JP2021167732A - 電池監視装置 - Google Patents

電池監視装置 Download PDF

Info

Publication number
JP2021167732A
JP2021167732A JP2020070155A JP2020070155A JP2021167732A JP 2021167732 A JP2021167732 A JP 2021167732A JP 2020070155 A JP2020070155 A JP 2020070155A JP 2020070155 A JP2020070155 A JP 2020070155A JP 2021167732 A JP2021167732 A JP 2021167732A
Authority
JP
Japan
Prior art keywords
voltage value
battery
value
circuit
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020070155A
Other languages
English (en)
Other versions
JP7086495B2 (ja
Inventor
簡 王
Jian Wang
宏尚 藤井
Hironao FUJII
早希 大西
Saki Onishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2020070155A priority Critical patent/JP7086495B2/ja
Priority to EP21165907.3A priority patent/EP3893010B1/en
Priority to US17/222,921 priority patent/US11275120B2/en
Priority to CN202110375791.6A priority patent/CN113514766B/zh
Publication of JP2021167732A publication Critical patent/JP2021167732A/ja
Application granted granted Critical
Publication of JP7086495B2 publication Critical patent/JP7086495B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】電池の内部抵抗値の検出精度を向上させることができる電池監視装置を提供する。
【解決手段】電池監視装置1において、増幅回路30は、バッテリBTの電圧値Vbat1と基準電圧値Vdacとの差電圧値を増幅した増幅差電圧値V1を出力し、且つ、バッテリBTの電圧値Vbat2と基準電圧値Vdacとの差電圧値を増幅した増幅差電圧値V2を出力する。CPU44は、増幅回路30により出力された増幅差電圧値V1、増幅回路30により出力された増幅差電圧値V2、定電流回路10により調整された定電流の電流値Idis1、及び、定電流回路10により調整された定電流の電流値Idis2に基づいてバッテリBTの内部抵抗値Riを演算する。ここで、上記基準電圧値Vdacは、電圧値Vbat1と電圧値Vbat2との間の電圧値である。
【選択図】図1

