JP2021180060A - 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置 - Google Patents

磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置 Download PDF

Info

Publication number
JP2021180060A
JP2021180060A JP2020084903A JP2020084903A JP2021180060A JP 2021180060 A JP2021180060 A JP 2021180060A JP 2020084903 A JP2020084903 A JP 2020084903A JP 2020084903 A JP2020084903 A JP 2020084903A JP 2021180060 A JP2021180060 A JP 2021180060A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
magnetic layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020084903A
Other languages
English (en)
Other versions
JP7324733B2 (ja
Inventor
篤 諸岡
Atsushi Morooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2020084903A priority Critical patent/JP7324733B2/ja
Priority to PCT/JP2021/015987 priority patent/WO2021230015A1/ja
Priority to CN202180035287.XA priority patent/CN115917646A/zh
Publication of JP2021180060A publication Critical patent/JP2021180060A/ja
Priority to US18/054,809 priority patent/US20230081800A1/en
Application granted granted Critical
Publication of JP7324733B2 publication Critical patent/JP7324733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/674Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having differing macroscopic or microscopic structures, e.g. differing crystalline lattices, varying atomic structures or differing roughnesses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/30Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture with provision for auxiliary signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

【課題】電磁変換特性および摩擦特性に優れる磁気記録媒体を提供すること。【解決手段】磁性層の表面の算術平均粗さRaが2.2nm以下であり、磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析によって求められるフッ素濃度Aが5原子%以上50原子%以下であり、TOF−SIMSのラインプロファイル分析によって磁性層の断面の厚み方向の全域について求められるフッ素含有化合物由来のフラグメントの積算強度Ftotalと上記断面の厚み方向の磁性層の表面から中間厚みまでの領域について求められるフッ素化合物由来のフラグメントの積算強度Fupperと、から、式1:B=(Fupper/Ftotal)×100、により算出されるBが60%以上95%以下である磁気記録媒体。上記磁気記録媒体を含む磁気テープカートリッジおよび磁気記録再生装置。【選択図】なし

