JP2021162571A - ガスセンサシステム - Google Patents

ガスセンサシステム Download PDF

Info

Publication number
JP2021162571A
JP2021162571A JP2020170621A JP2020170621A JP2021162571A JP 2021162571 A JP2021162571 A JP 2021162571A JP 2020170621 A JP2020170621 A JP 2020170621A JP 2020170621 A JP2020170621 A JP 2020170621A JP 2021162571 A JP2021162571 A JP 2021162571A
Authority
JP
Japan
Prior art keywords
gas
internal space
measurement
type
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020170621A
Other languages
English (en)
Inventor
裕一郎 近藤
Yuichiro Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to DE102021001576.2A priority Critical patent/DE102021001576A1/de
Priority to CN202110323969.2A priority patent/CN113466307A/zh
Priority to US17/213,755 priority patent/US11408873B2/en
Publication of JP2021162571A publication Critical patent/JP2021162571A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】濃度が時間的に変化する混合ガスに対する測定精度の向上を図ったガスセンサシステムを提供する。【解決手段】ガスセンサシステム10は、第1のガス検出部(センサ素子12a)、第2のガス検出部(センサ素子12b)を備える。第1のガス検出部および第2のガス検出部は、第1のガス種(ガス種G1)と第2のガス種(ガス種G2)の少なくとも一方を含む被測定ガスGを導入するガス導入口80と、前記ガス導入口に連通する測定室(第3内部空所96)と、前記ガス導入口と前記測定室の間に配置され、前記第1のガス種の一部を前記第2のガス種に変換する変換手段(NH3酸化触媒)と、前記測定室での前記第2のガス種を検出する検出手段(測定用ポンプセル140)と、を有する。第1のガス検出部および前記第2のガス検出部の拡散抵抗(前記ガス導入口から前記測定室に至る拡散抵抗Ra、Rb)の比(拡散抵抗比P)が、0.71以上1.4以下である。【選択図】図1

