、若しくはNi、又はそれらの組み合わせ若しくは合金のターゲットを含む。一実施例では、複数のスパッタリングターゲットが、単一のPVDチャンバ内に配置され、Arプラズマ及び/又はXeプラズマを使用してスパッタリングされる。Coターゲットと他の元素のターゲットのそれぞれは、本明細書で説明されるシールドを使用して、プラズマに選択的に曝露することができる。選択的なターゲットの曝露は、二重層のCo中間層及び他の元素の中間層を形成して、結果として得られる二重層を形成する。図2Cで示されているように、中間層の堆積は、第1のピンニング層208の1以上の二重層を形成するために、複数の反復で、動作134において繰り返されてよい。
[0038] PVDチャンバ内でAr、Kr、又はXeプラズマを使用して、Ru、Cr、Rh、又はIrのターゲットをスパッタリングすることによって、動作136において、第1のピンニング層108上にSyF結合層110が堆積される。図2Aで示されているような本開示の実施形態によるSyF結合層210の一実施例では、SyF結合層210が、Ru、Cr、Rh、又はIrのスパッタリングターゲットを使用して、動作136においてPVDチャンバ内で堆積される。動作136でSyF結合層210を形成する一実施例では、Kr又はXeをプラズマガスとして使用して、PVDチャンバ内でIrスパッタリングターゲットがスパッタリングされる。そこからプラズマが生成されるところのXeガス又はKrガスは、10sccmから25sccmの流量で、幾つかの実施例では、16sccmの流量で、PVDチャンバの中に導入される。動作136でSyF結合層210を形成する別の一実施例では、PVDチャンバ内で、Arプラズマを使用して、Ruスパッタリングターゲットがスパッタリングされる。Ruターゲットをスパッタリングするためのプラズマを生成するために使用されるArガスは、例えば、2sccmから10sccmであってよいガス流量でPVDチャンバに導入され、幾つかの実施例では、Arガスの流量が6sccmである。更に、動作136における一実施例では、Kr、Xe、又はArガスの何れかがPVDチャンバ内で使用されるときに、150Wと300Wの間の電力が負電圧でターゲットに印加されて、Kr、Xe、又はArプラズマを生成し、維持する。他の実施例では、約250Wの電力が、ターゲットに印加される。SyF結合層210は、動作136において、第1のピンニング層208の格子整合層と接触するように堆積される。
[0039] 第2のピンニング層112は、動作138において、PVDチャンバ内でSyF結合層110上に堆積される。一実施例では、第2のピンニング層112が、PVDチャンバ内でCoターゲット及びArプラズマを使用してCoから形成される。別の一実施例では、第2のピンニング層112が、二重層を含み、二重層と接触するように形成されたCo層を含んでも含まなくてもよい。この実施例では、第2のピンニング層112が、Coスパッタリングターゲット及び第2の金属のスパッタリングターゲットを使用して、PVDチャンバ内で形成され、シールドが調整されて、Coと第2の金属のスパッタリングターゲットのそれぞれを、少なくとも1回の反復において別々に露出させて、第2のピンニング層112の1以上の二重層を形成する。他の実施例では、第2のピンニング層112の二重層の各層が、異なるPVDチャンバ内で形成されてよい。その場合、1つのPVDチャンバは、Coスパッタリングターゲットを含み、別のPVDチャンバは、第2の金属のスパッタリングターゲットを含む。
[0040] 図2A及び図2Dで示されているような本開示の実施形態による第2のピンニング層212の一実施例では、第2のピンニング層212が、スパッタリングされるターゲット材料に応じて、Arプラズマ及び/又はXeプラズマを使用して、動作138において、PVDチャンバ内で堆積される。本開示の一実施形態では、XeプラズマでPtターゲットをスパッタリングすることによって、Ptの格子整合層がSyF結合層210上に堆積される動作138において、第2のピンニング層212が製造される。一実施形態では、第2のピンニング層212が、Coの第1の中間層と、Pt、Ni、又はPdの第2の中間層と、を含む二重層を更に含む。二重層は、第2のピンニング層212の格子整合層上に形成される。
[0041] 少なくとも1つの二重層が第2のピンニング層の一部分として形成される一実施例では、二重層が、二重層の第1の中間層を形成するためのCoスパッタリングターゲットと、二重層の第2の中間層を形成するための第2の金属のスパッタリングターゲットとを使用して、PVDチャンバ内で形成される。第2のスパッタリングターゲットは、Pt、Pd、又はNiから形成されてよい。別の一実施例では、第2のスパッタリングターゲットが、Pt、Pd、又はNiのうちの1以上を含む合金から形成されてよく、シールドを調整して、Coスパッタリングターゲットと第2の金属のスパッタリングターゲットとのそれぞれを、少なくとも1回の反復において別々に露出させて、第2のピンニング層212の1以上の二重層を形成する。Ptのような金属が第2のピンニング層212を形成するために使用されるときに、Xeを第2のピンニング層212の堆積に使用することができる。というのも、XeはArより重いガスであり、したがって、PVDチャンバ内でのスパッタリングプロセス中に、Ptを含むより重い金属とより効果的に相互作用することができるからである。一実施形態では、第2のピンニング層212が、少なくとも1つの二重層の上に形成されたCo層を更に含む。少なくとも1つの二重層の上に形成されたCo層は、最大10Åまでの厚さを有してよい。一実施形態では、第2のピンニング層212が、0.3nmから15nmの全体的な厚さを有してよい。PVDチャンバ内でプラズマを生成するためにXeガスが使用される一実施形態では、Xeガスが、約2sccmから約40sccm、又は5sccmから20sccmの流量でPVDチャンバの中に導入され、幾つかの実施形態では、Xeガスが、約10sccmの流量でPVDチャンバの中に導入される。第2のピンニング層212の形成中に、50Wから約1000Wの電力が、負電圧でターゲットに印加されて、Ar及び/又はXeプラズマを生成し、維持する。幾つかの実施例では、100Wから600Wの電力が、負電圧でターゲットに印加されて、Ar及び/又はXeプラズマを生成し、維持し、幾つかの実施形態では、約200Wの電力が、負電圧でターゲットに印加される。
[0042] 構造ブロッキング層114が、動作140で、PDVチャンバ内に形成される。そのチャンバは、構造ブロッキング層114の意図された組成に応じて、Ta、Mo、及び/又はWを含むスパッタリングターゲットを含む。Ta、Mo、及びWのうちの2以上のスパッタリングターゲットが使用されるときに、各ターゲットは、個別のPVDチャンバ内で使用されてよく、又は、2以上のスパッタリングターゲットは、構造ブロッキング層114の意図された組成に応じて、上述のシールド調整を使用して、PVDチャンバ内で連続的に又は同時にスパッタリングされてもよい。続いて、磁気基準層116が、動作142において、構造ブロッキング層114上に堆積され、MTJ積層体100Aの他の層も形成され得るPVDチャンバ内で形成されてよい。これは、例えば、緩衝層104と磁気基準層116の両方が、CoxFeyBzベースである場合、緩衝層104などの他の層の組成に依存し得る。磁気基準層116は、CoxFeyBz合金であるスパッタリングターゲットを使用して、PVDチャンバ内で形成されてよい。他の実施例では、磁気基準層116が、Co、Fe、若しくはBの個々のスパッタリングターゲットを使用して、又は、合金スパッタリングターゲットと単一元素のスパッタリングターゲット(例えば、CoFeターゲットとBターゲット)の組み合わせによって、堆積されてよい。
[0043] トンネルバリア層118は、動作144において、磁気基準層116上に堆積される。動作144の一実施例では、トンネルバリア層118が、MgOなどの金属-酸化物ターゲット及びArガスベースのプラズマを使用して、PVDチャンバ内で形成される。代替的な一実施形態では、トンネルバリア層118が、動作144において、トンネルバリア層118の金属‐酸化物を形成するために、O2がPVDチャンバ内に存在する間に、Mg、Ti、Hf、Ta、又はAlなどの金属ターゲット、及びArガスベースのプラズマを使用して、PVDチャンバ内で形成される。動作146では、磁気記憶層120が、PVDチャンバ内で形成される。磁気記憶層120の形成は、意図された組成に応じて様々なやり方で行われ得る。磁気記憶層120は、CoxFeyBzの1以上の層、及び、幾つかの実施例では、Ta、Mo、W、又はHfの1以上の層を含んでよい。したがって、PVDチャンバ内での磁気記憶層120の堆積は、Arプラズマと、CoxFeyBz合金ターゲット、若しくはCo、Fe、及びBの個々のターゲット、又はCoFeターゲット及びBターゲットなどの合金ターゲット及び元素ターゲットの組み合わせを含んでよい。磁気記憶層120がTa、Mo、W、又はHfを含む実施例では、Ta、Mo、W、又はHfのスパッタリングターゲットが、Arから生成されたプラズマを使用して、チャンバ内でスパッタリングされる。