Description

本発明は、磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置に関する。
各種データを記録するための記録媒体として、磁気記録媒体が広く用いられている(例えば特許文献1参照)。
特許第6437392号明細書
磁気記録媒体には、優れた電磁変換特性を発揮することが望まれる。電磁変換特性向上の手段としては、スペーシングロス低減のために磁気記録媒体の磁性層表面の平滑性を高めることが挙げられる。しかし、磁性層表面の平滑性を高めるほど、データの記録および/または再生のために磁性層表面と磁気ヘッドとを接触させて摺動させる際に摩擦係数が高くなる傾向がある。摩擦係数が高いことは走行安定性の低下(例えば磁性層表面と磁気ヘッドとの貼り付きの発生)および/または磁性層表面の削れの原因となり得るため、摩擦係数を低くできることが望ましい。以下において、摩擦係数が低いことを、摩擦特性に優れるともいう。
本発明の一態様は、電磁変換特性および摩擦特性に優れる磁気記録媒体を提供することを目的とする。
本発明の一態様は、
非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気記録媒体であって、
上記磁性層の表面の算術平均粗さRaが2.2nm以下であり、
上記磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析によって求められるフッ素濃度Aが5原子%以上50原子%以下であり、
TOF−SIMS(Time−of−Flight Secondary Ion Mass Spectrometry)のラインプロファイル分析によって上記磁性層の断面の厚み方向の全域について求められるフッ素含有化合物由来のフラグメントの積算強度Ftotalと、上記断面の厚み方向の上記磁性層の表面から中間厚みまでの領域について求められるフッ素化合物由来のフラグメントの積算強度Fupperと、から下記式1:
(式1)
B=(Fupper/Ftotal)×100
により算出されるBが60%以上95%以下である磁気記録媒体、
に関する。
一形態では、上記磁気記録媒体の垂直方向角型比は、0.65以上であることができる。
一形態では、上記Aは、15原子%以上50原子%以下であることができる。
一形態では、上記Bは、70%以上95%以下であることができる。
一形態では、上記強磁性粉末は、六方晶フェライト粉末であることができる。
一形態では、上記六方晶フェライト粉末は、六方晶ストロンチウムフェライト粉末であることができる。
一形態では、上記六方晶フェライト粉末は、六方晶バリウムフェライト粉末であることができる。
一形態では、上記強磁性粉末は、ε−酸化鉄粉末であることができる。
一形態では、上記磁気記録媒体は、上記磁性層と上記非磁性支持体との間に、非磁性粉末を含む非磁性層を有することができる。
一形態では、上記磁気記録媒体は、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することができる。
一形態では、上記磁気記録媒体は、磁気テープであることができる。
本発明の一態様は、上記磁気記録媒体を含む磁気テープカートリッジに関する。
本発明の一態様は、上記磁気記録媒体を含む磁気記録再生装置に関する。
本発明の一態様によれば、電磁変換特性および摩擦特性に優れる磁気記録媒体を提供することができる。また、本発明の一態様によれば、かかる磁気記録媒体を含む磁気テープカートリッジおよび磁気記録再生装置を提供することができる。
実施例および比較例の磁性層の膜質評価結果の一例を示す。
[磁気記録媒体]
本発明の一態様は、非磁性支持体と強磁性粉末を含む磁性層とを有する磁気記録媒体に関する。上記磁気記録媒体において、上記磁性層の表面の算術平均粗さRaは2.2nm以下であり、上記磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析によって求められるフッ素濃度Aは5原子%以上50原子%以下であり、かつTOF−SIMSのラインプロファイル分析によって上記磁性層の断面の厚み方向の全域について求められるフッ素含有化合物由来のフラグメントの積算強度Ftotalと上記断面の厚み方向の上記磁性層の表面から中間厚みまでの領域について求められるフッ素化合物由来のフラグメントの積算強度Fupperとから上記式1により算出されるBは60%以上95%以下である。
以下に、上記Ra、AおよびBの測定方法を説明する。
本発明および本明細書における磁性層の表面の算術平均粗さRaは、原子間力顕微鏡(Atomic Force Microscope;AFM)によって磁性層の表面の面積40μm×40μmの領域において測定される値とする。3つの異なる測定位置において、それぞれ測定を5回行う。3つの測定位置で得られた測定結果の中から、各測定位置での5回の測定により得られたRaの中で最小値および最大値を除く測定値(したがって1つの測定位置について3つの測定値、3つの測定位置について合計9つの測定値)の算術平均を、測定対象の磁気記録媒体の磁性層の表面の算術平均粗さRaとして採用する。本発明および本明細書において、「磁性層(の)表面」は磁気記録媒体の磁性層側表面と同義である。測定条件の一例としては、下記の測定条件を挙げることができる。後述の実施例に示す磁性層の表面の算術平均粗さRaは、下記測定条件下での測定によって求められた値である。
AFM(Veeco社製Nanoscope4)をタッピングモードで用いて磁気記録媒体の磁性層の表面の面積40μm×40μmの領域を測定する。探針としてはBRUKER社製RTESP−300を使用し、スキャン速度(探針移動速度)は1画面(512pixel×512pixel)を341秒で測定する速度とする。
本発明および本明細書における「A」は、磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析によって求められるフッ素濃度である。
「X線光電子分光分析」は、一般にESCA(Electron Spectroscopy for Chemical Analysis)またはXPS(X−ray Photoelectron Spectroscopy)とも呼ばれる分析法である。以下において、X線光電子分光分析を、ESCAとも記載する。ESCAは、測定対象試料表面にX線を照射すると光電子が放出されることを利用する分析法であり、測定対象試料の表層部の分析法として広く用いられている。ESCAによれば、測定対象の試料表面における分析により取得されるX線光電子分光スペクトルを用いて定性分析および定量分析を行うことができる。試料表面から分析位置までの深さ(以下、「検出深さ」とも記載する。)と光電子取り出し角(take−off angle)との間には、一般に次の式:検出深さ≒電子の平均自由行程×3×sinθ、が成立する。式中、検出深さは、X線光電子分光スペクトルを構成する光電子の95%が発生する深さであり、θは光電子取り出し角である。上記の式から、光電子取り出し角が小さいほど試料表面からの深さが浅い部分が分析でき、光電子取り出し角が大きいほど深い部分が分析できることがわかる。そして光電子取り出し角10度でのESCAによって行われる分析では、通常、試料の表面から深さ数nm程度の位置に亘る極表層部が分析位置になる。したがって、磁気記録媒体の磁性層の表面において、光電子取り出し角10度でESCAによって行われる分析によれば、磁性層の表面から深さ数nm程度の位置に亘る極表層部の組成分析を行うことができる。
上記フッ素濃度Aとは、ESCAによって行われる定性分析により検出される全元素の合計(原子基準)100原子%に対して、フッ素原子Fが占める割合である。分析を行う領域は、磁気記録媒体の磁性層の表面の任意の位置の300μm×700μmの面積の領域とする。ESCAによって行われるワイドスキャン測定(パスエネルギー:160eV、スキャン範囲:0〜1200eV、エネルギー分解能:1eV/step)により定性分析を実施する。次いで、定性分析により検出された全元素のスペクトルをナロースキャン測定(パスエネルギー:80eV、エネルギー分解能:0.1eV、スキャン範囲:測定するスペクトルの全体が入るように元素毎に設定。)により求める。こうして得られた各スペクトルにおけるピーク面積から、定性分析により検出された全元素に対する各元素の原子濃度(atomic concentration、単位:原子%)を算出する。ここでF1sスペクトルのピーク面積からフッ素原子の原子濃度Aも算出される。
以上の処理を磁気記録媒体の磁性層の表面の異なる位置において3回行って得られた値の算術平均を、フッ素濃度Aとする。また、以上の処理の具体的形態を、後述の実施例に示す。
本発明および本明細書における「B」は、TOF−SIMSのラインプロファイル分析によって磁性層の断面の厚み方向の全域について求められるフッ素含有化合物由来のフラグメントの積算強度Ftotalと、上記断面の厚み方向の磁性層の表面から中間厚みまでの領域について求められるフッ素化合物由来のフラグメントの積算強度Fupperと、から上記式1により算出される。
TOF−SIMSのラインプロファイル分析を行うための前処理として、磁気記録媒体の磁性層の断面を含む斜め切削面を形成する。斜め切削面は、磁気記録媒体の磁性層の表面から磁性層に隣接する部分(磁気記録媒体が非磁性層を有する場合には非磁性層、非磁性支持体上に直接磁性層が設けられている場合は非磁性支持体)の少なくとも一部まで切削装置の切刃を切り込ませて斜め切削することによって形成される。こうして形成される斜め切削面には、磁性層の断面と磁性層と隣接する部分の少なくとも一部の断面とが含まれる。斜め切削は、ラインプロファイル分析において磁性層と隣接する部分について長さ100μm以上の領域の分析が可能なように磁性層と隣接する部分が露出されるように行う。磁気記録媒体の磁性層の表面に対する切刃の侵入角度は、例えば0.010〜0.200度の範囲とすることができる。後述の実施例では、磁気記録媒体の磁性層の表面に対する切刃の侵入角度を0.115度として斜め切削を行った。切削装置としては、例えば、SAICAS(登録商標)と呼ばれる斜め切削装置を使用することができる。SAICASは、Surface And Interfacial Cutting Analysis Systemの略称であり、SAICAS装置としては、例えばダイプラ・ウィンテス社製SAICAS装置を挙げることができ、後述の実施例では、この装置を使用した。
TOF−SIMSのラインプロファイル分析は、磁性層の表面(未切削部分)の100μm長の領域から上記斜め切削面にわたる連続する領域について行われる。TOF−SIMS装置としては、例えば、ION−TOF社またはアルバックファイ社のTOF−SIMS装置を使用することができる。測定条件について、イオンビーム径は5μmとする。TOF−SIMSの測定モードには、高質量分解能モードと高空間分解能モードとがある。ここでは、測定モードは、一次イオンビームをバンチング(Bunching)して高質量分解能での測定を行う測定モードである高質量分解能モード(バンチングモードとも呼ばれる。)を採用する。ラインプロファイル分析は、測定点の間隔を2μmとして行う。
TOF−SIMSのラインプロファイル分析の分析結果として得られる各種フラグメントの中から、「B」を求めるためのフッ素系フラグメントは、以下のように決定するものとする。磁性層の表面(未切削部分)の100μm長の領域におけるTOF−SIMSのラインプロファイル分析において、フッ素系フラグメントが1つのみ検出された場合には、この検出されたフッ素系フラグメントを、「B」を求めるためのフッ素系フラグメントとして採用する。一方、磁性層の表面(未切削部分)の100μm長の領域におけるTOF−SIMSのラインプロファイル分析において、複数のフッ素系フラグメントが検出された場合には、「B」を求めるためのフッ素系フラグメントとしては、最も高感度に検出されたフッ素系フラグメントを採用する。例えば、後述の実施例では、「B」を求めるためのフッ素系フラグメントとして、COF フラグメントを採用した。また、ラインプロファイル分析が行われた領域から磁性層の断面の領域を特定するためには、磁性層と隣接する部分に含まれる成分の中から1種の成分を選択し、この成分を最も高感度に検出可能なフラグメントを選択する。かかるフラグメントの選択は、公知技術または予備実験の結果に基づき行うことができる。例えば、後述の実施例では、上記成分として、非磁性層の成分であるフェニルホスホン酸を選択し、この成分を最も高感度に検出可能なフラグメントとしてPO フラグメントを選択した。
上記の磁性層の表面(未切削部分)の100μm長の領域について、上記で選択したフッ素系フラグメントのフラグメント強度の算術平均を算出する。以下において、この算術平均を[MF]と呼ぶ。また、磁性層と隣接する部分について、斜め切削面に露出している長さ100μmの領域について、上記で選択したフラグメントのフラグメント強度の算術平均を算出する。以下において、この算術平均を[MN]と呼ぶ。ラインプロファイル分析の結果から、[MF]に対して上記で選択したフッ素系フラグメントのフラグメント強度が1/2倍になる位置を、斜め切削を開始した位置(以下、[M地点]と呼ぶ。)として特定する。また、[MN]に対して上記で選択したフラグメントのフラグメント強度が1/2倍になる位置を、磁性層と磁性層と隣接する部分との界面の位置(以下、[K地点]と呼ぶ。)として特定する。こうして特定された[M地点]と[K地点]との間の領域を磁性層として特定し、[M地点]と[K地点]との中間を、中間厚みの位置(以下、[H地点]と呼ぶ。)として特定する。H地点は、磁性層の厚みをTとすると、磁性層の表面から深さが「T/2」の位置ということができる。
ラインプロファイル分析の結果において、M地点からK地点までの全域(即ち磁性層の断面の厚み方向の全域)について求められる上記で選択したフッ素系フラグメントの積算強度を「Ftotal」とする。また、ラインプロファイル分析の結果において、M地点からH地点までの全域(即ち磁性層の断面の厚み方向の磁性層表面から中間厚みまでの領域)について求められる上記で選択したフッ素系フラグメントの積算強度を「Fupper」とする。こうして求められたFtotalおよびFupperから、下記式1によってBが算出される。測定対象の磁気記録媒体の無作為に選択した3箇所において上記の斜め切削面の形成およびTOF−SIMSのラインプロファイル分析を行って得られたBの値の算術平均を、測定対象の磁気記録媒体のBの値とする。
(式1)
B=(Fupper/Ftotal)×100
