JP2021159064A - Konjac powder multienzyme hydrolysate and preparation method thereof - Google Patents

Konjac powder multienzyme hydrolysate and preparation method thereof Download PDF

Info

Publication number
JP2021159064A
JP2021159064A JP2020098170A JP2020098170A JP2021159064A JP 2021159064 A JP2021159064 A JP 2021159064A JP 2020098170 A JP2020098170 A JP 2020098170A JP 2020098170 A JP2020098170 A JP 2020098170A JP 2021159064 A JP2021159064 A JP 2021159064A
Authority
JP
Japan
Prior art keywords
konjac
fine powder
powder
enzymatic decomposition
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020098170A
Other languages
Japanese (ja)
Inventor
張志健
Zhijian Zhang
鄒庭
Ting Zou
祁珊珊
Shanshan Qi
鄭紅星
Hongxing Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Publication of JP2021159064A publication Critical patent/JP2021159064A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/888Araceae (Arum family), e.g. caladium, calla lily or skunk cabbage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/10Preparation or pretreatment of starting material
    • A61K2236/19Preparation or pretreatment of starting material involving fermentation using yeast, bacteria or both; enzymatic treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Diabetes (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Rheumatology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Pain & Pain Management (AREA)
  • Endocrinology (AREA)
  • Nutrition Science (AREA)

Abstract

To provide a konjac powder multienzyme hydrolysate and a preparation method thereof.SOLUTION: Konjac powder is purified in alcohol to obtain wet konjac powder raw material; dealcoholization is carried out on the wet konjac powder to obtain purified konjac powder; water and enzyme are added to perform enzymolysis; and finally, the konjac powder multienzyme hydrolysate is obtained. Optimizing the process can provide the enzymatic hydrolysate including certain instant polysaccharose and oligosaccharide.SELECTED DRAWING: None

Description

本発明は機能性食品加工の技術分野に関し、特に、多酵素によるコンニャク精粉酵素分解物及びその製造方法に関する。 The present invention relates to the technical field of functional food processing, and more particularly to a konjac fine powder enzymatic decomposition product by a multienzyme and a method for producing the same.

コンニャクは高い機能性と医学的価値を有している。現代の研究によれば、コンニャクの塊茎の主な化学成分は、グルコマンナン、デンプン、その他の多糖、粗蛋白、必須アミノ酸や、カリウム、カルシウム、マグネシウム、ナトリウム、鉄、マンガン、銅等の人体に必須の多種の微量元素である。 Konjac has high functionality and medical value. According to modern research, the main chemical constituents of konjac stalks are glucomannan, starch, other polysaccharides, crude proteins, essential amino acids, and the human body such as potassium, calcium, magnesium, sodium, iron, manganese, and copper. It is an essential trace element.

コンニャクのグルコマンナンは、デンプンやセルロースに続く豊富な再生可能天然高分子資源であり、生分解性と水溶性を有している。グルコマンナンは、分子量が大きく、最高の粘度を有する自然界の食物繊維であり、自身の体積の200倍もの水分子を吸着して粘性の溶液を形成可能なことから、満腹感を高めることが可能である。また、人体の消化酵素の影響を受けないため、熱量を発生することがない。つまり、グルコマンナンは周知の可溶性且つ多機能性の多糖であり、適度に分解することで機能がより強化されたコンニャクオリゴ糖を生成することも可能である。しかし、グルコマンナンは吸水膨張や溶解の速度が遅く、通常は2時間以上を要する。 Konjac glucomannan is a rich renewable natural polymer resource following starch and cellulose, and has biodegradability and water solubility. Glucomannan is a natural dietary fiber with a large molecular weight and the highest viscosity, and can adsorb 200 times as much water molecules as its own volume to form a viscous solution, which can enhance the feeling of fullness. Is. Moreover, since it is not affected by digestive enzymes of the human body, it does not generate calories. That is, glucomannan is a well-known soluble and multifunctional polysaccharide, and it is also possible to produce a konjac oligosaccharide having a more enhanced function by appropriately decomposing it. However, glucomannan has a slow rate of water absorption expansion and dissolution, and usually takes 2 hours or more.

現在、コンニャクのグルコマンナンの酵素分解には、次のような最適化を要する課題が存在する。(1)単一酵素による酵素分解のため酵素使用量が多く、酵素分解に過剰な時間を要する。また、コンニャク精粉の利用率が低い。(2)一部の酵素分解法では還元糖の検出を主な指標としており、還元糖の量の多さがオリゴ糖の含有量の多さを意味しない。反対に、可溶性固形物の含有量が同一であることを前提に、還元糖の含有量が多いほどオリゴ糖の含有量は少なくなる。よって、このような酵素分解技術の場合には、オリゴ糖を製造する意味がない。(3)一部の酵素分解法は実験室での研究にのみ応用可能であり、本格生産への導入が不可能である。(4)コンニャク精粉は吸水膨張との特性を有するため、分解しないまま食すると腹部膨満感が発生しやすく、一定の安全上のリスクが存在する。しかし、このような欠点は適度に分解することで解消され、且つ溶解速度を高めつつ、従来の機能特性を維持することも可能である。 Currently, the enzymatic degradation of konjac glucomannan presents the following issues that require optimization. (1) Since the enzyme is decomposed by a single enzyme, the amount of enzyme used is large, and the enzyme decomposition requires an excessive amount of time. In addition, the utilization rate of konjac fine powder is low. (2) In some enzymatic decomposition methods, the detection of reducing sugars is the main index, and a large amount of reducing sugars does not mean a large amount of oligosaccharides. On the contrary, on the premise that the contents of soluble solids are the same, the higher the content of reducing sugars, the lower the content of oligosaccharides. Therefore, in the case of such an enzymatic decomposition technique, there is no point in producing oligosaccharides. (3) Some enzymatic decomposition methods can be applied only to laboratory research and cannot be introduced into full-scale production. (4) Since konjac fine powder has a characteristic of water absorption and expansion, a feeling of abdominal bloating is likely to occur if it is eaten without decomposition, and there is a certain safety risk. However, such a defect can be eliminated by appropriately decomposing, and it is possible to maintain the conventional functional characteristics while increasing the dissolution rate.