Description

本発明は、電池監視装置に関する。
従来、例えば、電池の電圧値と予め定められた基準電圧値との差電圧値を増幅する増幅回路と、増幅回路により増幅された差電圧値及び電池の電流値に基づいて当該電池の内部抵抗値を検出する検出部とを備えた電池監視装置がある。なお、特許文献1には、電池の第1電圧と第2電圧との差電圧を増幅した電圧に基づいて電池の内部抵抗値を検出する差電圧測定装置が記載されている。
特開2018−116012号公報
ところで、従来の電池監視装置は、例えば、検出部が検出可能な電圧値に限度があるため、増幅後の差電圧値を検出部により検出可能な最大電圧値以下にする必要がある。従来の電池監視装置は、増幅前の差電圧値が大きいため、増幅後の差電圧値を上記最大電圧値以下にするために増幅率を小さくする必要があり、この結果、電池の内部抵抗値の検出精度が低下するおそれがある。
そこで、本発明は、上記に鑑みてなされたものであって、電池の内部抵抗値の検出精度を向上させることができる電池監視装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る電池監視装置は、監視対象の電池を含む電池監視回路と、前記電池監視回路に設けられ、当該電池監視回路に流れる前記電池の電流を、第1電流値の定電流、及び、前記第1電流値とは異なる電流値である第2電流値の定電流に調整する定電流回路と、前記定電流回路により調整された前記第1電流値の定電流が前記電池監視回路に流れた際の前記電池の第1電圧値と予め定められた基準電圧値との差電圧値を増幅した第1増幅差電圧値を出力し、且つ、前記定電流回路により調整された前記第2電流値の定電流が前記電池監視回路に流れた際の前記電池の第2電圧値と前記基準電圧値との差電圧値を増幅した第2増幅差電圧値を出力する増幅回路と、前記増幅回路により出力された前記第1増幅差電圧値、前記増幅回路により出力された前記第2増幅差電圧値、前記定電流回路により調整された前記定電流の前記第1電流値、及び、前記定電流回路により調整された前記定電流の前記第2電流値に基づいて前記電池の内部抵抗値を演算する制御部と、を備え、前記基準電圧値は、前記第1電圧値と前記第2電圧値との間の電圧値であることを特徴とする。
上記電池監視装置において、前記基準電圧値は、前記第1電圧値と前記第2電圧値との間における中央の電圧値であることが好ましい。
上記電池監視装置において、前記基準電圧値は、前記電池の使用年数及び前記電池の温度変化に応じた電圧値であることが好ましい。
本発明に係る電池監視装置は、基準電圧値が電池の第1電圧値と第2電圧値との間の電圧であり、当該基準電圧値と第1及び第2電圧値との差電圧値に基づいて内部抵抗値を演算するので、増幅前の差電圧値を小さくすることができる。これにより、本発明に係る電池監視装置は、増幅率を大きくすることができるので、電池の内部抵抗値の検出精度を向上させることができる。
図1は、実施形態に係る電池監視装置の構成例を示す回路図である。 図2は、実施形態に係るバッテリの電圧値と基準電圧値との差電圧値を示す図である。 図3は、実施形態に係る電池監視装置の動作例を示すフローチャートである。 図4は、実施形態の変形例に係る電池監視装置の構成例を示す回路図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。更に、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。
〔実施形態〕
図面を参照しながら実施形態に係る電池監視装置1について説明する。図1は、実施形態に係る電池監視装置1の構成例を示す回路図である。図2は、実施形態に係るバッテリBTの電圧値Vbat1、Vbat2と基準電圧値Vdacとの差電圧値を示す図である。なお、図2では、放電電流を示しているが、充電電流であっても電圧低下が電圧上昇に変わるのみで同様な傾向の関係図が得られる。電池監視装置1は、車両に搭載され、当該車両のバッテリBTの内部抵抗Rの内部抵抗値Riを演算し、当該内部抵抗値Riに基づいてバッテリBTの劣化(SOH;State Of Health)を推定する装置である。以下、電池監視装置1について詳細に説明する。
電池監視装置1は、電池監視回路Mと、電池としてのバッテリBTと、定電流回路10と、スイッチ回路20と、増幅回路30と、MCU(Micro Controller Unit)40とを備える。
電池監視回路Mは、監視対象のバッテリBTを含む回路であり、当該バッテリBTの内部抵抗値Riを演算するための回路である。つまり、電池監視回路Mは、バッテリBTの充放電電流の変化によるセル電圧の差分を検出するための回路である。
バッテリBTは、直流電力を充放電可能な電池であり、例えば、リチウムイオン電池である。バッテリBTは、1又は複数の電池セルCeを含んで構成されている。バッテリBTは、当該バッテリBTの使用に応じた経年劣化により、内部抵抗Rを含んでいる。バッテリBTは、上記電池監視回路Mとは異なる電力供給回路により、車両に搭載された負荷部(図示省略)に電力を供給する。
