WO2013051146A1 - Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby - Google Patents

Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby Download PDF

Info

Publication number
WO2013051146A1
WO2013051146A1 PCT/JP2011/073172 JP2011073172W WO2013051146A1 WO 2013051146 A1 WO2013051146 A1 WO 2013051146A1 JP 2011073172 W JP2011073172 W JP 2011073172W WO 2013051146 A1 WO2013051146 A1 WO 2013051146A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
glucomannan
konjac
low molecular
acid
Prior art date
Application number
PCT/JP2011/073172
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 亮
瀧上 昭治
眞知子 瀧上
匡司 荻野
Original Assignee
株式会社 荻野商店
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荻野商店, 国立大学法人群馬大学 filed Critical 株式会社 荻野商店
Priority to PCT/JP2011/073172 priority Critical patent/WO2013051146A1/en
Publication of WO2013051146A1 publication Critical patent/WO2013051146A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/244Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from corms, tubers or roots, e.g. glucomannan

Definitions

  • the present invention relates to a method for producing a low molecular weight konjac glucomannan and a low molecular weight konjac glucomannan obtained by this method.
  • Konjac glucomannan (konjac flour) is a component contained in konjac koji and is classified as a water-soluble thickening polysaccharide. Normally, konjac glucomannan is obtained as a particulate powder by drying and purifying konjac koji, but when water is added thereto, it swells and becomes a highly viscous substance. A general konjac product is produced by gelling this viscous material by an alkaline reaction.
  • Konjac glucomannan obtained as described above is a polysaccharide in which glucose and mannose are polymerized in a ratio of 2: 3 to 1: 2, and is a neutral natural polymer having a molecular weight of about 1 million. Since this product is rich in elasticity, it is used as a new type of jelly raw material such as konjac jelly, and also has an effect as a physical property modifier such as giving elasticity to conventional jelly raw materials. It has been.
  • konjac glucomannan is hardly digested in the human digestive tract and is only partially converted into fatty acids by intestinal microorganisms and used. Therefore, konjac glucomannan is one of foods with extremely low calories (5-7 kcal per 100 g). It is often used as a food material when it is necessary to limit the calorie intake. Moreover, it is said that it is a typical dietary fiber and has an effect of lowering blood glucose level and blood cholesterol and immune enhancing activity.
  • Patent Document 1 describes that a glucomannan-containing food or pasted glucomannan is used as a raw material, and the viscosity is reduced by dispersing or further heating in acidic water.
  • konjac flour is mixed with an organic acid solution obtained by adding water to organic acids, and glucomannan contained in konjac flour is hydrolyzed with organic acids to reduce the molecular weight, thereby producing a low-viscosity liquid.
  • a low-viscosity liquefied glucomannan can be obtained by acid hydrolysis of the dissolved high-viscosity glucomannan.
  • those obtained by these methods have problems in distribution and storage because the final form is liquid.
  • Patent Document 3 The present inventors previously described a method for obtaining a low-molecular-weight konjac glucomannan powder that is powdery and convenient for storage, distribution, etc., and can obtain good handling properties. Heading and patent application (Patent Document 3).
  • an organic acid is used as an acid in the presence of alcohol, and konjac powder is hydrolyzed in a powdery state under high temperature and pressure conditions, and a powdered glucomannan is obtained.
  • coloring may be seen in the obtained glucomannan, which is not always industrially satisfactory.
  • the weight average molecular weight is about 100,000, and it is required to further reduce the molecular weight in order to be widely used as a food ingredient, a pharmaceutical carrier, an excipient and the like.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to obtain a powdery low molecular weight reduced glucomannan that is easy to handle by a method that is industrially easy to use and hardly causes discoloration. It is.
  • the present invention As a result of earnest research on the hydrolysis of konjac glucomannan, resulted in hydrolysis of konjac glucomannan having a low molecular weight, such as coloring, by hydrolysis under predetermined conditions. It can be obtained without causing problems, and some of such low molecular weight konjac glucomannan has not been known so far, and its viscosity when dissolved in water is low, so it is very advantageous for food. As a result, the present invention was completed.