本発明は、多酵素によるコンニャク精粉酵素分解物及びその製造方法を提供することを目的とする。これによれば、従来技術における酵素分解時間が長く、酵素分解が不完全であり、コンニャク精粉の利用率が低いといった欠点が解消され、一定の速溶性を持つ多糖及びオリゴ糖を含有する酵素分解産物が得られる。 An object of the present invention is to provide a polyenzymatic konjac fine powder enzymatic decomposition product and a method for producing the same. According to this, the drawbacks such as long enzymatic decomposition time, incomplete enzymatic decomposition, and low utilization rate of konjac fine powder in the prior art are eliminated, and an enzyme containing a polysaccharide and an oligosaccharide having a certain rapid solubility is eliminated. Degradation products are obtained.

上記の発明の目的を実現するために、本発明は以下の技術手段を提供する。 In order to realize the object of the above invention, the present invention provides the following technical means.

本発明は、多酵素によるコンニャク精粉酵素分解物の製造方法を提供する。当該製造方法は、(1)コンニャク精粉原料をアルコール中で精製することで、コンニャク湿潤精粉を取得するステップと、(2)コンニャク湿潤精粉をアルコール除去処理することで、精製コンニャク精粉を取得するステップと、(3)取得した精製コンニャク精粉と水及び酵素を混合して酵素分解を行うことで、多酵素によるコンニャク精粉酵素分解物を取得するステップ、を含む。 The present invention provides a method for producing a konjac fine powder enzymatic decomposition product using multiple enzymes. The production method is as follows: (1) Purifying the konjak refined raw material in alcohol to obtain konjak wet semen, and (2) Purifying the konjak moistened powder with alcohol removal treatment. (3) The step of obtaining the enzymatically decomposed konjak powder by multiple enzymes by mixing the obtained purified konjak powder with water and an enzyme and performing enzymatic decomposition is included.

好ましくは、前記ステップ(1)におけるアルコールの体積濃度は55〜75%とする。前記ステップ(1)におけるコンニャク精粉原料とアルコールとの固液比率は1g:3〜5mlとし、前記ステップ(1)における精製時間は1〜3hとする。また、前記ステップ(2)におけるアルコール除去処理の温度は50〜70℃とする。 Preferably, the volume concentration of alcohol in the step (1) is 55 to 75%. The solid-liquid ratio of the konjac refined powder raw material and alcohol in the step (1) is 1 g: 3 to 5 ml, and the purification time in the step (1) is 1 to 3 hours. The temperature of the alcohol removal treatment in the step (2) is 50 to 70 ° C.

好ましくは、前記ステップ(3)における精製コンニャク精粉と水との質量体積比は15〜30g:100mLとする。前記ステップ(3)における酵素は、グルコマンナナーゼ、セルラーゼ及びペクターゼを含む。前記グルコマンナナーゼの用量は精製コンニャク精粉に対し50〜70u/gとし、前記セルラーゼの用量は精製コンニャク精粉に対し40〜60u/gとし、前記ペクターゼは体系総質量の0.03〜0.05%を占める。前記酵素分解の温度は55〜65℃とし、酵素分解時間は2〜3hとする。 Preferably, the mass-volume ratio of the purified konjac fine powder to water in the step (3) is 15 to 30 g: 100 mL. The enzyme in step (3) includes glucomannanase, cellulase and pectase. The dose of the glucomannanase was 50 to 70 u / g with respect to the purified konjac refined powder, the dose of the cellulase was 40 to 60 u / g with respect to the purified konjac refined powder, and the pectase was 0.03 to 0. It accounts for 05%. The temperature of the enzymatic decomposition is 55 to 65 ° C., and the enzymatic decomposition time is 2 to 3 hours.

本発明は、更に、上記の製造方法で取得する多酵素によるコンニャク精粉酵素分解物を提供する。 The present invention further provides a konjac fine powder enzymatic decomposition product obtained by the above-mentioned production method.

本発明は、多酵素によるコンニャク精粉酵素分解物及びその製造方法を提供する。本方法により得られる酵素分解物中の機能成分(例えばオリゴ糖)の含有量は、精粉100gに対し5.69〜5.86gであり、糖含有量全体の39.33〜40.5%を占める。また、一定の速溶性を持つ多糖を更に含有する。当該製品は、肥満予防、血中脂質の低下、肝脂肪変性の予防といった作用を有する。また、血糖の低下、抗炎症、生体におけるフリーラジカル除去の向上といった作用を有し、糖尿病モデルラットの高血糖に対し改善作用を有する。 The present invention provides a konjac fine powder enzymatic decomposition product using multiple enzymes and a method for producing the same. The content of the functional component (for example, oligosaccharide) in the enzymatic decomposition product obtained by this method is 5.69 to 5.86 g with respect to 100 g of the refined powder, and 39.33 to 40.5% of the total sugar content. Occupy. In addition, it further contains a polysaccharide having a certain rapid solubility. The product has actions such as prevention of obesity, reduction of blood lipids, and prevention of hepatic fatty degeneration. In addition, it has effects such as lowering blood glucose, anti-inflammatory, and improving free radical removal in the living body, and has an improving effect on hyperglycemia in diabetic model rats.

本発明によれば、コンニャク精粉を原料とし、複合酵素を用いて酵素分解を行うことで、酵素分解過程が加速し、酵素分解効率が向上するとともに、酵素分解産物の品質が向上する。プロセスパラメータを最適化することで、使用酵素の選択、酵素用量、酵素分解時間等の生産プロセスパラメータが合理化され、且つ一定の速溶性を持つ多糖及びオリゴ糖を含有する酵素分解産物が得られる。 According to the present invention, by performing enzymatic decomposition using konjac refined powder as a raw material and using a complex enzyme, the enzymatic decomposition process is accelerated, the enzymatic decomposition efficiency is improved, and the quality of the enzymatic decomposition product is improved. By optimizing the process parameters, production process parameters such as selection of enzyme to be used, enzyme dose, and enzymatic decomposition time can be rationalized, and an enzymatic decomposition product containing a polysaccharide and an oligosaccharide having a certain rapid solubility can be obtained.

本発明は、以下のステップを含む多酵素によるコンニャク精粉酵素分解物の製造方法を提供する。 The present invention provides a method for producing a konjac fine powder enzymatic decomposition product by a multienzyme, which comprises the following steps.

(1)コンニャク精粉原料をアルコール中で精製することで、コンニャク湿潤精粉を取得する。 (1) Konjac wet fine powder is obtained by purifying the raw material of konjac fine powder in alcohol.

(2)コンニャク湿潤精粉をアルコール除去処理することで、精製コンニャク精粉を取得する。 (2) Purified konjak fine powder is obtained by treating the wet konjak fine powder with alcohol.