Description

本発明は、ガスセンサシステムに関する。
複数のガス種(例えば、NOxとNH)の濃度を測定できる装置が開発されている。例えば、特許文献1は、次の装置を開示する。この装置は、被測定ガス(NOxとNHを含む)中のNHをNOxに変換した後のNOxの合計量と、被測定ガス中のNHの一部をNOxに変換した後のNOxの合計量と、から被測定ガス中のNOx量およびNH量を算出する。
ここで、ガス成分の濃度が時間と共に変化することがある。例えば、自動車からの排気ガスは、エンジンの運転状態の変化に伴って、排気ガス成分の濃度も変化する。このようにガス成分の濃度が変化する場合、測定精度を維持するのは必ずしも容易ではない。
特開2001−133447号公報
本発明は、ガス成分の濃度が時間的に変化する混合ガスに対する測定精度の向上を図ったガスセンサシステムを提供することを目的とする。
一態様に係るガスセンサシステム(10)は、第1のガス検出部(センサ素子12a)、第2のガス検出部(センサ素子12b)、算出部(制御部200)を備える。第1のガス検出部は、第1のガス種(ガス種G1)と第2のガス種(ガス種G2)の少なくとも一方を含む被測定ガス(G)を導入する第1のガス導入口(ガス導入口80)と、前記第1のガス導入口に連通する第1の測定室(第3内部空所96)と、前記第1のガス導入口と前記第1の測定室の間に配置され、前記第1のガス種の一部を前記第2のガス種に変換する第1の変換手段(NH酸化触媒)と、前記第1の測定室での前記第2のガス種を検出する第1の検出手段(測定用ポンプセル140)と、を有する。第2のガス検出部は、前記被測定ガスを導入する第2のガス導入口(ガス導入口80)と、前記第2のガス導入口に連通する第2の測定室(第3内部空所96)と、前記第2のガス導入口と前記第2の測定室の間に配置され、前記第1のガス種の一部を前記第2のガス種に変換する第2の変換手段(NH酸化触媒)と、前記第2の測定室での前記第2のガス種を検出する第2の検出手段(測定用ポンプセル140)と、を有する。算出部は、前記第1の検出手段と前記第2の検出手段での検出結果に基づき、前記被測定ガス中の前記第1のガス種と前記第2のガス種の濃度を算出する。前記第1の変換手段と前記第2の変換手段の変換効率が異なる。前記第1のガス導入口から前記第1の測定室に至る第1の拡散抵抗(Ra)と、前記第2のガス導入口から前記第2の測定室に至る第2の拡散抵抗(Rb)と、の比(拡散抵抗比P)が、0.71以上1.4以下である。
本発明によれば、ガス成分の濃度が時間的に変化する混合ガスに対する測定精度の向上を図ったガスセンサシステムを提供することができる。
実施形態に係るガスセンサシステムを表す図である。 実施形態に係るセンサ素子の断面図である。 実験に用いたセンサ素子の特性を表す表である。 センサ素子での検出値の時間的変化を表すグラフである。 算出されたNHの濃度の時間的変化を表すグラフである。 実験結果を表す表である。 拡散抵抗比と測定誤差の関係を表すグラフである。 拡散抵抗差と測定誤差の関係を表すグラフである。
実施形態に係るガスセンサシステム10について、詳細に説明する。
図1は、実施形態に係るガスセンサシステム10を表す図である。ガスセンサシステム10は、センサ素子12a、12b、制御部200を有する。図1では、理解の容易のために、センサ素子12a、12bの一部を示し、詳細は省略している。
図1に示すように、センサ素子12a、12bは、ガス導入口80、第1拡散律速部82、緩衝空間84、第2拡散律速部86、第1内部空所88、第3拡散律速部90、第2内部空所92、第4拡散律速部94、第3内部空所96(測定室)を有する。ガス導入口80から被測定ガスGが導入され、第3内部空所96に達する。
ここで、被測定ガスGは、複数のガス種G1(例えば、NH)、G2(例えば、NOx)の少なくとも一方を含む。センサ素子12a、12bは、第1拡散律速部82、緩衝空間84、第2拡散律速部86、第1内部空所88、第3拡散律速部90、第2内部空所92、第4拡散律速部94の少なくともいずれかに、NHを酸化し、NOxに変換する変換手段(例えば、NH酸化触媒)を有する。
ここで、センサ素子12a、12bの変換手段は、異なる変換効率Ma、Mbを有する。この結果、被測定ガスGが、センサ素子12a、12bの第3内部空所96(測定室)に達したときの、NHが酸化されることにより生じたNOxの濃度は、互いに異なる。なお、変換手段および変換効率Ma、Mbの詳細は後述する。
第3内部空所96に達した、被測定ガスG中に元々存在したNOxと、被測定ガスG中のNHが酸化されることにより新たに生じたNOxとが、検出手段(後述の測定用ポンプセル140)を用いて、検出され、それらのNOxの濃度の和に対応する検出値Oa、Ob(Ip2a、Ip2b:後述のポンプ電流Ip2)が出力される。検出値Oa、Obは、当初の被測定ガスG中のNH濃度C1、NOx濃度C2と、例えば、次の式(1)で表される関係にある。ここで、Ka、Kbはそれぞれ、センサ素子12a、12bのNOx濃度に対する検出値の大きさを表す比例定数である。
Oa=Ka*(1.2*Ma*C1+C2)
Ob=Kb*(1.2*Mb*C1+C2) …(1)
制御部200は、この検出値Oa、Obから、例えば、次の式(2)に基づき、当初の被測定ガスG中のNH濃度C1、NOx濃度C2を算出する。
C1=(Oa/Ka−Ob/Kb)/(1.2*Ma−1.2*Mb)
C2=(−Mb*Oa/Ka+Ma*Ob/Kb)/(Ma−Mb) …(2)
以下、センサ素子12a、12bの詳細を説明する。センサ素子12a、12bの構成の相違は小さいので、センサ素子12としてまとめて説明し、相違する点を付記する。図2は、実施形態に係るセンサ素子12(12a、12b)の断面図である。
センサ素子12は長尺な直方体形状をしており、このセンサ素子12の長手方向(図2の左右方向)を前後方向とし、センサ素子12の厚み方向(図2の上下方向)を上下方向とする。また、センサ素子12の幅方向(前後方向および上下方向に垂直な方向)を左右方向とする。
センサ素子12は、それぞれがジルコニア(ZrO)等の酸素イオン伝導性固体電解質層からなる第1基板層60と、第2基板層62と、第3基板層64と、第1固体電解質層66と、スペーサ層68と、第2固体電解質層70の6つの層が、図面視で下側からこの順に積層された積層体を有する素子である。また、これら6つの層を形成する固体電解質は緻密な気密のものである。センサ素子12は、例えば、各層に対応するセラミックスグリーンシートに所定の加工および回路パターンの印刷等を行った後にそれらを積層し、さらに、焼成して一体化させることによって製造される。