  • a mixed aqueous solution of an inorganic acid and an alcohol in an amount of 1 to 5 is added to reduce the pH of the reaction system to 2 or less, which is 70 to 130.
  • a method for producing a low molecular weight konjac glucomannan characterized by heating at a temperature of ° C.
  • the present invention is a low molecular weight konjac glucomannan having a weight average molecular weight (Mw) of 3,000 to 100,000 and a polydispersity (Mw / Mn) of 1 to 2.
  • Mw weight average molecular weight
  • Mn polydispersity
  • the present invention is the above low molecular weight konjac glucomannan having a 1% aqueous solution having a viscosity of 1 to 5 mPa ⁇ s at 25 ° C.
  • konjac glucomannan can be reduced in molecular weight under general working conditions. Since the resulting low molecular weight konjac glucomannan has a low viscosity, a low molecular weight glucomannan powder can be easily obtained by subsequent dehydration and drying treatments.
  • some of the low molecular weight konjac glucomannan obtained by the method of the present invention includes an unprecedented low molecular weight, which has a low viscosity when dissolved in water. Etc. can be blended and added.
  • 1 is a diagram showing the state of low molecular weight of konjac glucomannan when hydrolyzing konjac flour using various acids and various acid pH-30 vol% ethanol aqueous solutions.
  • a glucomannan-containing konjac powder is added with a mixed aqueous solution of an inorganic acid and an alcohol having a bath ratio of 1 to 5 to bring the pH of the reaction system to 2 or less, and this is performed at a temperature of 70 to 130 ° C. It is processed to produce a low molecular weight konjac glucomannan.
  • the konjac powder containing glucomannan which is the raw material of the method of the present invention (hereinafter referred to as “konnyaku raw material powder”)
  • so-called coarse powder obtained by drying konjac corms is pulverized, and then the konjac refined from which the flying powder is removed. Powder etc. are used.
  • This konjac raw material powder is mixed with an aqueous solution of an inorganic acid and an alcohol (hereinafter referred to as “acid-alcohol mixture”) to make the reaction system have a strongly acidic pH of 2 or less.
  • the amount of the acid-alcohol mixed solution added to the konjac raw material powder is 1 to 5 in the bath ratio.
  • the bath ratio means the ratio of the solution to the insoluble polymer, and the bath ratio when 100 mL of solution is added to 10 g of polymer is expressed as 10 (100 (mL) / 10 (g)). Is done.
  • Examples of the alcohol used in the acid-alcohol mixed solution include lower alcohols such as ethanol and methanol. From the viewpoint of safety, it is preferable to use ethanol.
  • As the alcohol an alcohol aqueous solution may be used. However, since the volume of the alcohol decreases when the alcohol and water are mixed, it is preferable to use anhydrous alcohol in order to obtain an accurate amount of alcohol.
  • examples of the inorganic acid used in the acid-alcohol mixed solution include hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and the like, and hydrochloric acid is preferable from the viewpoint of usability.
  • This inorganic acid is used as the aqueous solution, and an amount suitable for the hydrolysis reaction may be used. As will be described later, when an organic acid is used, hydrolysis does not proceed under normal pressure.
  • the alcohol concentration in this acid-alcohol mixture is about 30 to 80%, preferably 40 to 60%.
  • the acid concentration is about 0.01 to 1N, preferably 0.1 to 0.5N. If the acid concentration is 1N or more, coloring may occur, and if it is less than 0.01N, hydrolysis may not be sufficient, which is not preferable.
  • the konjac raw material powder to which the acid-alcohol mixed solution is added and the pH of the reaction system is 2 or less is different from the case of adding only water, and the hydrolysis proceeds in a solid swollen state.
  • the hydrolysis time is not particularly limited, but can be changed depending on the degree of molecular weight reduction of the target konjac glucomannan, and is generally about 3 to 24 hours, preferably 5 minutes. 10 hours.