[0044] 一実施例では、磁気記憶層120が、Arプラズマを使用して単一のPVDチャンバ内で形成されてよい。磁気記憶層120は、CoxFeyBz及びTa、Mo、W、又はHfの層を形成するために使用される上述のものなどの1以上のターゲットを露出又は保護するようにシールドを調整することによって、堆積されてよい。別の一実施例では、磁気記憶層120のCoxFeyBz層が、Arプラズマを使用して、CoxFeyBz合金ターゲットを使用して、PVDチャンバ内でスパッタリングされる。別の一実施例では、CoxFeyBz層が、個々のCo、Fe、及びBターゲット並びにArガスベースのプラズマを使用して、PVDチャンバ内で形成される。更に別の一実施例では、CoxFeyBz層が、Arガスベースのプラズマと、合金ターゲット及び化合物元素ターゲット(例えば、CoFeターゲット及びBターゲット)とを使用して、PVDチャンバ内で形成される。磁気記憶層120のTa、Mo、W、又はHf層は、Taターゲット、Moターゲット、Wターゲット、又はHfターゲットを使用して、PVDチャンバ内でスパッタリングされてよい。
[0045] 動作148では、キャッピング層122が、磁気記憶層120上に堆積される。一実施形態では、キャッピング層222の第1のキャッピング中間層122Aが、酸化物層が形成されるときに、動作148中で、Arプラズマ及びO2の両方がPVDチャンバ内に存在するため、非酸化物層が形成されるPVDチャンバとは異なり得るPVDチャンバ内で形成される。第1のキャッピング中間層122Aは、Arプラズマを使用して、Mgターゲットをスパッタリングすることによって、PVDチャンバ内で堆積され、O2もまたPVDチャンバ内に存在する。動作148における別の一実施例では、第1のキャッピング中間層122Aが、MgOスパッタターゲット及びArプラズマを使用して、PVDチャンバ内で形成される。第1のキャッピング中間層122Aが、トンネルバリア層118と同じ材料(例えば、Mg)から形成される一実施例では、動作144に使用されるPVDチャンバが、第1のキャッピング中間層122Aを形成するために動作148で使用されるのと同じPVDチャンバであってよい。第2のキャッピング中間層122Bが、動作150において、第1のキャッピング中間層122A上に堆積される。動作148においてO2が使用される場合、動作150は、第1のキャッピング中間層122Aをスパッタリングするために使用されたものとは別の異なるPVDチャンバ内で行われてよい。というのも、第1のキャッピング中間層122Aを形成するために、PVDチャンバ内で使用されるO2が存在しないからである。第2のキャッピング中間層122Bは、Arプラズマと、Ru、Ir、及び/又はTaから成る1以上のスパッタリングターゲットとを使用して、PVDチャンバ内で形成される。第2のキャッピング中間層122Bの組成に応じて、動作150は、例えば、動作136でSyF結合層110を形成するためにも使用されるPVDチャンバ内で行われてよい。
[0046] 更に、方法100Bでは、動作152において、ハードマスク層124が、PVDチャンバ内で、第2のキャッピング中間層122Bの上に堆積される。MTJ積層体100Aで使用されるハードマスク層124の種類に応じて、動作152は、O2の存在下で又はO2が存在しない状態で行われてよい。例えば、ハードマスク層124が、金属-酸化物ハードマスクである場合、動作152中に、金属-酸化物層を形成するために1以上の金属スパッタリングターゲットと共にO2及びArベースのプラズマを使用することができ、或いは、ハードマスク層124を堆積させるために金属-酸化物スパッタリングターゲットを使用することができ、この場合、動作150でハードマスク層124を形成するためにO2を使用しない。ハードマスク層124がアモルファスカーボン又はスピンオンカーボンである幾つかの実施形態では、動作152が、CVDチャンバ又はスピンオン堆積チャンバ内で行われる。
[0047] 更に、方法100Bでは、動作128A〜152で形成されたMTJ積層体100A(又は図2Aにおいて以下で示されるMTJ積層体200)は、方法100Bの動作154によって集合的に示されている1以上のプロセスを受けてよい。これらの動作には、高温(摂氏400度のオーダー)動作を含めることができる。一実施例では、動作154におけるプロセスが、予パターニングアニール動作(pre-patterning anneal operation)を含んでよく、それに続いて、MTJパターニング動作が行われる。代替的な一実施形態では、動作154におけるMTJパターニングが、ハードマスク層124をパターニングするなどの複数のプロセスを含んでよく、ハードマスク層124がパターニングされた後に、パターニングされたハードマスク層をエッチングマスクとして使用して、MTJ積層体100Aをエッチングして、MTJ積層体100Aから複数の個別のピラーを形成する動作を更に含んでよい。
[0048] 動作154における代替的な一実施形態では、MTJ積層体100A内の(1以上の)磁気記憶層及び(1以上の)磁気基準層を含む、膜積層体の格子構造を、修復、圧縮、及び強化するために、熱アニーリング動作が実行される。動作154で実行される熱アニーリングは、少なくとも(1以上の)磁気基準層116及び(1以上の)磁気記憶層120の材料を更に結晶化させるように作用することができる。これらの層の堆積時の(1以上の)磁気基準層及び(1以上の)磁気記憶層の結晶化は、所望の電気的及び機械的特性を維持しながら、MTJ積層体100Aの垂直異方性を確立する。方法100Bの動作の後で製造されるMTJ積層体の実施形態が、以下で図示され、説明される。それらの実施形態は、動作154で実行される熱アニーリング動作の後、及び/又は、摂氏400度のオーダーの高温で行われる追加の又は代替的なバックエンド処理動作の間、ピンニング層の堆積したままの面心立法(fcc)<111>結晶構造を維持するように構成されている。本開示の実施形態に従って製造されたMTJ積層体は、第1のピンニング層と第2のピンニング層との間にSyF結合層を含む。一実施形態では、第1のピンニング層が第1の格子整合層を含み、第2のピンニング層が第2の格子整合層を含み、第1の格子整合層と第2の格子整合層のそれぞれは、プラチナ(Pt)又はパラジウム(Pd)から形成されている。第1のピンニング層の第1の格子整合層と第2のピンニング層の第2の格子整合層は、本明細書でそのように称される。その理由は、少なくとも部分的に、第1の格子整合層と第2の格子整合層のそれぞれがそれらから製造されるところの材料が、SyF結合層が製造されるところの材料の約+/−4%以内の格子定数を有するように選択されるからである。SyF結合層は、第1のピンニング層の第1の格子整合層と第2のピンニング層の第2の格子整合層のそれぞれと接触している。これは、SyF結合層が、第1ピンニング層のCo層と第2ピンニング層のCo層とに接触している他のMTJ積層体と対照的である。
[0049] 一実施形態では、第1のピンニング層及び/又は第2のピンニング層のそれぞれが、それぞれの格子整合層と接触するように形成された少なくとも1つの二重層を更に含む。一実施例では、第1のピンニング層からの第1の格子整合層と第2のピンニング層からの第2の格子整合層のそれぞれが、SyF結合層と接触しており、SyF結合層はIrから形成されている。各二重層は、第1の中間層及び第2の中間層を含む。第1のピンニング層の一実施例では、第1のピンニング層が、第1の格子整合層及び二重層を含み、二重層が、Coの第1の中間層及びNiの第2の中間層を含む。第1のピンニング層の別の一実施例では、第1のピンニング層が、第1の格子整合層を含み、少なくとも1つの二重層が、Coの第1の中間層及びPtの第2の中間層を含む。第1のピンニング層の別の一実施例では、第1のピンニング層が、第1の格子整合層を含み、少なくとも1つの二重層が、Coの第1の中間層及びPdの第2の中間層を含む。第2のピンニング層の一実施例では、第2のピンニング層が、第2の格子整合層及び二重層を含み、二重層が、Coの第1の中間層及びPtの第2の中間層を含む。別の一実施例では、第2のピンニング層が、第2の格子整合層及び二重層を含み、二重層が、Coの第1の中間層及びPdの第2の中間層を含む。別の一実施例では、第2のピンニング層が、第2の格子整合層及び二重層を含み、二重層が、Coの第1の中間層及びNiの第2の中間層を含む。第2の格子整合層は、Irを含むSyF結合層と接触している。更に、第2のピンニング層の一実施例では、Co層が、1以上の二重層の上に形成され、構造ブロッキング層と接触している。
[0050] 実施形態に応じて、第1のピンニング層と第2のピンニング層は、それぞれ、同じ層構造、材料、及び/又は厚さを含んでよく、或いは、層構造、材料、及び/又は厚さが異なってよい。本明細書で説明されるMTJ積層体を使用する場合、第1のピンニング層とSyF結合層との間、及び、SyF結合層と第2のピンニング層との間に、改善された格子整合が存在する。改善された格子整合は、後述するように、双極子場が磁気記憶層に及ぼす影響を低減させる。本明細書で説明される格子整合は、第1のピンニング層、第2のピンニング層、及びSyF結合層を含む、層を製造することを含む。そのようにして、本明細書で格子不整合と呼ばれる第1のピンニング層とSyF結合層との間の格子定数の差異、同様に、第2のピンニング層とSyF結合層との間の格子不整合が低減される。格子不整合は式(1)で規定される。すなわち、
LM=[(a1-a2)/a1]x100 (1)
[0051] 式(1)では、a1が第1の材料の格子定数であり、a2が第2の材料の格子定数である。本開示の実施形態では、MTJ積層体のSyF結合層と第1のピンニング層との間の格子不整合は、約+/−4%未満であり、SyF結合層と第2のピンニング層との間の格子不整合は、約+/−4%未満である。
