JP2021125271A - 磁気テープカートリッジおよび磁気テープ装置 - Google Patents

磁気テープカートリッジおよび磁気テープ装置 Download PDF

Info

Publication number
JP2021125271A
JP2021125271A JP2020015558A JP2020015558A JP2021125271A JP 2021125271 A JP2021125271 A JP 2021125271A JP 2020015558 A JP2020015558 A JP 2020015558A JP 2020015558 A JP2020015558 A JP 2020015558A JP 2021125271 A JP2021125271 A JP 2021125271A
Authority
JP
Japan
Prior art keywords
magnetic tape
magnetic
layer
powder
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020015558A
Other languages
English (en)
Other versions
JP7247127B2 (ja
Inventor
成人 笠田
Naruto Kasada
成人 笠田
陽介 角屋
Yosuke Kadoya
陽介 角屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2020015558A priority Critical patent/JP7247127B2/ja
Priority to US17/160,534 priority patent/US11495246B2/en
Publication of JP2021125271A publication Critical patent/JP2021125271A/ja
Priority to JP2023041355A priority patent/JP7427121B2/ja
Application granted granted Critical
Publication of JP7247127B2 publication Critical patent/JP7247127B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • G11B5/7356Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer comprising non-magnetic particles in the back layer, e.g. particles of TiO2, ZnO or SiO2
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/733Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the addition of non-magnetic particles

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】長期保管後の磁気テープのカートリッジ芯側における走行安定性を向上させるための手段を提供すること。【解決手段】磁気テープがリールハブに巻回されて収容されている磁気テープカートリッジ。この磁気テープカートリッジを含む磁気テープ装置。上記磁気テープは、非磁性支持体と強磁性粉末を含む磁性層とを有し、非磁性支持体上の磁性層側の部分に、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含み、かつ磁気テープカートリッジを雰囲気温度60℃相対湿度80%の環境に24時間保管した後、磁気テープの巻回時内側領域の磁性層の表面において光電子取り出し角10度で行われるX線光電子分光分析により得られるC1sスペクトルにおけるC−Hピーク面積率から算出されるC−H由来C濃度は45原子%以上である。【選択図】なし