  • the temperature during hydrolysis is preferably a high temperature, and is generally about 80 to 130 ° C.
  • the konjac glucomannan reduced in molecular weight by acid hydrolysis is dehydrated, washed and dried in accordance with a known method used for purifying konjac powder. That is, the solution can be removed by solid-liquid separation means such as centrifugation, and further washed with an aqueous alcohol solution and dried using an electric dryer, etc. Can be obtained as
  • konjac glucomannan having various molecular weights can be obtained by appropriately adjusting the hydrolysis conditions.
  • the weight average molecular weight (Mw) is preferably from 3,000 to 100,000, preferably from 3,000 to 50,000, and the polydispersity (Mw / Mn) is preferably from 1 to 2 may be mentioned.
  • the above-described low molecular weight konjac glucomannan has almost no viscosity even when dissolved in water, and becomes a dry solution. That is, the preferable viscosity (25 ° C.) of the low molecular weight reduced konjac glucomannan of the present invention is about 1 to 5 mPa ⁇ s in its 1% aqueous solution.
  • the viscosity of a 1% aqueous solution of low molecular weight reduced konjac glucomannan having a weight average molecular weight of about 4,000 is about 1.3 mPa ⁇ s, which is higher than water.
  • the viscosity is almost the same as that of commercially available stick-type instant coffee and tea.
  • the above-described low molecular weight konjac glucomannan is a novel substance not described in the literature, and therefore, as a compounding ingredient for beverages and the like, which has been conventionally difficult in terms of viscosity while requiring the formulation of konjac glucomannan. Are advantageously used.
  • the method of the present invention becomes a highly viscous paste when mixed with water, and acid hydrolysis, which has been difficult to carry out, uses an aqueous alcohol solution to swell the konjac raw material powder in a solid state. It is intended to obtain a desired low molecular weight konjac glucomannan by hydrolyzing with an inorganic acid solution under specific conditions. And since this thing can be easily pulverized, it can provide the konjac glucomannan raw material which has high distribution, storage stability and good handling properties.
  • Viscosity measurement A tuning fork type vibration viscometer (SV type viscometer SV-10, manufactured by A & D Corporation) was used as a viscosity measuring instrument, and the viscosity at 25 ° C. was measured.
  • Example 1 Water close to a predetermined amount of 40% by volume was added to ethanol corresponding to a predetermined amount of 60% by volume, and then hydrochloric acid was added so that the pH of the mixed solution was 1. Further, water was added to make a predetermined amount, and finally the pH was finely adjusted with an acid to prepare a hydrochloric acid-60 vol% ethanol aqueous solution having a pH of 1. The obtained acid-ethanol mixture was used as a hydrolysis reagent.
  • konjac glucomannan having a molecular weight exceeding 1 million has a molecular weight of about 100,000 by acid hydrolysis for 45 minutes, and 23,000 to 1.1 in hydrolysis for 90 to 180 minutes.
  • the molecular weight was about 80,000.
  • Example 2 According to Example 1 (1), a hydrochloric acid-30 vol% ethanol aqueous solution having a pH of 1 was prepared and used as a hydrolysis reagent. Take 100 mL of this hydrolysis reagent in a flask, add 10 g of the same konjac flour as in Example 1 (bath ratio: 10), and heat in a hot water bath at 80 ° C. for 20 to 120 minutes to perform acid hydrolysis. It was. In the same manner as in Example 1 (1), dehydration, washing and drying were performed to obtain products 4 to 9. The results are shown in Table 2.
  • Example 3 According to Example 1 (1), hydrochloric acid—30 vol% ethanol aqueous solution having a pH of about 1, 1.5, 2, 3, 4, and 5 was prepared and used as a hydrolysis reagent. 100 mL of each of these hydrolysis reagents was placed in a flask, 10 g of the same konjac fine powder as in Example 1 was added thereto (bath ratio: 10), and heated in a hot water bath at 80 ° C. for 60 minutes for acid hydrolysis. . Subsequently, each was dehydrated, washed and dried in the same manner as in Example 1 (1) to obtain products 10 to 15. The results are shown in Table 3.