センサ素子12の一端(図2の左側)であって、第2固体電解質層70の下面と第1固体電解質層66の上面との間には、ガス導入口80と、第1拡散律速部82と、緩衝空間84と、第2拡散律速部86と、第1内部空所88と、第3拡散律速部90と、第2内部空所92と、第4拡散律速部94と、第3内部空所96とが、この順に連通する態様にて隣接形成されてなる。
ガス導入口80と、緩衝空間84と、第1内部空所88と、第2内部空所92と、第3内部空所96とは、スペーサ層68をくり抜いた態様にて設けられた上部を第2固体電解質層70の下面で、下部を第1固体電解質層66の上面で、側部をスペーサ層68の側面で区画されたセンサ素子12内部の空間である。
第1拡散律速部82と、第2拡散律速部86と、第3拡散律速部90とはいずれも、2本の横長の(図面に垂直な方向に開口が長手方向を有する)スリットとして設けられる。また、第4拡散律速部94は、第2固体電解質層70の下面との隙間として形成された1本の横長の(図面に垂直な方向に開口が長手方向を有する)スリットとして設けられる。なお、ガス導入口80から第3内部空所96に至る部位を被測定ガス流通部とも称する。
また、被測定ガス流通部よりも一端側から遠い位置には、第3基板層64の上面と、スペーサ層68の下面との間であって、側部を第1固体電解質層66の側面で区画される位置に基準ガス導入空間98が設けられている。基準ガス導入空間98には、NOx濃度の測定を行う際の基準ガスとして、例えば大気が導入される。
大気導入層100は、多孔質アルミナ等のセラミックスからなり、基準ガス導入空間98に露出している層である。この大気導入層100には基準ガス導入空間98を通じて基準ガスが導入されるようになっている。また、大気導入層100は、基準電極102を被覆するように形成されている。この大気導入層100は、基準ガス導入空間98内の基準ガスに対して所定の拡散抵抗を付与しつつ、これを基準電極102に導入する。なお、大気導入層100は、基準電極102よりもセンサ素子12の後端側(図2の右側)でのみ基準ガス導入空間98に露出するように形成されている。換言すると、基準ガス導入空間98は、基準電極102の直上までは形成されていない。但し、基準電極102が基準ガス導入空間98の図2における真下に形成されていてもよい。
基準電極102は、第3基板層64の上面と第1固体電解質層66とに挟まれる態様にて形成される電極であり、上記のように、その周囲には、基準ガス導入空間98につながる大気導入層100が設けられている。なお、基準電極102は、第3基板層64の上面に直に形成されており、第3基板層64の上面に接する部分以外が大気導入層100に覆われている。また、後述するように、基準電極102を用いて第1内部空所88内、第2内部空所92内、第3内部空所96内の酸素濃度(酸素分圧)を測定することが可能となっている。基準電極102は、多孔質サーメット電極(例えば、PtとZrOとのサーメット電極)として形成される。
被測定ガス流通部において、ガス導入口80は、外部空間に対して開口してなる部位であり、該ガス導入口80を通じて外部空間からセンサ素子12内に被測定ガスGが取り込まれるようになっている。第1拡散律速部82は、ガス導入口80から取り込まれた被測定ガスGに対して、所定の拡散抵抗を付与する部位である。緩衝空間84は、第1拡散律速部82より導入された被測定ガスGを第2拡散律速部86へと導くために設けられた空間である。
第2拡散律速部86は、緩衝空間84から第1内部空所88に導入される被測定ガスGに対して、所定の拡散抵抗を付与する部位である。被測定ガスGが、センサ素子12の外部から第1内部空所88内まで導入されるにあたって、外部空間における被測定ガスGの圧力変動(被測定ガスGが自動車の排気ガスの場合であれば排気圧の脈動)によってガス導入口80からセンサ素子12内部に急激に取り込まれた被測定ガスGは、直接第1内部空所88へ導入されるのではなく、第1拡散律速部82、緩衝空間84、第2拡散律速部86を通じて被測定ガスGの濃度変動が打ち消された後、第1内部空所88へ導入される。
これによって、第1内部空所88へ導入される被測定ガスGの濃度変動はほとんど無視できる程度のものとなる。第1内部空所88は、第2拡散律速部86を通じて導入された被測定ガスG中の酸素分圧を調整するための空間として設けられている。係る酸素分圧は、後述する主ポンプセル110が作動することによって調整される。
主ポンプセル110は、第1内部空所88の内面に設けられた内側ポンプ電極112と、第2固体電解質層70の上面のうち、内側ポンプ電極112と対応する領域に外部空間に露出する態様にて設けられた外側ポンプ電極114と、これらの電極に挟まれた第2固体電解質層70とによって構成されてなる電気化学的ポンプセルである。
内側ポンプ電極112は、第1内部空所88を区画する上下の固体電解質層(第2固体電解質層70および第1固体電解質層66)、および、スペーサ層68にまたがって形成されている。具体的には、第1内部空所88の天井面をなす第2固体電解質層70の下面には内側ポンプ電極112の天井電極部112aが形成され、また、第1内部空所88の底面をなす第1固体電解質層66の上面には底部電極部112bが直に形成され、そして、これら天井電極部112aと底部電極部112bとを接続するように、側部電極部(図示省略)が第1内部空所88の両側壁部を構成するスペーサ層68の側壁面(内面)に形成されて、該側部電極部の配設部位においてトンネル形態とされた構造として配設されている。
内側ポンプ電極112と外側ポンプ電極114とは、多孔質サーメット電極(例えば、Auを1%含むPtとZrOとのサーメット電極)として形成される。なお、被測定ガスGに接触する内側ポンプ電極112は、被測定ガスG中のNOx成分に対する還元能力を弱めた材料を用いて形成される。
主ポンプセル110においては、内側ポンプ電極112と外側ポンプ電極114との間に所望のポンプ電圧Vp0を印加して、内側ポンプ電極112と外側ポンプ電極114との間に正方向あるいは負方向にポンプ電流Ip0を流すことにより、第1内部空所88内の酸素を外部空間に汲み出し、あるいは、外部空間の酸素を第1内部空所88に汲み入れることが可能となっている。
また、第1内部空所88における雰囲気中の酸素濃度(酸素分圧)を検出するために、内側ポンプ電極112と、第2固体電解質層70と、スペーサ層68と、第1固体電解質層66と、基準電極102によって、電気化学的なセンサセル、すなわち、主ポンプ制御用酸素分圧検出センサセル120が構成されている。
主ポンプ制御用酸素分圧検出センサセル120における起電力V0を測定することで、第1内部空所88内の酸素濃度(酸素分圧)がわかるようになっている。さらに、起電力V0が一定となるように可変電源122のポンプ電圧Vp0をフィードバック制御することでポンプ電流Ip0が制御されている。これによって、第1内部空所88内の酸素濃度は所定の一定値に保つことができる。