Description

本発明は、磁気テープカートリッジおよび磁気テープ装置に関する。
磁気記録媒体にはテープ状のものとディスク状のものがあり、データストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている(例えば特許文献1参照)。
特開2012−43495号公報
磁気テープに記録されたデータの再生は、通常、次のように行われる。磁気テープを収容した磁気テープカートリッジを、ドライブと呼ばれる磁気テープ装置にセットする。その後、磁気テープ装置内で磁気テープを走行させながら、磁気テープの磁性層表面と磁気ヘッドとを接触させ摺動させて、磁性層に記録されたデータを磁気ヘッドによって読み取り、データが再生される。しかし、磁気テープが走行安定性に劣るものであると、オフトラックにより再生出力が低下してしまう。そのため、磁気テープには、走行安定性に優れることが望まれる。
磁気テープ等の各種記録媒体に記録されるデータは、アクセス頻度(再生頻度)に応じて、ホットデータ、ウォームデータ、コールドデータと呼ばれる。アクセス頻度は、ホットデータ、ウォームデータ、コールドデータの順に低くなり、アクセス頻度が低いデータ(例えばコールドデータ)を記録し長期保管することは、アーカイブ(archive)と呼ばれる。近年の情報量の飛躍的な増大および各種情報のデジタル化に伴い、アーカイブのために記録媒体に記録し保管されるデータ量は増大しているため、アーカイブに適した記録再生システムに対する注目が高まりつつある。
磁気テープは、通常、磁気テープカートリッジ内にリールハブに巻回された状態で収容される。したがって、アクセス頻度が低いデータが記録された後の磁気テープの長期保管も、通常、磁気テープカートリッジに収容された状態で行われる。
以上の点に関して、本発明者の検討の中で、磁気テープカートリッジに収容された状態で上記のように長期保管された後、磁気テープに記録されたデータを再生する際、巻回時にリールハブ近くに巻かれていた領域(以下、「カートリッジ芯側」とも記載する。)において、走行安定性が低下し易い傾向があることが明らかとなった。
本発明の一態様は、長期保管後の磁気テープのカートリッジ芯側における走行安定性を向上させるための手段を提供することを目的とする。
本発明の一態様は、
磁気テープがリールハブに巻回されて収容されている磁気テープカートリッジであって、
上記磁気テープは、
非磁性支持体と、強磁性粉末を含む磁性層と、を有し、
上記非磁性支持体上の磁性層側の部分に、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含み、かつ
上記磁気テープカートリッジを雰囲気温度60℃相対湿度80%の環境に24時間保管した後、上記磁気テープの巻回時内側領域の磁性層の表面において、光電子取り出し角10度で行われるX線光電子分光分析により得られるC1sスペクトルにおけるC−Hピーク面積率から算出されるC−H由来C濃度(以下、「保管後C−H由来C濃度」または「C−H由来C濃度」とも記載する。)は45原子%以上である、磁気テープカートリッジ、
に関する。単位に関して、1atm=101325Pa(パスカル)=101325N(ニュートン)/mである。
一形態では、上記C−H由来C濃度は、45原子%以上80原子%以下であることができる。
一形態では、上記磁性層は、無機酸化物系粒子を含むことができる。
一形態では、上記無機酸化物系粒子は、無機酸化物とポリマーとの複合粒子であることができる。
一形態では、上記リールハブの少なくとも外周側表層部を構成する材料の曲げ弾性率は、5GPa以上であることができる。
一形態では、上記曲げ弾性率は、8GPa以上であることができる。
一形態では、上記磁気テープは、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を有することができる。
一形態では、上記磁気テープは、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することができる。
一形態では、上記強磁性粉末は、六方晶バリウムフェライト粉末であることができる。
一形態では、上記強磁性粉末は、六方晶ストロンチウムフェライト粉末であることができる。
一形態では、上記強磁性粉末は、ε−酸化鉄粉末であることができる。
本発明の一態様は、上記磁気テープカートリッジを含む磁気テープ装置に関する。
本発明の一態様によれば、磁気テープを収容した磁気テープカートリッジであって、長期保管後に磁気テープを磁気テープ装置内で走行させる際、カートリッジ芯側における走行安定性に優れる磁気テープカートリッジを提供することができる。また、本発明の一態様によれば、かかる磁気テープカートリッジを含む磁気テープ装置を提供することができる。
磁気テープの製造工程の一例(工程概略図)を示す。 磁気テープカートリッジの一例の斜視図である。 リールに磁気テープを巻回し始めるときの斜視図である。 リールに磁気テープを巻回し終えたときの斜視図である。
[磁気テープカートリッジ]
本発明の一態様は、磁気テープがリールハブに巻回されて収容されている磁気テープカートリッジに関する。上記磁気テープは、非磁性支持体と、強磁性粉末を含む磁性層と、を有し、上記非磁性支持体上の磁性層側の部分に、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む。そして、上記磁気テープカートリッジを雰囲気温度60℃相対湿度80%の環境に24時間保管した後、上記磁気テープの巻回時内側領域の磁性層の表面において、光電子取り出し角10度で行われるX線光電子分光分析により得られるC1sスペクトルにおけるC−Hピーク面積率から算出されるC−H由来C濃度は45原子%以上である。
磁気テープにおいて、リールハブ巻回時の巻き取りの起点となる端部をテープ内側末端と呼ぶと、「テープ内側末端から長手方向50mまでの領域(長さ:50m)」が、本発明および本明細書における「巻回時内側領域」である。本発明および本明細書では、かかる巻回時内側領域を、磁気テープのカートリッジ芯側の代表例として採用している。
先に記載した通り、磁気テープは、通常、磁気テープカートリッジ内にリールハブに巻回された状態で収容される。したがって、アクセス頻度が低いデータが記録された後の磁気テープの長期間の保管も、通常、磁気テープカートリッジに収容された状態で行われる。リールハブに巻回された磁気テープは、磁性層表面とバックコート層(バックコート層を有する場合)または非磁性支持体の磁性層側とは反対側の表面(バックコート層を有さない場合)とが接触しているため、磁気テープカートリッジ内で磁性層は押圧された状態にある。中でも、カートリッジ芯側には、応力によって、他の部分より高い圧力が加わると推察される。このことが、長期保管後の磁気テープのカートリッジ芯側において、走行安定性が低下し易い理由と考えられる。
本発明者は、長期保管後の磁気テープのカートリッジ芯側における走行安定性を向上させるための手段を提供すべく鋭意検討を重ねた。かかる検討の中で、本発明者は、各種シミュレーションを行った結果、相対湿度40〜60%の室温環境下での約10年の長期保管(アーカイブの一例)に相当する加速環境下での保管条件としては、磁気テープカートリッジに収容された状態の磁気テープを雰囲気温度60℃相対湿度80%の環境に24時間保管することが適切であるとの結論を得た。なお、本発明および本明細書において、室温とは、20〜25℃の範囲の温度をいうものとする。
そこで本発明者は、磁気テープを収容した磁気テープカートリッジを雰囲気温度60℃相対湿度80%の環境に24時間保管した後にカートリッジ芯側について走行安定性試験を行い、この試験の結果に基づき鋭意検討を重ねた結果、上記保管後のC−H由来C濃度が45原子%以上の磁気テープは、上記加速環境下での保管後のカートリッジ芯側の走行安定性、即ち上記長期保管後に相当する状態でのカートリッジ芯側における走行安定性に優れることが判明した。この点は、従来知られていなかった新たな知見である。
以下に、上記保管後C−H由来C濃度の測定方法について説明する。なお本発明および本明細書において、「磁性層(の)表面」とは、磁気テープの磁性層側表面と同義である。
「X線光電子分光分析」は、一般にESCA(Electron Spectroscopy for Chemical Analysis)またはXPS(X−ray Photoelectron Spectroscopy)とも呼ばれる分析法である。以下において、X線光電子分光分析を、ESCAとも記載する。ESCAは、測定対象試料表面にX線を照射すると光電子が放出されることを利用する分析法であり、測定対象試料の表層部の分析法として広く用いられている。ESCAによれば、測定対象の試料表面における分析により取得されるX線光電子分光スペクトルを用いて定性分析および定量分析を行うことができる。試料表面から分析位置までの深さ(以下、「検出深さ」とも記載する。)と光電子取り出し角(take−off angle)との間には、一般に次の式:検出深さ≒電子の平均自由行程×3×sinθ、が成立する。式中、検出深さは、X線光電子分光スペクトルを構成する光電子の95%が発生する深さであり、θは光電子取り出し角である。上記の式から、光電子取り出し角が小さいほど試料表面からの深さが浅い部分が分析でき、光電子取り出し角が大きいほど深い部分が分析できることがわかる。そして光電子取り出し角10度でのESCAによって行われる分析では、通常、試料表面から深さ数nm程度のごく表層部が分析位置になる。したがって、磁気テープの磁性層の表面において、光電子取り出し角10度でESCAによって行われる分析によれば、磁性層の表面から深さ数nm程度のごく表層部の組成分析を行うことができる。
上記C−H由来C濃度とは、ESCAによって行われる定性分析により検出される全元素の合計(原子基準)100原子%に対して、C−H結合を構成している炭素原子Cが占める割合である。分析を行う領域は、磁気テープの巻回時内側領域における磁性層の表面の任意の位置の300μm×700μmの面積の領域とする。ESCAによって行われるワイドスキャン測定(パスエネルギー:160eV、スキャン範囲:0〜1200eV、エネルギー分解能:1eV/step)により定性分析を実施する。次いで、定性分析により検出された全元素のスペクトルをナロースキャン測定(パスエネルギー:80eV、エネルギー分解能:0.1eV、スキャン範囲:測定するスペクトルの全体が入るように元素毎に設定。)により求める。こうして得られた各スペクトルにおけるピーク面積から、各元素の原子濃度(atomic concentration、単位:原子%)を算出する。ここでC1sスペクトルのピーク面積から炭素原子の原子濃度(C濃度)も算出される。
更に、C1sスペクトルを取得する(パスエネルギー:10eV、スキャン範囲:276〜296eV、エネルギー分解能:0.1eV/step)。取得したC1sスペクトルを、ガウス−ローレンツ複合関数(ガウス成分70%、ローレンツ成分30%)を用いる非線形最小二乗法によってフィッティング処理し、C1sスペクトルにおけるC−H結合のピークをピーク分離し、分離されたC−HピークのC1sスペクトルに占める割合(ピーク面積率)を算出する。算出されたC−Hピーク面積率を、上記のC濃度に掛けることにより、C−H由来C濃度を算出する。
以上の処理を、上記保管後の磁気テープカートリッジから取り出した磁気テープの巻回時内側領域の磁性層の表面の異なる位置について3回行う。ESCA装置における測定は、上記保管が終了した後、24時間以内に実施する。こうして得られた値の算術平均を、保管後C−H由来C濃度とする。また、以上の処理の具体的形態を、後述の実施例に示す。
上記磁気テープは、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を、非磁性支持体上の磁性層側の部分に含む。本発明および本明細書において、「非磁性支持体上の磁性層側の部分」とは、非磁性支持体上に直接磁性層を有する磁気テープについては磁性層であり、非磁性支持体と磁性層との間に詳細を後述する非磁性層を有する磁気テープについては、磁性層および/または非磁性層である。以下において、「非磁性支持体上の磁性層側の部分」を、単に「磁性層側の部分」とも記載する。
上記磁気テープの磁性層側の部分に含まれる脂肪酸および脂肪酸アミドは、それぞれ磁気テープにおいて潤滑剤として機能することのできる成分である。これら成分の一種以上を非磁性支持体上の磁性層側の部分に含む磁気テープの磁性層の表面において、光電子取り出し角10度でESCAによって行われる分析により得られるC−H由来C濃度は、磁性層のごく表層部における上記成分(脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上)の存在量の指標になると考えられる。詳しくは、次の通りである。
ESCAによって行われる分析により得られるX線光電子分光スペクトル(横軸:結合エネルギー、縦軸:強度)の中で、C1sスペクトルは、炭素原子Cの1s軌道のエネルギーピークに関する情報を含んでいる。かかるC1sスペクトルにおいて、結合エネルギー284.6eV付近に位置するピークが、C−Hピークである。このC−Hピークは、有機化合物のC−H結合の結合エネルギーに由来するピークである。脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を非磁性支持体上の磁性層側の部分に含む磁気テープ(換言すると、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上が非磁性支持体上の磁性層側の部分から検出される磁気テープ)では、磁性層のごく表層部では、C−Hピークの主要構成成分が脂肪酸および脂肪酸アミドからなる群から選ばれる成分であると推察される。そのため、上記のC−H由来C濃度は、先に記載したように上記成分の存在量の指標とすることができると考えられる。
そして、上記保管後の磁気テープの巻回時内側領域における磁性層の表面においてC−H由来C濃度が45原子%以上である状態、即ち上記保管後の磁気テープの巻回時内側領域における磁性層のごく表層部に脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上が多量に存在する状態にあることが、長期保管後に磁気テープに記録されたデータを再生する際、カートリッジ芯側における磁気ヘッドと磁性層表面との円滑な摺動を促進する(摺動性を向上させる)ことに寄与すると考えられる。この摺動性の向上によって、長期保管後、カートリッジ芯側における走行安定性を高めることができると推察される。
ただし以上は推察であって、かかる推察に本発明は何ら限定されない。また、本明細書に記載の他の推察にも、本発明は何ら限定されるものではない。
以下、上記磁気テープカートリッジについて、更に詳細に説明する。
<<磁気テープ>>
<保管後C−H由来C濃度>
上記磁気テープカートリッジについて、上記磁気テープの保管後C−H由来C濃度は、45原子%以上であり、長期保管後の磁気テープのカートリッジ芯側における走行安定性の更なる向上の観点からは、48原子%以上であることが好ましく、50原子%以上であることが更に好ましい。また、本発明者の検討によれば、表面平滑性の高い磁性層の形成容易性の観点から、上記保管後C−H由来C濃度は、例えば95原子%以下、90原子%以下、85原子%以下、80原子%以下、75原子%以下または70原子%以下であることが好ましい。