(3)取得した精製コンニャク精粉と水及び酵素を混合して酵素分解を行うことで、多酵素によるコンニャク精粉酵素分解物を取得する。 (3) The obtained purified konjak refined powder is mixed with water and an enzyme and enzymatically decomposed to obtain an enzymatically decomposed konjak refined powder by multiple enzymes.

本発明において、前記コンニャク精粉は、市販の高純度のコンニャク精粉とすることが好ましい。 In the present invention, the konjak refined powder is preferably a commercially available high-purity konjak refined powder.

本発明において、前記ステップ(1)のアルコールの体積濃度は55〜75%とすることが好ましく、より好ましくは60〜70%、更に好ましくは62〜68%とする。 In the present invention, the volume concentration of alcohol in step (1) is preferably 55 to 75%, more preferably 60 to 70%, and even more preferably 62 to 68%.

本発明において、前記ステップ(1)のコンニャク精粉原料とアルコールとの固液比率は1g:3〜5mlとすることが好ましく、より好ましくは1g:3.5〜4.5mlとする。 In the present invention, the solid-liquid ratio of the konjac refined powder raw material and alcohol in the step (1) is preferably 1 g: 3 to 5 ml, and more preferably 1 g: 3.5 to 4.5 ml.

本発明において、前記ステップ(1)の精製時間は1〜3hとすることが好ましく、より好ましくは1.5〜2.5hとする。 In the present invention, the purification time of the step (1) is preferably 1 to 3 hours, more preferably 1.5 to 2.5 hours.

本発明において、前記精製では、コンニャク精粉原料をアルコールと攪拌して均一に混合し、浸漬することが好ましい。 In the present invention, in the purification, it is preferable that the raw material of konjak refined powder is stirred with alcohol to be uniformly mixed and immersed.

本発明において、前記精製は、コンニャク精粉に含まれる生臭さ、辛味、SO等を除去するためのものである。 In the present invention, the purification is for removing fishy odor, pungent taste, SO 2, etc. contained in konjac fine powder.

本発明において、前記アルコール除去処理は、熱風乾燥を手段として行うことが好ましい。 In the present invention, the alcohol removal treatment is preferably carried out by hot air drying as a means.

本発明において、前記アルコール除去処理の温度は50〜70℃とすることが好ましく、より好ましくは55〜65℃、更に好ましくは58〜62℃とする。 In the present invention, the temperature of the alcohol removal treatment is preferably 50 to 70 ° C, more preferably 55 to 65 ° C, and even more preferably 58 to 62 ° C.

本発明において、前記アルコール除去処理はアルコール臭を除去するためのものであって、アルコール臭を感じなくなることを基準とする。 In the present invention, the alcohol removal treatment is for removing the alcohol odor, and is based on the fact that the alcohol odor is no longer felt.

本発明において、前記ステップ(3)の精製コンニャク精粉と水との質量体積比は15〜30g:100mLとすることが好ましく、より好ましくは20〜25g:100mLとする。 In the present invention, the mass-volume ratio of the purified konjac fine powder in step (3) to water is preferably 15 to 30 g: 100 mL, and more preferably 20 to 25 g: 100 mL.

本発明において、前記ステップ(3)の酵素は、グルコマンナナーゼ、セルラーゼ及びペクターゼを含むことが好ましい。 In the present invention, the enzyme of step (3) preferably contains glucomannanase, cellulase and pectase.

本発明において、前記グルコマンナナーゼの用量は、精製コンニャク精粉に対し50〜70u/gとすることが好ましく、より好ましくは、精製コンニャク精粉に対し55〜65u/g、更に好ましくは、精製コンニャク精粉に対し60〜62u/gとする。前記セルラーゼの用量は、精製コンニャク精粉に対し40〜60u/gとすることが好ましく、より好ましくは、精製コンニャク精粉に対し45〜55u/g、更に好ましくは、精製コンニャク精粉に対し47〜52u/gとする。前記ペクターゼの用量は、体系総質量の0.03〜0.05%とすることが好ましく、より好ましくは、体系総質量の0.035〜0.04%とする。 In the present invention, the dose of the glucomannanase is preferably 50 to 70 u / g with respect to the purified konjac fine powder, more preferably 55 to 65 u / g with respect to the purified konjac fine powder, and further preferably the purified konjac. It is set to 60 to 62 u / g with respect to the refined powder. The dose of the cellulase is preferably 40 to 60 u / g with respect to the purified konjac powder, more preferably 45 to 55 u / g with respect to the purified konjac powder, and further preferably 47 with respect to the purified konjac powder. ~ 52u / g. The dose of the pectase is preferably 0.03 to 0.05% of the total mass of the system, and more preferably 0.035 to 0.04% of the total mass of the system.

本発明において、前記体系とは、精製コンニャク精粉、酵素及び水を混合して得られる混合物のことをいう。 In the present invention, the system refers to a mixture obtained by mixing purified konjac fine powder, an enzyme and water.

本発明において、前記酵素分解の温度は55〜65℃とすることが好ましく、より好ましくは58〜60℃とする。また、好ましくは、酵素分解時間は2〜3hとする。 In the present invention, the temperature of the enzymatic decomposition is preferably 55 to 65 ° C, more preferably 58 to 60 ° C. Further, preferably, the enzymatic decomposition time is set to 2 to 3 hours.

本発明における前記酵素分解の原理としては、酵素の特異性に基づいて、グルコマンナナーゼとセルラーゼを同時に使用することで、グルコマンナンを低重合度のコンニャク多糖及びコンニャクオリゴ糖に酵素分解する。また、ペクターゼがペクチンをガラクツロン酸に分解することで、コンニャク精粉の粒子構造が破壊されるため、その他の酵素の作用効果が向上する。 The principle of the enzymatic decomposition in the present invention is that glucomannan is enzymatically decomposed into konjac polysaccharide and konjac oligosaccharide having a low degree of polymerization by using glucomannanase and cellulase at the same time based on the specificity of the enzyme. In addition, pectin decomposes pectin into galacturonic acid, which destroys the particle structure of konjac fine powder, thereby improving the action and effect of other enzymes.

本発明は、更に、上記の製造方法で取得する多酵素によるコンニャク精粉酵素分解物を提供する。 The present invention further provides a konjac fine powder enzymatic decomposition product obtained by the above-mentioned production method.

以下に、実施例を組み合わせて、本発明で提供する技術手段につき詳細に説明するが、本発明の保護の範囲を限定するものと理解すべきではない。 Hereinafter, the technical means provided by the present invention will be described in detail in combination with examples, but it should not be understood as limiting the scope of protection of the present invention.