[0052] 更に、本明細書で説明されるMTJ積層体では、第1のピンニング層と第2のピンニング層のそれぞれが、少なくとも1つの二重層を含むときに、第1のピンニング層と第2のピンニング層の各二重層の中間層の厚さの比率を調整して、磁場が印加されているときに積層体への双極子場の影響を低減させることができる。本明細書で説明される厚さの比率は、2つ以上の二重層が使用される場合、ピンニング層内の各二重層について計算されてよい。他の実施例では、厚さの比率が、二重層にわたる平均として計算されてよい。それによって、ピンニング層についての厚さの比率は、ピンニング層の二重層にわたる第1の中間層の厚さの平均と第2の中間層の厚さの平均を使用して計算される。厚さの比率は、以下で詳細に説明され、それは、ピンニング層の二重層の第1の中間層の厚さとピンニング層の二重層の第2の中間層の厚さの計算である。本明細書で説明されるMTJ積層体を使用する場合、SyF結合層の結晶構造、及び磁気基準層と磁気記憶層との磁気的な結合は、アニーリング後であっても、堆積したままの状態と実質的に同じに維持される。例えば、本明細書で説明されるMTJ積層体は、0.5時間から少なくとも3時間の期間だけ摂氏約400度であってよく、したがって、MTJ積層体の磁気特性及び電気特性が維持される。
[0053] 図2Aは、本開示の一実施形態による、MTJ積層体200の概略図である。図示されている実施形態では、緩衝層204が、PVDチャンバ内でのスパッタリングを介して、基板202の導電性部分上又は基板202の導電性薄膜上に形成される。基板202は、タングステン(W)、窒化タンタル(TaN)、窒化チタン(Tin)、又は他の金属層のうちの1以上を含んでよい。緩衝層204は、シード層206の基板202への接着を改善する。シード層206の基板202への接着の改善は、MTJ積層体200の続いて堆積される層の形成及び性能において助けとなる。緩衝層204は、CoxFeyBz、Ta、及び/又はTaNを含み、Arプラズマを使用して、PVDチャンバ内での1以上のPVD堆積動作で形成される。一実施例では、緩衝層104が、ArプラズマとCoxFeyBz合金であるスパッタリングターゲットとを使用して、PVDチャンバ内で形成される。別の一実施例では、緩衝層104が、Co、Fe、又はBの個々のスパッタリングターゲットを使用して形成される。別の一実施例では、緩衝層104が、合金スパッタリングターゲットと単一元素のスパッタリングターゲットとの組み合わせ(例えば、CoFeターゲットとBターゲット)を使用して形成される。Ta層が緩衝層204内に含まれる一実施例では、Ta層が、Taターゲット及びArプラズマを使用してPVD層内で形成されてよい。
[0054] 一実施例では、緩衝層204が、TaNを含み、Taターゲット、Arプラズマ、及びN2を使用して、PVDチャンバ内で基板202上にスパッタリングされる。N2は、TaターゲットからスパッタリングされたTa材料と反応して、TaNの層を形成する。別の一実施例では、緩衝層204を形成するために、Arプラズマを有するPVDチャンバ内で、TaNスパッタリングターゲットが使用される。一実施例では、緩衝層204が、基板202上の導電層上に直接的に且つそれと接触するようにスパッタリングされる。他の実施例では、基板202上の導電層と緩衝層204との間に、MTJ積層体の性能に影響を及ぼさない導電性遷移層が存在する。緩衝層204は、図示されている実施形態では任意選択的に採用され、本明細書で説明される幾つかの実施形態では使用されないかもしれない。緩衝層204が採用されるときに、緩衝層204の全体的な厚さは、0Å(緩衝層を使用しない)から約60Åである。一実施例では、緩衝層204が、10Åまでの厚さの基板202上の導電層上に直接的に且つそれと接触するようにスパッタリングされる、Ta、TaN、又はCoxFeyBzの単一層である。別の一実施例では、緩衝層204が、2以上の層の組み合わせであり、緩衝層204の各層は、Ta、TaN、又はCoxFeyBzである。この実施例では、緩衝層204の各層が、1Åからから60Åの厚さを有してよい。緩衝層204がTaやCoxFeyBzの代わりにTaNから形成される一実施例では、緩衝層204が、20Åまでの厚さを有してよい。本明細書の他の実施例と組み合わされ得る別の一実施例では、緩衝層204を形成するために、CoxFeyBzのみが採用される。この実施例では、緩衝層204が、約10Åの厚さを有してよい。別の一実施例では、Ta又はTaNのうちの少なくとも一方が、CoxFeyBzと併せて採用され、緩衝層204を形成する。この実施例では、緩衝層204の厚さが、約20Åである。
[0055] シード層206は、1以上のターゲットをスパッタリングすることによって、PVDチャンバ内で堆積される。シード層206は、緩衝層204上に堆積される。シード層206は、Cr又はPtを含む。PVDチャンバ内でのシード層206の形成は、動作132において詳細に上述された。一実施形態では、シード層206が、100Å以下の厚さを有する。本明細書の他の実施例と組み合わされ得る一実施例では、シード層206が、約30Åから約60Åの厚さを有する。一実施例では、シード層206が、緩衝層204上に直接的に且つそれと接触するように形成される。他の実施例では、シード層206と緩衝層204との間に、MTJ積層体の性能に影響を及ぼさない遷移層が存在する。
[0056] 更に、MTJ積層体200において、第1のピンニング層208が、PVDチャンバ内でシード層206上に形成される。第1のピンニング層208の形成は、図1Bの方法100Bの動作134で詳細に上述され、Ar又はXeプラズマと1以上のスパッタリングターゲットとを使用して、PVDチャンバ内で行われる。一実施例では、第1のピンニング層208が、様々な材料の1以上の二重層、及び1以上の二重層の上に形成された格子整合層として製造される。それによって、図2Cで示されているように、第1のピンニング層の格子整合層は、SyF結合層210と接触している。第1のピンニング層の格子整合層208は、Pt又はPdから形成されてよい。第1のピンニング層208は、Xeプラズマを使用して、Pt又はPdスパッタリングターゲットを使用して、1以上の二重層の上に堆積される。1以上の二重層が第1のピンニング層208内に含まれる一実施例では、各二重層が、Coの第1の中間層と別の元素又は合金の第2の中間層とを含む。第1のピンニング層208の少なくとも1つの二重層は、Arプラズマを使用してCoターゲットをスパッタリングし、続いて、Ar又はXeプラズマを使用して、Pt、Ni、若しくはPd、又はそれらの組み合わせ若しくは合金の第2のターゲットをスパッタリングすることによって形成される。第1のピンニング層208の二重層を形成するために、Coターゲットに加えてPtがスパッタリングされるターゲットである一実施例では、Arプラズマの代わりに又はArプラズマに加えて、Xeプラズマを使用することができる。第1のピンニング層を形成するために1以上の二重層が使用される一実施形態では、二重層のCoを含む第1の中間層を形成することによって、PVDチャンバ内で繰り返し堆積サイクルが実行されてよい。二重層の第1の中間層は、Coを含まないターゲットを遮蔽することによって形成されてよい。続いて、Coターゲット及び他のターゲットを遮蔽して、二重層の第2の中間層を堆積させるために使用される第2の元素を含む第2のターゲットを露出させる。第1の中間層と第2の中間層の堆積は、第1のピンニング層208の1以上の二重層を形成するために、反復する様式で繰り返されてよい。一実施例では、第1のピンニング層208が、シード層206上に直接的に且つシード層206と接触するように、PVDチャンバ内で形成される。他の実施例では、シード層206と第1のピンニング層208との間に、MTJ積層体の性能に影響を及ぼさない遷移層が存在する。
[0057] 合成反フェリ磁性(SyF)結合層210は、PVDチャンバ内で第1のピンニング層208上に堆積され、第2のピンニング層212は、SyF結合層210上にスパッタリング堆積される。SyF結合層210は、Ruスパッタリングターゲット、Rhスパッタリングターゲット、Crスパッタリングターゲット、又はIrスパッタリングターゲットを用いて、Kr又はXeプラズマを使用して、PVDチャンバ内で形成される。SyF結合層210は、約3Aから約10Aの厚さを有する。一実施形態では、第2のピンニング層212が、Ar又はXeプラズマを使用して、PVDチャンバ内のPtターゲット又はPdターゲットをスパッタリングすることによって製造され、SyF結合層210上に第2のピンニング層212の格子整合層を形成する。幾つかの実施例では、第2のピンニング層212が、格子整合層の上に形成された少なくとも1つの二重層を含む。第2のピンニング層212の少なくとも1つの二重層は、Coの第1の中間層と、Ni、Pd、若しくはPt、又はそれらの組み合わせ若しくは合金の第2の中間層とを含む。一実施例では、SyF結合層210が、第1のピンニング層208の格子整合層及び第2のピンニング層212の格子整合層上に直接的に且つそれらと接触するように形成される。他の実施例では、SyF結合層210と第1のピンニング層208又は第2のピンニング層212のうちの一方又は両方との間に、MTJ積層体の性能に影響を及ぼさない遷移層が存在する。