以上説明した保管後C−H由来C濃度は、例えば、磁性層に使用する非磁性フィラーの種類、磁気テープの製造工程、磁気テープカートリッジ内で磁気テープが巻回されるリールハブの材料等によって制御することができる。詳細は後述する。
<脂肪酸、脂肪酸アミド>
上記磁気テープは、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を非磁性支持体上の磁性層側の部分に含む。上記磁性層側の部分には、脂肪酸および脂肪酸アミドの一方のみが含まれていてもよく、両方が含まれていてもよい。
脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、パルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態で磁性層に含まれていてもよい。
脂肪酸アミドとしては、例示した上記各種脂肪酸のアミド、具体的には、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。
脂肪酸と脂肪酸の誘導体(アミドおよび後述のエステル等)については、脂肪酸誘導体の脂肪酸由来部位は、併用される脂肪酸と同様または類似の構造を有することが好ましい。例えば、一例として、脂肪酸としてステアリン酸を用いる場合にステアリン酸アミドおよび/またはステアリン酸エステルを併用することは好ましい。
脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を磁性層側の部分に含む磁気テープは、一形態では、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む磁性層形成用組成物を用いて磁性層を形成することによって製造することができる。また、一形態では、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む非磁性層形成用組成物を用いて非磁性層を形成することによって、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を磁性層側の部分に含む磁気テープを製造することができる。また、一形態では、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む非磁性層形成用組成物を用いて非磁性層を形成し、かつ脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む磁性層形成用組成物を用いて磁性層を形成することによって、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を磁性層側の部分に含む磁気テープを製造することができる。非磁性層は、脂肪酸、脂肪酸アミド等の潤滑剤を保持し磁性層に供給する役割を果たすことができる。非磁性層に含まれる脂肪酸、脂肪酸アミド等の潤滑剤は、磁性層に移行し磁性層に存在し得る。
脂肪酸含有量について、磁性層(または磁性層形成用組成物;以下同様)の脂肪酸含有量は、強磁性粉末100.0質量部あたり、例えば0.1〜10.0質量部であり、好ましくは1.0〜7.0質量部である。磁性層形成用組成物に二種以上の異なる脂肪酸を添加する場合、含有量とは、それら二種以上の異なる脂肪酸の合計含有量をいうものとする。この点は、他の成分についても同様である。また、本発明および本明細書において、特記しない限り、ある成分は、一種のみ用いてもよく二種以上用いてもよい。
磁性層の脂肪酸アミド含有量は、強磁性粉末100.0質量部あたり、例えば0.1〜3.0質量部であり、好ましくは0.1〜1.0質量部である。
一方、非磁性層(または非磁性層形成用組成物;以下同様)の脂肪酸含有量は、非磁性粉末100.0質量部あたり、例えば1.0〜10.0質量部であり、好ましくは1.0〜7.0質量部である。また、非磁性層の脂肪酸アミド含有量は、非磁性粉末100.0質量部あたり、例えば0.1〜3.0質量部であり、好ましくは0.1〜1.0質量部である。
次に、上記磁気テープに含まれる磁性層等について、更に詳細に説明する。
<磁性層>
(強磁性粉末)
磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を一種または二種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
六方晶フェライト粉末
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011−225417号公報の段落0012〜0030、特開2011−216149号公報の段落0134〜0136、特開2012−204726号公報の段落0013〜0030および特開2015−127985号公報の段落0029〜0084を参照できる。
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800〜1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10−1J/mである。
Hc=2Ku/Ms{1−[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s−1)、t:磁界反転時間(単位:s)]
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5〜5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5〜5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5〜4.5原子%の範囲であることがより好ましく、1.0〜4.5原子%の範囲であることが更に好ましく、1.5〜4.5原子%の範囲であることが一層好ましい。
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として一種の希土類原子のみ含んでもよく、二種以上の希土類原子を含んでもよい。二種以上の希土類原子を含む場合の上記バルク含有率とは、二種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、一種のみ用いてもよく、二種以上用いてもよい。二種以上用いられる場合の含有量または含有率とは、二種以上の合計についていうものとする。
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか一種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気テープの磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015−91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10〜20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0〜15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて一種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05〜5.0原子%の範囲であることができる。
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または二種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5〜10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0〜5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。
金属粉末
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011−216149号公報の段落0137〜0141および特開2005−251351号公報の段落0009〜0023を参照できる。
ε−酸化鉄粉末
強磁性粉末の好ましい具体例としては、ε−酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε−酸化鉄粉末」とは、X線回折分析によって、主相としてε−酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε−酸化鉄型の結晶構造に帰属される場合、ε−酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε−酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε−酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280−S284、J. Mater. Chem. C, 2013, 1, pp.5200−5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε−酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
ε−酸化鉄粉末の活性化体積は、好ましくは300〜1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε−酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε−酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε−酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε−酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε−酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε−酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε−酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H−9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS−400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H−9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS−400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011−048878号公報の段落0015に記載の方法を採用することができる。
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
(結合剤)
上記磁気テープは、塗布型の磁気テープであることができ、磁性層に結合剤を含むことができる。結合剤とは、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
以上の結合剤については、特開2010−24113号公報の段落0028〜0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0〜30.0質量部の量で使用することができる。
GPC装置:HLC−8120(東ソー社製)
カラム:TSK gel Multipore HXL−M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011−216149号公報の段落0124〜0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0〜80.0質量部、磁性層の強度向上の観点からは好ましくは50.0〜80.0質量部の量で使用することができる。
以上の結合剤および硬化剤に関する記載は、非磁性層および/またはバックコート層についても適用することができる。その場合、含有量に関する上記記載は、強磁性粉末を非磁性粉末に読み替えて適用することができる。
(添加剤)
磁性層には、上記の各種成分とともに、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。または、公知の方法で合成された化合物を添加剤として使用することもできる。添加剤の一例としては、上記の硬化剤が挙げられる。また、磁性層に含まれ得る添加剤としては、非磁性フィラー、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。非磁性フィラーは、非磁性粒子または非磁性粉末と同義である。非磁性フィラーとしては、突起形成剤として機能することができる非磁性フィラーおよび研磨剤として機能することができる非磁性フィラーを挙げることができる。また、添加剤としては、特開2016−051493号公報の段落0030〜0080に記載されている各種ポリマー等の公知の添加剤を用いることもできる。
突起形成剤
非磁性フィラーの一形態である突起形成剤としては、無機物質の粒子を用いることができ、有機物質の粒子を用いることもでき、無機物質と有機物質との複合粒子を用いることもできる。無機物質としては、金属酸化物等の無機酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等を挙げることができ、無機酸化物が好ましい。一形態では、突起形成剤は、無機酸化物系粒子であることができる。ここで「系」とは、「含む」との意味で用いられる。無機酸化物系粒子の一形態は、無機酸化物からなる粒子である。また、無機酸化物系粒子の他の一形態は、無機酸化物と有機物質との複合粒子であり、具体例としては、無機酸化物とポリマーとの複合粒子を挙げることができる。そのような粒子としては、例えば、無機酸化物の粒子の表面にポリマーが結合した粒子を挙げることができる。
突起形成剤の平均粒子サイズは、例えば30〜300nmであり、好ましくは40〜200nmである。先に記載したように、長期保管中、磁気テープのカートリッジ芯側には、高い圧力が加わると推察される。また、かかる長期保管に相当する上記保管環境での保管中にも、磁気テープのカートリッジ芯側には、高い圧力が加わると推察される。粒子の形状が真球に近い粒子ほど、高い圧力が加えられた際に働く押し込み抵抗が小さいため、磁性層内部に押し込まれやすくなる。これに対し、粒子の形状が真球から離れた形状、例えばいわゆる異形と呼ばれる形状であると、高い圧力が加えられた際に大きな押し込み抵抗が働きやすいため、磁性層内部に押し込まれ難くなる。また、粒子表面が不均質であり表面平滑性が低い粒子も、高い圧力が加えられた際に大きな押し込み抵抗が働きやすいため、磁性層内部に押し込まれ難くなる。磁性層内部に押し込まれ易い粒子が磁性層に含まれると、かかる粒子が保管中に圧力が加わり磁性層内部に押し込まれることに起因して、脂肪酸および脂肪酸アミドからなる群から選択される成分を保管前に磁性層のごく表層部に局在させたとしても、保管後には、その局在量が減少してしまうと考えられる。これに対し、突起形成剤の粒子が圧力が加えられても磁性層内部に押し込まれ難いと、保管後の局在量の減少を抑えることができると推察される。即ち、圧力が加えられても磁性層内部に押し込まれ難い突起形成剤を使用することは、長期保管に相当する上記保管環境で保管された後に測定される上記の保管後C−H由来C濃度を45原子%以上に制御することに寄与すると推察される。