ステップ1:精製:コンニャク精粉原料を体積濃度55%のアルコール中で精製した。コンニャク精粉原料とアルコールとの固液比率は1g:3mlとし、1h精製することでコンニャク湿潤精粉を取得した。 Step 1: Purification: The konjac fine powder raw material was purified in alcohol having a volume concentration of 55%. The solid-liquid ratio of the konjak refined powder raw material to alcohol was 1 g: 3 ml, and the konjak wet fine powder was obtained by purifying for 1 hour.

ステップ2:アルコール除去:コンニャク湿潤精粉をアルコール除去処理した。アルコール除去温度は50℃とし、アルコール除去することで精製コンニャク精粉を取得した。 Step 2: Alcohol removal: Konjac wet powder was treated with alcohol removal. The alcohol removal temperature was set to 50 ° C., and the purified konjac fine powder was obtained by removing the alcohol.

ステップ3:酵素分解:精製コンニャク精粉を15g取って100mLの水を加え、更に、グルコマンナナーゼ、セルラーゼ及びペクターゼを加えて酵素分解を行った。グルコマンナナーゼの用量は精製コンニャク精粉に対し50u/g、セルラーゼの用量は精製コンニャク精粉に対し40u/gとした。また、ペクターゼの用量は体系総質量の0.03%とした。条件を55℃として2h酵素分解することで、多酵素によるコンニャク精粉酵素分解物を取得した。 Step 3: Enzymatic decomposition: 15 g of purified konjac fine powder was taken, 100 mL of water was added, and glucomannanase, cellulase and pectase were further added for enzymatic decomposition. The dose of glucomannanase was 50 u / g with respect to purified konjac fine powder, and the dose of cellulase was 40 u / g with respect to purified konjac fine powder. The dose of pectase was 0.03% of the total mass of the system. By enzymatically decomposing for 2 hours under the condition of 55 ° C., a konjac fine powder enzymatically decomposed product by multiple enzymes was obtained.

取得した酵素分解物中の機能成分(オリゴ糖)の含有量は、精粉100gに対し5.86gであり、糖含有量全体の40.5%を占めていた。 The content of the functional component (oligosaccharide) in the obtained enzymatic decomposition product was 5.86 g with respect to 100 g of the refined powder, accounting for 40.5% of the total sugar content.

ステップ1:精製:コンニャク精粉原料を体積濃度60%のアルコール中で精製した。コンニャク精粉原料とアルコールとの固液比率は1g:4mlとし、1.5h精製することでコンニャク湿潤精粉を取得した。 Step 1: Purification: The konjac fine powder raw material was purified in alcohol having a volume concentration of 60%. The solid-liquid ratio of the konjac fine powder raw material to alcohol was 1 g: 4 ml, and the konjak wet fine powder was obtained by purifying for 1.5 hours.

ステップ2:アルコール除去:コンニャク湿潤精粉をアルコール除去処理した。アルコール除去温度は65℃とし、アルコール除去することで精製コンニャク精粉を取得した。 Step 2: Alcohol removal: Konjac wet powder was treated with alcohol removal. The alcohol removal temperature was 65 ° C., and the purified konjac fine powder was obtained by removing the alcohol.

ステップ3:酵素分解:精製コンニャク精粉を25g取って100mLの水を加え、更に、グルコマンナナーゼ、セルラーゼ及びペクターゼを加えて酵素分解を行った。グルコマンナナーゼの用量は精製コンニャク精粉に対し60u/g、セルラーゼの用量は精製コンニャク精粉に対し50u/gとした。また、ペクターゼの用量は体系総質量の0.04%とした。条件を60℃として2.5h酵素分解することで、多酵素によるコンニャク精粉酵素分解物を取得した。 Step 3: Enzymatic decomposition: 25 g of purified konjac fine powder was taken, 100 mL of water was added, and glucomannanase, cellulase and pectase were further added for enzymatic decomposition. The dose of glucomannanase was 60 u / g with respect to purified konjac fine powder, and the dose of cellulase was 50 u / g with respect to purified konjac fine powder. The dose of pectase was 0.04% of the total mass of the system. By enzymatically decomposing for 2.5 hours under the condition of 60 ° C., a konjac fine powder enzymatic decomposition product by multiple enzymes was obtained.

取得した酵素分解物中の機能成分(オリゴ糖)の含有量は、精粉100gに対し5.78gであり、糖含有量全体の39.95%を占めていた。 The content of the functional component (oligosaccharide) in the obtained enzymatic decomposition product was 5.78 g with respect to 100 g of the refined powder, accounting for 39.95% of the total sugar content.

ステップ1:精製:コンニャク精粉原料を体積濃度75%のアルコール中で精製した。コンニャク精粉原料とアルコールとの固液比率は1g:5mlとし、3h精製することでコンニャク湿潤精粉を取得した。 Step 1: Purification: The konjac fine powder raw material was purified in alcohol having a volume concentration of 75%. The solid-liquid ratio of the konjak refined powder raw material to alcohol was 1 g: 5 ml, and the konjak wet fine powder was obtained by purifying for 3 hours.

ステップ2:アルコール除去:コンニャク湿潤精粉をアルコール除去処理した。アルコール除去温度は70℃とし、アルコール除去することで精製コンニャク精粉を取得した。 Step 2: Alcohol removal: Konjac wet powder was treated with alcohol removal. The alcohol removal temperature was set to 70 ° C., and the purified konjac fine powder was obtained by removing the alcohol.

ステップ3:酵素分解:精製コンニャク精粉を30g取って100mLの水を加え、更に、グルコマンナナーゼ、セルラーゼ及びペクターゼを加えて酵素分解を行った。グルコマンナナーゼの用量は精製コンニャク精粉に対し70u/g、セルラーゼの用量は精製コンニャク精粉に対し60u/gとした。また、ペクターゼの用量は体系総質量の0.05%とした。条件を65℃として3h酵素分解することで、多酵素によるコンニャク精粉酵素分解物を取得した。 Step 3: Enzymatic decomposition: 30 g of purified konjac fine powder was taken, 100 mL of water was added, and glucomannanase, cellulase and pectase were further added for enzymatic decomposition. The dose of glucomannanase was 70 u / g with respect to the purified konjac powder, and the dose of cellulase was 60 u / g with respect to the purified konjac powder. The dose of pectase was 0.05% of the total mass of the system. By enzymatically decomposing for 3 hours under the condition of 65 ° C., a konjac fine powder enzymatically decomposed product by multiple enzymes was obtained.