定電流回路10は、電池監視回路Mに設けられ、当該電池監視回路Mに流れる電流を定電流に調整するものである。定電流回路10は、一端がバッテリBTの正極に接続され、他端がグランドに接続されている。定電流回路10は、電池監視回路Mに流れるバッテリBTの電流を、予め定められた電流値Idis1、Idis2の定電流に調整する。定電流回路10は、バッテリBTの内部抵抗値Riを演算する場合、先ず、電流値Idis1で定電流を電池監視回路Mに流し、次に、電流値Idis1とは異なる(電流値Idis1よりも大きい)電流値Idis2で定電流を電池監視回路Mに流す。
スイッチ回路20は、スイッチSW1A、SW1B、SW2A、SW2Bを含んで構成されている。これらのスイッチSW1A〜SW2Bは、第1接点と第2接点との間の電気的な接続を切り替えるものである。スイッチSW1A〜SW2Bは、ONすることで第1接点と第2接点との間を通電可能に接続し、OFFすることで第1接点と第2接点との間を遮断する。スイッチSW1A〜SW2Bは、MCU40から出力される切替信号に基づいてON又はOFFする。
スイッチSW1Aは、バッテリBTと増幅回路30との間に設けられている。スイッチSW1Aは、第1接点a1がバッテリBTの正極に接続され、第2接点a2が増幅回路30の入力端子(非反転入力端子)V+に接続されている。スイッチSW1Aは、ONすることで、バッテリBTの正極と増幅回路30の入力端子V+との間を通電可能に接続し、OFFすることで、バッテリBTの正極と増幅回路30の入力端子V+との間を遮断する。
スイッチSW1Bは、増幅回路30とMCU40との間に設けられている。スイッチSW1Bは、第1接点b1が増幅回路30の入力端子(反転入力端子)V−に接続され、第2接点b2がMCU40に接続されている。スイッチSW1Bは、ONすることで、増幅回路30の入力端子V−とMCU40との間を通電可能に接続し、OFFすることで、増幅回路30の入力端子V−とMCU40との間を遮断する。
スイッチSW2Aは、バッテリBTと増幅回路30との間に設けられている。スイッチSW2Aは、第1接点c1がバッテリBTの正極に接続され、第2接点c2が増幅回路30の入力端子V−に接続されている。スイッチSW2Aは、ONすることで、バッテリBTの正極と増幅回路30の入力端子V−との間を通電可能に接続し、OFFすることで、バッテリBTの正極と増幅回路30の入力端子V−との間を遮断する。
スイッチSW2Bは、増幅回路30とMCU40との間に設けられている。スイッチSW2Bは、第1接点d1が増幅回路30の入力端子V+に接続され、第2接点d2がMCU40に接続されている。スイッチSW2Bは、ONすることで、増幅回路30の入力端子V+とMCU40との間を通電可能に接続し、OFFすることで、増幅回路30の入力端子V+とMCU40との間を遮断する。
増幅回路30は、差電圧を増幅する差動増幅回路であり、単電源(5V)により動作する。増幅回路30は、入力端子V+と、入力端子V−と、出力端子Voutとを含んで構成されている。入力端子V+は、スイッチSW1Aを介してバッテリBTの正極に接続され、バッテリBTの電圧値Vbat1を入力する。ここで、バッテリBTの電圧値Vbat1は、定電流回路10により電流値Idis1で定電流に調整した際のバッテリBTの電圧値である。また、入力端子V+は、スイッチSW2Bを介してMCU40に接続され、MCU40から基準電圧値Vdacを入力する。ここで、基準電圧値Vdacは、図2に示すように、定電流回路10により調整された電流値Idis1の定電流が電池監視回路Mに流れた際のバッテリBTの電圧値Vbat1と、定電流回路10により調整された電流値Idis1とは異なる電流値Idis2の定電流が電池監視回路Mに流れた際のバッテリBTの電圧値Vbat2との間の電圧である。基準電圧値Vdacは、例えば、電圧値Vbat1と電圧値Vbat2との間における中央の電圧値である。
入力端子V−は、スイッチSW2Aを介してバッテリBTの正極に接続され、バッテリBTの電圧値Vbat2を入力する。ここで、バッテリBTの電圧値Vbat2は、定電流回路10により電流値Idis1とは異なる電流値Idis2で定電流に調整した際のバッテリBTの電圧値である。また、入力端子V−は、スイッチSW1Bを介してMCU40に接続され、MCU40から基準電圧値Vdacを入力する。
出力端子Voutは、MCU40に接続され、増幅された差電圧をMCU40に出力する。
増幅回路30は、例えば、入力端子V+から入力したバッテリBTの電圧値Vbat1と、入力端子V−から入力した基準電圧値Vdacとの差電圧(電圧値Vbat1−基準電圧値Vdac)を増幅し、増幅した増幅差電圧値V1を出力端子VoutからMCU40に出力する。また、増幅回路30は、入力端子V+から入力した基準電圧値Vdacと、入力端子V−から入力したバッテリBTの電圧値Vbat2との差電圧(基準電圧値Vdac−電圧値Vbat2)を増幅し、増幅した増幅差電圧値V2をMCU40に出力する。