研磨剤
非磁性フィラーの他の一形態である研磨剤は、好ましくはモース硬度8超の非磁性粉末であり、モース硬度9以上の非磁性粉末であることがより好ましい。これに対し、突起形成剤のモース硬度は、例えば8以下または7以下であることができる。なおモース硬度の最大値は、ダイヤモンドの10である。具体的には、アルミナ(Al)、炭化ケイ素、ボロンカーバイド(BC)、SiO、TiC、酸化クロム(Cr)、酸化セリウム、酸化ジルコニウム(ZrO)、酸化鉄、ダイヤモンド等の粉末を挙げることができ、中でもα−アルミナ等のアルミナ粉末および炭化ケイ素粉末が好ましい。また、研磨剤の平均粒子サイズは、例えば30〜300nmの範囲であり、好ましくは50〜200nmの範囲である。
また、突起形成剤および研磨剤が、それらの機能をより良好に発揮することができるという観点から、磁性層における突起形成剤の含有量は、好ましくは強磁性粉末100.0質量部に対して、1.0〜4.0質量部であり、より好ましくは1.2〜3.5質量部である。一方、研磨剤については、磁性層における含有量は、好ましくは強磁性粉末100.0質量部に対して1.0〜20.0質量部であり、より好ましくは3.0〜15.0質量部であり、更に好ましくは4.0〜10.0質量部である。
研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013−131285号公報の段落0012〜0022に記載の分散剤を、磁性層形成用組成物における研磨剤の分散性を向上させるための分散剤として挙げることができる。また、分散剤については、特開2012−133837号公報の段落0061および0071を参照できる。分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012−133837号公報の段落0061を参照できる。
脂肪酸エステル
磁性層および詳細を後述する非磁性層の一方または両方には、脂肪酸エステルが含まれていてもよく、含まれなくてもよい。
脂肪酸エステル、脂肪酸および脂肪酸アミドは、いずれも潤滑剤として機能し得る成分である。潤滑剤は、一般に流体潤滑剤と境界潤滑剤とに大別される。そして脂肪酸エステルは流体潤滑剤として機能し得る成分と言われているのに対し、脂肪酸および脂肪酸アミドは、境界潤滑剤として機能し得る成分と言われている。境界潤滑剤は、粉末(例えば強磁性粉末)の表面に吸着し強固な潤滑膜を形成することで接触摩擦を下げることのできる潤滑剤と考えられる。一方、流体潤滑剤は、それ自身が磁性層表面に液膜を形成し、この液膜の流動により摩擦を下げることのできる潤滑剤と考えられる。このように脂肪酸エステルは脂肪酸および脂肪酸アミドとは潤滑剤としての作用が異なると考えられる。そして本発明者は、磁気テープの巻回時内側領域において、磁性層のごく表層部における脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上の存在量の指標と考えられるC−H由来C濃度を上記保管後の値として45原子%以上とすることが、長期保管後の磁気テープのカートリッジ芯側における走行安定性の向上に寄与すると推察している。
脂肪酸エステルとしては、脂肪酸に関して例示した上記の各種脂肪酸のエステル等を挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル(ブチルステアレート)、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。
脂肪酸エステル含有量について、磁性層の脂肪酸エステル含有量は、強磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは1.0〜7.0質量部である。
また、非磁性層の脂肪酸エステル含有量は、非磁性粉末100.0質量部あたり、例えば0〜10.0質量部であり、好ましくは1.0〜7.0質量部である。
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
<非磁性層>
次に非磁性層について説明する。上記磁気テープは、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011−216149号公報の段落0146〜0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010−24113号公報の段落0040〜0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50〜90質量%の範囲であり、より好ましくは60〜90質量%の範囲である。
非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が100Oe以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が100Oe以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
<バックコート層>
上記磁気テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもでき、有さなくてもよい。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の結合剤および添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006−331625号公報の段落0018〜0020および米国特許第7,029,774号明細書の第4欄65行目〜第5欄38行目の記載を、バックコート層について参照できる。
<各種厚み>
非磁性支持体の厚みは、好ましくは3.0〜6.0μmである。
磁性層の厚みは、近年求められている高密度記録化の観点からは0.15μm以下であることが好ましく、0.1μm以下であることがより好ましい。磁性層の厚みは、更に好ましくは0.01〜0.1μmの範囲である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば0.1〜1.5μmであり、0.1〜1.0μmであることが好ましい。
バックコート層の厚みは、0.9μm以下であることが好ましく、0.1〜0.7μmの範囲であることが更に好ましい。
磁気テープの各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気テープの厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡を用いて断面観察を行う。断面観察において1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
<製造工程>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ二段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の一種または二種以上を用いることができる。溶媒については、例えば特開2011−216149号公報の段落0153を参照できる。また、個々の成分を2つ以上の工程で分割して添加することもできる。上記磁気テープを製造するためには、従来の公知の製造技術を各種工程において用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1−106338号公報および特開平1−79274号公報を参照できる。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01〜3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
一形態では、磁性層形成用組成物を調製する工程において、突起形成剤を含む分散液(以下、「突起形成剤液」と記載する。)を調製した後、この突起形成剤液を、磁性層形成用組成物のその他の成分の一種以上と混合することができる。例えば、突起形成剤液、研磨剤を含む分散液(以下、「研磨剤液」と記載する。)および強磁性粉末を含む分散液(以下、「磁性液」と記載する。)をそれぞれ別に調製した後に混合し分散させて磁性層形成用組成物を調製することができる。このように各種分散液を別に調製することは、磁性層形成用組成物における強磁性粉末、突起形成剤および研磨剤の分散性向上のために好ましい。例えば、突起形成剤液の調製は、超音波処理等の公知の分散処理によって行うことができる。超音波処理は、例えば200cc(1cc=1cm)あたり10〜2000ワット程度の超音波出力で1〜300分間程度行うことができる。また、分散処理後にろ過を行ってもよい。ろ過に用いるフィルタについては先の記載を参照できる。
(塗布工程、冷却工程、加熱乾燥工程)
磁性層は、磁性層形成用組成物を、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010−231843号公報の段落0066を参照できる。
先に記載した通り、上記磁気テープは、一形態では、非磁性支持体と磁性層との間に非磁性層を有することができる。かかる磁気テープは、好ましくは、逐次重層塗布により製造することができる。逐次重層塗布を行う製造工程は、好ましくは次のように実施することができる。非磁性層形成用組成物を非磁性支持体上に塗布することにより塗布層を形成する塗布工程、形成した塗布層を加熱処理により乾燥させる加熱乾燥工程を経て、非磁性層を形成する。そして形成された非磁性層上に磁性層形成用組成物を塗布することにより塗布層を形成する塗布工程、形成した塗布層を加熱処理により乾燥させる加熱乾燥工程を経て、磁性層を形成する。
かかる逐次重層塗布を行う製造方法の非磁性層形成工程において、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む非磁性層形成用組成物を用いて塗布工程を行い、かつ塗布工程と加熱乾燥工程との間に、塗布層を冷却する冷却工程を行うことは、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を非磁性支持体上の磁性層側の部分に含む磁気テープにおいて、C−H由来C濃度を45原子%以上に調整するために好ましい。これは、理由は明らかではないものの、加熱乾燥工程前に非磁性層形成用組成物の塗布層を冷却することにより、加熱乾燥工程における溶媒揮発時に上記成分(脂肪酸および/または脂肪酸アミド)が非磁性層表面に移行しやすくなるためではないかと推察される。更に、磁性層の突起形成剤として先に記載した突起形成剤を使用することは、長期保管に相当する上記保管環境に保管される前の磁性層のごく表層部に局在させた上記成分の局在量が上記保管後に減少することを抑制するうえで好ましいと考えられる。
また、一形態では、磁性層形成工程において、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含む磁性層形成用組成物を非磁性層上に塗布することにより塗布層を形成する塗布工程を行い、形成された塗布層を加熱処理により乾燥させる加熱乾燥工程を行うことができる。
以下、上記磁気テープの製造工程の一例を、図1に基づき説明する。ただし本発明は、下記の例に限定されるものではない。
図1は、非磁性支持体の一方の面に非磁性層と磁性層とをこの順に有し、他方の面にバックコート層を有する磁気テープを製造する工程の一例を示す工程概略図である。図1に示す例では、非磁性支持体(長尺フィルム)を、送り出し部から送り出し巻き取り部で巻き取る操作を連続的に行い、かつ図1に示されている各部または各ゾーンにおいて塗布、乾燥、配向等の各種処理を行うことにより、走行する非磁性支持体上の一方の面に非磁性層および磁性層を逐次重層塗布により形成し、他方の面にバックコート層を形成することができる。図1に示す例は、冷却ゾーンを含む点以外は、塗布型磁気テープの製造のために通常行われる製造工程と同様にすることができる。
送り出し部から送り出された非磁性支持体上には、第一の塗布部において、非磁性層形成用組成物の塗布が行われる(非磁性層形成用組成物の塗布工程)。
上記塗布工程後、冷却ゾーンにおいて、塗布工程で形成された非磁性層形成用組成物の塗布層が冷却される(冷却工程)。例えば、上記塗布層を形成した非磁性支持体を冷却雰囲気中に通過させることにより、冷却工程を行うことができる。冷却雰囲気の雰囲気温度は、好ましくは−10℃〜0℃の範囲とすることができ、より好ましくは−5℃〜0℃の範囲とすることができる。冷却工程を行う時間(例えば、塗布層の任意の部分が冷却ゾーンに搬入されてから搬出されるまでの時間(以下において、「滞在時間」ともいう。))は特に限定されるものではない。滞在時間を長くするほどC−H由来C濃度が高まる傾向があるため、45原子%以上のC−H由来C濃度が実現できるように、必要に応じて予備実験を行う等して、調整することが好ましい。冷却工程では、冷却した気体を塗布層表面に吹き付けてもよい。
冷却ゾーンの後、第一の加熱処理ゾーンでは、冷却工程後の塗布層を加熱することにより、塗布層を乾燥させる(加熱乾燥工程)。加熱乾燥処理は、冷却工程後の塗布層を有する非磁性支持体を加熱雰囲気中に通過させることにより行うことができる。ここでの加熱雰囲気の雰囲気温度は、例えば60〜140℃程度である。ただし、溶媒を揮発させて塗布層を乾燥させることができる温度とすればよく、上記範囲の雰囲気温度に限定されるものではない。また任意に、加熱した気体を塗布層表面に吹き付けてもよい。以上の点は、後述する第二の加熱処理ゾーンにおける加熱乾燥工程および第三の加熱処理ゾーンにおける加熱乾燥工程についても、同様である。
次に、第二の塗布部において、第一の加熱処理ゾーンにて加熱乾燥工程を行い形成された非磁性層上に、磁性層形成用組成物が塗布される(磁性層形成用組成物の塗布工程)。
その後、配向処理を行う形態では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層中の強磁性粉末の配向処理が行われる。配向処理については、特開2010−231843号公報の段落0067の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける上記塗布層が形成された非磁性支持体の搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
配向処理後の塗布層は、第二の加熱処理ゾーンにおいて加熱乾燥工程に付される。