[0058] 第2のピンニング層212の形成は、上述の図1Bの方法100Bの動作138で説明されている。第2のピンニング層212は、SyF結合層210上に形成されたPt又はPdの格子整合層、並びに格子整合層の上に形成された1以上の二重層を含む。第2のピンニング層212の格子整合層は、Xeプラズマを使用してPtターゲット又はPdターゲットをスパッタリングすることによって、3Åまでの厚さに形成されてよい。1以上の二重層が第2のピンニング層212内に含まれる一実施例では、第1の二重層が、格子整合層上に形成され、Coの第1の中間層と、Pd、Ni、若しくはPt、又はそれらの組み合わせ若しくは合金などの別の元素の第2の中間層とを含む。二重層は、Arプラズマを使用してCoターゲットをスパッタリングし、続いてXe又はArプラズマを使用して、Pt、Ni、若しくはPd、又はそれらの組み合わせ若しくは合金の第2ターゲットをスパッタリングすることによって形成される。一実施形態では、Coターゲット及び第2のターゲットを使用して、PVDチャンバ内での第1の中間層及び第2の中間層の繰り返し堆積サイクルを使用して、第2のピンニング層212の1以上の二重層を形成することができる。第2のピンニング層212の各二重層の厚さは、約4Åから約15Åであってよい。一実施例では、第2のピンニング層212の厚さが、約0.3nmから15nmである。第2のピンニング層212の代替的な構成が、図2Dで示されている。
[0059] 第1のピンニング層208と第2のピンニング層が、それぞれ、1以上の二重層を含む一実施形態では、各ピンニング層について厚さの比率が規定され得る。本明細書で説明される厚さの比率は、各ピンニング層の1以上の二重層の中間層の厚さの比率である。本明細書で説明される厚さの比率は、(X:Y)zとして表すことができる。ここで、XはCoを含む第1の中間層の厚さであり、YはPt、Ni、若しくはPd、又はPt、Ni、及び/若しくはPdの合金の第2の中間層の厚さであり、zは厚さの比率に関連付けられた層を示し、例えば、厚さの比率が第1のピンニング層208についてのものであるか、又は第2のピンニング層212についてのものであるかを示す。一実施例では、第1のピンニング層208の第1の中間層が、1Åから8Åの厚さを有し、第1のピンニング層208の第2の中間層が、1Åから8Åの厚さを有する。別の一実施例では、第2のピンニング層212の第1の中間層が、1Åから8Åの厚さを有し、第2のピンニング層212の第2の中間層が、1Åから8Åの厚さを有する。この実施例では、第1のピンニング層208の厚さの比率[(Co:Y)208]が、第2のピンニング層212の厚さの比率[(Co:Y)212]より大きい。
[0060] MTJ積層体200の製造の後に、MTJ積層体200をエッチングすることを含む動作を、MRAMデバイス製造の一部分として実行することができる。エッチング後、磁場がMRAMデバイスに印加されると、磁気双極子場が、第1のピンニング層208から磁気記憶層220(後述する)まで生成される。双極子場は、磁気記憶層220を含むMTJ積層体200の層の性能に悪影響を及ぼす可能性がある。第2のピンニング層212は、MTJ積層体200内の第1のピンニング層208よりも磁気記憶層220に近いので、第1のピンニング層208の厚さの比率は、第2のピンニング層212の厚さの比率よりも大きい。それは、磁気記憶層220が受ける双極子場を最小化する。したがって、第1のピンニング層208の磁気材料含有量を、第2のピンニング層212の磁気材料含有量と比較して増加させることによって、磁気記憶層220が受ける双極子場が低減される。第1のピンニング層又は第2のピンニング層の磁気材料含有量は、磁場の印加に応じて磁化を保持することができるCo又はNiなどの材料の量である。これは、これもまた1以上のピンニング層を形成するために使用することができる、Pt又はPdなどの材料とは対照的である。一実施例では、第1のピンニング層の厚さの比率(Co:Y)208は、1:1から8:1であってよく、第2のピンニング層の厚さの比率(Co:Y)212は、1:1から8:8であってよい。この実施例では、MTJ積層体200が、8:1の厚さの比率(Co:Y)208を有する第1のピンニング層208と、8:8の厚さの比率(Co:Y)212を有する第2のピンニング層212とを含む。別の一実施例では、MTJ積層体200が、8:3の厚さの比率(Co:Y)208を有する第1のピンニング層208と、3:7の厚さの比率(Co:Y)212を有する第2のピンニング層212とを含む。他の実施例では、比率(Co:Y)208及び(Co:Y)212は、[(Co:Y)208>(Co:Y)212]で、更に変更することができる。YがNiなどの磁気材料であるときに、厚さの比率は、実施形態に応じて更に調整されてよく、及び/又は、第1のピンニング層208を形成するために使用される二重層の数よりも少ない数の二重層を使用して、第2のピンニング層212を形成することができる。幾つかの実施例では、第2のピンニング層212が、二重層を含まない。
[0061] 更に、MTJ積層体200では、構造ブロッキング層214が、任意選択的に、PVDチャンバ内での材料のスパッタリングによって第2のピンニング層212上に形成される。構造ブロッキング層214は、MTJ積層体200と、MRAMメモリセルを形成するためにMTJ積層体200に接続され得る金属接点と、の間の短絡の形成を防止する。一実施例では、PVDチャンバ内での構造ブロッキング層214の堆積中に、層の意図される組成に応じて、1以上の個々のTa、Mo、又はWのスパッタリングターゲットが、Arプラズマを使用してPVDチャンバ内でスパッタリングされてよい。別の一実施例では、PVDチャンバ内での構造ブロッキング層214の堆積中に、Ta、Mo、及び/又はWの合金を含む1以上の合金ターゲットが、Arプラズマを使用してPVDチャンバ内でスパッタリングされてよい。構造ブロッキング層214は、<100>方向に配向された体心立方(bcc)構造であり、それぞれが面心立方<111>方向に配向され得るシード層206並びに第1のピンニング層208及び第2のピンニング層212とは対照的である。構造ブロッキング層214は、0(層なし)Åから約8Åの厚さを有し、一実施例では、4Åの厚さがスパッタリング堆積される。一実施例では、構造ブロッキング層214が、スパッタリング堆積によって、第2のピンニング層212上に直接的に且つそれと接触するように形成される。他の実施例では、構造ブロッキング層214と第2のピンニング層212との間に、MTJ積層体の性能に影響を及ぼさない遷移層が存在する。
[0062] 磁気基準層216は、Arプラズマを使用して、PVDチャンバ内でスパッタリング堆積されることによって、構造ブロッキング層214上に形成される。磁気基準層216は、単一のCo−Fe−B合金スパッタリングターゲットを使用して、又は、Coスパッタリングターゲット、Feスパッタリングターゲット、若しくはBスパッタリングターゲットのうちの2以上を使用することによって、PVDチャンバ内で形成されてよい。別の一実施例では、磁気基準層216が、Arプラズマ並びにCoFeターゲット及びBターゲットなどの合金ターゲット及び元素ターゲットを使用して、PVDチャンバ内で形成されてよい。磁気基準層216は、1Åから15Åの厚さにスパッタリングすることができ、一実施例では、10Åの厚さに形成することができる。磁気基準層216は、CoxFeyBzを含み、ここで、zは約10重量%から約40重量%であり、yは約20重量%から約60重量%であり、xは70重量%以下である。一実施形態では、zが少なくとも20重量%である。一実施例では、磁気基準層216が、構造ブロッキング層214上に直接的に且つそれと接触するように形成される。他の実施例では、磁気基準層216と構造ブロッキング層214との間に、MTJ積層体の性能に影響を及ぼさない遷移層が存在する。
[0063] トンネルバリア層218が、PVDチャンバ内でArプラズマ内でターゲットのスパッタリングを使用して、磁気基準層216上に形成される。トンネルバリア層218は、酸化マグネシウム(MgO)、二酸化ハフニウム(HfO2)、二酸化チタン(TiO2)、酸化タンタル(TaOx)、酸化アルミニウム(Al2O3:アルミナ)、又は様々な用途に適した他の材料などの金属-酸化物を含む。したがって、トンネルバリア層218は、Arプラズマ及び金属-酸化物のスパッタターゲットを使用して、PVDチャンバ内で形成されてよい。代替的に、トンネルバリア層218は、Arプラズマ及びO2並びに所望の金属-酸化物の金属スパッタリングターゲットを使用して、PVDチャンバ内で形成されてよい。ここで、金属スパッタリングターゲットからスパッタリングされた金属層がO2に暴露されると、金属酸化物層が形成される。トンネルバリア層218は、1Åから15Åの厚さを有し、幾つかの実施形態では、10Åの厚さを有する。一実施例では、トンネルバリア層218が、磁気基準層216上に直接的に且つそれと接触するように形成される。他の実施例では、トンネルバリア層218と磁気基準層216との間に、MTJ積層体の性能に影響を及ぼさない遷移層が存在する。
[0064] 一実施形態では、MTJ積層体200が、本明細書で説明されるように、PVDチャンバ内でスパッタリング動作を使用してトンネルバリア層218上に形成された磁気記憶層220を更に含む。磁気記憶層220は、CoxFeyBzの1以上の層、及び、幾つかの実施例では、Ta、Mo、W、又はHfの1以上の層を含んでよい。したがって、PVDチャンバ内での磁気記憶層220の堆積は、Arプラズマ、CoxFeyBz合金ターゲット、又はCo、Fe、及びBの個々のターゲット、或いは、CoFeターゲット及びBターゲットなどの合金ターゲット及び元素ターゲットの組み合わせを使用することを含んでよい。磁気記憶層220がTa、Mo、W、又はHfのうちの1以上から形成される実施例では、Ta、Mo、W、又はHfのスパッタリングターゲットが、Arから生成されたプラズマを使用してチャンバ内でスパッタリングされる。