本発明者は、上記のように求められるRa、AおよびBが先に記載した範囲の磁気記録媒体が、優れた電磁変換特性および摩擦特性を発揮できる理由について、以下のように推察している。
磁性層の表面の算術平均粗さRaが2.2nm以下であることは、スペーシングロスを低減して電磁変換特性を向上させることに寄与し得る。
また、磁性層の表面について先に記載した方法によって求められるAは、磁性層の表面を含む極表層部におけるフッ素の存在量の指標とすることができ、Aの値がより大きいほど、磁性層の表面を含む極表層部にフッ素がより多く存在すると考えることができる。そしてフッ素がより多く存在することによって、磁性層の表面の自由エネルギーはより低くなると推察され、これにより摩擦特性の向上が可能になり、磁性層表面と磁気ヘッドとの摺動時の摩擦係数を小さくすることができると考えられる。したがって、磁性層の表面について先に記載した方法によって求められるAが5原子%以上であることは、上記のRaが2.2nm以下の磁気記録媒体の摩擦特性向上に寄与し得ると推察される。また、上記のAが50原子%以下であることは、電磁変換特性の低下の抑制に寄与し得ると本発明者は考えている。これは、Aの値が小さいことは、相対的に強磁性粉末の存在量が多いことを示し得ると考えられるためである。
更に、磁性層について先に記載した方法によって求められるBの値がより大きいほど、磁性層の表面から中間厚みまでの領域(「上層領域」ということができる。)にフッ素含有化合物がより多く存在しているということができる。かかる上層領域にフッ素含有化合物が多く存在できることには、磁性層に含まれる成分(例えば後述する結合剤)とフッ素含有化合物とのエンタングルメント(Entanglement)および/または化学結合といった相互作用が強く働いていることが寄与し得ると考えられる。このことは、磁性層表面と磁気ヘッドとの摺動によりフッ素含有化合物が磁性層から脱離することによって摩擦係数が上昇してしまうことを抑制することに寄与し得ると、本発明者は推察している。したがって、上記のBが60%以上であることは、摩擦特性向上につながり得ると本発明者は考えている。また、上記のBが95%以下であることは、より均質な膜質の磁性層の形成を可能とすることに寄与し得ると、本発明者は推察している。
ただし、上記およびこの後に記載されている本発明者の推察は、推察に過ぎず、本発明を限定するものではない。
以下、上記磁気記録媒体について、更に詳細に説明する。
<磁性層の表面の算術平均粗さRa>
上記磁気記録媒体において、磁性層の表面の算術平均粗さRaは、電磁変換特性向上の観点から、2.2nm以下であり、2.1nm以下であることが好ましく、上記Raの値がより小さいほどより好ましい。上記Raは、例えば、1.0nm以上、1.2nm以上、1.5nm以上または1.8nmであることができ、ここに例示した値を下回ることもできる。上記Raは、磁気記録媒体の製造条件(例えば後述するカレンダ処理条件)等によって制御することができる。
<フッ素濃度A>
上記磁気記録媒体において、先に記載した方法によって求められるAは、摩擦特性向上の観点から、5原子%以上であり、7原子%以上であることが好ましく、10原子%以上であることがより好ましく、12原子%以上、15原子%以上、17原子%以上、20原子%以上、22原子%以上、25原子%以上、27原子%以上、30原子%以上の順に更に好ましい。また、電磁変換特性向上の観点からは、上記Aは、50原子%以下であり、48原子%以下であることが好ましく、45原子%以下であることがより好ましく、43原子%以下であることが更に好ましく、40原子%以上であることが一層好ましい。
<式1により算出されるB>
上記磁気記録媒体において、先に記載した方法によって求められるFtotalとFupperとから式1により算出されるBは、摩擦特性向上の観点から、60%以上であり、65%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることが更に好ましく、80%以上であることが一層好ましい。また、より均質な膜質の磁性層の形成を可能とする観点から、上記Bは、95%以下であり、90%以下であることが好ましく、85%以下であることがより好ましい。
上記AおよびBを制御するための手段の具体的形態については後述する。
<磁性層>
(強磁性粉末)
上記磁気記録媒体の磁性層に含まれる強磁性粉末は、好ましくは六方晶フェライト粉末およびε−酸化鉄粉末からなる群から選択される強磁性粉末であることができる。六方晶フェライト粉末およびε−酸化鉄粉末は、磁気記録媒体の記録密度向上の観点から好ましい強磁性粉末と言われている。上記磁気記録媒体の磁性層は、例えば、六方晶フェライト粉末およびε−酸化鉄粉末からなる群から選択される強磁性粉末を1種単独または2種以上含むことができる。
磁気記録媒体の磁性層に含まれる強磁性粉末として平均粒子サイズの小さいものを使用することは、記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
六方晶フェライト粉末
上記磁気記録媒体は、一形態では、磁性層に六方晶フェライト粉末を含むことができる。六方晶フェライト粉末の詳細については、例えば、特開2011−225417号公報の段落0012〜0030、特開2011−216149号公報の段落0134〜0136、特開2012−204726号公報の段落0013〜0030および特開2015−127985号公報の段落0029〜0084を参照できる。
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。また、六方晶コバルトフェライト粉末とは、この粉末に含まれる主な二価金属原子がコバルト原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
六方晶フェライト粉末としては、六方晶ストロンチウムフェライト粉末、六方晶バリウムフェライト粉末および六方晶コバルトフェライト粉末からなる群から選ばれる1種または2種以上を用いることができる。磁気記録媒体の記録密度向上の観点からは、六方晶ストロンチウムフェライト粉末が好ましい。
以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。以下に六方晶ストロンチウムフェライト粉末に関して記載する事項の少なくとも一部は、六方晶バリウムフェライト粉末および六方晶コバルトフェライト粉末についても当てはまり得る。
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800〜1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。異方性定数Kuの単位に関して、1erg/cc=1.0×10−1J/mである。
Hc=2Ku/Ms{1−[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s−1)、t:磁界反転時間(単位:s)]
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5〜5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5〜5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層側の表面が削れることを抑制することにも寄与すると推察される。即ち、磁気記録媒体の走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5〜4.5原子%の範囲であることがより好ましく、1.0〜4.5原子%の範囲であることが更に好ましく、1.5〜4.5原子%の範囲であることが一層好ましい。
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。本発明および本明細書において、特記しない限り、六方晶ストロンチウムフェライト粉末に含まれる原子について、含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として1種の希土類原子のみ含んでもよく、2種以上の希土類原子を含んでもよい。2種以上の希土類原子を含む場合の上記バルク含有率とは、2種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いられる場合の含有量または含有率とは、2種以上の合計についていうものとする。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか1種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気記録媒体の磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015−91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10〜20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0〜15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05〜5.0原子%の範囲であることができる。
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5〜10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0〜5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。
ε−酸化鉄粉末
本発明および本明細書において、「ε−酸化鉄粉末」とは、X線回折分析によって、主相としてε−酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε−酸化鉄型の結晶構造に帰属される場合、ε−酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε−酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε−酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280−S284、J. Mater. Chem. C, 2013, 1, pp.5200−5206等を参照できる。ただし、上記磁気記録媒体の磁性層において強磁性粉末として使用可能なε−酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε−酸化鉄粉末の活性化体積は、好ましくは300〜1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε−酸化鉄粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。ε−酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε−酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε−酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε−酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε−酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε−酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
本発明および本明細書において、特記しない限り、各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントするか、ディスプレイに表示する等して、粉末を構成する粒子の写真を得る。磁気記録媒体の磁性層に含まれる粉末については、以下の方法により作製した切削片を用いて撮影を行い、上記の粒子の写真を得ることができる。磁気記録媒体を樹脂ブロック等に接着し、ミクロトーム等を用いて切削片を作製し、作製した切削片を透過型電子顕微鏡を用いて観察して磁性層部分を特定して撮影を行う。例えば、テープ状の磁気記録媒体(即ち磁気テープ)については、磁気テープを長手方向に切削して切削片を作製することができる。
得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H−9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS−400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H−9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS−400を用いて測定された値であり、強磁性粉末の平均粒子体積は、こうして求められた平均粒子サイズから球相当体積として算出された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011−048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤)
上記磁気記録媒体は塗布型の磁気記録媒体であることができ、磁性層に結合剤を含むことができる。結合剤は、1種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
以上の結合剤については、特開2010−24113号公報の段落0028〜0031を参照できる。磁性層の結合剤の含有量は、強磁性粉末100.0質量部に対して、例えば1.0〜30.0質量部であることができる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC−8120(東ソー社製)
カラム:TSK gel Multipore HXL−M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
(硬化剤)
結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。また、この点は、後述するフッ素含有化合物が反応性基を有する場合にも同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011−216149号公報の段落0124〜0125を参照できる。磁性層形成用組成物の硬化剤の含有量は、結合剤100.0質量部に対して例えば0〜80.0質量部であることができ、磁性層の強度向上の観点からは50.0〜80.0質量部であることができる。