次いで、第三の塗布部において、非磁性支持体の非磁性層および磁性層が形成された面とは反対側の面に、バックコート層形成用組成物が塗布されて塗布層が形成される(バックコート層形成用組成物の塗布工程)。その後、第三の加熱処理ゾーンにおいて、上記塗布層を加熱処理し乾燥させる。
以上の工程により、非磁性支持体の一方の面に非磁性層および磁性層をこの順に有し、他方の面にバックコート層を有する磁気テープを得ることができる。
上記磁気テープを製造するためには、塗布型磁気記録媒体の製造のための公知の各種処理を行うことができる。各種処理については、例えば、特開2010−231843号公報の段落0067〜0069を参照できる。
以上により、上記磁気テープを得ることができる。ただし上記の製造方法は例示であって、保管後C−H由来C濃度を調整可能な任意の手段によって、保管後C−H由来C濃度を45原子%以上に制御することができ、そのような形態も本発明に包含される。
上記のように製造された磁気テープには、磁気テープ装置における磁気ヘッドのトラッキング制御、磁気テープの走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。以下に、サーボパターンの形成について説明する。
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape−Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
また、一形態では、特開2004−318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1〜10μm、10μm以上等に設定可能である。
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012−53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
<磁気テープカートリッジの構成>
上記のように製造された磁気テープは、磁気テープカートリッジにリールハブに巻回されて収容される。通常、磁気テープへのデータの記録時および/または記録されたデータの再生時には、磁気テープカートリッジが磁気テープ装置に装着される。
磁気テープカートリッジには、カートリッジ本体内部に磁気テープがリールハブに巻回された状態で収容される。磁気テープカートリッジのリールは、少なくともリールハブから構成され、通常、リールハブの両端部にフランジがそれぞれ設けられている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気テープ装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気テープ装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気テープ装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。上記磁気テープカートリッジは、一形態では単リール型の磁気テープカートリッジであり、他の一形態では双リール型の磁気テープカートリッジである。一形態では、上記磁気テープカートリッジは、データストレージ分野で近年主に採用されている単リール型の磁気テープカートリッジであることが好ましい。
リールハブは、磁気テープカートリッジ内で磁気テープが巻回される軸心部を構成する円筒状部材である。上記磁気テープカートリッジにおいて、リールハブは、単層構成の円筒状部材であることができ、2層以上の多層構成の円筒状部材であることもできる。製造コストおよび製造の容易性の観点からは、リールハブは、単層構成の円筒状部材であることが好ましい。
本発明者は、磁気テープカートリッジ内でリールが巻回されるリールハブの剛性が高いことは、上記保管後C−H由来C濃度を45原子%以上にするために好ましいと考えている。これは、以下の理由による。
リールハブは、磁気テープが巻回されることにより、中心方向へ巻締め力を受け、直径が小さくなる方向へ変形する傾向があると考えられ、剛性が低いリールハブほど、変形し易いと考えられる。磁気テープのカートリッジ芯側では、リールハブの変形に対応するように、テープ長が短くなる方向に圧縮応力が発生し、次いで、この圧縮応力に起因する圧縮によって、テープ幅が広がる方向に引張応力が発生すると推察される。こうして発生する応力が大きいほど、脂肪酸および脂肪酸アミドからなる群から選択される成分を保管前に磁性層のごく表層部に局在させたとしても、保管後には、その局在量が減少してしまうと考えられる。これに対し、リールハブの剛性が高いと、上記の変形の抑制が可能になるため、上記応力の発生の抑制も可能になり、その結果、保管後の局在量の減少を抑えることができると推察される。即ち、リールハブの剛性が高いことは、長期保管に相当する保管環境で保管された後に測定される上記の保管後C−H由来C濃度を45原子%以上に制御することに寄与すると推察される。この点から、一形態では、リールハブの少なくとも外周側表層部を構成する材料の曲げ弾性率は、5GPa以上であることが好ましく、6GPa以上であることがより好ましく、7GPa以上であることが更に好ましく、8GPa以上であることが一層好ましい。上記曲げ弾性率は、例えば、20GPa以下、15GPa以下または10GPa以下であることができる。ただし、上記曲げ弾性率が高いことは、リールハブの変形抑制の観点から好ましいため、上記曲げ弾性率は、ここで例示した値を超えてもよい。
上記曲げ弾性率は、リールハブが単層構成の円筒状部材である場合、かかる円筒状部材を構成する材料の曲げ弾性率である。一方、リールハブが2層以上の多層構成の円筒状部材の場合、上記曲げ弾性率は、かかるリールハブの少なくとも外周側表層部を構成する材料の曲げ弾性率である。本発明および本明細書において、「曲げ弾性率」とは、JIS(Japanese Industrial Standards) K 7171:2016にしたがい求められる値である。JIS K 7171:2016は、2010年に第5版として発行されたISO(International Organization for Standardization) 178およびAmendment 1:2013を基に、技術内容を変更することなく作成された日本工業規格である。曲げ弾性率を測定するために使用する試験片は、JIS K 7171:2016の項目6「試験片」にしたがい準備する。
リールハブを構成する材料としては、樹脂、金属等を挙げることができる。金属としては、例えばアルミニウムを挙げることができる。コスト面、生産性等の観点からは、樹脂が好ましい。樹脂としては、例えば、繊維強化樹脂を挙げることができる。繊維強化樹脂としては、例えば、ガラス繊維強化樹脂、炭素繊維強化樹脂等が挙げられる。かかる繊維強化樹脂としては、繊維強化ポリカーボネートが好ましい。ポリカーボネートは調達容易であり、射出成形機等の汎用的な成形機によって高精度かつ安価に成形可能であるためである。また、ガラス繊維強化樹脂において、ガラス繊維の含有率は、15質量%以上であることが好ましい。ガラス繊維の含有率が高いほど、ガラス繊維強化樹脂の曲げ弾性率は高くなる傾向がある。一例として、ガラス繊維強化樹脂のガラス繊維の含有率は、50質量%以下または40質量%以下であることができる。一形態では、リールハブを構成する樹脂としては、ガラス繊維強化ポリカーボネートが好ましい。また、リールハブを構成する樹脂としては、一般にスーパーエンジニアリングプラスチックと呼ばれる高強度の樹脂等を挙げることもできる。スーパーエンジニアリングプラスチックの一例としては、ポリフェニレンサルファイド(PPS)が挙げられる。
リールハブの厚みは2.0〜3.0mmの範囲であることが、リールハブの強度および成形時の寸法精度を両立する観点から好ましい。リールハブの厚みとは、2層以上の多層構成のリールハブについては、かかる多層の総厚をいうものとする。リールハブの外径は、通常、磁気テープ装置の規格により定められており、例えば20〜60mmの範囲であることができる。
以下に、図面を参照して磁気テープカートリッジの構成について説明する。ただし、図面に示す形態は例示であり、かかる例示に本発明は限定されない。
図2は、磁気テープカートリッジの一例の斜視図である。図2には、単リール型の磁気テープカートリッジが示されている。
図2に示されている磁気テープカートリッジ10は、ケース12を有している。ケース12は、矩形の箱状に形成されている。ケース12は、通常、ポリカーボネート等の樹脂製である。ケース12の内部には、リール20が1つだけ回転可能に収容されている。
図3は、リールに磁気テープを巻回し始めるときの斜視図である。図4は、リールに磁気テープを巻回し終えたときの斜視図である。
リール20は、軸心部を構成する円筒状のリールハブ22を有する。リールハブについては、先に詳述した通りである。
リールハブ22の両端部には、リールハブ22の下端部および上端部からそれぞれ半径方向外側に張り出すフランジ(下フランジ24および上フランジ26)が設けられている。ここでは、「上」および「下」について、磁気テープカートリッジが磁気テープ装置に装着される際、上方に位置する側を「上」、下方に位置する側を「下」と記載する。下フランジ24および上フランジ26の一方または両方は、リールハブ22の上端部側および/または下端部側を補強する観点から、リールハブ22と一体的に構成されていることが好ましい。一体的に構成されているとは、別部材ではなく、1つの部材として構成されていることをいうものとする。第一の形態では、リールハブ22と上フランジ26とが1つの部材として構成され、この部材が、別部材として構成された下フランジ24と公知の方法で接合される。第二の形態では、リールハブ22と下フランジ24とが1つの部材として構成され、この部材が、別部材として構成された上フランジ26と公知の方法で接合される。上記磁気テープカートリッジのリールは、いずれの形態であってもよい。各部材は、射出成形等の公知の成形方法によって作製することができる。
磁気テープTは、テープ内側末端Tf(図3参照)を起点として、リールハブ22の外周に巻回される。磁気テープをリールハブに巻回する際に磁気テープ長手方向に加わるテンションは、1.5N(ニュートン)以下であることが好ましく、1.0N以下であることがより好ましく、テンションフリーとすることも好ましい。
ケース12の側壁には、リール20に巻回された磁気テープTを引き出すための開口14があり、この開口14から引き出される磁気テープTのテープ外側末端Teには、磁気テープ装置(図示省略)の引出部材(図示省略)によって係止されつつ引き出し操作されるリーダーピン16が固着されている。
また、開口14は、ドア18によって開閉されるようになっている。ドア18は、開口14を閉塞可能な大きさの矩形の板状に形成されており、その開口14を閉塞する方向へ付勢部材(図示省略)により付勢されている。そして、ドア18は、磁気テープカートリッジ10が磁気テープ装置に装着されると、付勢部材の付勢力に抗して開放されるようになっている。
磁気テープカートリッジのその他の詳細については、公知技術を適用することができる。磁気テープカートリッジに収容される磁気テープの全長は、特に限定されず、例えば800m〜2500m程度の範囲であることができる。磁気テープカートリッジ1巻に収容されるテープ全長が長いほど、磁気テープカートリッジの高容量化の観点から好ましい。
[磁気テープ装置]
本発明の一態様は、磁気テープカートリッジを含む磁気テープ装置に関する。
本発明および本明細書において、「磁気テープ装置」とは、磁気テープへのデータの記録および磁気テープに記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気テープ装置は、摺動型の磁気テープ装置であることができる。摺動型の磁気テープ装置とは、磁気テープへのデータの記録および/または記録されたデータの再生を行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。
上記磁気テープ装置は、磁気テープカートリッジを着脱可能に含むことができる。更に、上記磁気テープ装置は、磁気ヘッドを含むことができる。かかる磁気ヘッドは、磁気テープへのデータの記録を行うことができる記録ヘッドであることができ、磁気テープに記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気テープ装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気テープ装置に含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。以下において、データの記録のための素子および再生のための素子を、「データ用素子」と総称する。再生ヘッドとしては、磁気テープに記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気テープ装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。
上記磁気テープ装置において、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生は、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気テープ装置は、本発明の一態様にかかる磁気テープカートリッジを含むものであればよく、その他については公知技術を適用することができる。
例えば、サーボパターンが形成された磁気記録媒体へのデータの記録および/または記録されたデータの再生の際には、まず、サーボパターンを読み取って得られるサーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す形態に限定されるものではない。以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。eqは当量(equivalent)であり、SI単位に換算不可の単位である。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度20〜25℃相対湿度40〜60%の環境において行った。
[実施例1]
各層形成用組成物の処方を、下記に示す。
<磁性層形成用組成物の処方>
(磁性液)
強磁性粉末(表5参照):100.0部
オレイン酸:2.0部
塩化ビニル共重合体(カネカ社製MR−104):10.0部
SONa基含有ポリウレタン樹脂:4.0部
(重量平均分子量70000、SONa基:0.07meq/g)
アミン系ポリマー(ビックケミー社製DISPERBYK−102):6.0部
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
α−アルミナ:6.0部
(BET(Brunauer−Emmett−Teller)比表面積19m/g、モース硬度9)
SONa基含有ポリウレタン樹脂:0.6部
(重量平均分子量70000、SONa基:0.1meq/g)
2,3−ジヒドロキシナフタレン:0.6部
シクロヘキサノン:23.0部
(突起形成剤液)