[0065] 磁気記憶層220は、磁気記憶層220を形成するために使用される1以上の材料を含む要因に応じて、約5Åから約20Åの厚さを有する。一実施例では、磁気記憶層が、CoxFeyBzから製造されており、ここで、zは約10重量%から約40重量%であり、yは約20重量%から約60重量%であり、xは70重量%以下である。この一実施例では、磁気記憶層220の厚さが、約5Åから40Åである。別の一実施例では、磁気記憶層220の厚さが、約20Åである。一実施例では、磁気記憶層220が、トンネルバリア層218上に直接的に且つそれと接触するように形成される。他の実施例では、磁気記憶層220とトンネルバリア層218との間に、MTJ積層体の性能に影響を及ぼさない遷移層が存在する。磁気記憶層は、以下の図2Eで示されている。
[0066] 更に、MTJ積層体200の一実施形態では、キャッピング層222が、磁気記憶層220上に形成され、鉄(Fe)を含有する酸化物を含む、キャッピング層222を形成する複数の中間層を含む。加えて、幾つかの実施形態では、ハードマスク層224が、キャッピング層222上に直接的に且つそれと接触するように形成される。別の一実施例では、ハードマスク層224が、キャッピング層222とハードマスク層224との間に遷移層を有する状態で、キャッピング層222上に形成され、そのような遷移層は、MTJ積層体200の性能に影響を及ぼさない。ハードマスク層224は、金属-酸化物、アモルファスカーボン、セラミック、金属材料、又はそれらの組み合わせから形成されてよい。一実施例では、磁気記憶層220が、キャッピング層222上に直接的に且つそれと接触するように形成される。他の実施例では、磁気記憶層220とキャッピング層222との間に、MTJ積層体200の性能に影響を及ぼさない遷移層が存在する。キャッピング層222は、以下の図2Fで示されている。
[0067] 図2Bは、本開示の実施形態による、緩衝層204の拡大図である。緩衝層204は、タンタル(Ta)又はTaNから形成されてよい。他の実施例と組み合わされ得る別の一実施例では、緩衝層204が、Ta及びTaNの層状積層体を含む。本明細書の実施例と組み合わされ得る他の実施例では、緩衝層204が、CoxFeyBzを、単独で、又はTa、TaN、若しくはTa/TaN層状積層体と組み合わせて含む。緩衝層204の一実施例では、緩衝層204が、少なくとも1つの二重層204Dを含む。少なくとも1つの二重層204Dは、少なくとも1つの二重層204Dの少なくとも1回の反復で、基板202上に交互様式で形成された第1の緩衝中間層204A及び第2の緩衝中間層204Bを含む。この実施例では、第1の緩衝中間層204AがTaから形成され、第2の緩衝中間層204BがTaNから形成され、第1の緩衝中間層204Aが基板202と接触している。別の一実施例では、第1の緩衝中間層204AがTaNから形成され、第2の緩衝中間層204BがTaから形成され、したがって、TaNが基板202と直接接触している。
[0068] 緩衝層204の他の実施例では、図2Aで示されるように、CoxFeyBzが、緩衝層204に単独で使用され、したがって、基板202と直接接触するだろう。別の一実施例では、図2Bで示されているように、第3の緩衝層204Cが、少なくとも1つの二重層204Dの上に形成される。この実施例では、第3の緩衝層204Cは、CoxFeyBzから製造され、10Åまでの厚さを有するように形成される。したがって、緩衝層204の構成に応じて、緩衝層204の厚さは、1Åから60Åの範囲内である。一実施例では、第3の緩衝層204C(CoxFeyBz)が採用され、zは約10重量%から約40重量%であり、yは約20重量%から約60重量%であり、xは70重量%以下である。
[0069] 図2Cは、本開示の一実施形態による、第1のピンニング層208の拡大図である。一実施形態では、第1のピンニング層208が、少なくとも1つの二重層230から製造され、2つ以上の二重層が採用されるときに、それらの2つ以上の二重層は、二重層積層体234を形成すると言うことができる。各二重層230は、第1の中間層208A及び第2の中間層208Bから製造される。第1のピンニング層208の二重層は、(X/Y)n、(208A/208B)nとして表され、ここで、各二重層は、第1の材料Xと第2の異なる材料Yとの組み合わせであり、nは、第1のピンニング層208内の二重層の数である。一実施形態では、XがCoであり、YがPt、Ni、又はPdのうちの1つである。図2Cの実施例では、n=4であるが、代替的な実施形態では、nが、1から10である。一実施形態では、少なくとも1つの二重層230が、約2Åから約16Åの厚さを有する。一実施例では、第1の中間層208Aが、Co層から形成され、約1Åから約8Åの厚さを有する。第2の中間層208Bは、Pt、Pd、若しくはNi、又はこれらの組み合わせ若しくは合金から形成されてよく、約1Åから約8Åの厚さを有する。第1のピンニング層208の更に別の一実施形態では、少なくとも1つの二重層230が、シード層206上に直接的に且つそれと接触するように形成され、格子整合層208Cが、少なくとも1つの二重層230の頂部の上に形成される。図2AのMTJ積層体200のようなMTJ積層体では、格子整合層208Cが、SyF結合層210と接触している。一実施形態では、格子整合層208Cが、1Åから3Åの厚さを有する。この実施例では、格子整合層208CがPtであり、別の一実施例では、格子整合層208CがPdである。実施形態に応じて、格子整合層208C及び幾つかの実施例では少なくとも1つの二重層230を含む1以上の層を含み得る第1のピンニング層208の全体的な厚さは、1nmから約18nmである。他の実施例では、第1のピンニング層208とシード層206との間に、MTJ積層体の特性に悪影響を及ぼさない1以上の遷移層が形成されてよい。
[0070] 図2Dは、本開示の実施形態による、第2のピンニング層212の拡大図である。一実施形態では、第2のピンニング層212が、格子整合層212Aから製造され、格子整合層212Aが、SyF結合層210上に且つそれと接触するように形成される。一実施形態では、格子整合層212Aが、1Åから3Åの厚さを有するPt又はPdの層を含む。第2のピンニング層212の一実施例では、少なくとも1つの二重層232が、格子整合層212Aの上に形成される。各二重層232は、Coであってよい第1の中間層212Bと、Pt、Ni、若しくはPd、又はそれらの組み合わせ若しくは合金であってよい第2の中間層212Cとを含む。二重層232などの2つ以上の二重層が、第2のピンニング層212内に採用されたときに、2つ以上の二重層は、二重層積層体236と称され得る。したがって、図1Bで示されているように、1以上の二重層が動作138で堆積されるときに、個別のスパッタリングターゲットを使用して、二重層230の第1の中間層208A及び第2の中間層208Bのそれぞれを形成することができる。第2のピンニング層212の少なくとも1つの二重層232は、(X/Y)n、(212A/212B)nとして表され、ここで、nは二重層の数である。図2Dでは、n=4であるが、代替的な実施形態では、nは1から5である。一実施形態では、少なくとも1つの二重層232が、約2Åから約16Åの全体的な厚さを有する。一実施例では、第1の中間層212Bが、約1Åから約8Åの厚さを有するCo層であり、第2の中間層212Cが、約1Åから約8Åの厚さを有する。様々な実施形態では、第2の中間層212Cが、Ni、Pt、若しくはPd、又はこれらの組み合わせ若しくは合金を含む。
[0071] 更に別の一実施形態では、第2のピンニング層212が、少なくとも1つの二重層232の頂部の上に形成されたCoの上層212Dを含む。第2のピンニング層212の他の実施例では、上層212Dが存在しない。図2Dで示されていない別の一実施例では、Coの上層212Dが、格子整合層212A上に形成される。一実施形態では、上層212Dが、約1Åから約10Åの厚さを有する。実施形態に応じて、第2のピンニング層212の全体的な厚さは、0.3nmから約15nmである。第2のピンニング層212は、本明細書で説明されるように、少なくとも1つの二重層232を含む1以上の層を含んでよい。幾つかの実施例では、少なくとも1つの二重層232と第2のピンニング層212との間に遷移層が採用されてよい。他の実施例では、少なくとも1つの二重層232とSyF結合層210との間に遷移層が形成されてよい。他の実施例では、少なくとも1つの二重層232と第2のピンニング層212との間、及び、少なくとも1つの二重層232とSAF結合層210との間に遷移層が形成されてよい。そのような遷移層(複数可)は、MTJ積層体の性能に影響を及ぼさない。