第3拡散律速部90は、第1内部空所88で主ポンプセル110の動作により酸素濃度(酸素分圧)が制御された被測定ガスGに所定の拡散抵抗を付与して、該被測定ガスGを第2内部空所92に導く部位である。
第2内部空所92は、予め第1内部空所88において酸素濃度(酸素分圧)が調整された後、第3拡散律速部90を通じて導入された被測定ガスGに対して、さらに補助ポンプセル124による酸素分圧の調整を行うための空間として設けられている。これにより、第2内部空所92内の酸素濃度を高精度に一定に保つことができるため、このセンサ素子12においては精度の高いNOx濃度測定が可能となる。
上記補助ポンプセル124は、第2内部空所92の内面に設けられた補助ポンプ電極126と、外側ポンプ電極114(外側ポンプ電極114に限られるものではなく、センサ素子12の外側の適当な電極であれば足りる)と、第2固体電解質層70とによって構成される、補助的な電気化学的ポンプセルである。
この補助ポンプ電極126は、上記第1内部空所88内に設けられた内側ポンプ電極112と同様なトンネル形態とされた構造において、第2内部空所92内に配設されている。つまり、第2内部空所92の天井面を構成する第2固体電解質層70に対して天井電極部126aが形成され、また、第2内部空所92の底面を構成する第1固体電解質層66の上面には、底部電極部126bが直に形成され、そして、それらの天井電極部126aと底部電極部126bとを連結する側部電極部(図示省略)が、第2内部空所92の側壁を構成するスペーサ層68の両壁面にそれぞれ形成されたトンネル形態の構造となっている。なお、補助ポンプ電極126についても、内側ポンプ電極112と同様に、被測定ガスG中のNOx成分に対する還元能力を弱めた材料を用いて形成される。
補助ポンプセル124においては、補助ポンプ電極126と外側ポンプ電極114との間に所望の電圧Vp1を印加することにより、第2内部空所92内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から第2内部空所92内に汲み入れることが可能となっている。
また、第2内部空所92内における雰囲気中の酸素分圧を制御するために、補助ポンプ電極126と、基準電極102と、第2固体電解質層70と、スペーサ層68と、第1固体電解質層66とによって電気化学的なセンサセル、すなわち、補助ポンプ制御用酸素分圧検出センサセル130が構成されている。
なお、この補助ポンプ制御用酸素分圧検出センサセル130にて検出される起電力V1に基づいて電圧制御される可変電源132にて、補助ポンプセル124がポンピングを行う。これにより第2内部空所92内の雰囲気中の酸素分圧は、NOxの測定に実質的に影響がない低い分圧にまで制御されるようになっている。
また、これと共に、そのポンプ電流Ip1が、主ポンプ制御用酸素分圧検出センサセル120の起電力V0の制御に用いられるようになっている。具体的には、ポンプ電流Ip1は、制御信号として主ポンプ制御用酸素分圧検出センサセル120に入力され、その起電力V0が制御されることにより、第3拡散律速部90から第2内部空所92内に導入される被測定ガスG中の酸素分圧の勾配が常に一定となるように制御されている。NOxセンサとして使用する際は、主ポンプセル110と補助ポンプセル124との働きによって、第2内部空所92内での酸素濃度は約0.001[ppm]程度の一定の値に保たれる。
第4拡散律速部94は、第2内部空所92で補助ポンプセル124の動作により酸素濃度(酸素分圧)が制御された被測定ガスGに所定の拡散抵抗を付与して、該被測定ガスGを第3内部空所96に導く部位である。第4拡散律速部94は、第3内部空所96に流入するNOxの量を制限する役割を担う。
第3内部空所96は、予め第2内部空所92において酸素濃度(酸素分圧)が調整された後、第4拡散律速部94を通じて導入された被測定ガスGに対して、被測定ガスG中の窒素酸化物(NOx)濃度の測定に係る処理を行うための空間(測定室)として設けられている。NOx濃度の測定は、主として、第3内部空所96において、測定用ポンプセル140の動作により行われる。
測定用ポンプセル140は、第3内部空所96内において、被測定ガスG中のNOx濃度の測定を行う。測定用ポンプセル140は、第3内部空所96に面する第1固体電解質層66の上面に直に設けられた測定電極134と、外側ポンプ電極114と、第2固体電解質層70と、スペーサ層68と、第1固体電解質層66とによって構成された電気化学的ポンプセルである。測定電極134は、多孔質サーメット電極である。測定電極134は、第3内部空所96内の雰囲気中に存在するNOxを還元するNOx還元触媒としても機能する。
測定用ポンプセル140においては、測定電極134の周囲の雰囲気中における窒素酸化物の分解によって生じた酸素を汲み出して、その発生量をポンプ電流Ip2として検出することができる。
また、測定電極134の周囲の酸素分圧を検出するために、第1固体電解質層66と、測定電極134と、基準電極102とによって電気化学的なセンサセル、すなわち、測定用ポンプ制御用酸素分圧検出センサセル142が構成されている。測定用ポンプ制御用酸素分圧検出センサセル142にて検出された起電力V2に基づいて可変電源144が制御される。
第2内部空所92内に導かれた被測定ガスGは、酸素分圧が制御された状況下で第4拡散律速部94を通じて第3内部空所96の測定電極134に到達することとなる。測定電極134の周囲の被測定ガスG中の窒素酸化物は還元されて(2NO→N+O)酸素を発生する。そして、この発生した酸素は測定用ポンプセル140によってポンピングされることとなるが、その際、測定用ポンプ制御用酸素分圧検出センサセル142にて検出された起電力V2が一定となるように可変電源144の電圧Vp2が制御される。測定電極134の周囲において発生する酸素の量は、被測定ガスG中の窒素酸化物の濃度に比例するものであるから、測定用ポンプセル140におけるポンプ電流Ip2を用いて被測定ガスG中の窒素酸化物濃度が算出されることとなる。
また、第2固体電解質層70と、スペーサ層68と、第1固体電解質層66と、第3基板層64と、外側ポンプ電極114と、基準電極102とから電気化学的なセンサセル146が構成されており、このセンサセル146によって得られる起電力Vrefによりセンサ外部の被測定ガスG中の酸素分圧を検出可能となっている。
さらに、第2固体電解質層70と、スペーサ層68と、第1固体電解質層66と、第3基板層64と、外側ポンプ電極114と、基準電極102とから電気化学的な基準ガス調整ポンプセル150が構成されている。この基準ガス調整ポンプセル150は、外側ポンプ電極114と基準電極102との間に接続された可変電源152が印加する電圧Vp3により制御電流Ip3が流れることで、ポンピングを行う。これにより、基準ガス調整ポンプセル150は、外側ポンプ電極114の周囲の空間から基準電極102の周囲の空間(大気導入層100)に酸素の汲み入れを行う。可変電源152の電圧Vp3は、制御電流Ip3が所定の値(一定値の直流電流)となるような直流電圧として、予め定められている。