突起形成剤(表5参照):1.3部 メチルエチルケトン:9.0部
シクロヘキサノン:6.0部
(潤滑剤および硬化剤液)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
<非磁性層形成用組成物の処方>
非磁性無機粉末 α−酸化鉄:100.0部
(平均粒子サイズ10nm、BET比表面積75m/g)
カーボンブラック:25.0部
(平均粒子サイズ20nm)
SONa基含有ポリウレタン樹脂:18.0部
(重量平均分子量70000、SONa基:0.2meq/g)
ステアリン酸:表5参照
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
<バックコート層形成用組成物の処方>
非磁性無機粉末 α−酸化鉄:80.0部
(平均粒子サイズ0.15μm、BET比表面積52m/g)
カーボンブラック:20.0部
(平均粒子サイズ20nm)
塩化ビニル共重合体:13.0部
スルホン酸塩基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:155.0部
メチルエチルケトン:155.0部
ステアリン酸:3.0部
ステアリン酸ブチル:3.0部
ポリイソシアネート:5.0部
シクロヘキサノン:200.0部
<磁性層形成用組成物の調製>
磁性層形成用組成物を、以下の方法によって調製した。
磁性液を、上記の磁性液の各種成分をバッチ式縦型サンドミルを用いて24時間分散(ビーズ分散)することにより調製した。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。
上記の研磨剤液の各種成分を混合してビーズ径0.3mmのジルコニアビーズとともに横型ビーズミル分散機に入れ、研磨剤液体積とビーズ体積との合計に対するビーズ体積の割合が80%になるように調整し、120分間ビーズミル分散処理を行い、処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施した。こうして研磨剤液を調製した。
突起形成剤液は、上記突起形成剤液の各種成分を混合した後に、ホーン式超音波分散機により200ccあたり500ワットの超音波出力で60分間超音波処理(分散処理)して得られた分散液を孔径0.5μmのフィルタでろ過して調製した。
上記磁性液、上記研磨剤液、上記突起形成剤液ならびに残りの成分(潤滑剤および硬化剤液)をディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタでろ過して磁性層形成用組成物を調製した。
<非磁性層形成用組成物の調製>
上記の非磁性層形成用組成物の各種成分を、バッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより、非磁性層形成用組成物を調製した。
<バックコート層形成用組成物の調製>
上記のバックコート層形成用組成物の各種成分のうち潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートならびにシクロヘキサノン200.0部を除いた成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機によりビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で1パスあたりの滞留時間を2分間とし、12パスの分散処理に供した。その後、上記の残りの成分を添加してディゾルバーで撹拌し、得られた分散液を1μmの孔径を有するフィルタを用いてろ過することにより、バックコート層形成用組成物を調製した。
<磁気テープの作製>
図1に示すように磁気テープを作製した。詳しくは、次の通りとした。
厚み5.0μmのポリエチレンナフタレート製支持体を送り出し部から送り出し、一方の表面に、第一の塗布部において乾燥後の厚みが0.1μmになるように非磁性層形成用組成物を塗布して塗布層を形成した。形成した塗布層が湿潤状態にあるうちに雰囲気温度0℃に調整した冷却ゾーンに表5に示す滞在時間で通過させて冷却工程を行い、その後に第一の加熱処理ゾーン(雰囲気温度100℃)を通過させ加熱乾燥工程を行い非磁性層を形成した。
その後、第二の塗布部において乾燥後の厚みが0.1μmになるように上記で調製した磁性層形成用組成物を非磁性層上に塗布し塗布層を形成した。この塗布層が湿潤状態(未乾燥状態)にあるうちに配向ゾーンにおいて磁場強度0.3Tの磁場を、磁性層形成用組成物の塗布層表面に対し垂直方向に印加し垂直配向処理を行った後、第二の加熱処理ゾーン(雰囲気温度100℃)にて乾燥させた。
その後、第三の塗布部において、上記ポリエチレンナフタレート製支持体の非磁性層および磁性層を形成した表面とは反対の表面に乾燥後の厚みが0.5μmになるように上記で調製したバックコート層形成用組成物を非磁性支持体表面に塗布して塗布層を形成し、形成した塗布層を第三の加熱処理ゾーン(雰囲気温度100℃)にて乾燥させた。
その後、金属ロールのみから構成されるカレンダロールを用いて、速度80m/分、線圧294kN/m(300kg/cm)、およびカレンダ温度(カレンダロールの表面温度)90℃でカレンダ処理(表面平滑化処理)を行った。
その後、雰囲気温度70℃の環境で36時間加熱処理を行った。加熱処理後1/2インチ(0.0127メートル)幅にスリットして磁気テープを作製した。
作製した磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッドによって、LTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを磁性層に形成した。これにより、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを得た。
<磁気テープカートリッジへの磁気テープの収容>
磁気テープを収容する磁気テープカートリッジとして、図2に示す構成の単リール型の磁気テープカートリッジを準備した。この磁気テープカートリッジのリールハブは、ガラス繊維強化ポリカーボネートを射出成形した単層構成のリールハブ(厚み:2.5mm、外径:44mm)である。このガラス繊維強化ポリカーボネートのガラス繊維の含有率は、表5に示す値である。射出成形用のガラス繊維強化ポリカーボネートの一部を採取し、JIS K 7171:2016の項目6.3.1(成形材料からの作製)にしたがい、同JISの項目6.1.2に記載されている推奨試験片を作製し、同JISにしたがい曲げ弾性率(5つの試験片の算術平均)を求めた。この後に記載の実施例および比較例についても、リールハブ材料の曲げ弾性率は、同様の方法により求めた。
上記磁気テープカートリッジのリールハブに、テープ長手方向に1.0N以下のテンションをかけながら、磁気テープを巻回させ、磁気テープカートリッジに磁気テープ(テープ長:960m)を収容した。
[実施例2〜22、比較例1〜30]
表5に示す各種項目を表5に示すように変更した点以外、実施例1と同様に磁気テープを作製し、作製した磁気テープをリールハブに巻回させて磁気テープカートリッジに収容した。
表5中、冷却ゾーン滞在時間の欄に「未実施」と記載されている比較例では、非磁性層形成工程に冷却ゾーンを含まない製造工程により磁気テープを作製した。
[突起形成剤]
実施例または比較例の磁気テープの製造のために使用した突起形成剤は、以下の通りである。突起形成剤1および突起形成剤3は、粒子表面の表面平滑性が低い粒子である。突起形成剤2の粒子形状は繭状の形状である。突起形成剤4の粒子形状はいわゆる不定形である。突起形成剤5の粒子形状は真球に近い形状である。
突起形成剤1:キャボット社製ATLAS(シリカとポリマーとの複合粒子)、平均粒子サイズ100nm
突起形成剤2:キャボット社製TGC6020N(シリカ粒子)、平均粒子サイズ140nm
突起形成剤3:日揮触媒化成社製Cataloid(シリカ粒子の水分散ゾル;突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ120nm
突起形成剤4:旭カーボン社製旭#50(カーボンブラック)、平均粒子サイズ300nm
突起形成剤5:扶桑化学工業社製クォートロンPL−10L(シリカ粒子の水分散ゾル;突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ130nm
[強磁性粉末]
表5中、「BaFe」は平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末を示す。「SrFe1」および「SrFe2」は六方晶ストロンチウムフェライト粉末を示し、「ε−酸化鉄」はε−酸化鉄粉末を示す。
以下に記載の各種強磁性粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度15kOeで測定された値である。
<六方晶ストロンチウムフェライト粉末の作製方法1>
表5に示す「SrFe1」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
<六方晶ストロンチウムフェライト粉末の作製方法2>
表5に示す「SrFe2」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶解し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで急冷圧延して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
<ε−酸化鉄粉末の作製方法>
表5に示す「ε−酸化鉄」は、以下の方法により作製されたε−酸化鉄粉末である。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP−OES;Inductively Coupled Plasma−Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε−酸化鉄(ε−Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先に六方晶ストロンチウムフェライト粉末の作製方法1について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε−酸化鉄型の結晶構造)を有することを確認した。
得られたε−酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
[評価方法]
(1)長期保管相当の加速環境下での保管
各実施例および各比較例について、上記のように磁気テープカートリッジを2つ準備し、2つの磁気テープカートリッジを、雰囲気温度60℃相対湿度80%の環境に24時間保管した。
(2)保管後C−H由来C濃度
上記長期保管相当の加速環境下での保管後、1つの磁気テープカートリッジから磁気テープを取り出し、この磁気テープの巻回時内側領域(長さ50m)を切り出した。この切り出したテープ片を測定用試料として、この測定用試料の磁性層表面(測定領域:300μm×700μm)においてESCA装置を用いてX線光電子分光分析を行い、分析結果からC−H由来C濃度を算出した。
(分析および算出方法)
下記(i)〜(iii)の測定は、いずれも表1に示す測定条件にて行った。
Figure 2021125271
(i)ワイドスキャン測定
磁気テープの磁性層表面においてESCA装置によりワイドスキャン測定(測定条件:表2参照)を行い、検出された元素の種類を調べた(定性分析)。
Figure 2021125271
(ii)ナロースキャン測定
上記(i)で検出された全元素について、ナロースキャン測定(測定条件:表3参照)を行った。装置付属のデータ処理用ソフトウエア(Vision2.2.6)を用いて、各元素のピーク面積から検出された各元素の原子濃度(単位:原子%)を算出した。ここでC濃度も算出した。
Figure 2021125271
(iii)C1sスペクトルの取得
表4に記載の測定条件にてC1sスペクトルを取得した。取得したC1sスペクトルについて、装置付属のデータ処理用ソフトウエア(Vision2.2.6)を用いて試料帯電に起因するシフト(物理シフト)の補正を行った後、同ソフトウエアを用いてC1sスペクトルのフィッティング処理(ピーク分離)を実施した。ピーク分離にはガウス−ローレンツ複合関数(ガウス成分70%、ローレンツ成分30%)を用い、非線形最小二乗法によりC1sスペクトルのフィッティングを行い、C1sスペクトルに占めるC−Hピークの割合(ピーク面積率)を算出した。算出されたC−Hピーク面積率を、上記(ii)で求めたC濃度に掛けることにより、C−H由来C濃度を算出した。
Figure 2021125271
以上の処理を上記測定用試料の磁性層表面の異なる位置において3回行い、得られた値の算術平均をC−H由来C濃度とした。
(3)長期保管相当の加速環境下での保管後の走行安定性の評価
上記(1)の長期保管相当の加速環境下での保管後、もう1つの磁気テープカートリッジから磁気テープを取り出し、この磁気テープの巻回時内側領域から長さ10mのテープ片(テープ内側末端から40mの位置から50mの位置までの長さ10mのテープ片)を切り出した。この切り出したテープ片を走行安定性評価用試料として、以下の方法によりPES(Position Error Signal)を求めた。
サーボパターンの形成に用いたサーボライター上のベリファイ(verify)ヘッドでサーボパターンを読み取った。ベリファイヘッドは、磁気テープに形成されたサーボパターンの品質を確認するための読取用磁気ヘッドであり、公知の磁気テープ装置(ドライブ)の磁気ヘッドと同様に、サーボパターンの位置(磁気テープの幅方向の位置)に対応した位置に読取用の素子が配置されている。
ベリファイヘッドには、ベリファイヘッドでサーボパターンを読み取って得た電気信号から、サーボシステムにおけるヘッド位置決め精度をPESとして演算する公知のPES演算回路が接続されている。PES演算回路は、入力された電気信号(パルス信号)から磁気テープの幅方向への変位を随時計算し、この変位の時間的変化情報(信号)に対してハイパスフィルタ(カットオフ:500cycles/m)を適用した値を、PESとして算出した。PESは走行安定性の指標とすることができ、上記で算出されたPESが13nm以下であれば、長期保管に相当する加速環境下での保管後にもカートリッジ芯側において優れた走行安定性が得られたと評価することができる。
以上の結果を、表5(表5−1〜表5−5)に示す。
Figure 2021125271
Figure 2021125271
Figure 2021125271
Figure 2021125271
Figure 2021125271
表5に示す結果から、実施例の磁気テープカートリッジに収容されて長期保管相当の加速試験環境に保管された磁気テープは、かかる保管後、即ち、長期保管後に相当する状態において、カートリッジ芯側での走行安定性に優れることが確認できる。このような磁気テープであれば、アクセス頻度の低い情報が記録された後に磁気テープカートリッジ内で長期間リールハブに巻回された状態で収容された後でも、磁気テープ装置内でカートリッジ芯側での安定走行が可能であり、アーカイブ用記録媒体として好適である。
本発明の一態様は、データストレージ用途において有用である。