[0072] 一実施形態では、第1のピンニング層208と第2のピンニング層212が、それぞれ、同じ中間層の組成及び/又は異なる中間層の厚さを含む。代替的な一実施形態では、第1のピンニング層208と第2のピンニング層212は、それぞれ、異なる組成及び/又は厚さを含む。一実施形態では、第1のピンニング層208が、Coの第1の中間層及びPtの第2の中間層を含む、少なくとも1つの二重層を含み、少なくとも1つの二重層の上に形成されたPt又はPdの第1の格子整合層を更に含む。第1のピンニング層208の第1の格子整合層は、Irから形成されたSyF結合層210と接触している。この実施例では、第2のピンニング層212が、SyF結合層210の上に形成され、SyF結合層210と接触するように形成されたPt又はPdの第2の格子整合層を含む。幾つかの実施例では、第2のピンニング層212が、第2の格子整合層の上に形成された1以上の二重層を更に含む。一実施形態では、第2のピンニング層212の1以上の二重層が、Coの第1の中間層及びPtの第2の中間層を含む。別の一実施例では、第1のピンニング層208が、Coの第1の中間層及びNiの第2の中間層を含む、少なくとも1つの二重層を含み、更に、第1の格子整合層がIrから形成されたSyF結合層210と接触するように、少なくとも1つの二重層の上に形成されたPt又はPdの第1の格子整合層を含む。この実施例では、第2のピンニング層212が、SyF結合層210と接触するように形成されたPt又はPdの第2の格子整合層を含み、任意選択的に、第2の格子整合層の上に形成された1以上の二重層を含む。この実施例では、第2のピンニング層212の1以上の二重層が、Coの第1の中間層及びPtの第2の中間層を含む。
[0073] 図2Eは、本開示の実施形態による、例示的な磁気記憶層220の拡大図である。図2Eで示されているように、磁気記憶層220の第1の磁性層220Aと磁気記憶層220の第2の磁性層220Bは、それぞれ、CoxFeyBzから製造される。Ta、Mo、W、Hf、又はそれらの組み合わせから製造された第3の層220Cが、それらの間に配置される。第3の層220Cは、ホウ素、酸素、又は他のドーパントなどのドーパントを含んでよい。したがって、磁気記憶層220は、3つの層、すなわち、第1の磁性層220A及び第2の磁性層220B、並びに第1の磁性層220Aと第2の磁性層220Bとの間に配置された第3の層220Cから製造される。第3の層220Cは、基板平面(例えば、基板202に垂直な平面)に垂直なピンニング(ピン止め)モーメントを強め、これは、磁気異方性、すなわち構造の磁気特性の方向依存性を促進する。
[0074] 図2Fは、本開示の一実施形態による、例示的なキャッピング層222の拡大図である。キャッピング層222の全体的な厚さは、2Åから120Åであり、幾つかの実施形態では、キャッピング層(例えば、図2Fで示されているような全ての中間層)の全体的な所望の厚さは、約60Åである。一実施形態では、キャッピング層222が、複数の中間層を含む。第1のキャッピング中間層222Aは、磁気記憶層220上に直接的に形成されたMgO又は別の鉄含有酸化物から製造されて、約2Åから約10Åの厚さを有する。第1のキャッピング中間層222Aの頂部の上に、Ru、Ir、又はそれらの組み合わせの第2のキャッピング中間層222Bが、1Åから約30Åの厚さで形成される。一実施形態では、任意選択的に、第3のキャッピング中間層222Cが、第2のキャッピング中間層222B上に、1Åから約30Åの厚さで、Taから形成される。したがって、キャッピング層222の幾つかの実施形態は、第3のキャッピング中間層222Cを含まない。一実施形態では、任意選択的に、第2のキャッピング中間層222Dが、第3のキャッピング中間層222C上に形成され、Ru、Ir、又はそれらの組み合わせから50Åまでの厚さで形成される。様々な実施形態では、キャッピング層222が、第1のキャッピング層222Aのみ、若しくは第1のキャッピング中間層222A及び第2のキャッピング中間層222B、又は第1のキャッピング中間層222A、第2のキャッピング中間層222B、及び第3のキャッピング中間層222C、すなわち、第1、第2、及び第3のキャッピング層222A〜222Cを含む。幾つかの実施形態では、MTJ積層体の性能が(1以上の)遷移層によって悪影響を受けないように、遷移層が、第1のキャッピング中間層222A、第2のキャッピング中間層222B、及び第3のキャッピング中間層222Cのうちの幾つか又は全部の間で使用されてよく、或いは、キャッピング層222と磁気記憶層220との間にあってもよい。
[0075] 本明細書で説明されたMTJ積層体は、少なくとも、第1のピンニング層とSyF結合層との間の格子整合、及び第2のピンニング層とSyF結合層との間の格子整合のために、摂氏400度以上の温度で処理を受けた後の性能が改善された。SyF結合層と第1及び第2のピンニング層のそれぞれとの間の格子整合は、SyF結合層と第1のピンニング層との接触部分、及びSyF結合層と第2のピンニング層との接触部分における、粗さの形成を防止する。そのような粗さの形成は、MTJ積層体の性能に悪影響を及ぼす1以上の層における平坦性の欠如をもたらす。更に、第1のピンニング層と第2のピンニング層のそれぞれが二重層を含む一実施例では、第1のピンニング層と第2のピンニング層の各二重層の各中間層の厚さの比率を選択して、MTJ積層体に磁場が印加されたときの双極子場の影響を低減させることができる。したがって、本開示の実施形態に従って製造されたMTJ積層体は、高温処理の後で、構造的完全性、並びに望ましい磁気特性及び電気特性を維持することができる。
[0076] 上記は、本開示の実施形態に向けられているが、本開示の他の及び更なる実施形態が、本開示の基本的な範囲から逸脱することなく考案されてよく、本開示の範囲は、以下の特許請求の範囲によって規定される。

Claims (15)

  1. 磁気トンネル接合積層体を備えるデバイスであって、磁気トンネル接合積層体が、
    第1の二重層と、前記第1の二重層の上に形成されたプラチナ又はパラジウムを含む第1の格子整合層とを含む、第1のピンニング層、
    前記第1のピンニング層の前記第1の格子整合層と接触している合成反フェリ磁性結合層、及び
    前記合成反フェリ磁性結合層と接触している第2のピンニング層であって、前記合成反フェリ磁性結合層と接触しているプラチナ又はパラジウムを含む第2の格子整合層を含む、第2のピンニング層を含む、デバイス。
  2. 前記第1のピンニング層の全体的な厚さが、1nmから18nmであり、前記第2のピンニング層の全体的な厚さが、0.3nmから15nmである、請求項1に記載のデバイス。
  3. 前記第1の二重層が、1Åから7Åの厚さを有するコバルトの第1の中間層と、プラチナ、ニッケル、パラジウム、又はそれらの合金若しくは組み合わせの1Åから8Åの厚さを有する第2の中間層とを含む、請求項1に記載のデバイス。
  4. 前記第1の格子整合層が1Åから3Åの厚さ有し、前記第2の格子整合層が1Åから3Åの厚さを有する、請求項1に記載のデバイス。
  5. 前記SyF結合層が、ルテニウム、クロム、ロジウム、又はイリジウムを含み、1Åから100Åの厚さを有する、請求項1に記載のデバイス。
  6. 前記第2のピンニング層が、1Åから8Åの厚さを有するコバルトの第1の中間層と、プラチナ、ニッケル、若しくはパラジウム、又はそれらの合金若しくは組み合わせから形成された1Åから8Åの厚さを有する第2の中間層と、から形成される二重層を更に含む、請求項1に記載のデバイス。
  7. 前記第2のピンニング層と接触している構造ブロッキング層、
    前記構造ブロッキング層と接触している磁気基準層、
    前記磁気基準層と接触しているトンネルバリア層、及び
    前記トンネルバリア層と接触している磁気記憶層を更に含む、請求項1に記載のデバイス。
  8. 前記第1の格子整合層の格子定数と前記第2の格子整合層の格子定数のそれぞれが、前記SyF結合層の格子定数の+/−4%以内である、請求項1に記載のデバイス。
  9. 磁気トンネル接合積層体であって、
    第1の複数の二重層と、前記第1の複数の二重層の上に形成されたプラチナ又はパラジウムを含む第1の格子整合層とを含む、第1のピンニング層であって、前記第1の複数の二重層の各二重層が、第1のコバルト中間層と、プラチナ、ニッケル、若しくはパラジウム、又はそれらの合金若しくは組み合わせの第2の中間層とから形成されている、第1のピンニング層、
    前記第1のピンニング層上に形成された合成反フェリ磁性結合層、及び
    前記合成反フェリ磁性結合層上に形成された第2のピンニング層であって、前記合成反フェリ磁性結合層上に形成された第2の格子整合層を含む第2のピンニング層を含む、積層体。
  10. 前記第2のピンニング層が、前記第2の格子整合層上に形成された第2の二重層、及び前記第2の二重層上に形成された1Åから10Åの厚さを有するコバルト層を更に含む、請求項9に記載の積層体。
  11. 前記第2の格子整合層が、プラチナ又はパラジウムを含む、請求項9に記載の積層体。
  12. 前記第2のピンニング層上の構造ブロッキング層であって、タンタル、モリブデン、又はタングステンのうちの少なくとも1つを含み、1Åから8Åの厚さを有する構造ブロッキング層、
    前記構造ブロッキング層上の磁気基準層、
    前記磁気基準層上のトンネルバリア層、及び
    前記トンネルバリア層上の磁気記憶層を更に含む、請求項9に記載の積層体。
  13. 磁気トンネル接合積層体であって、
    緩衝層、
    前記緩衝層と接触するように形成されたクロムを含むシード層、
    前記シード層に接触している第1のピンニング層であって、第1の二重層と前記第1の二重層の上に形成されたプラチナ又はパラジウムを含む第1の格子整合層とから形成され、前記第1の二重層が、コバルト中間層と、プラチナ、ニッケル、又はパラジウムの中間層とを含む、第1のピンニング層、