このような構成を有するセンサ素子12においては、主ポンプセル110と補助ポンプセル124とを作動させることによって酸素分圧が常に一定の低い値(NOxの測定に実質的に影響がない値)に保たれた被測定ガスGが測定用ポンプセル140に与えられる。従って、被測定ガスG中のNOxの濃度に略比例して、NOxの還元によって発生する酸素が測定用ポンプセル140より汲み出されることによって流れるポンプ電流Ip2に基づいて、被測定ガスG中のNOx濃度を知ることができるようになっている。
さらに、センサ素子12は、固体電解質の酸素イオン伝導性を高めるために、センサ素子12を加熱して保温する温度調整の役割を担うヒータ部160を備えている。ヒータ部160は、ヒータコネクタ電極162と、ヒータ164と、スルーホール166と、ヒータ絶縁層168と、圧力放散孔170と、リード線172とを備えている。
ヒータコネクタ電極162は、第1基板層60の下面に接する態様にて形成されてなる電極である。ヒータコネクタ電極162を外部電源と接続することによって、外部からヒータ部160へ給電することができるようになっている。
ヒータ164は、第2基板層62と第3基板層64とに上下から挟まれた態様にて形成される電気抵抗体である。ヒータ164は、リード線172およびスルーホール166を介してヒータコネクタ電極162と接続されており、該ヒータコネクタ電極162を通して外部より給電されることにより発熱し、センサ素子12を形成する固体電解質の加熱と保温を行う。
また、ヒータ164は、第1内部空所88から第3内部空所96の全域に渡って埋設されており、センサ素子12全体を上記固体電解質が活性化する温度に調整することが可能となっている。
ヒータ絶縁層168は、ヒータ164の上下面に、アルミナ等の絶縁体によって形成された多孔質アルミナからなる絶縁層である。ヒータ絶縁層168は、第2基板層62とヒータ164との間の電気的絶縁性、および、第3基板層64とヒータ164との間の電気的絶縁性を得る目的で形成されている。
圧力放散孔170は、第3基板層64を貫通し、基準ガス導入空間98に連通するように設けられてなる部位であり、ヒータ絶縁層168内の温度上昇に伴う内圧上昇を緩和する目的で形成されてなる。
既述のように本実施形態では、第1拡散律速部82、緩衝空間84、第2拡散律速部86、第1内部空所88、第3拡散律速部90、第2内部空所92、第4拡散律速部94の少なくともいずれかに、NHを酸化し、NOxに変換する変換手段(例えば、NH酸化触媒)を有する。例えば、第1拡散律速部82、第2拡散律速部86、第3拡散律速部90、第4拡散律速部94の全部または一部をNH酸化触媒によって構成できる。また、緩衝空間84、第1内部空所88、第2内部空所92の少なくともいずれかに、NH酸化触媒を配置することができる。被測定ガスGは、第3内部空所96に達する前に、例えば、NH酸化触媒の層を通過して、NHの少なくとも一部が、NOxに変化する。
既述のように、センサ素子12a、12bでの変換手段の変換効率Ma、Mbは異なる。変換手段の組み合わせとして、例えば、変換効率Mが100%に近いNH強酸化触媒、変換効率Mが5〜80%のNH弱酸化触媒を用いることができる。NH強酸化触媒は、例えば、PtおよびAuから選択される少なくとも1種の成分を含み、組成比Au/(Pt+Au)は1%以下である。NH弱酸化触媒は、例えば、PtおよびAuの両方の成分を含み、組成比Au/(Pt+Au)は4%以上かつ20%以下である。NH強酸化触媒およびNH弱酸化触媒では、これらの成分が、多孔質セラミックス体に担持されるか、多孔質のサーメットを構成する。
なお、NH酸化触媒に替え、またはこれに加えて、内側ポンプ電極112、補助ポンプ電極126にNH酸化機能を持たせて、変換手段としてもよい。
本実施形態では、ガス導入口80から第3内部空所96に至るまでに被測定ガスGに加わる拡散抵抗R(Ra、Rb)が問題となる。この拡散抵抗R(Ra、Rb)は、図1および次の式(3)に示すように、各経路(第1拡散律速部82、緩衝空間84、第2拡散律速部86、第1内部空所88、第3拡散律速部90、第2内部空所92、第4拡散律速部94)での部分拡散抵抗R1〜R7(R1a〜R7a、R1b〜R7b)の和である。
Figure 2021162571
式(4)に示すように、部分拡散抵抗Riは、各拡散路の路長Liを断面積Siで除した値である。
Ri=Li/Si ……(4)
従って、拡散抵抗R(Ra、Rb)は、次の式(5)のように定義される。
Figure 2021162571
なお、各経路での部分拡散抵抗R1〜R7は、変換手段の設置による影響を考慮して求められる。
拡散抵抗Rは、センサ素子12の応答性に影響を与える。すなわち、拡散抵抗Rが大きくなればなるほど、ガス導入口80から第3内部空所96に至るまでに時間を要し、ガス導入口80での被測定ガスG成分の濃度変化に対する検出値O(Ip2)の応答に遅れが発生する。
本実施形態では、複数のセンサ素子12a、12bからの検出値Oa、Obを演算することから、センサ素子12a、12bの応答性のずれは、測定の誤差となる。すなわち、センサ素子12a、12bの拡散抵抗Ra、Rbを近づけることで、動的雰囲気(被測定ガスG成分の濃度が時間的に変化する)でのNH濃度C1、NOx濃度C2の測定精度を向上することができる。
次の実施例に示すように、センサ素子12a、12bの拡散抵抗R(Ra、Rb)の比(拡散抵抗比P=Ra/Rb)が、0.71以上1.4以下であることが好ましい。また、センサ素子12a、12bの拡散抵抗R(Ra、Rb)の差の絶対値(拡散抵抗差D=|Ra−Rb|)が、40[mm−1]以下であることが好ましい。
(実施例)
以下、実施例を説明する。図3は、実験に用いたセンサ素子12の特性を表す表である。センサ素子12として、センサSa〜Sgを用いた。センサSa〜Sgの拡散抵抗R[mm−1]、NOx感度S(NO)、NH感度S(NH)、感度比Srを表す。
拡散抵抗Rは、既述のように、ガス導入口80から第3内部空所96に至るまでに被測定ガスGが受ける拡散抵抗である。ここで、NOx感度S(NO)、NH感度S(NH)はそれぞれ、NOx濃度C2[ppm]およびNH濃度C1[ppm]に対するポンプ電流Ip2の大きさを表す比例定数[nA/ppm]である。
感度比Srは、各センサでのNOx感度S(NO)に対するNH感度S(NH)の大きさを表す(Sr=S(NH)/S(NO))。この感度比Srは、変換効率Mと、例えば、次の式(6)に示す関係にある。