MCU40は、スイッチ回路20を制御し、且つ、バッテリBTの内部抵抗値Riを演算するものである。MCU40は、記憶部41と、制御ロジック部42と、A/D変換部43と、制御部としてのCPU44とを含んで構成され、これらの機能が1つのIC(Integrated Circuit)に搭載されている。
記憶部41は、各種情報を記憶する不揮発性のメモリである。記憶部41は、制御ロジック部42やCPU44等での各種処理に必要な条件や情報、各種プログラム、アプリケーション等が記憶されている。そして、記憶部41は、基準電圧値Vdacも記憶している。記憶部41は、制御ロジック部42やCPU44等によってこれらの情報が必要に応じて読み出されたり、各種情報が書き込まれたりする。
制御ロジック部42は、スイッチ回路20を制御するものである。制御ロジック部42は、スイッチ回路20に接続され、スイッチ回路20をON又はOFFにする切替信号をスイッチ回路20に出力する。制御ロジック部42は、例えば、切替信号をスイッチ回路20に出力し、スイッチSW1A、SW1BをONにし、且つ、スイッチSW2A、SW2BをOFFにし、増幅回路30の入力端子V+にバッテリBTの電圧値Vbat1を入力させ、増幅回路30の入力端子V−に基準電圧値Vdacを入力させる。また、制御ロジック部42は、切替信号をスイッチ回路20に出力し、スイッチSW2A、SW2BをONにし、且つ、スイッチSW1A、SW1BをOFFにし、増幅回路30の入力端子V+に基準電圧値Vdacを入力させ、増幅回路30の入力端子V−にバッテリBTの電圧値Vbat2を入力させる。
A/D変換部43は、アナログ信号をデジタル信号に変換するものである。A/D変換部43は、増幅回路30の出力端子Voutに接続され、当該出力端子Voutから出力されるアナログ信号をデジタル信号に変換する。A/D変換部43は、例えば、出力端子Voutから出力されるアナログ信号の増幅差電圧値V1、V2をデジタル信号の増幅差電圧値V1、V2に変換する。A/D変換部43は、変換したデジタル信号の増幅差電圧値V1、V2をCPU44に出力する。
CPU44は、バッテリBTの内部抵抗値Riの演算等を行うものである。CPU44は、バッテリBTの内部抵抗値Riを演算するとき、記憶部41を参照し、当該記憶部41に記憶された基準電圧値Vdacを増幅回路30に出力する。そして、CPU44は、A/D変換部43から出力された増幅差電圧値V1、V2、及び、定電流回路10により調整された定電流の電流値Idis1、Idis2に基づいてバッテリBTの内部抵抗値Riを演算する。CPU44は、例えば、増幅差電圧値V1及び増幅差電圧値V2を加算した値を、電流値Idis2から電流値Idis1を減算した値で除算してバッテリBTの内部抵抗値Riを演算する。つまり、CPU44は、以下の式(1)により内部抵抗値Riを演算する。
Ri=(V1+V2)/(Idis2−Idis1) ・・・(1)
なお、CPU44は、電流値Idis1、Idis2を取得する方法として、電流値Idis1、Idis2を定電流回路10から取得してもよいし、予め記憶部41に記憶された電流値Idis1、Idis2を読み取ることにより取得してもよい。
次に、基準電圧値Vdacの求め方について説明する。基準電圧値Vdacは、バッテリBTの使用年数及びバッテリBTの温度変化に応じた電圧値である。例えば、バッテリBTの最小の内部抵抗値Riは、バッテリBTが初期状態であり且つ使用温度が最も高い条件で演算した場合に得られる。バッテリBTの最大の内部抵抗値Riは、バッテリBTが最大使用年数に到達し且つ使用温度が最も低い条件で演算した場合に得られる。最小の内部抵抗値Ri及び最大の内部抵抗値Riは、コンピュータによるシミュレーションにより演算してもよいし、実際のバッテリBTから取得した検出結果に基づいて演算してもよい。
そして、本実施形態では、上記最小の内部抵抗値Ri及び最大の内部抵抗値Riから「電圧値Vbat1−電圧値Vbat2」の範囲を演算する。ここで、「電圧値Vbat1−電圧値Vbat2」は、以下の式(2)により演算される。なお、式(2)において、Vbat1、Vbat2は電圧値を表し、Riは内部抵抗値を表し、Idis1、Idis2は、電流値を表す。
Vbat1−Vbat2=Ri×(Idis2−Idis1) ・・・(2)
式(2)において、内部抵抗値Riは、上述したように、バッテリBTの使用年数及び温度変化に応じて、最小の内部抵抗値Riから最大の内部抵抗値Riまでの範囲がある。このため、「Vbat1−Vbat2」も内部抵抗値Riの範囲に応じた電圧値の範囲がある。式(2)により「Vbat1−Vbat2」の範囲を演算する。
基準電圧値Vdacは、以下の式(3)により演算される。なお、式(3)において、Vdacは基準電圧値を表し、Vbat1、Vbat2は電圧値を表す。「Vbat1−Vbat2」は上記式(2)で演算された電圧値である。
Vdac=Vbat2+(Vbat1−Vbat2)/2 ・・・(3)