Claims (12)

  1. 磁気テープがリールハブに巻回されて収容されている磁気テープカートリッジであって、
    前記磁気テープは、
    非磁性支持体と、強磁性粉末を含む磁性層と、を有し、
    前記非磁性支持体上の磁性層側の部分に、脂肪酸および脂肪酸アミドからなる群から選ばれる成分の一種以上を含み、かつ
    前記磁気テープカートリッジを雰囲気温度60℃相対湿度80%の環境に24時間保管した後、前記磁気テープの巻回時内側領域の磁性層の表面において、光電子取り出し角10度で行われるX線光電子分光分析により得られるC1sスペクトルにおけるC−Hピーク面積率から算出されるC−H由来C濃度は45原子%以上である、磁気テープカートリッジ。
  2. 前記C−H由来C濃度は、45原子%以上80原子%以下である、請求項1に記載の磁気テープカートリッジ。
  3. 前記磁性層は、無機酸化物系粒子を含む、請求項1または2に記載の磁気テープカートリッジ。
  4. 前記無機酸化物系粒子は、無機酸化物とポリマーとの複合粒子である、請求項3に記載の磁気テープカートリッジ。
  5. 前記リールハブの少なくとも外周側表層部を構成する材料の曲げ弾性率が5GPa以上である、請求項1〜4のいずれか1項に記載の磁気テープカートリッジ。
  6. 前記曲げ弾性率は、8GPa以上である、請求項5に記載の磁気テープカートリッジ。
  7. 前記磁気テープは、前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有する、請求項1〜6のいずれか1項に記載の磁気テープカートリッジ。
  8. 前記磁気テープは、前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する、請求項1〜7のいずれか1項に記載の磁気テープカートリッジ。
  9. 前記強磁性粉末は、六方晶バリウムフェライト粉末である、請求項1〜8のいずれか1項に記載の磁気テープカートリッジ。
  10. 前記強磁性粉末は、六方晶ストロンチウムフェライト粉末である、請求項1〜8のいずれか1項に記載の磁気テープカートリッジ。
  11. 前記強磁性粉末は、ε−酸化鉄粉末である、請求項1〜8のいずれか1項に記載の磁気テープカートリッジ。
  12. 請求項1〜11のいずれか1項に記載の磁気テープカートリッジを含む磁気テープ装置。
JP2020015558A 2020-01-31 2020-01-31 磁気テープカートリッジおよび磁気テープ装置 Active JP7247127B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020015558A JP7247127B2 (ja) 2020-01-31 2020-01-31 磁気テープカートリッジおよび磁気テープ装置
US17/160,534 US11495246B2 (en) 2020-01-31 2021-01-28 Magnetic tape cartridge and magnetic tape apparatus
JP2023041355A JP7427121B2 (ja) 2020-01-31 2023-03-15 磁気テープカートリッジおよび磁気テープ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020015558A JP7247127B2 (ja) 2020-01-31 2020-01-31 磁気テープカートリッジおよび磁気テープ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023041355A Division JP7427121B2 (ja) 2020-01-31 2023-03-15 磁気テープカートリッジおよび磁気テープ装置