取得した酵素分解物中の機能成分(オリゴ糖)の含有量は、精粉100gに対し5.69gであり、糖含有量全体の39.33%を占めていた。 The content of the functional component (oligosaccharide) in the obtained enzymatic decomposition product was 5.69 g with respect to 100 g of the refined powder, accounting for 39.33% of the total sugar content.

実施例1〜3で製造した多酵素によるコンニャク精粉酵素分解物について動物実験を行った。 Animal experiments were carried out on the enzymatic decomposition products of konjac fine powder produced by the polyenzymes produced in Examples 1 to 3.

ステップ1:動物モデルの作製及び群分け
健康なメスのマウス50匹を選択し、一般飼料を2週間給餌したあと、ブランク対照群10匹(一般飼料を給餌)とモデル対照群40匹(高脂質飼料を給餌)の2群にランダムに分けた。次に、両群ともに制限なく飼料を与え、4週間飼育することでマウス肥満モデルを作製した。そして、モデル対照群を、10匹ずつ高脂質モデル群(高脂質飼料を給餌)、コンニャク精粉酵素分解物低投与量群(高脂質飼料を給餌し、且つ酵素分解物15mg・100g−1(BW)・d−1を胃内投与)、コンニャク精粉酵素分解物中投与量群(高脂質飼料を給餌し、且つ酵素分解物30mg・100g−1(BW)・d−1を胃内投与)、コンニャク精粉酵素分解物高投与量群(高脂質飼料を給餌し、且つ酵素分解物60mg・100g−1(BW)・d−1を胃内投与)の4群に任意に分けた。続いて、ブランク対照群のマウスには引き続き一般飼料を給餌した一方、高脂質モデル群及びコンニャク精粉酵素分解物低・中・高投与量群のマウスには引き続き高脂質飼料を給餌した。また、1か月連続でコンニャク精粉酵素分解物を胃内投与した。飼育温度は24〜27℃、相対湿度は45〜50%とし、昼夜比率11h:13hの断続照明を使用した。
Step 1: Preparation and grouping of animal models 50 healthy female mice were selected and fed with a general diet for 2 weeks, followed by 10 blank control groups (fed with a general diet) and 40 model control groups (high fat). The feed was randomly divided into two groups (feeding). Next, a mouse obesity model was prepared by feeding unlimited feeds in both groups and breeding them for 4 weeks. Then, the model control group was divided into a high-lipid model group (fed with a high-fat feed) and a low-dose group of enzyme-degraded konyaku fine powder (fed with a high-fat feed, and the enzymatic decomposition product was 15 mg / 100 g -1 (fed). BW) · d -1 was administered intragastrically), and the dose group in the enzyme degradation product of Konnaku semen (fed a high-lipid feed, and the enzymatic degradation product 30 mg · 100 g -1 (BW) · d -1 was intragastrically administered. ), And the enzyme-degraded product high-dose group (feeding a high-lipid feed and intragastrically administering the enzyme-degraded product 60 mg, 100 g -1 (BW), d -1). Subsequently, the mice in the blank control group were continuously fed with a general diet, while the mice in the high-fat model group and the low-, medium-, and high-dose groups of konjac fine powder enzyme decomposition products were continuously fed with a high-fat diet. In addition, the enzymatic decomposition product of konjac fine powder was intragastrically administered for 1 consecutive month. The breeding temperature was 24 to 27 ° C., the relative humidity was 45 to 50%, and intermittent lighting with a day / night ratio of 11h: 13h was used.

ステップ2:サンプル採集
給餌10週間後に各群のマウスを12h絶食させ、殺処理前に体重を測定した。そして、麻酔後に素早く眼球を摘出して採血し、頸椎脱臼により殺処理した。次に、肝臓、心臓、脾臓、腎臓、肺、腎周囲脂肪及び鼠蹊部皮下脂肪を素早く分離して、塩水で器官を洗浄してから濾紙で水を除去し、臓器及び組織の重量を測定した。
Step 2: Sample collection 10 weeks after feeding, mice in each group were fasted for 12 hours and weighed before slaughter. Then, after anesthesia, the eyeball was quickly removed, blood was collected, and the blood was killed by dislocation of the cervical spine. Next, the liver, heart, spleen, kidneys, lungs, perineal fat and subcutaneous fat in the inguinal region were quickly separated, the organs were washed with salt water, the water was removed with filter paper, and the weights of the organs and tissues were weighed. ..

ステップ3:指標の測定
実験期間中は、マウスの成長状態(マウスの毛色、摂食、排便及び活動)を毎日記録した。また、水曜日と木曜日にそれぞれマウスの1日当たりの摂食量と飲水量を測定した。つまり、水曜日と木曜日に飼料の総量と給水総量を測定し、木曜日と金曜日の同一時間に飼料の残量と水の残量を測定した(即ち、摂食量=飼料の総量−飼料の残量、飲水量=水の総量−水の残量)。また、毎週土曜日に体重を1回測定した。
Step 3: Measurement of indicators During the experimental period, mouse growth status (mouse coat color, feeding, defecation and activity) was recorded daily. In addition, the daily food intake and water intake of the mice were measured on Wednesday and Thursday, respectively. That is, the total amount of feed and the total amount of water supplied were measured on Wednesday and Thursday, and the remaining amount of feed and the remaining amount of water were measured at the same time on Thursday and Friday (that is, the amount of food intake = the total amount of feed-the remaining amount of feed). Drinking amount = total amount of water-remaining amount of water). In addition, the body weight was measured once every Saturday.

腹部を切開し、マウス体内の全ての脂肪(腎周囲の脂肪組織及び鼠蹊部の皮下脂肪組織を含む)を摘出して脂肪を測定し、式(1)に基づき脂肪指数を算出した。 The abdomen was incised, all the adipose tissue in the mouse body (including the adipose tissue around the kidney and the subcutaneous adipose tissue in the inguinal region) was removed, the fat was measured, and the fat index was calculated based on the formula (1).

脂肪指数/%=m/m×100 (1) Fat index /% = m 1 / m x 100 (1)

式中、mはマウスの殺処理前の体重/g、mはマウス体内の各脂肪組織の質量/gである。 In the formula, m is the body weight / g of the mouse before the killing treatment, and m 1 is the mass / g of each adipose tissue in the mouse body.