式(3)において、「Vbat1−Vbat2」は、上述したように、内部抵抗値Riの範囲に応じた電圧値の範囲がある。このため、基準電圧値Vdacも「Vbat1−Vbat2」の範囲に応じた電圧値の範囲がある。式(3)により基準電圧値Vdacの範囲を演算する。そして、この基準電圧値Vdacの範囲において、中央の電圧値を基準電圧値Vdacとする。これにより、基準電圧値Vdacは、バッテリBTの使用年数及び温度変化に適応した電圧値となる。この基準電圧値Vdacは、記憶部41に記憶される。
次に、電池監視装置1の動作例について説明する。図3は、実施形態に係る電池監視装置1の動作例を示すフローチャートである。電池監視装置1は、バッテリBTの充放電電流の変化によるセル電圧差分を検出するために、定電流回路10により電池監視回路Mを電流値Idis1の定電流に調整する(ステップS1)。このとき、制御ロジック部42は、スイッチSW1A、SW1BをONにし、且つ、スイッチSW2A、SW2BをOFFにする。増幅回路30は、入力端子V+からバッテリBTの電圧値Vbat1を入力し(ステップS2)、且つ、入力端子V−から基準電圧値Vdacを入力する(ステップS3)。そして、増幅回路30は、バッテリBTの電圧値Vbat1と基準電圧値Vdacとの差電圧値(Vbat1−Vdac)を増幅した増幅差電圧値V1をMCU40に出力する(ステップS4)。
次に、定電流回路10は、電池監視回路Mを電流値Idis1とは異なる電流値Idis2の定電流に調整する(ステップS5)。このとき、制御ロジック部42は、スイッチSW2A、SW2BをONにし、且つ、スイッチSW1A、SW1BをOFFにする。増幅回路30は、入力端子V+から基準電圧値Vdacを入力し(ステップS6)、且つ、入力端子V−からバッテリBTの電圧値Vbat2を入力する(ステップS7)。そして、増幅回路30は、基準電圧値VdacとバッテリBTの電圧値Vbat2との差電圧値(Vdac−Vbat2)を増幅した増幅差電圧値V2をMCU40に出力する(ステップS8)。
次に、MCU40は、増幅回路30から出力された増幅差電圧値V1、増幅回路30から出力された増幅差電圧値V2、定電流回路10により調整された定電流の電流値Idis1、定電流回路10により調整された定電流の電流値Idis2に基づいて内部抵抗値Riを演算する(ステップS9)。
以上のように、実施形態に係る電池監視装置1は、電池監視回路Mと、定電流回路10と、増幅回路30と、CPU44とを備える。電池監視回路Mは、監視対象のバッテリBTを含む回路である。定電流回路10は、電池監視回路Mに設けられ、当該電池監視回路Mに流れるバッテリBTの電流を、予め定められた電流値Idis1の定電流、及び、この電流値Idis1とは異なる電流値であり予め定められた電流値Idis2の定電流に調整する。増幅回路30は、定電流回路10により調整された電流値Idis1の定電流が電池監視回路Mに流れた際のバッテリBTの電圧値Vbat1と、予め定められた基準電圧値Vdacとの差電圧値を増幅した増幅差電圧値V1を出力する。また、増幅回路30は、定電流回路10により調整された電流値Idis2の定電流が電池監視回路Mに流れた際のバッテリBTの電圧値Vbat2と基準電圧値Vdacとの差電圧値を増幅した増幅差電圧値V2を出力する。CPU44は、増幅回路30により出力された増幅差電圧値V1、増幅回路30により出力された増幅差電圧値V2、定電流回路10により調整された定電流の電流値Idis1、及び、定電流回路10により調整された定電流の電流値Idis2に基づいてバッテリBTの内部抵抗値Riを演算する。上記基準電圧値Vdacは、電圧値Vbat1と電圧値Vbat2との間の電圧値であることを特徴とする。
ここで、電池監視装置1は、MCU40が検出可能な電圧値に限度があるため、増幅差電圧値V1、V2をMCU40により検出可能な最大電圧値(例えば5V)以下にする必要がある。従来の電池監視装置は、増幅後の差電圧値を正にするために、基準電圧値Vdacを電圧値Vbat1、Vbat2よりも小さい電圧値に設定し、電圧値Vbat1、Vbat2から基準電圧値Vdacを減算して差電圧を演算している。そして、従来の電池監視装置は、増幅後の差電圧値をMCU40の最大電圧値以下にするために、増幅前の差電圧値が大きい方に増幅率を合わせている。このため、従来の電池監視装置は、増幅率を大きくすることができず、バッテリBTの内部抵抗値Riの検出精度が低下するおそれがある。
これに対して、電池監視装置1は、基準電圧値Vdacが電圧値Vbat1と電圧値Vbat2との間の電圧であるので、従来のように基準電圧値Vdacが電圧値Vbat1及び電圧値Vbat2よりも小さい電圧値である場合と比較して、電圧値Vbat1、Vbat2と基準電圧値Vdacとの増幅前の差電圧値を小さくすることができる。これにより、電池監視装置1は、増幅回路30の増幅率を従来よりも大きくすることができるので、従来よりもバッテリBTの内部抵抗値Riの検出精度を向上させることができる。従って、電池監視装置1は、内部抵抗値Riに基づいてバッテリBTの劣化を精度よく推定することができる。これにより、電池監視装置1は、バッテリBTの劣化に応じた制御を行うことにより、バッテリBTの寿命を延ばすことができる。