(添加剤)
磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。添加剤は、所望の性質に応じて市販品または公知の方法で製造されたものを適宜選択して使用することができる。例えば分散剤については、特開2012−133837号公報の段落0061および0071を参照できる。また、分散剤としては、例えば特開2015−28830号公報に記載されているポリアルキレンイミン鎖およびポリエステル鎖を含む化合物を挙げることもできる。かかる化合物の詳細については、特開2015−28830号公報の段落0026〜0071および同公報の実施例の記載を参照できる。ただし上記化合物は一例であって、添加剤としては、公知の各種添加剤を用いることができる。分散剤は、非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012−133837号公報の段落0061を参照できる。
フッ素含有化合物
上記磁気記録媒体は、非磁性支持体上の磁性層側の部分に、フッ素含有化合物を含むことが好ましい。本発明および本明細書において、「非磁性支持体上の磁性層側の部分」とは、非磁性支持体上に直接磁性層を有する磁気記録媒体については磁性層であり、非磁性支持体と磁性層との間に詳細を後述する非磁性層を有する磁気記録媒体については、磁性層および/または非磁性層である。以下において、「非磁性支持体上の磁性層側の部分」を、単に「磁性層側の部分」とも記載する。磁気記録媒体の磁性層側の表面上に存在していることも、磁性層側の部分に含まれることに包含される。フッ素含有化合物は潤滑剤として機能することができ、磁気記録媒体の磁性層側の表面と磁気ヘッドとの摺動時の摩擦係数低減に寄与し得るため、フッ素含有化合物が磁性層側の部分に含まれることは好ましい。
フッ素含有化合物とは、1分子あたり1つ以上のフッ素原子(F)を含有する化合物である。フッ素含有化合物としては、市販の化合物または公知の方法によって合成可能な化合物の1種を使用することができ、2種以上を任意の割合で混合して使用することもできる。フッ素原子は、例えば、−CF、−CHF等、−CHF等の含フッ素置換基等の各種形態でフッ素含有化合物に含まれ得る。また、フッ素含有化合物としては、架橋構造を形成可能な反応性基を有する化合物が好ましい。架橋構造を形成可能な反応性基としては、エポキシ基、イソシアネート基、ヒドロキシ基等を挙げることができる。かかる反応性基を有するフッ素含有化合物を磁性層形成用組成物の成分として使用することは、先に記載のAの値を大きくすることに寄与し得る。磁気記録媒体の製造工程において上記反応性基が磁性層に含まれる他の成分(例えば結合剤)と架橋構造を形成することによって、フッ素含有化合物が磁性層の表面等に留まり易くなると考えられ、これにより、フッ素含有化合物が製造工程中に脱落することおよび/または後述するバックコート層側に転写されることを抑制できることがAの値を大きくすることに寄与し得ると、本発明者は推察している。ただし推察に過ぎず、本発明を限定するものではない。
フッ素含有化合物は、1種または2種以上を磁気記録媒体の製造のために使用することができる。一形態では、磁性層形成用組成物の成分としてフッ素含有化合物を添加することによって、磁性層側の部分にフッ素含有化合物を含む磁気記録媒体を作製することができる。また、一形態では、フッ素含有化合物を含む塗布液を調製し、この塗布液を磁性層の表面に塗布(いわゆるオーバーコート)することによって、フッ素含有化合物を磁性層側の部分に存在させることができる。先に記載したBの値の上昇を抑制する観点からは、前者の形態で磁気記録媒体を製造することが好ましい。前者の形態について、磁性層形成用組成物へのフッ素含有化合物の添加量によって、Aの値および/またはBの値を調整することができる。一形態では、磁性層形成用組成物へのフッ素含有化合物の添加量を多くするほど、Aの値は大きくなる傾向があり、Bの値は小さくなる傾向がある。磁性層形成用組成物へのフッ素含有化合物の添加量は、例えば、強磁性粉末100.0質量部に対して、0.1質量部以上8.0質量部以下、0.1質量部以上5.0質量部以下または0.1質量部以上3.0質量部以下であることができる。ただし、上記範囲は例示であって、フッ素含有化合物の種類等に応じて添加量を調整することができる。
また、潤滑剤として機能し得る化合物として、フッ素含有化合物に加えて、1種以上の他の化合物を用いて磁気記録媒体を作製することもできる。そのような化合物としては、脂肪酸およびその誘導体(例えば脂肪酸アミド、脂肪酸エステル等)からなる群から選択される1種以上の化合物を挙げることができる。上記化合物を含む磁性層形成用組成物および/または非磁性層形成用組成物を用いることにより、磁性層側の部分に上記化合物を含む磁気記録媒体を作製することができる。
脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、パルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態で磁性層側の部分に含まれていてもよい。
脂肪酸アミドとしては、上記の各種脂肪酸のアミド、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。
脂肪酸エステルとしては、上記の各種脂肪酸のエステル、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル(ブチルステアレート)、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。
脂肪酸量は、磁性層形成用組成物(または磁性層;以下同様)における含有量として、強磁性粉末100.0質量部あたり、例えば0.1〜10.0質量部であり、好ましくは0.5〜7.0質量部である。
非磁性層形成用組成物(または非磁性層;以下同様)中の脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば1.0〜10.0質量部であり、好ましくは0.5〜7.0質量部である。
磁性層形成用組成物中の脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0〜3.0質量部であり、好ましくは0.1〜3.0質量部であり、より好ましくは0.1〜1.0質量部である。
非磁性層形成用組成物中の脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0.1〜3.0質量部であり、好ましくは0.1〜1.0質量部である。
磁性層形成用組成物中の脂肪酸エステル含有量は、強磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは1.0〜7.0質量部である。
非磁性層形成用組成物中の脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは1.0〜7.0質量部である。
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
<非磁性層>
上記磁気記録媒体は、非磁性支持体表面上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末を含む非磁性層を有していてもよい。非磁性層に含まれる非磁性粉末は、無機粉末でも有機粉末でもよい。また、カーボンブラック等も使用できる。無機粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2010−24113号公報の段落0036〜0039を参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。
非磁性層は、非磁性粉末を含み、非磁性粉末とともに結合剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が100Oe以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が100Oe以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<バックコート層>
上記磁気記録媒体は、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもできる。バックコート層は、カーボンブラックおよび無機粉末の一方または両方を含有することができる。
バックコート層は、非磁性粉末を含み、結合剤を含むことができ、1種以上の添加剤を含むこともできる。バックコート層の結合剤および添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006−331625号公報の段落0018〜0020および米国特許第7,029,774号明細書の第4欄65行目〜第5欄38行目の記載を、バックコート層について参照できる。
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、芳香族ポリアミド等のポリアミド、ポリアミドイミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレートおよびポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
<各種厚み>
非磁性支持体の厚みは、好ましくは3.00〜6.00μmであり、より好ましくは3.00〜4.50μmである。
磁性層の厚みは、用いる磁気ヘッドの飽和磁化、ヘッドギャップ長、記録信号の帯域等に応じて最適化することができる。磁性層の厚みは、例えば10nm〜150nmであり、高密度記録化の観点から、好ましくは20nm〜120nmであり、更に好ましくは30nm〜100nmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば0.01〜3.00μmであり、0.05〜2.00μmであることが好ましく、0.05〜1.50μmであることが更に好ましい。
バックコート層の厚みは、0.90μm以下であることが好ましく、0.10〜0.70μmであることが更に好ましい。
磁気記録媒体の各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気記録媒体の厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において透過型電子顕微鏡または走査型電子顕微鏡を用いて断面観察を行う。断面観察において1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
<製造工程>
磁性層、非磁性層およびバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶剤を含む。溶剤としては、塗布型磁気記録媒体を製造するために一般に使用される各種有機溶剤の1種または2種以上を用いることができる。具体的には、任意の比率でアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン系溶剤、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、イソプロピルアルコール、メチルシクロヘキサノール等のアルコール系溶剤、酢酸メチル、酢酸ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸エチル、酢酸グリコール等のエステル系溶剤、グリコールジメチルエーテル、グリコールモノエチルエーテル、ジオキサン等のグリコールエーテル系溶剤、ベンゼン、トルエン、キシレン、クレゾール、クロロベンゼン等の芳香族炭化水素系溶剤、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、エチレンクロロヒドリン、ジクロロベンゼン等の塩素化炭化水素系溶剤、N,N−ジメチルホルムアミド、ヘキサン等を使用することができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは磁性層形成用組成物には、ケトン系溶剤の一種以上が含まれることが好ましい。一形態では、磁性層形成用組成物の調製のための溶剤として、1種または2種以上の溶剤と、これら溶剤より低沸点のフッ素系溶剤とを併用することができる。このようにフッ素系溶剤を含む複数の溶剤を併用することは、先に記載したAの値を大きくすること、および/または、先に記載したBの値を小さくすることに寄与し得ると考えられる。詳しくは、磁気記録媒体の製造工程で行われる乾燥処理によって磁性層形成用組成物の塗布層を乾燥させる際、上記フッ素系溶剤の揮発時にフッ素含有化合物のブリードアウトが促進されてフッ素含有化合物が磁性層の表面を含む極表層部に偏在し易くなるのではないかと本発明者は推察している。ただし推察に過ぎず、かかる推察に本発明は限定されない。ブリードアウトをより促進する観点からは、併用される溶剤より低沸点のフッ素系溶剤は、強磁性粉末100.0質量部に対して、5.0質量部以上20.0質量部以下の量で磁性層形成用組成物の調製時に使用することが好ましい。また、その使用量は、併用される溶剤量より少量であることが好ましい。併用される溶剤量(2種以上使用される場合はそれらの合計量)は、例えば、強磁性粉末100.0質量部に対して、100.0質量部以上または200.0質量部以上であることができ、また、800.0質量部以下または600質量部以下であることができる。一形態では、併用される溶剤より低沸点のフッ素系溶剤の沸点は、50℃以上70℃以下であることができ、併用される溶剤の沸点は75℃以上200℃以下であることができる。ただし、上記磁気記録媒体を製造するために磁性層形成用組成物の調製に使用される溶剤の沸点は上記範囲に限定されるものではない。尚、本発明および本明細書において、沸点とは、1気圧(1気圧は101325Pa(パスカル))における沸点をいう。フッ素系溶剤の具体例としては、3M社製Novecシリーズ等を挙げることができる。ただし、これに限定されず、各種フッ素系溶剤の1種または2種以上を用いることができる。
各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる各種成分は、どの工程の最初または途中で添加してもよい。また、個々の成分を2つ以上の工程で分割して添加してもよい。