ステップ4:データ処理
ソフトウェアのSPSS20で統計分析を行い、平均値±標準偏差で表した。群間比較には一元配置分散分析を用いた。P<0.05は2つの群に有意差があることを示す。
Step 4: Statistical analysis was performed with the data processing software SPSS20 and expressed as mean ± standard deviation. One-way ANOVA was used for group-to-group comparison. P <0.05 indicates that there is a significant difference between the two groups.

Figure 2021159064
Figure 2021159064

表1から明らかなように、高脂質モデル群とコンニャク酵素分解物低・中・高投与量群の間には有意な差がみられた(P<0.05)。このことは、コンニャク酵素分解物がマウスの飲水量を一定程度減少させられることを意味する。なお、コンニャク酵素分解物高投与量群の効果が最も顕著であった。 As is clear from Table 1, there was a significant difference between the high-lipid model group and the low-, medium-, and high-dose groups of konjac enzymatic degradation products (P <0.05). This means that konjac enzymatic degradation products can reduce the amount of water consumed by mice to some extent. The effect of the high dose group of konjac enzymatic decomposition products was the most remarkable.

実施例1〜3で製造した多酵素によるコンニャク精粉酵素分解物について動物実験を行った。 Animal experiments were carried out on the enzymatic decomposition products of konjac fine powder produced by the polyenzymes produced in Examples 1 to 3.

ステップ1:糖尿病ラットモデルの作製
60匹の健康なメスのラットを1週間正常に飼育した。また、期間中は実験動物の飲水量と摂食量を定期的に測定した。1週間後に実験動物の体重と空腹時血糖値を測定して記録し、10匹ずつランダムに群分けした(正常対照群及び5つのモデル群)。モデル群のラットには、STZを含有するクエン酸−クエン酸ナトリウム緩衝液を腹腔注射して糖尿病を誘発した(予め冷却しておいたクエン酸塩緩衝液pH=4.5を用い、濃度1%でSTZを溶解したあと、0.22mol/Lの精密ろ過膜でろ過して除菌した。STZは活性を喪失しやすいため、素早く計量したあと錫箔で包んで遮光した。また、準備したものをその場で使用するようにし、常に氷浴内で待機させた)。注射するSTZの濃度は45mg/kg、注射量は2%とした。一方、正常群のラットには等体積のクエン酸−クエン酸ナトリウム緩衝液を腹腔注射した。また、STZの注射過程では、感染防止のためラットの腹腔の皮膚を消毒する必要があった。注射完了後、各群は引き続きこれまでの飲食を維持した。そして、24h後にラットの尾部から採血し、空腹時血糖値を測定した。血糖計及び血糖試験紙キットを用いてラットの空腹時血糖値を測定したところ、モデル群のラットの空腹時血糖値は>16.7mmol/Lであった(2〜3回繰り返し測定可能としたが、血糖値は安定していた)。且つ、多飲多尿や体重減少が症状として発生したため、モデル作製に成功したとみなした。
Step 1: Creating a diabetic rat model 60 healthy female rats were successfully bred for 1 week. In addition, during the period, the amount of water consumed and the amount of food consumed by the experimental animals were measured regularly. One week later, the body weight and fasting blood glucose level of the experimental animals were measured and recorded, and 10 animals were randomly grouped (normal control group and 5 model groups). Rats in the model group were intraperitoneally injected with STZ-containing citrate-sodium citrate buffer to induce diabetes (pre-cooled citrate buffer pH = 4.5 was used and a concentration of 1). After dissolving STZ in%, it was sterilized by filtering with a microfiltration membrane of 0.22 mol / L. Since STZ tends to lose its activity, it was quickly weighed and then wrapped in tin foil to shield it from light. Was used on the spot and was always kept waiting in the ice bath). The concentration of STZ to be injected was 45 mg / kg, and the injection amount was 2%. On the other hand, rats in the normal group were intraperitoneally injected with an equal volume of citrate-sodium citrate buffer. In addition, during the STZ injection process, it was necessary to disinfect the skin of the abdominal cavity of the rat to prevent infection. After the injection was completed, each group continued to maintain their previous eating and drinking. Then, 24 hours later, blood was collected from the tail of the rat, and the fasting blood glucose level was measured. When the fasting blood glucose level of the rats was measured using a glucose meter and a blood glucose test paper kit, the fasting blood glucose level of the rats in the model group was> 16.7 mmol / L (it was possible to measure repeatedly 2-3 times). However, the blood sugar level was stable). Moreover, since polydipsia and polyuria and weight loss occurred as symptoms, it was considered that the model was successfully created.

ステップ2:動物の群分け及び投薬
モデル作製に成功した糖尿病ラットを、コンニャク精粉酵素分解物高・中・低投与量群、ポジティブ投与群、糖尿病モデル群にそれぞれ群分け及び調整した。また、血糖値がモデル作製前と同一のラットを正常群とした。次に、6週間連続で胃内投与を行った。実験期間中、各群のラットには通常通り自由に飲水及び摂食させた。胃内投与の時間は毎日午後4時であった。また、各群のラットに対する胃内投与量については、コンニャク精粉酵素分解物高・中・低群がそれぞれ2.500g/(kg・d)、1.250g/(kg・d)、0.625g/(kg・d)、ポジティブ投与群が0.140g/(kg・d)であった。且つ、正常群及び高血糖モデル群には等量の生理食塩水を投与した。
Step 2: The diabetic rats that succeeded in grouping the animals and creating a dosing model were grouped and adjusted into a konjac fine powder enzyme decomposition product high / medium / low dose group, a positive administration group, and a diabetes model group, respectively. In addition, rats with the same blood glucose level as before model preparation were defined as the normal group. Next, intragastric administration was performed for 6 consecutive weeks. During the experiment, rats in each group were allowed to drink and feed freely as usual. The time of intragastric administration was 4 pm daily. Regarding the gastric dose to the rats in each group, 2.500 g / (kg · d), 1.250 g / (kg · d), and 0. It was 625 g / (kg · d) and 0.140 g / (kg · d) in the positive administration group. Moreover, an equal amount of physiological saline was administered to the normal group and the hyperglycemia model group.