    前記第1のピンニング層上に形成された合成反フェリ磁性結合層、
    前記合成反フェリ磁性結合層上に形成された第2のピンニング層であって、前記合成反フェリ磁性結合層上に形成されたプラチナ又はパラジウムを含む第2の格子整合層を含む、第2のピンニング層、
    前記第2のピンニング層上に形成されたタンタル、モリブデン、又はタングステンのうちの少なくとも1つを含む構造ブロッキング層、
    前記構造ブロッキング層上に形成された磁気基準層、
    前記磁気基準層上に形成されたトンネルバリア層、及び
    前記トンネルバリア層上に形成された磁気記憶層を含む、積層体。
  14. 前記第2のピンニング層が、前記第2の格子整合層の上に形成された第2の二重層を更に含み、前記第2の二重層が、コバルトの第1の中間層と、プラチナ、ニッケル、若しくはパラジウム、又はそれらの合金若しくは組み合わせの第2の中間層とを更に含む、請求項13に記載の積層体。
  15. 前記第1のピンニング層の前記第1の二重層が、前記第1の中間層の厚さと前記第2の中間層の厚さとの第1の厚さの比率を有し、前記第2のピンニング層の前記第2の二重層が、前記第1の中間層の厚さと前記第2の中間層との第2の厚さの比率を有し、前記第1の厚さの比率が、前記第2の厚さの比率よりも大きい、請求項13に記載の積層体。
JP2020565356A 2018-05-24 2019-03-28 結合層とピンニング層の格子整合を用いた磁気トンネル接合 Active JP7104809B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862676119P 2018-05-24 2018-05-24
US62/676,119 2018-05-24
US16/358,475 2019-03-19
US16/358,475 US10957849B2 (en) 2018-05-24 2019-03-19 Magnetic tunnel junctions with coupling-pinning layer lattice matching
PCT/US2019/024630 WO2019226231A1 (en) 2018-05-24 2019-03-28 Magnetic tunnel junctions with coupling - pinning layer lattice matching

Publications (2)

Publication Number Publication Date
JP2021525005A true JP2021525005A (ja) 2021-09-16
JP7104809B2 JP7104809B2 (ja) 2022-07-21

Family

ID=68614067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020565356A Active JP7104809B2 (ja) 2018-05-24 2019-03-28 結合層とピンニング層の格子整合を用いた磁気トンネル接合

Country Status (6)

Country Link
US (1) US10957849B2 (ja)
JP (1) JP7104809B2 (ja)
KR (1) KR102649026B1 (ja)
CN (1) CN112136223A (ja)
TW (1) TWI811334B (ja)
WO (1) WO2019226231A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10957849B2 (en) * 2018-05-24 2021-03-23 Applied Materials, Inc. Magnetic tunnel junctions with coupling-pinning layer lattice matching
US10910557B2 (en) 2018-09-14 2021-02-02 Applied Materials, Inc. Apparatus and methods of fabricating a magneto-resistive random access memory (MRAM) device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090256220A1 (en) * 2008-04-09 2009-10-15 Magic Technologies, Inc. Low switching current MTJ element for ultra-high STT-RAM and a method for making the same
JP2009545869A (ja) * 2006-08-03 2009-12-24 コミツサリア タ レネルジー アトミーク 層の平面に垂直なスピン分極が大きい薄層磁気デバイス、およびそのデバイスを使用する磁気トンネル接合およびスピンバルブ
JP2011101015A (ja) * 2009-11-06 2011-05-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives 無線周波数発振器
JP2014130946A (ja) * 2012-12-28 2014-07-10 Fujitsu Semiconductor Ltd 磁気抵抗素子、これを用いた磁気記憶装置、及びその製造方法
US20160155932A1 (en) * 2014-12-02 2016-06-02 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
WO2018042732A1 (ja) * 2016-08-29 2018-03-08 国立大学法人東北大学 磁気トンネル接合素子およびその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544667B1 (en) * 1999-03-11 2003-04-08 Hitachi, Ltd. Magnetic recording medium, producing method of the same and magnetic recording system
US7098495B2 (en) 2004-07-26 2006-08-29 Freescale Semiconducor, Inc. Magnetic tunnel junction element structures and methods for fabricating the same
US7423850B2 (en) * 2005-03-31 2008-09-09 Hitachi Global Storage Technologies Netherlands B.V. CPP-GMR read head sensor with synthetic free layer providing suppression of spin torque noise
WO2010080542A1 (en) * 2008-12-17 2010-07-15 Yadav Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
KR101652006B1 (ko) 2010-07-20 2016-08-30 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
US9299923B2 (en) 2010-08-24 2016-03-29 Samsung Electronics Co., Ltd. Magnetic devices having perpendicular magnetic tunnel junction
TWI514373B (zh) * 2012-02-15 2015-12-21 Ind Tech Res Inst 上固定型垂直磁化穿隧磁阻元件
KR101446338B1 (ko) 2012-07-17 2014-10-01 삼성전자주식회사 자기 소자 및 그 제조 방법
US9082960B2 (en) * 2013-04-16 2015-07-14 Headway Technologies, Inc. Fully compensated synthetic antiferromagnet for spintronics applications
KR102124361B1 (ko) * 2013-11-18 2020-06-19 삼성전자주식회사 수직 자기터널접합을 포함하는 자기 기억 소자
US9379314B2 (en) * 2013-12-17 2016-06-28 Qualcomm Incorporated Hybrid synthetic antiferromagnetic layer for perpendicular magnetic tunnel junction (MTJ)
US20150303373A1 (en) 2014-04-17 2015-10-22 Qualcomm Incorporated Spin-transfer switching magnetic element formed from ferrimagnetic rare-earth-transition-metal (re-tm) alloys