各層形成用組成物を調製するためには、公知技術を用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については、特開平1−106338号公報および特開平1−79274号公報に記載されている。また、各層形成用組成物を分散させるためには、分散メディアとして、ガラスビーズおよびその他の分散ビーズからなる群から選ばれる1種以上の分散ビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズの粒径(ビーズ径)および充填率は最適化して用いることができる。分散機は公知のものを使用することができる。各層形成用組成物は、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01〜3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010−24113号公報の段落0051を参照できる。
塗布工程後には、乾燥処理、磁性層の配向処理、表面平滑化処理(カレンダ処理)等の各種処理を行うことができる。各種工程については、例えば特開2010−24113号公報の段落0052〜0057等の公知技術を参照できる。
例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに配向処理を施すことができる。配向処理については、特開2010−231843号公報の段落0067の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける上記塗布層を形成した非磁性支持体の搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。配向条件を強化すると、磁気記録媒体の角型比の値は大きくなる傾向がある。磁気記録媒体の角型比は、配向処理の有無、配向処理の配向条件等によって制御することができる。配向条件としては、配向処理に用いる磁石の強度、磁場印加時間等が挙げられる。
一形態では、上記磁気記録媒体の垂直方向角型比は、0.60以上であることができ、0.63以上であることが好ましく、0.65以上であることがより好ましい。垂直方向角型比の最大値は、原理上1.00である。したがって、上記磁気記録媒体の垂直方向角型比は、1.00以下であり、0.95以下、0.90以下、0.85以下、0.80以下、0.75以下または0.70以下であることができる。垂直方向角型比の値が大きいことは、電磁変換特性の更なる向上の観点から好ましい。
本発明および本明細書において、磁気記録媒体の垂直方向角型比は、磁気記録媒体の垂直方向において測定される角型比である。垂直方向とは、磁気記録媒体の表面と直交する方向であり、厚み方向ということもできる。垂直方向角型比は、垂直方向M−H曲線から求められる。また、本発明および本明細書において、方向および角度に関する記載(例えば直交)には、本発明が属する技術分野において許容される誤差の範囲を含むものとする。上記誤差の範囲とは、例えば、厳密な角度±10°未満の範囲を意味し、厳密な角度±5°以内であることが好ましく、±3°以内であることがより好ましい。
垂直方向角型比は、振動試料型磁力計において磁気記録媒体に外部磁場を磁場強度−1197kA/m〜1197kA/mの範囲で掃引して行われる測定により求められる。磁場強度に関して、単位Oe(エルステッド)のSI単位A/mへの換算係数は10/4πである。−1197kA/m〜1197kA/mの範囲は−15kAOe〜15kOeの範囲と同義である。本発明および本明細書において、振動試料型磁力計を用いて行われる測定は、24℃±1℃の測定温度において行われる。外部磁場の掃引は、測定対象の磁気記録媒体から切り出した測定用試料を用いて、後述の表4に示す掃引条件にしたがい、各ステップでの平均数=1で行われる。こうして外部磁場を掃引することにより、磁場強度−1197kA/m〜1197kA/mの範囲でヒステリシス曲線(「M−H曲線」と呼ばれる。)が得られる。外部磁場の印加方向と測定用試料の表面とが直交するように測定用試料を振動試料型磁力計に配置して行われる測定によって得られるM−H曲線を、「垂直方向M−H曲線」と呼ぶ。測定値は、振動試料型磁力計のサンプルプローブの磁化をバックグラウンドノイズとして差し引いた値として得るものとする。また、角型比は、反磁界補正なしの角型比である。振動試料型磁力計(Vibrating Sample Magnetometer;VSM)としては、後述の実施例で使用した装置等の公知の装置を用いることができる。測定用試料は、こうして得られるM−H曲線から求められる飽和磁化が5×10−6〜10×10−6A・m(5×10−3〜10×10−3emu)の範囲のものであればよく、この範囲の飽和磁化が得られる限りサイズおよび形状は限定されない。
また、カレンダ処理については、カレンダ条件を強化すると、磁気記録媒体の磁性層の表面のRaの値は小さくなる傾向がある。カレンダ条件としては、カレンダ圧力、カレンダ温度(カレンダロールの表面温度)、カレンダ速度、カレンダロールの硬度等が挙げられ、カレンダ圧力、カレンダ温度およびカレンダロールの硬度は、これらの値を大きくするほどカレンダ処理は強化され、カレンダ速度は遅くするほどカレンダ処理は強化される。例えば、カレンダ圧力(線圧)は200〜500kN/mであることができ、250〜350kN/mであることが好ましい。カレンダ温度(カレンダロールの表面温度)は、例えば85〜120℃であることができ、90〜110℃であることが好ましく、95〜110℃であることがより好ましい。カレンダ速度は、例えば50〜300m/minであることができ、50〜200m/minであることが好ましい。
本発明の一態様にかかる磁気記録媒体は、テープ状の磁気記録媒体(磁気テープ)であることができ、ディスク状の磁気記録媒体(磁気ディスク)であることもできる。例えば磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。磁気記録媒体には、磁気記録再生装置においてヘッドトラッキングを行うことを可能とするために、公知の方法によってサーボパターンを形成することもできる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、磁気テープを例として、サーボパターンの形成について説明する。
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape−Open)仕様に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
また、一態様では、特開2004−318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
尚、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1〜10μm、10μm以上等に設定可能である。
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。尚、特開2012−53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。
[磁気テープカートリッジ]
本発明の一態様は、テープ状の上記磁気記録媒体(即ち磁気テープ)を含む磁気テープカートリッジに関する。
上記磁気テープカートリッジに含まれる磁気テープの詳細は、先に記載した通りである。
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気記録再生装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気記録再生装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気記録再生装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層側の表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。上記磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。上記磁気テープカートリッジは、本発明の一態様にかかる磁気テープを含むものであればよく、その他については公知技術を適用することができる。
[磁気記録再生装置]
本発明の一態様は、上記磁気記録媒体を含む磁気記録再生装置に関する。
本発明および本明細書において、「磁気記録再生装置」とは、磁気記録媒体へのデータの記録および磁気記録媒体に記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置は、摺動型の磁気記録再生装置であることができる。摺動型の磁気記録再生装置とは、磁気記録媒体へのデータの記録および/または記録されたデータの再生を行う際に磁性層側の表面と磁気ヘッドとが接触し摺動する装置をいう。例えば、上記磁気記録再生装置は、上記磁気テープカートリッジを着脱可能に含むことができる。
上記磁気記録再生装置は磁気ヘッドを含むことができる。磁気ヘッドは、磁気記録媒体へのデータの記録を行うことができる記録ヘッドであることができ、磁気記録媒体に記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一態様では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一態様では、上記磁気記録再生装置に含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。以下において、データの記録のための素子および再生のための素子を、「データ用素子」と総称する。再生ヘッドとしては、磁気記録媒体に記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。
上記磁気記録再生装置において、磁気記録媒体へのデータの記録および/または磁気記録媒体に記録されたデータの再生は、磁気記録媒体の磁性層側の表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気記録媒体を含むものであればよく、その他については公知技術を適用することができる。
例えば、データの記録および/または記録されたデータの再生の際には、まず、サーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
以下に、本発明を実施例により更に具体的に説明する。ただし本発明は、実施例に示す実施形態に限定されるものではない。以下に記載の「部」および「%」は、特記しない限り、「質量部」および「質量%」を示す。下記工程および評価は、特記しない限り、特記しない限り、室温(20〜25℃)の大気中で行った。以下に記載の「eq」は、当量(equivalent)であり、SI単位に換算不可の単位である。
[実施例1]
1.アルミナ分散物(研磨剤液)の調製
アルファ化率約65%、BET(Brunauer−Emmett−Teller)比表面積20m/gのアルミナ粉末(住友化学社製HIT−80)100.0部に対し、3.0部の2,3−ジヒドロキシナフタレン(東京化成社製)、極性基としてSONa基を有するポリエステルポリウレタン樹脂(東洋紡社製UR−4800(極性基量:80meq/kg))の32%溶液(溶剤はメチルエチルケトンとトルエンの混合溶剤)を31.3部、溶剤としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合溶液570.0部を混合し、ジルコニアビーズ存在下で、ペイントシェーカーにより5時間分散させた。分散後、メッシュにより分散液とビーズとを分け、アルミナ分散物を得た。
2.磁性層形成用組成物の処方
(磁性液)
強磁性粉末(種類:表5参照) 100.0部
SONa基含有塩化ビニル共重合体 10.0部
重量平均分子量:70,000、SONa基:0.2meq/g
SONa基含有ポリウレタン樹脂 4.0部
重量平均分子量:70,000、SONa基:0.2meq/g
フッ素含有化合物(種類および含有量:表5参照)
特開2015−28830号公報に記載の合成例22に記載の方法で得られたポリアルキレンイミン誘導体(J−2) 10.0部
シクロヘキサノン 150.0部
メチルエチルケトン 170.0部
フッ素系溶剤(種類および含有量:表5参照)
(研磨剤液)
上記1.で調製したアルミナ分散物 6.0部
(その他成分)
コロイダルシリカ 2.0部
平均粒子サイズ:100nm
ステアリン酸 2.0部
ブチルステアレート 6.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)) 2.5部
(仕上げ添加溶剤)
シクロヘキサノン 300.0部
メチルエチルケトン 140.0部
3.非磁性層形成用組成物の処方
カーボンブラック 100.0部
平均粒子サイズ:20nm
SONa基含有塩化ビニル共重合体 10.0部
重量平均分子量:70,000、SONa基:0.2meq/g
SONa基含有ポリウレタン樹脂 4.0部
重量平均分子量:70,000、SONa基:0.2meq/g
トリオクチルアミン 5.0部
フェニルホスホン 1.0部
ステアリン酸 2.0部
ブチルステアレート 2.0部
シクロヘキサノン 450.0部
メチルエチルケトン 450.0部
4.バックコート層形成用組成物の処方
非磁性無機粉末:α−酸化鉄 80.0部
平均粒子サイズ(平均長軸長):0.15μm、平均針状比:7、BET比表面積:52m/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
塩化ビニル共重合体 13.0部
スルホン酸塩基含有ポリウレタン樹脂 6.0部
フェニルホスホン酸 3.0部
シクロヘキサノン 355.0部
メチルエチルケトン 155.0部
ステアリン酸 3.0部
ブチルステアレート 3.0部
ポリイソシアネート 5.0部
5.各層形成用組成物の調製
磁性層形成用組成物を、以下の方法により調製した。
上記磁性液の各種成分をホモジナイザーを用いて混合し、その後連続式横型ビーズミルによってビーズ径0.05mmのジルコニアビーズを用いて10分間ビーズ分散して磁性液を調製した。
上記ビーズミルを用いて、上記磁性液を、上記研磨剤液、その他成分および仕上げ添加溶剤と混合した後、バッチ式超音波装置(20kHz、300W)で0.5分間処理(超音波分散)を行った。その後、0.5μmの孔径を有するフィルタを用いてろ過を行い、磁性層形成用組成物を調製した。
非磁性層形成用組成物を、以下の方法により調製した。