上記電池監視装置1において、基準電圧値Vdacは、電圧値Vbat1と電圧値Vbat2との間における中央の電圧値である。この構成により、電池監視装置1は、電圧値Vbat1、Vbat2と基準電圧値Vdacとの増幅前の差電圧値を従来と比較して半分程度にすることができる。これにより、電池監視装置1は、増幅回路30の増幅率を従来と比較して約2倍にすることができ、内部抵抗値Riの誤差を従来と比較して半分程度に抑制することができる。
上記電池監視装置1において、基準電圧値Vdacは、バッテリBTの使用年数及びバッテリBTの温度変化に応じた電圧値である。この構成により、電池監視装置1は、バッテリBTが初期状態であっても、或いは最大使用年数に到達した場合であっても、基準電圧値Vdacを電圧値Vbat1と電圧値Vbat2との間の電圧に設定することができる。また、電池監視装置1は、バッテリBTの使用温度が最も低い場合であっても、或いはバッテリBTの使用温度が最も高い場合であっても、基準電圧値Vdacを電圧値Vbat1と電圧値Vbat2との間の電圧に設定することができる。
〔変形例〕
次に、実施形態の変形例について説明する。なお、変形例では、実施形態と同等の構成要素には同じ符号を付し、その詳細な説明を省略する。図4は、実施形態の変形例に係る電池監視装置1Aの構成例を示す回路図である。変形例に係る電池監視装置1Aは、増幅回路30Aが正負の両電源を有する点で実施形態に係る電池監視装置1と異なる。
変形例に係る電池監視装置1Aは、図4に示すように、電池監視回路Mと、バッテリBTと、定電流回路10と、増幅回路30Aと、MCU40Aとを備える。
増幅回路30Aは、差電圧を増幅する差動増幅回路であり、正負の両電源(±5V)により動作する。増幅回路30Aは、入力端子V+と、入力端子V−と、出力端子Voutとを含んで構成されている。入力端子V+は、バッテリBTの正極に接続され、バッテリBTの電圧値Vbat1、Vbat2を入力する。入力端子V−は、MCU40Aに接続され、MCU40Aから基準電圧値Vdacを入力する。出力端子Voutは、MCU40Aに接続され、増幅された差電圧をMCU40Aに出力する。
増幅回路30Aは、例えば、入力端子V+から入力したバッテリBTの電圧値Vbat1と、入力端子V−から入力した基準電圧値Vdacとの差電圧(電圧値Vbat1−基準電圧値Vdac)を増幅し、増幅した増幅差電圧値V1を出力端子VoutからMCU40Aに出力する。また、増幅回路30Aは、入力端子V+から入力したバッテリBTの電圧値Vbat2と、入力端子V−から入力した基準電圧値Vdacとの差電圧(電圧値Vbat2−基準電圧値Vdac)を増幅し、増幅した増幅差電圧値V2を出力端子VoutからMCU40Aに出力する。
MCU40Aは、増幅回路30Aから出力された増幅差電圧値V1、V2、及び、定電流回路10により調整された定電流の電流値Idis1、Idis2に基づいてバッテリBTの内部抵抗値Riを演算する。このように、電池監視装置1Aは、正負の両電源を有する増幅回路30Aを用いるように構成してもよい。
上記説明において、基準電圧値Vdacは、電圧値Vbat1と電圧値Vbat2との間における中央の電圧値である例について説明したが、これに限定されず、電圧値Vbat1と電圧値Vbat2との間の電圧値であれば中央の電圧値に限定されない。
基準電圧値Vdacは、バッテリBTの使用年数及びバッテリBTの温度変化に応じた電圧値である例について説明したが、これに限定されず、バッテリBTの使用年数及びバッテリBTの温度変化に応じた電圧値でなくてもよい。
MCU40、40Aの最大電圧値は、5Vである例を挙げて説明したが、5Vに限定されず、その他の電圧値であってもよい。
基準電圧値Vdacは、MCU40から増幅回路30に出力する例について説明したが、これに限定されず、例えば、外部のLDO(Low Dropout)から増幅回路30に出力してもよい。
MCU40は、記憶部41と、制御ロジック部42と、A/D変換部43と、CPU44とを含んで構成され、これらの機能が1つのICに搭載される例について説明したが、これに限定されず、上記機能が複数のICに分散して搭載されていてもよい。
電池監視装置1は、バッテリBTの使用年数及び温度変化にそれぞれ対応させた複数の基準電圧値Vdacを用意し、バッテリBTの使用年数や温度変化に応じて、適正な基準電圧値Vdacを設定するようにしてもよい。
CPU44は、予め定められた定電流の電流値Idis1、Idis2に基づいてバッテリBTの内部抵抗値Riを演算する例について説明したが、これに限定されない。例えば、CPU44は、予め定められた定電流の電流値Idis1、Idis2ではなく、実際にバッテリBTから流れる定電流の電流値Idis1、Idis2に基づいてバッテリBTの内部抵抗値Riを演算してもよい。
M 電池監視回路
10 定電流回路
30、30A 増幅回路
BT バッテリ(電池)
44 CPU(制御部)
Vdac 基準電圧値
Idis1 電流値(第1電流値)
Idis2 電流値(第2電流値)
Vbat1 電圧値(第1電圧値)
Vbat2 電圧値(第2電圧値)
V1 増幅差電圧値(第1増幅差電圧値)
V2 増幅差電圧値(第2増幅差電圧値)