Sr=1.2*M …(6)
すなわち、感度比Srが異なる(変換効率Mが異なる)センサ素子12を組み合わせることで、NH濃度C1、NOx濃度C2の測定が可能となる。
センサSa〜Sgの拡散抵抗Rはそれぞれ、150、220、80、80、115、185、220[mm−1]であった。センサSa〜SgのNOx感度S(NO)はそれぞれ、2.00、1.36、3.75、3.75、2.61、1.62、1.36[nA/ppm]であった。センサSa〜SgのNH感度S(NH)はそれぞれ、2.40、1.64、4.50、3.75、2.35、1.14、0.82[nA/ppm]であった。センサSa〜Sgの感度比Srはそれぞれ、1.2、1.2、1.2、1.0、0.9、0.7、0.6であった。
ここでは、NOxは含むがNHは含まない被測定ガスGを用い、被測定ガスGの濃度を急激に変化させて、ガスセンサシステム10で測定を行った。具体的には、NOxの当初の濃度を0[ppm]とし、30秒後に濃度を500[ppm/s]の変化速度で500[ppm]に増加させ、その状態を15秒間継続した後、濃度を−500[ppm/s]の変化速度で0[ppm]に戻した。測定時の被測定ガスGの条件は、温度が250℃、流量が200SLM(standard liter/min)、NOx以外のガス組成が10%O+3%HO+Nであった。
図4は、センサ素子12a、12bでの検出値Oa、Ob(ポンプ電流Ip2)の時間的変化を表すグラフである。時刻30秒、45秒において、ポンプ電流Ip2が急激に変化している。
図5は、センサ素子12a、12bでの検出値Oa、Obから式(2)に基づいて算出されたNH濃度C1を示す。時刻30秒、45秒付近で、被測定ガスGにはNHが含まれていないにもかかわらず、NH濃度C1に正負のピークP0、P1が発生している。すなわち、被測定ガスGのNOx濃度が急激に変化する場合、NHの検出精度が低下している。すなわち、このピークP0、P1の大きさをNH濃度C1の測定誤差E[ppm]として位置付けることができる。
図6は、実験結果を表す表である。図7、図8は、拡散抵抗比P、拡散抵抗差Dと測定誤差Eの関係を表すグラフである。
図6に示す、実施例1(センサSa、Sd)、実施例2(センサSa、Se)、実施例3(センサSa、Sf)、実施例4(センサSa、Sg)、実施例5(センサSb、Sg)、実施例6(センサSc、Sd)と感度比Srの異なる6通りの組み合わせについて試験を行った。実施例1〜6の拡散抵抗比Pは、1.88、1.30、1.23、1.47、1.00、1.00[−]であり、拡散抵抗差Dは70、35、35、70、0、0[mm−1]であり、測定誤差Eは488、157、148、337、51、14[ppm]であった。なお、この拡散抵抗比Pは、拡散抵抗Ra、Rbのうち小さくない方を大きくない方で除している。
図7、図8に示されるように、拡散抵抗比P、拡散抵抗差Dは、測定誤差Eと密接な関連性を有する。測定誤差Eを200[ppm]以下程度に抑えようとすれば、拡散抵抗比Pを1.0以上、1.4以下とするのが好ましい(より好ましくは、1.3以下)。拡散抵抗Ra、Rbの大小関係を考慮に入れると、拡散抵抗比Pは、0.71(=1/1.4)以上、1.4以下が好ましく、0.77(=1/1.3)以上、1.3以下であることがより好ましい。また、拡散抵抗差Dを40[mm−1]以下とするのが好ましい(より好ましくは、30[mm−1]以下)。
以上のように、本実施形態では、センサ素子12a、12bの拡散抵抗Ra、Rbの比(拡散抵抗比P)を0.71以上1.4以下とすることで、濃度が時間的に変化する場合の測定誤差Eを低減したガスセンサシステム10を構成できる。
以上では、別個のセンサ素子12a、12bを用いているが、センサ素子12a、12bを一体的に構成してもよい。例えば、酸素イオン伝導性の固体電解質からなる構造体等を用いて、センサ素子12a、12bそれぞれに対応する機能を有する第1のガス検出部、第2のガス検出部を構成してもよい。
〔実施形態から得られる技術的思想〕
上記実施形態から把握しうる技術的思想について、以下に記載する。
〔1〕ガスセンサシステム(10)は、第1のガス検出部(センサ素子12a)、第2のガス検出部(センサ素子12b)、算出部(制御部200)を備える。第1のガス検出部は、第1のガス種(ガス種G1)と第2のガス種(ガス種G2)の少なくとも一方を含む被測定ガス(G)を導入する第1のガス導入口(ガス導入口80)と、前記第1のガス導入口に連通する第1の測定室(第3内部空所96)と、前記第1のガス導入口と前記第1の測定室の間に配置され、前記第1のガス種の一部を前記第2のガス種に変換する第1の変換手段(NH酸化触媒)と、前記第1の測定室での前記第2のガス種を検出する第1の検出手段(測定用ポンプセル140)と、を有する。第2のガス検出部は、前記被測定ガスを導入する第2のガス導入口(ガス導入口80)と、前記第2のガス導入口に連通する第2の測定室(第3内部空所96)と、前記第2のガス導入口と前記第2の測定室の間に配置され、前記第1のガス種の一部を前記第2のガス種に変換する第2の変換手段(NH酸化触媒)と、前記第2の測定室での前記第2のガス種を検出する第2の検出手段(測定用ポンプセル140)と、を有する。算出部は、前記第1の検出手段と前記第2の検出手段での検出結果に基づき、前記被測定ガス中の前記第1のガス種と前記第2のガス種の濃度を算出する。前記第1の変換手段と前記第2の変換手段の変換効率が異なる。前記第1のガス導入口から前記第1の測定室に至る第1の拡散抵抗(Ra)と、前記第2のガス導入口から前記第2の測定室に至る第2の拡散抵抗(Rb)と、の比(拡散抵抗比P)が、0.71以上1.4以下である。これにより、拡散抵抗比Pが、0.71以上1.4以下であることで、ガスの濃度が時間的に変化するときのガスの測定精度を向上できる。
〔2〕前記第1の拡散抵抗と前記第2の拡散抵抗の差の絶対値(拡散抵抗差D)が、40[mm−1]以下である。これにより、ガスの濃度が時間的に変化するときのガスの測定精度をより向上できる。
〔3〕前記第1のガス検出部と前記第2のガス検出部は、酸素イオン伝導性の固体電解質からなる構造体により一体的に構成される。これにより、第1のガス検出部と第2のガス検出部を一体的に構成し、ガスセンサシステムをコンパクト化できる。
〔4〕前記第1のガス種は、NHであり、前記第2のガス種は、NOxである。これにより、NHまたはNOxの濃度が時間的に変化するときの測定精度をより向上できる。
10…ガスセンサシステム 12(12a、12b)…センサ素子
80…ガス導入口 82…第1拡散律速部
84…緩衝空間 86…第2拡散律速部
88…第1内部空所 90…第3拡散律速部
92…第2内部空所 94…第4拡散律速部
96…第3内部空所 200…制御部