ステアリン酸およびブチルステアレートを除いた各種成分を、バッチ式縦型サンドミルを用いて12時間分散して分散液を得た。分散ビーズとしてはビーズ径0.1mmのジルコニアビーズを使用した。その後、得られた分散液に残りの成分を添加し、ディスパーで撹拌した。こうして得られた分散液を0.5μmの孔径を有するフィルタを用いてろ過し、非磁性層用組成物を調製した。
バックコート層形成用組成物を、以下の方法により調製した。
ステアリン酸、ブチルステアレート、ポリイソシアネートおよびシクロヘキサノンを除いた各種成分をオープンニーダにより混錬および希釈した後、横型ビーズミルにより、ビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒にて、1パスあたりの滞留時間を2分とし、12パスの分散処理を行った。その後、得られた分散液に残りの成分を添加し、ディスパーで撹拌した。こうして得られた分散液を1μmの孔径を有するフィルタを用いてろ過しバックコート層形成用組成物を調製した。
6.磁気テープの作製
厚み3.60μmのアラミド製支持体の表面上に、乾燥後の厚みが0.10μmになるように上記5.で調製した非磁性層形成用組成物を塗布し乾燥させて非磁性層を形成した。形成した非磁性層表面上に、乾燥後の厚みが70nmになるように上記5.で調製した磁性層形成用組成物を塗布して塗布層を形成した後、この塗布層を乾燥させた。ここでは垂直配向処理は行わなかった。
その後、上記アラミド製支持体の非磁性層および磁性層を形成した表面とは反対の表面上に乾燥後の厚みが0.40μmになるように上記5.で調製したバックコート層形成用組成物を塗布し乾燥させた。
その後、金属ロールのみから構成されるカレンダロールによって、速度100m/秒、線圧300kg/cm(294kN/m)、表5に示すカレンダ温度(カレンダロールの表面温度)で表面平滑化処理(カレンダ処理)を行った。
その後、雰囲気温度70℃の環境で36時間熱処理を行った後に1/2インチ(0.0127メートル)幅にスリットし、磁気テープを得た。
上記各層の厚みは、製造条件から算出された設計厚みである。
[実施例2〜6、8〜12、比較例1〜9、11〜13]
表5に示す項目を表5に示すように変更した点以外、実施例1と同様に磁気テープを作製した。
表5中、フッ素含有化合物の欄に記載されている「XS−S」、「XC−SL」、「XIH160826」は、それぞれ野田スクリーン社からフッ素樹脂添加剤として商品名「フルオリペールXS−S」、「フルオリペールXC−SL」、「ネオフルオリペールXIH160826」で市販されている市販品である。これらは、フッ素含有化合物を濃度5質量%で含む溶液である(溶剤:プロピレングリコールモノメチルエーテルアセテートメトキシプロピルアセテート)。磁性液の調製において、各溶液を、磁性液におけるフッ素含有化合物量が表5に記載の値となる液量で使用した。また、商品名「ネオフルオリペールXIH160826」に含まれるフッ素含有化合物はエポキシ基を有する化合物である。一方、商品名「フルオリペールXS−S」および「フルオリペールXC−SL」は、架橋構造を形成可能な反応性基を有さないフッ素含有化合物を含む。
表5中、フッ素系溶剤の種類の欄に記載されている「Novec7100」は、3M社から高機能性液体として商品名「Novec7100」で市販されているフッ素系溶剤を示す。
[実施例7]
磁性層形成用組成物を塗布して塗布層を形成した後、この塗布層が未乾燥状態にあるうちに磁場強度0.4Tの磁場を、塗布層の表面に対し垂直方向に印加し垂直配向処理を行い、その後塗布層を乾燥させた点以外、実施例3と同様に磁気テープを作製した。
表5中、「垂直配向処理」の欄には、実施例1と同様に垂直配向処理を行わなかった実施例および比較例については「なし」と記載し、垂直配向処理を行った実施例7については「あり」と記載した。
[比較例10]
以下の点以外、実施例1と同様に磁気テープを作製した。
フッ素含有化合物およびフッ素系溶剤を添加せずに磁性液を調製した
カレンダ処理後の磁性層表面に、ワイヤーバーによって野田スクリーン社製商品名「ネオフルオリペールXIH160826」を塗布し(即ちオーバーコートし)、乾燥させた。オーバーコートで塗布する液量は、塗布される液中のフッ素含有化合物の量が磁性液に含まれる強磁性粉末100.0質量部に対して表5に示す量になる量とした。その後、雰囲気温度70℃の環境で36時間熱処理を行った後に1/2インチ(0.0127メートル)幅にスリットし、磁気テープを得た。
表5中、「フッ素含有化合物」の「添加方法」の欄には、実施例1と同様にフッ素含有化合物を磁性液に添加した実施例および比較例については「磁性液添加」と記載し、比較例10については「オーバーコート」と記載した。
[強磁性粉末]
表5中、「強磁性粉末」の「種類」の欄に記載の「SrFe」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、この粉砕物を入れたガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
表5中、「強磁性粉末」の「種類」の欄に記載の「ε−酸化鉄」は、以下のように作製されたε−酸化鉄粉末を示す。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP−OES;Inductively Coupled Plasma−Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε−酸化鉄(ε−Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先に六方晶ストロンチウムフェライト粉末SrFeに関して記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε−酸化鉄型の結晶構造)を有することを確認した。
得られたε−酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
上記の六方晶ストロンチウムフェライト粉末およびε−酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度1194kA/m(15kOe)で測定された値である。
表5中、「強磁性粉末」の「種類」の欄に記載の「BaFe」は、平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末を示す。
[評価方法]
(1)磁性層の膜質
実施例および比較例の各磁気テープについて、磁性層表面の無作為に選択した位置の10mm×10mmのサイズの領域を光学顕微鏡で50倍の倍率(接眼レンズ:10倍、対物レンズ:5倍)で観察した。
図1に、観察結果の例(顕微鏡写真)を示す。図1中、右側の顕微鏡写真は比較例9の顕微鏡写真であり、磁性層の表面に凹み等が存在して膜質の均質性が低いことが確認された。この場合を「NG」と評価する。これに対し、図1中、左側の顕微鏡写真は磁性層の膜質の均質性が高い例である。このように均質性が高い場合を「OK」と評価する。比較例9については、膜質の評価結果がNGであったため、後述の電磁変換特性および摩擦特性の評価は実施しなかった。
(2)磁性層の表面の算術平均粗さRa
AFMとしてVeeco社製Nanoscope4をタッピングモードで使用し、探針としてはBRUKER社製RTESP−300を使用した。実施例および比較例の各磁気テープの磁性層の表面の面積40μm×40μmの領域を、スキャン速度(探針移動速度)を1画面(512pixel×512pixel)を341秒で測定する速度として測定して、先に記載したように算術平均粗さRaを求めた。
(3)フッ素濃度A
以下の方法により、磁気テープの磁性層表面(測定領域:300μm×700μm)においてESCA装置を用いてX線光電子分光分析を行い、分析結果からフッ素濃度Aを算出した。
(分析および算出方法)
下記(i)および(ii)の測定は、いずれも表1に示す測定条件にて行った。
Figure 2021180060
(i)ワイドスキャン測定
磁気テープの磁性層表面においてESCA装置によりワイドスキャン測定(測定条件:表2参照)を行い、検出された元素の種類を調べた(定性分析)。
Figure 2021180060
(ii)ナロースキャン測定
上記(i)で検出された全元素について、ナロースキャン測定(測定条件:表3参照)を行った。装置付属のデータ処理用ソフトウエア(Vision2.2.6)を用いて、各元素のピーク面積から検出された各元素の原子濃度(単位:原子%)を算出した。ここでフッ素濃度Aも算出した。
Figure 2021180060
以上の処理を磁気テープの磁性層表面の異なる位置において3回行い、得られた値の算術平均をフッ素濃度Aとした。
(4)式1により算出されるB
実施例および比較例の各磁気テープについて、無作為に選択した3箇所において下記の方法によってBの値を求め、求められた値の算術平均を、各磁気テープのBの値とした。
前処理として、ダイプラ・ウィンテス社製SAICAS装置にダイヤモンド切刃を取り付けて使用して先に記載した方法によって斜め切削面の形成を行った。磁気テープの磁性層の表面に対するダイヤモンド切刃の侵入角度は0.115度とした。
TOF−SIMS装置としてアルバックファイ社製TOF−SIMS装置を高質量分解能モードで使用して先に記載した方法によってラインプロファイル分析を行い、先に記載した方法によってFtotalおよびFupperを求めた。ここでフッ素系フラグメントとしては、COF フラグメントを採用した。また、磁性層に隣接する部分である非磁性層の成分としてはフェニルホスホン酸を選択し、この成分のフラグメントとしては、予備実験を行った結果、この成分を最も高感度に検出できることが確認されたフラグメントであるPO フラグメントを採用した。
こうして求められたFtotalおよびFupperから、下記式1によってBを算出した。
(式1)
B=(Fupper/Ftotal)×100
(5)垂直方向角型比
実施例および比較例の各磁気テープから、短辺12mm×長辺32mmのサイズのテープ試料を3つ切り出した。各テープ試料を短辺で1回折り長辺で2回折り、6mm×8mmのサイズに折り畳んだ。こうして折り畳んだ3つのテープ試料を重ねて振動試料型磁力計内に配置した。3つのテープ試料は各テープ試料の方向(テープ試料の長手方向および幅方向)が一致するように重ねた。
振動試料型磁力計として東英工業社製TEM−WF82.5R−152を使用し、測定温度24℃にて外部磁場の掃引を行いヒステリシス曲線(M−H曲線)を得た。垂直方向M−H曲線を得るための測定は、磁場印加方向とテープ試料の表面とが直交するように振動試料型磁力計にテープ試料を配置して行った。外部磁場の掃引は、表4に示す掃引条件にしたがい、各ステップでの平均数=1とし、磁場強度1197kA/mから開始して−1197kA/mまで掃引し再び1197kA/mまで行った。表4に示す掃引条件は、上段から下段の順に順次実施した。合計掃引時間は312秒間であった。また、予め測定用サンプルプローブのみの磁化量の測定を行い、測定時にバックグラウンドノイズとして差し引いた。各テープ試料について、こうして得られた垂直方向M−H曲線から求められた飽和磁化は、いずれも5×10−6〜10×10−6A・m(5×10−3〜10×10−3emu)の範囲であった。
上記測定により得られた垂直方向M−H曲線から各磁気テープの垂直方向角型比を求めた。
Figure 2021180060
(6)電磁変換特性(Signal−to−Noise−Ratio;SNR)
実施例および比較例の各磁気テープのSNRを、以下の方法により測定した。
リニアヘッドを用いて、下記走行方法にて磁気テープを走行させながら、27.6MHz(線記録密度350kfci)の信号を記録し再生した。尚、単位kfciは、線記録密度の単位(SI単位系に換算不可)である。再生信号をAdvantest社製U3741に入力し、27.6Hz(ヘルツ)のピーク信号の信号出力(S)、および27.6MHz±0.3MHzを除く1MHz〜54.9MHzの範囲における積分ノイズ(N)を測定した。これらの比(S/N)をSNRとした。
(走行方法)
全長90cmの磁気テープをループ状にしてループ式記録再生装置に取り付け、ヘッドと磁気テープとの相対速度(走行速度)を2m/秒、バックテンションを0.7N(ニュートン)、ラップ角度を3度として走行させた。
表5中、強磁性粉末として六方晶ストロンチウムフェライト粉末を含む磁気テープについては比較例3のSNRを基準(0dB)とした相対値として、強磁性粉末としてε−酸化鉄粉末を含む磁気テープについては比較例12のSNRを基準(0dB)とした相対値として、強磁性粉末として六方晶バリウムフェライト粉末を含む磁気テープについては比較例13のSNRを基準(0dB)とした相対値として、SNRを示す。SNRが1.0dB以上であれば、電磁変換特性に優れるということができる。比較例1の磁気テープはヘッドとの摩擦が大きく安定して走行させることができず、電磁変換特性を評価できなかった(表5中、「評価不可」と表記)。
(7)摩擦特性
AFMで40μm×40μmのサイズの領域を測定した時の算術平均粗さRaが15nmで直径が4mmのAlTiC(アルミナチタンカーバイド)製の丸棒に、実施例および比較例の各磁気テープを、磁気テープの幅方向が丸棒の軸方向と平行になるように丸棒に巻き付けて、磁気テープの一方の端に100gの重りを吊り下げ他方の端をロードセルに取り付けた状態で、14mm/秒の速度で磁気テープを1パスあたり45mm摺動させ、合計100パス摺動を繰り返した。この時の1パス目および100パス目の等速で摺動中の荷重をロードセルで検出して測定値を得て、以下の式:
摩擦係数=ln(測定値(g)/100(g))/π
に基づいて、1パス目および100パス目の摩擦係数を算出した。
評価結果に関して、測定中に磁気テープの磁性層表面と上記丸棒との貼り付きが生じてしまい摩擦係数を評価できなかった場合、評価結果を「E」とした。また、上記ロードセルの測定上限値に相当する摩擦係数は0.80であるため、0.80超の摩擦係数を測定することができない。摩擦係数がロードセルの測定上限値を超えた場合、評価結果を「D」とした。摩擦係数が0.5未満の場合、評価結果を「A」、摩擦係数が0.5以上0.6未満の場合、評価結果を「B」、摩擦係数が0.6〜0.8の範囲の場合、評価結果を「C」とした。評価結果がAまたはBの場合、摩擦特性に優れるということができる。
以上の結果を表5に示す。
Figure 2021180060
表5に示す結果から、実施例の磁気テープが電磁変換特性および摩擦特性に優れることが確認できる。
本発明は、データストレージ用磁気テープ等の各種磁気記録媒体の技術分野において有用である。