Claims (3)

  1. 監視対象の電池を含む電池監視回路と、
    前記電池監視回路に設けられ、当該電池監視回路に流れる前記電池の電流を、第1電流値の定電流、及び、前記第1電流値とは異なる電流値である第2電流値の定電流に調整する定電流回路と、
    前記定電流回路により調整された前記第1電流値の定電流が前記電池監視回路に流れた際の前記電池の第1電圧値と予め定められた基準電圧値との差電圧値を増幅した第1増幅差電圧値を出力し、且つ、前記定電流回路により調整された前記第2電流値の定電流が前記電池監視回路に流れた際の前記電池の第2電圧値と前記基準電圧値との差電圧値を増幅した第2増幅差電圧値を出力する増幅回路と、
    前記増幅回路により出力された前記第1増幅差電圧値、前記増幅回路により出力された前記第2増幅差電圧値、前記定電流回路により調整された前記定電流の前記第1電流値、及び、前記定電流回路により調整された前記定電流の前記第2電流値に基づいて前記電池の内部抵抗値を演算する制御部と、を備え、
    前記基準電圧値は、前記第1電圧値と前記第2電圧値との間の電圧値であることを特徴とする電池監視装置。
  2. 前記基準電圧値は、前記第1電圧値と前記第2電圧値との間における中央の電圧値である請求項1に記載の電池監視装置。
  3. 前記基準電圧値は、前記電池の使用年数及び前記電池の温度変化に応じた電圧値である請求項1又は2に記載の電池監視装置。
JP2020070155A 2020-04-09 2020-04-09 電池監視装置 Active JP7086495B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020070155A JP7086495B2 (ja) 2020-04-09 2020-04-09 電池監視装置
EP21165907.3A EP3893010B1 (en) 2020-04-09 2021-03-30 Battery monitoring device
US17/222,921 US11275120B2 (en) 2020-04-09 2021-04-05 Battery monitoring device
CN202110375791.6A CN113514766B (zh) 2020-04-09 2021-04-08 电池监视装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020070155A JP7086495B2 (ja) 2020-04-09 2020-04-09 電池監視装置