US9236560B1 (en) * 2014-12-08 2016-01-12 Western Digital (Fremont), Llc Spin transfer torque tunneling magnetoresistive device having a laminated free layer with perpendicular magnetic anisotropy
WO2016125200A1 (ja) * 2015-02-02 2016-08-11 キヤノンアネルバ株式会社 垂直磁化型mtj素子の製造方法
KR101721618B1 (ko) * 2015-03-18 2017-03-30 한양대학교 산학협력단 메모리 소자
US20160351799A1 (en) 2015-05-30 2016-12-01 Applied Materials, Inc. Hard mask for patterning magnetic tunnel junctions
KR20170037707A (ko) * 2015-09-25 2017-04-05 삼성전자주식회사 자기 기억 소자 및 이의 제조 방법
US10475564B2 (en) * 2016-06-29 2019-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Perpendicularly magnetized ferromagnetic layers having an oxide interface allowing for improved control of oxidation
US10255935B2 (en) 2017-07-21 2019-04-09 Applied Materials, Inc. Magnetic tunnel junctions suitable for high temperature thermal processing
US10944050B2 (en) 2018-05-08 2021-03-09 Applied Materials, Inc. Magnetic tunnel junction structures and methods of manufacture thereof
US10957849B2 (en) * 2018-05-24 2021-03-23 Applied Materials, Inc. Magnetic tunnel junctions with coupling-pinning layer lattice matching
US10468592B1 (en) * 2018-07-09 2019-11-05 Applied Materials, Inc. Magnetic tunnel junctions and methods of fabrication thereof
US10867652B2 (en) * 2018-10-29 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Read circuit for magnetic tunnel junction (MTJ) memory

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545869A (ja) * 2006-08-03 2009-12-24 コミツサリア タ レネルジー アトミーク 層の平面に垂直なスピン分極が大きい薄層磁気デバイス、およびそのデバイスを使用する磁気トンネル接合およびスピンバルブ
US20090256220A1 (en) * 2008-04-09 2009-10-15 Magic Technologies, Inc. Low switching current MTJ element for ultra-high STT-RAM and a method for making the same
WO2009126201A1 (en) * 2008-04-09 2009-10-15 Magic Technologies, Inc. A low switching current mtj element for ultra-high stt-ram and a method for making the same
JP2009253303A (ja) * 2008-04-09 2009-10-29 Magic Technologies Inc Mtj素子およびその形成方法、stt−ramの製造方法
JP2011101015A (ja) * 2009-11-06 2011-05-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives 無線周波数発振器
JP2014130946A (ja) * 2012-12-28 2014-07-10 Fujitsu Semiconductor Ltd 磁気抵抗素子、これを用いた磁気記憶装置、及びその製造方法
US20160155932A1 (en) * 2014-12-02 2016-06-02 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
WO2016089682A1 (en) * 2014-12-02 2016-06-09 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
JP2018501647A (ja) * 2014-12-02 2018-01-18 マイクロン テクノロジー, インク. 磁気セル構造体、および製造の方法
WO2018042732A1 (ja) * 2016-08-29 2018-03-08 国立大学法人東北大学 磁気トンネル接合素子およびその製造方法
US20190189917A1 (en) * 2016-08-29 2019-06-20 Tohoku University Magnetic tunnel junction element and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAVRIJSEN R. ET AL.: "Tuning the interlayer exchange coupling between single perpendicularly magnetized CoFeB layers", APPLIED PHYSICS LETTERS, vol. 100, no. 5, JPN7021005587, 30 January 2012 (2012-01-30), pages 052411 - 1, ISSN: 0004667590 *

Also Published As

Publication number Publication date
TW202011623A (zh) 2020-03-16
CN112136223A (zh) 2020-12-25
KR102649026B1 (ko) 2024-03-20
JP7104809B2 (ja) 2022-07-21
KR20210000727A (ko) 2021-01-05
US20190363246A1 (en) 2019-11-28
TWI811334B (zh) 2023-08-11
US10957849B2 (en) 2021-03-23
WO2019226231A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP7507693B2 (ja) 磁気トンネル接合構造及びその製造方法
JP7125535B2 (ja) 磁気トンネル接合及びその製造方法
JP5341082B2 (ja) トンネル磁気抵抗素子の製造方法および製造装置
US20130288398A1 (en) Method of manufacturing tunneling magnetoresistive element
JP2021520061A (ja) 調整可能な大きい垂直磁気異方性を有する磁気トンネル接合
JP7104809B2 (ja) 結合層とピンニング層の格子整合を用いた磁気トンネル接合
JP5689932B2 (ja) トンネル磁気抵抗素子の製造方法
US20020142589A1 (en) Method of obtaining low temperature alpha-ta thin films using wafer bias
US11522126B2 (en) Magnetic tunnel junctions with protection layers
US10333059B2 (en) Method of forming a stack of layers using a sacrificial layer
US20200091420A1 (en) Apparatus and methods of fabricating a magneto-resistive random access memory (mram) device
CN112652709A (zh) 磁性隧道结的种子层形成方法
JP2008277693A (ja) トンネル磁気抵抗素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220708

R150 Certificate of patent or registration of utility model

Ref document number: 7104809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150