Claims (13)

  1. 非磁性支持体と、強磁性粉末を含む磁性層と、を有する磁気記録媒体であって、
    前記磁性層の表面の算術平均粗さRaが2.2nm以下であり、
    前記磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析によって求められるフッ素濃度Aが5原子%以上50原子%以下であり、
    TOF−SIMSのラインプロファイル分析によって前記磁性層の断面の厚み方向の全域について求められるフッ素含有化合物由来のフラグメントの積算強度Ftotalと、前記断面の厚み方向の前記磁性層の表面から中間厚みまでの領域について求められるフッ素化合物由来のフラグメントの積算強度Fupperと、から下記式1:
    (式1)
    B=(Fupper/Ftotal)×100
    により算出されるBが60%以上95%以下である磁気記録媒体。
  2. 垂直方向角型比が0.65以上である、請求項1に記載の磁気記録媒体。
  3. 前記Aが15原子%以上50原子%以下である、請求項1または2に記載の磁気記録媒体。
  4. 前記Bが70%以上95%以下である、請求項1〜3のいずれか1項に記載の磁気記録媒体。
  5. 前記強磁性粉末は六方晶フェライト粉末である、請求項1〜4のいずれか1項に記載の磁気記録媒体。
  6. 前記六方晶フェライト粉末は六方晶ストロンチウムフェライト粉末である、請求項5に記載の磁気記録媒体。
  7. 前記六方晶フェライト粉末は六方晶バリウムフェライト粉末である、請求項5に記載の磁気記録媒体。
  8. 前記強磁性粉末はε−酸化鉄粉末である、請求項1〜4のいずれか1項に記載の磁気記録媒体。
  9. 前記磁性層と前記非磁性支持体との間に、非磁性粉末を含む非磁性層を有する、請求項1〜8のいずれか1項に記載の磁気記録媒体。
  10. 前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する、請求項1〜9のいずれか1項に記載の磁気記録媒体。
  11. 磁気テープである、請求項1〜10のいずれか1項に記載の磁気記録媒体。
  12. 請求項11に記載の磁気記録媒体を含む磁気テープカートリッジ。
  13. 請求項1〜11のいずれか1項に記載の磁気記録媒体を含む磁気記録再生装置。
JP2020084903A 2020-05-14 2020-05-14 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置 Active JP7324733B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020084903A JP7324733B2 (ja) 2020-05-14 2020-05-14 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
PCT/JP2021/015987 WO2021230015A1 (ja) 2020-05-14 2021-04-20 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
CN202180035287.XA CN115917646A (zh) 2020-05-14 2021-04-20 磁记录介质、磁带盒及磁记录再生装置
US18/054,809 US20230081800A1 (en) 2020-05-14 2022-11-11 Magnetic recording medium, magnetic tape cartridge, and magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020084903A JP7324733B2 (ja) 2020-05-14 2020-05-14 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置