Publications (2)

Publication Number Publication Date
JP2021167732A true JP2021167732A (ja) 2021-10-21
JP7086495B2 JP7086495B2 (ja) 2022-06-20

Family

ID=75302322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020070155A Active JP7086495B2 (ja) 2020-04-09 2020-04-09 電池監視装置

Country Status (4)

Country Link
US (1) US11275120B2 (ja)
EP (1) EP3893010B1 (ja)
JP (1) JP7086495B2 (ja)
CN (1) CN113514766B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115856656A (zh) * 2022-11-25 2023-03-28 环鸿电子(昆山)有限公司 电池状态监控装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067526A (ja) * 2006-09-08 2008-03-21 Matsushita Electric Ind Co Ltd 蓄電装置
JP2015014563A (ja) * 2013-07-08 2015-01-22 矢崎総業株式会社 電池状態検出装置
JP2017120253A (ja) * 2015-12-24 2017-07-06 矢崎総業株式会社 差電圧測定装置
JP2018116011A (ja) * 2017-01-20 2018-07-26 矢崎総業株式会社 電池状態検出装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228403B2 (ja) * 2007-08-27 2013-07-03 パナソニック株式会社 蓄電装置
JP2010019758A (ja) * 2008-07-11 2010-01-28 Mitsumi Electric Co Ltd 電池状態検知装置
JP5777303B2 (ja) * 2010-08-05 2015-09-09 三菱重工業株式会社 電池劣化検知装置および電池劣化検知方法ならびにそのプログラム
JP2012112866A (ja) * 2010-11-26 2012-06-14 Kyocera Corp 内部抵抗測定装置、電池残量測定装置、携帯端末および内部抵抗測定方法
JP5989375B2 (ja) * 2012-03-28 2016-09-07 ラピスセミコンダクタ株式会社 半導体装置及び電池監視システム
EP2843432B1 (en) * 2012-04-27 2020-06-24 Hitachi Automotive Systems, Ltd. Battery monitoring device and battery system monitoring device
JP5984700B2 (ja) * 2013-01-31 2016-09-06 新電元工業株式会社 直流電源装置、蓄電池の充電方法及び直流電源装置の監視制御装置
JP6211302B2 (ja) * 2013-05-09 2017-10-11 矢崎総業株式会社 電池状態検出装置
JP6301188B2 (ja) * 2014-05-14 2018-03-28 エイブリック株式会社 充放電制御回路およびバッテリ装置
US10042005B2 (en) * 2015-08-21 2018-08-07 Yazaki Corporation Internal resistance calculating device
CN106501722A (zh) * 2016-09-02 2017-03-15 安徽锐普电子有限公司 一种电池电压检测电路及电压侦测方法
JP6809911B2 (ja) 2017-01-20 2021-01-06 矢崎総業株式会社 差電圧測定装置
CN109596996A (zh) * 2019-01-11 2019-04-09 深圳市爱克斯达电子有限公司 一种电池内阻检测模块与检测方法及集成该模块的充电器与移动电源
CN113125979A (zh) * 2019-12-31 2021-07-16 华为技术有限公司 一种蓄电池内阻检测装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067526A (ja) * 2006-09-08 2008-03-21 Matsushita Electric Ind Co Ltd 蓄電装置
JP2015014563A (ja) * 2013-07-08 2015-01-22 矢崎総業株式会社 電池状態検出装置
JP2017120253A (ja) * 2015-12-24 2017-07-06 矢崎総業株式会社 差電圧測定装置
JP2018116011A (ja) * 2017-01-20 2018-07-26 矢崎総業株式会社 電池状態検出装置

Also Published As

Publication number Publication date
EP3893010B1 (en) 2022-04-06
CN113514766A (zh) 2021-10-19
JP7086495B2 (ja) 2022-06-20
EP3893010A1 (en) 2021-10-13
US11275120B2 (en) 2022-03-15
CN113514766B (zh) 2024-03-26
US20210318387A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US8305035B2 (en) Energy storage device
US9599520B2 (en) Method for determining and operating temperature of an electronic component
US7084700B2 (en) Differential voltage amplifier circuit
JP2008064536A (ja) 組電池総電圧検出およびリーク検出装置
KR20160110184A (ko) 절연저항측정 장치 및 방법
US10288694B2 (en) Secondary battery monitoring device and method for diagnosing failure
JP2007085847A (ja) セルバランス回路異常検出方式
JP2006138750A (ja) 電池監視装置
KR19990023245A (ko) 충방전 전류 검출 기능을 구비한 충방전 제어 회로 및 충전식전원장치
WO2015145496A1 (ja) 電流検出装置、電源システム
TW201606328A (zh) 電池殘量預測裝置及電池組
JP4719972B2 (ja) 充放電電流測定装置
JP4934419B2 (ja) 電池パック
US11222526B2 (en) Two-wire transmitter
JP2013068452A (ja) 電流センサの故障診断装置
JP7086495B2 (ja) 電池監視装置
JP2002243771A (ja) 電池電圧検出回路
JP2007304006A (ja) 2次電池充放電検査装置及び2次電池充放電検査方法
JP6989220B2 (ja) 半導体装置、及び電池監視システム
EP3754843B1 (en) Voltage-current conversion circuit and charge-discharge control device
JP2013167546A (ja) 電流測定回路
JP5752086B2 (ja) 二次電池監視装置
JP2012186874A (ja) 電源装置
JP2014149165A (ja) 直流電源装置、直流電源装置における蓄電池の劣化判定方法、及び蓄電池劣化判定装置
JP2007155654A (ja) 充放電制御回路および充電式電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210617

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7086495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350