Publications (2)

Publication Number Publication Date
JP2021125271A true JP2021125271A (ja) 2021-08-30
JP7247127B2 JP7247127B2 (ja) 2023-03-28

Family

ID=77062299

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020015558A Active JP7247127B2 (ja) 2020-01-31 2020-01-31 磁気テープカートリッジおよび磁気テープ装置
JP2023041355A Active JP7427121B2 (ja) 2020-01-31 2023-03-15 磁気テープカートリッジおよび磁気テープ装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023041355A Active JP7427121B2 (ja) 2020-01-31 2023-03-15 磁気テープカートリッジおよび磁気テープ装置

Country Status (2)

Country Link
US (1) US11495246B2 (ja)
JP (2) JP7247127B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037585A1 (ja) * 2021-09-09 2023-03-16 ソニーグループ株式会社 サーボパターン記録装置、サーボパターン記録方法、磁気テープの製造方法、磁気テープ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6691512B2 (ja) 2017-06-23 2020-04-28 富士フイルム株式会社 磁気記録媒体
JP6884220B2 (ja) 2017-09-29 2021-06-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) * 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
WO2020202980A1 (ja) * 2019-03-29 2020-10-08 ソニー株式会社 テープリール及びテープカートリッジ
JP6635216B1 (ja) * 2019-08-16 2020-01-22 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6778805B1 (ja) * 2019-09-19 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP2022131783A (ja) * 2021-02-26 2022-09-07 富士フイルム株式会社 磁気テープ収容体
JP2023003851A (ja) 2021-06-24 2023-01-17 富士フイルム株式会社 磁気テープカートリッジ群および磁気記録再生装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107543A (ja) * 2004-09-30 2006-04-20 Fuji Photo Film Co Ltd 磁気テープカートリッジ
JP2008276868A (ja) * 2007-04-27 2008-11-13 Fujifilm Corp テープリール、記録テープカートリッジ、マシンリール、引出部材及びドライブ装置
JP2017111842A (ja) * 2015-12-16 2017-06-22 富士フイルム株式会社 磁気テープ、磁気テープカートリッジ、磁気記録再生装置および磁気テープの製造方法
JP2019067478A (ja) * 2017-09-29 2019-04-25 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP2019169229A (ja) * 2018-03-23 2019-10-03 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2020009523A (ja) * 2018-06-29 2020-01-16 富士フイルム株式会社 磁気テープ装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953657A (en) * 1973-01-29 1976-04-27 Mitsui Toatsu Kagaku Kabushiki Kaisha Method for coating particulate solids with polymers
US5405648A (en) * 1993-05-10 1995-04-11 Hermann; Paul F. Coating particulate material with a polymer film
US7182798B2 (en) * 2004-07-29 2007-02-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polymer-coated particles for chemical mechanical polishing
JP2011173958A (ja) * 2010-02-23 2011-09-08 Tokyo Electron Ltd スラリー製造方法、スラリー、研磨方法及び研磨装置
JP4970578B2 (ja) 2010-08-17 2012-07-11 日立マクセル株式会社 磁気記録媒体
US10497395B2 (en) * 2012-04-26 2019-12-03 Sony Corporation Unitary hub tape spool
JP5802224B2 (ja) * 2013-01-31 2015-10-28 富士フイルム株式会社 磁気記録媒体
JP6378166B2 (ja) * 2014-12-26 2018-08-22 富士フイルム株式会社 磁気テープおよびその製造方法
US9711174B2 (en) * 2014-12-26 2017-07-18 Fujifilm Corporation Magnetic tape and method of manufacturing the same
JP6325977B2 (ja) * 2014-12-26 2018-05-16 富士フイルム株式会社 磁気テープおよびその製造方法
JP6300762B2 (ja) * 2015-07-28 2018-03-28 富士フイルム株式会社 磁気テープおよびその製造方法
JP6534969B2 (ja) * 2016-06-22 2019-06-26 富士フイルム株式会社 磁気テープ
JP6649314B2 (ja) * 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649313B2 (ja) * 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107543A (ja) * 2004-09-30 2006-04-20 Fuji Photo Film Co Ltd 磁気テープカートリッジ
JP2008276868A (ja) * 2007-04-27 2008-11-13 Fujifilm Corp テープリール、記録テープカートリッジ、マシンリール、引出部材及びドライブ装置
JP2017111842A (ja) * 2015-12-16 2017-06-22 富士フイルム株式会社 磁気テープ、磁気テープカートリッジ、磁気記録再生装置および磁気テープの製造方法
JP2019067478A (ja) * 2017-09-29 2019-04-25 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置
JP2019169229A (ja) * 2018-03-23 2019-10-03 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
JP2020009523A (ja) * 2018-06-29 2020-01-16 富士フイルム株式会社 磁気テープ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037585A1 (ja) * 2021-09-09 2023-03-16 ソニーグループ株式会社 サーボパターン記録装置、サーボパターン記録方法、磁気テープの製造方法、磁気テープ

Also Published As

Publication number Publication date
US20210241786A1 (en) 2021-08-05
US11495246B2 (en) 2022-11-08
JP7247127B2 (ja) 2023-03-28
JP2023073303A (ja) 2023-05-25
JP7427121B2 (ja) 2024-02-02

Similar Documents

Publication Publication Date Title
JP6778805B1 (ja) 磁気記録媒体および磁気記録再生装置
JP7427121B2 (ja) 磁気テープカートリッジおよび磁気テープ装置
JP6778803B1 (ja) 磁気記録媒体および磁気記録再生装置
JP2021047935A (ja) 磁気記録媒体および磁気記録再生装置
JP2021114354A (ja) 磁気テープカートリッジ
JP7091264B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
US20210241792A1 (en) Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP2021190142A (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP2022021229A (ja) 磁気テープカートリッジおよび磁気テープ装置
WO2022025155A1 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7351810B2 (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6893952B2 (ja) 磁気記録媒体および磁気記録再生装置
JP2022121901A (ja) 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP2022021230A (ja) 磁気テープカートリッジおよび磁気テープ装置
JP2021125279A (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP6858905B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7299205B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7432785B2 (ja) 磁気記録媒体および磁気記録再生装置
JP2020166910A (ja) 磁気記録媒体および磁気記録再生装置
JP6909907B2 (ja) 磁気記録媒体および磁気記録再生装置
JP6909908B2 (ja) 磁気記録媒体および磁気記録再生装置
JP7358321B2 (ja) 磁気記録媒体および磁気記録再生装置
WO2022138310A1 (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP2021190143A (ja) 磁気テープ装置、磁気テープおよび磁気テープカートリッジ
JP2021047978A (ja) 磁気記録媒体および磁気記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7247127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150