ステップ3:指標の測定
ラットへの胃内投与期間中は、各群のラットの体重を毎週測定して記録した。結果はgで示し、各群のラットの体重の差を分析及び比較した。且つ、各群の実験ラットの空腹時血糖値を測定し、結果をmmol/Lで示すとともに、各群のラットの血糖値レベルの変化を分析及び比較した。また、実験動物の飲水量及び摂食量を測定して記録し、胃内投与期間中の各群のラットの飲水量及び摂食量の変化を分析した。
Step 3: Measurement of indicators During the period of intragastric administration to rats, the weight of rats in each group was measured and recorded weekly. The results are shown in g, and the difference in body weight of rats in each group was analyzed and compared. The fasting blood glucose level of the experimental rats in each group was measured, the results were shown in mmol / L, and the changes in the blood glucose level of the rats in each group were analyzed and compared. In addition, the amount of water and food intake of the experimental animals was measured and recorded, and changes in the amount of water and food intake of rats in each group during the gastric administration period were analyzed.

ステップ4:統計方法
ソフトウェアのSPSS20で統計分析を行い、平均値±標準偏差で表した。群間比較には一元配置分散分析を用いた。P<0.05は2つの群に有意差があることを示す。
Step 4: Statistical method Statistical analysis was performed with the software SPSS20 and expressed as mean ± standard deviation. One-way ANOVA was used for group-to-group comparison. P <0.05 indicates that there is a significant difference between the two groups.

Figure 2021159064
Figure 2021159064

表2から明らかなように、投与0日目において、モデル群の飲水量は正常群よりも顕著に上昇していた(p<0.01)。また、投与21日後に、ポジティブ投与群と各コンニャク酵素分解物投与量群の飲水量はそれぞれ異なる度合で減少していた。そして、投与42日目において、モデル群の飲水量は正常群との間に極めて顕著な有意差を示した(p<0.01)。また、ポジティブ投与群及び各コンニャク酵素分解物投与量群の飲水量は、モデル群との間に極めて顕著な有意差を示した(p<0.01)。且つ、コンニャク酵素分解物高・中投与量群の飲水量はポジティブ投与群との間に有意差がなかった。以上から明らかなように、コンニャク酵素分解物は糖尿病ラットの多飲症状を緩和可能であった。また、一定投与量のコンニャク酵素分解物は、糖尿病患者の多飲症状の緩和においてメトホルミンと類似の効果を有していた。 As is clear from Table 2, on day 0 of administration, the amount of water consumed in the model group was significantly higher than that in the normal group (p <0.01). In addition, 21 days after the administration, the amount of drinking water in the positive administration group and each konjac enzyme decomposition product dose group decreased to a different degree. Then, on the 42nd day of administration, the amount of water consumed by the model group showed a very significant difference from that of the normal group (p <0.01). In addition, the amount of water consumed by the positive administration group and each konjac enzymatic decomposition product dose group showed a very significant difference from the model group (p <0.01). Moreover, the amount of drinking water in the high / medium dose group of konjac enzymatic degradation product was not significantly different from that in the positive dose group. As is clear from the above, the konjac enzymatic degradation product was able to alleviate the polydipsia symptom of diabetic rats. In addition, a fixed dose of konjac enzymatic degradation product had an effect similar to that of metformin in alleviating polydipsia symptoms in diabetic patients.

以上の実施例から明らかなように、本発明は、多酵素によるコンニャク精粉酵素分解物の製造方法を提供する。動物(白ネズミ)実験の結果より、当該製品は、肥満予防、血中脂質の低下、肝脂肪変性の予防といった作用を有することがわかった。また、血糖の低下、脂質過酸化の低下、抗炎症、生体におけるフリーラジカル除去の向上といった作用を有し、糖尿病モデルラットの高血糖に対し改善作用を有することがわかった。 As is clear from the above examples, the present invention provides a method for producing a konjac fine powder enzymatic decomposition product using multiple enzymes. From the results of animal (white rat) experiments, it was found that the product has actions such as prevention of obesity, reduction of blood lipids, and prevention of hepatic fatty degeneration. It was also found that it has effects such as lowering blood glucose, lowering lipid peroxidation, anti-inflammatory, and improving free radical removal in the living body, and has an improving effect on hyperglycemia in diabetic model rats.

以上は本発明の好ましい実施例にすぎない。当業者であれば、本発明の原理を逸脱しないことを前提に、若干の改良及び補足が可能であり、これらの改良及び補足もまた本発明の保護の範囲とみなすべきである。 The above is only a preferable embodiment of the present invention. Those skilled in the art can make slight improvements and supplements on the premise that they do not deviate from the principles of the present invention, and these improvements and supplements should also be regarded as the scope of protection of the present invention.

Claims (4)

多酵素によるコンニャク精粉酵素分解物の製造方法であって、
(1)コンニャク精粉原料をアルコール中で精製することで、コンニャク湿潤精粉を取得するステップと、
(2)前記コンニャク湿潤精粉をアルコール除去処理することで、精製コンニャク精粉を取得するステップと、
(3)取得した前記精製コンニャク精粉と水及び酵素を混合して酵素分解を行うことで、多酵素による前記コンニャク精粉酵素分解物を取得するステップ、を含むことを特徴とする方法。
It is a method for producing konjac fine powder enzymatic decomposition products by multiple enzymes.
(1) The step of obtaining konjac wet powder by purifying the raw material of konjac powder in alcohol, and
(2) A step of obtaining purified konjac fine powder by alcohol-removing the konjak wet fine powder, and
(3) A method comprising a step of obtaining the enzymatic decomposition product of the konjac fine powder by a multienzyme by mixing the obtained purified konjac fine powder with water and an enzyme and performing enzymatic decomposition.
前記ステップ(1)における前記アルコールの体積濃度は55〜75%とし、
前記ステップ(1)における前記コンニャク精粉原料と前記アルコールとの固液比率は1g:3〜5mlとし、
前記ステップ(1)における精製時間は1〜3hとし、
前記ステップ(2)における前記アルコール除去処理の温度は50〜70℃とすることを特徴とする請求項1に記載の製造方法。
The volume concentration of the alcohol in the step (1) was 55 to 75%.
The solid-liquid ratio of the konjak refined powder raw material and the alcohol in the step (1) was 1 g: 3 to 5 ml.
The purification time in the step (1) was set to 1 to 3 hours.
The production method according to claim 1, wherein the temperature of the alcohol removal treatment in the step (2) is 50 to 70 ° C.
前記ステップ(3)における前記精製コンニャク精粉と前記水との質量体積比は15〜30g:100mLとし、
前記ステップ(3)における前記酵素は、グルコマンナナーゼ、セルラーゼ及びペクターゼを含み、
前記グルコマンナナーゼの用量は前記精製コンニャク精粉に対し50〜70u/gとし、前記セルラーゼの用量は前記精製コンニャク精粉に対し40〜60u/gとし、前記ペクターゼは体系総質量の0.03〜0.05%を占め、
前記酵素分解の温度は55〜65℃とし、酵素分解時間は2〜3hとすることを特徴とする請求項1に記載の製造方法。
The mass-volume ratio of the purified konjac fine powder to the water in the step (3) was 15 to 30 g: 100 mL.
The enzyme in step (3) comprises glucomannanase, cellulase and pectase.
The dose of the glucomannanase is 50 to 70 u / g with respect to the purified konjac refined powder, the dose of the cellulase is 40 to 60 u / g with respect to the purified konjac refined powder, and the pectase is 0.03 to 0.03 to the total mass of the system. Occupies 0.05%
The production method according to claim 1, wherein the enzymatic decomposition temperature is 55 to 65 ° C., and the enzymatic decomposition time is 2 to 3 hours.
請求項1〜3のいずれか1項に記載の製造方法で取得する多酵素によるコンニャク精粉酵素分解物。 A konjac fine powder enzymatic decomposition product obtained by the production method according to any one of claims 1 to 3.
JP2020098170A 2020-04-01 2020-06-05 Konjac powder multienzyme hydrolysate and preparation method thereof Pending JP2021159064A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010248586.9A CN111518854A (en) 2020-04-01 2020-04-01 Multi-enzyme zymolyte of konjac fine powder and preparation method thereof
CN202010248586.9 2020-04-01