Claims (4)

  1. 第1のガス種と第2のガス種の少なくとも一方を含む被測定ガスを導入する第1のガス導入口と、
    前記第1のガス導入口に連通する第1の測定室と、
    前記第1のガス導入口と前記第1の測定室の間に配置され、前記第1のガス種の一部を前記第2のガス種に変換する第1の変換手段と、
    前記第1の測定室での前記第2のガス種を検出する第1の検出手段と、を有する、第1のガス検出部と、
    前記被測定ガスを導入する第2のガス導入口と、
    前記第2のガス導入口に連通する第2の測定室と、
    前記第2のガス導入口と前記第2の測定室の間に配置され、前記第1のガス種の一部を前記第2のガス種に変換する第2の変換手段と、
    前記第2の測定室での前記第2のガス種を検出する第2の検出手段と、を有する、第2のガス検出部と、
    前記第1の検出手段と前記第2の検出手段での検出結果に基づき、前記被測定ガス中の前記第1のガス種と前記第2のガス種の濃度を算出する算出部と、を備え、
    前記第1の変換手段と前記第2の変換手段の変換効率が異なり、
    前記第1のガス導入口から前記第1の測定室に至る第1の拡散抵抗と、前記第2のガス導入口から前記第2の測定室に至る第2の拡散抵抗と、の比が、0.71以上1.4以下である、ガスセンサシステム。
  2. 請求項1に記載のガスセンサシステムであって、
    前記第1の拡散抵抗と前記第2の拡散抵抗の差の絶対値が、40[mm−1]以下である、ガスセンサシステム。
  3. 請求項1または2に記載のガスセンサシステムであって、
    前記第1のガス検出部と前記第2のガス検出部は、酸素イオン伝導性の固体電解質からなる構造体により一体的に構成される、ガスセンサシステム。
  4. 請求項1〜3のいずれか1項に記載のガスセンサシステムであって、
    前記第1のガス種は、NHであり、
    前記第2のガス種は、NOxである、ガスセンサシステム。
JP2020170621A 2020-03-30 2020-10-08 ガスセンサシステム Pending JP2021162571A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102021001576.2A DE102021001576A1 (de) 2020-03-30 2021-03-25 Gassensorsystem
CN202110323969.2A CN113466307A (zh) 2020-03-30 2021-03-26 气体传感器系统
US17/213,755 US11408873B2 (en) 2020-03-30 2021-03-26 Gas sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020059366 2020-03-30
JP2020059366 2020-03-30