Publications (2)

Publication Number Publication Date
JP2021180060A true JP2021180060A (ja) 2021-11-18
JP7324733B2 JP7324733B2 (ja) 2023-08-10

Family

ID=78510673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020084903A Active JP7324733B2 (ja) 2020-05-14 2020-05-14 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置

Country Status (4)

Country Link
US (1) US20230081800A1 (ja)
JP (1) JP7324733B2 (ja)
CN (1) CN115917646A (ja)
WO (1) WO2021230015A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210615A (ja) * 1989-02-10 1990-08-22 Fuji Photo Film Co Ltd 磁気記録媒体
JP2005293702A (ja) * 2004-03-31 2005-10-20 Fuji Photo Film Co Ltd 磁気記録媒体及びその製造方法
JP2006294113A (ja) * 2005-04-08 2006-10-26 Fuji Photo Film Co Ltd 磁気記録媒体およびこれを用いた磁気記録再生方法
JP2019169230A (ja) * 2018-03-23 2019-10-03 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2019185844A (ja) * 2019-06-27 2019-10-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210615A (ja) * 1989-02-10 1990-08-22 Fuji Photo Film Co Ltd 磁気記録媒体
JP2005293702A (ja) * 2004-03-31 2005-10-20 Fuji Photo Film Co Ltd 磁気記録媒体及びその製造方法
JP2006294113A (ja) * 2005-04-08 2006-10-26 Fuji Photo Film Co Ltd 磁気記録媒体およびこれを用いた磁気記録再生方法
JP2019169230A (ja) * 2018-03-23 2019-10-03 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2019185844A (ja) * 2019-06-27 2019-10-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置

Also Published As

Publication number Publication date
JP7324733B2 (ja) 2023-08-10
WO2021230015A1 (ja) 2021-11-18
US20230081800A1 (en) 2023-03-16
CN115917646A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
JP6778805B1 (ja) 磁気記録媒体および磁気記録再生装置
JP2021125271A (ja) 磁気テープカートリッジおよび磁気テープ装置
US11244702B2 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, magnetic tape cartridge, and magnetic tape cartridge group
JP6852217B2 (ja) 磁気記録媒体および磁気記録再生装置
JP2021118013A (ja) 磁気記録媒体、磁気記録再生装置、磁気テープカートリッジおよび磁気テープカートリッジ群
JP2020123419A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US20220270644A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US20230169996A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape device
US11501798B2 (en) Magnetic recording medium and magnetic recording and reproducing device
JP6893952B2 (ja) 磁気記録媒体および磁気記録再生装置
WO2021230015A1 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP2022100077A (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP7299205B2 (ja) 磁気記録媒体および磁気記録再生装置
WO2022025154A1 (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP6858905B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7432785B2 (ja) 磁気記録媒体および磁気記録再生装置
US20220020393A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11393502B2 (en) Magnetic recording medium having non-magnetic layer and characterized vertical squareness ratio, and magnetic recording and reproducing device
JP7128158B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
WO2022138310A1 (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP2024042268A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2021136046A (ja) 磁気記録媒体、磁気テープカートリッジおよび磁気記録再生装置
JP2023018695A (ja) 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP2023018694A (ja) 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置
JP2021047971A (ja) 磁気記録媒体および磁気記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7324733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150