Publications (1)

Publication Number Publication Date
JP2021159064A true JP2021159064A (en) 2021-10-11

Family

ID=71901463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098170A Pending JP2021159064A (en) 2020-04-01 2020-06-05 Konjac powder multienzyme hydrolysate and preparation method thereof

Country Status (2)

Country Link
JP (1) JP2021159064A (en)
CN (1) CN111518854A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112587535A (en) * 2021-01-06 2021-04-02 澳门大学 Glucomycooligosaccharide series composition, preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176A (en) * 1995-06-22 1997-01-07 Nakano Vinegar Co Ltd Pulverization of 'konjak' powder and production of 'konjak' or 'konjak'-containing food using the fine 'konjak' powder
JP2008206404A (en) * 2007-02-23 2008-09-11 Shimizu Kagaku Kk Method for producing quick-soluble konjak mannan
JP2009060805A (en) * 2007-09-04 2009-03-26 Nippon Ecolonomix:Kk New mannanase and dietary fiber food produced using the same
JP2011254753A (en) * 2010-06-09 2011-12-22 Unitika Ltd Method of producing monosaccharide
WO2013051146A1 (en) * 2011-10-07 2013-04-11 株式会社 荻野商店 Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby
JP2016034244A (en) * 2014-08-01 2016-03-17 蒟蒻屋本舗株式会社 Usage of konjak fluid material
JP2018113868A (en) * 2017-01-16 2018-07-26 蒟蒻屋本舗株式会社 Dripping suppressor and frozen food

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945132B2 (en) * 2006-01-11 2012-06-06 蒟蒻屋本舗株式会社 Manufacturing method of konjac fluid material
CN103073656A (en) * 2013-01-23 2013-05-01 湖北强森魔芋科技有限公司 Method for processing konjac powder with wet method
CN104560918A (en) * 2014-12-25 2015-04-29 南阳师范学院 Complex enzyme preparation for efficiently preparing mannose oligomer and application thereof
CN108185294A (en) * 2016-12-08 2018-06-22 陕西理工大学 A kind of black rice konjaku complex enzyme hydrolysis liquid and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176A (en) * 1995-06-22 1997-01-07 Nakano Vinegar Co Ltd Pulverization of 'konjak' powder and production of 'konjak' or 'konjak'-containing food using the fine 'konjak' powder
JP2008206404A (en) * 2007-02-23 2008-09-11 Shimizu Kagaku Kk Method for producing quick-soluble konjak mannan
JP2009060805A (en) * 2007-09-04 2009-03-26 Nippon Ecolonomix:Kk New mannanase and dietary fiber food produced using the same
JP2011254753A (en) * 2010-06-09 2011-12-22 Unitika Ltd Method of producing monosaccharide
WO2013051146A1 (en) * 2011-10-07 2013-04-11 株式会社 荻野商店 Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby
JP2016034244A (en) * 2014-08-01 2016-03-17 蒟蒻屋本舗株式会社 Usage of konjak fluid material
JP2018113868A (en) * 2017-01-16 2018-07-26 蒟蒻屋本舗株式会社 Dripping suppressor and frozen food

Also Published As

Publication number Publication date
CN111518854A (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JPH0745521B2 (en) Antihypertensive agent having antihypertensive effect
CN108720030B (en) Dietary fiber composition for targeted improvement of metabolic syndrome
WO2011047518A1 (en) Enteral nutrition comprising marine bioactive polysaccharide, preparation method and use thereof
CN107279236A (en) A kind of low AGEs inulin cookies and preparation method thereof
CN108077940A (en) A kind of abalone peptide removes fishy smell technique
JP2021159063A (en) Konjak functional food and method for producing the same
JP4132635B2 (en) Uninactivated enzyme-enhanced composition
JP3720496B2 (en) Novel pectin and emulsion containing the same
JP2021159064A (en) Konjac powder multienzyme hydrolysate and preparation method thereof
RU2343724C1 (en) Method of manufacturing biologically active products from brown algae
CN101366488A (en) Concentrated seafood juice flavourings and preparation method
CN107484984B (en) Stichopus japonicus oral liquid rich in Stichopus japonicus active polysaccharide and its preparation method
JP2001231497A (en) Functional food
JP4684440B2 (en) Lipid peroxide elevation-suppressing composition containing mannooligosaccharide
JP2004149471A (en) Hypoglycemic agent
CN101496592B (en) Dietary fiber block and method for processing the same
JP2986324B2 (en) Diet / Diabetic Food
JP4473976B2 (en) Blood phosphorus level lowering agent
JP3433917B2 (en) Nutritional composition for enhancing body protein accumulation efficiency
JP4712256B2 (en) High-grade chicken extract-containing functional food and method for producing the same
RU2361429C1 (en) Biologically active supplement for preventive measures againts rheumatoid illnesses
KR101883161B1 (en) Health functional food composition(pill type, paste type product) improving joint health and manufacturing method thereof
CN1817226A (en) Production of diet fibre with high activity
CN110679797A (en) Slimming beverage rich in konjac oligosaccharides and preparation method thereof
CN111264813A (en) Multifunctional konjac flour and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308