Publications (1)

Publication Number Publication Date
JP2021162571A true JP2021162571A (ja) 2021-10-11

Family

ID=78003228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020170621A Pending JP2021162571A (ja) 2020-03-30 2020-10-08 ガスセンサシステム

Country Status (1)

Country Link
JP (1) JP2021162571A (ja)

Similar Documents

Publication Publication Date Title
JP6669616B2 (ja) ガスセンサ
JP6401644B2 (ja) ガスセンサ
US11268929B2 (en) Sensor element and gas sensor
US9804139B2 (en) Sensor element and gas sensor
JP5425833B2 (ja) ガスセンサ
JP6761774B2 (ja) センサ素子及びガスセンサ
JP6804369B2 (ja) ガスセンサ
US8398836B2 (en) Gas sensor
JP6263476B2 (ja) センサ素子及びガスセンサ
JP2020094899A (ja) ガスセンサ
JP2021162580A (ja) センサ素子及びガスセンサ
JP6934511B2 (ja) センサ素子及びガスセンサ
JP5189537B2 (ja) ガスセンサおよびガスセンサの電極電位の制御方法
JP6573567B2 (ja) センサ素子のライトオフ異常判定方法及びガスセンサの製造方法
JP2021162571A (ja) ガスセンサシステム
JP2022153277A (ja) センサ素子及びセンサ素子を用いたガス検出方法
JP2020126051A (ja) ガスセンサ
JP2021085664A (ja) ガスセンサ及びクラック検出方法
JP2021047028A (ja) ガスセンサ
US11408873B2 (en) Gas sensor system
JP2021047029A (ja) ガスセンサ
JP7169242B2 (ja) ガスセンサ及びガスセンサの制御方法
US11940406B2 (en) Sensor element and gas sensor
US20210302358A1 (en) Sensor element and gas sensor
WO2022210348A1 (ja) センサ素子及びガスセンサ