  • Example 4 According to Example 1 (1), a hydrochloric acid-40 volume% ethanol aqueous solution having a pH of 1 was prepared and used as a hydrolysis reagent. Take each 300 mL of this hydrolysis reagent in a flask, add 100 g of the same konjac flour as in Example 1 (bath ratio: 3), and heat in a hot water bath at 80 ° C. for 60 minutes, 300 minutes and 600 minutes, Acid hydrolysis was performed. Subsequently, each was dehydrated, washed and dried in the same manner as in Example 1 (1) to obtain products 16 to 18. The results are shown in Table 4 below.
  • Example 5 According to Example 1 (1), a hydrochloric acid-60 vol% ethanol aqueous solution having a pH of 1 was prepared and used as a hydrolysis reagent. To this hydrolyzing reagent, 300 mL each was taken in a flask so that the bath ratio was 3.3 and 2.6, and the same konjac fine powder as in Example 1 was added thereto. Heated for a minute to carry out acid hydrolysis. Subsequently, dehydration, washing and drying were performed in the same manner as in Example 1 (1) to obtain products 19 and 20. The results are shown in Table 5 below.
  • Example 6 According to Example 1 (1), hydrochloric acid-ethanol aqueous solutions (pH 1) shown in Table 6 were prepared and used as hydrolysis reagents. To this hydrolysis reagent, the same konjac fine powder as in Example 1 was added so that the bath ratio shown in Table 6 was obtained, and the mixture was heated in a hot water bath at 80 ° C. for 60 minutes for acid hydrolysis. Subsequently, dehydration, washing and drying were performed in the same manner as in Example 1 (1) to obtain products 21 to 23. The results are shown in Table 6 below.
  • Example 7 According to Example 1 (1), various acids were used to prepare acid-30 vol% ethanol aqueous solutions having various pHs, which were respectively used as hydrolysis reagents. 100 mL of each of these hydrolysis reagents was placed in a flask, 10 g of the same konjac fine powder as in Example 1 was added thereto (bath ratio: 10), and heated in a hot water bath at 80 ° C. for 60 minutes for acid hydrolysis. . Subsequently, each was dehydrated, washed and dried in the same manner as in Example 1 (1). The result is shown in FIG.
  • Example 8 The konjac raw material powder (Akagi Odama) was hydrolyzed under the conditions indicated by numbers 1 to 5 in Table 7. First, a hydrolyzed solution containing hydrochloric acid and ethanol at concentrations shown in Table 7 was prepared. The konjac raw material powder was added to this hydrolyzed solution so as to have the bath ratio shown in Table 7, and hydrolysis was performed at the temperature and time shown in the same table.
  • a commercially available pressure cooker was used for the hydrolysis at 128 ° C.
  • the pressure cooker reached 100 ° C.
  • the raw material placed in the glass container was added, and the time when it reached 128 ° C. was defined as the hydrolysis start time.
  • the hydrolysis reaction was stopped by rapidly cooling the pressure cooker.
  • the molecular weight and polydispersity of the obtained low molecular weight glucomannan were measured. Moreover, the viscosity (25 degreeC) of the 1% aqueous solution was measured. These results are also shown in Table 7.
  • the molecular weight, polydispersity, and viscosity of a 1% aqueous solution (25 ° C.) measured for the konjac raw material powder are also shown in the same table.
  • the low molecular weight konjac glucomannan obtained in the present invention has low viscosity and can be blended into general beverages.
  • the low molecular weight konjac glucomannan obtained by the method of the present invention has a final form of powder and particles, and its molecular weight is small, so even if it is added to water or the like, its viscosity does not increase.
  • this low molecular weight konjac glucomannan is used for various uses, for example, beverages, health foods (dietary fiber reinforced foods, konjac glucomannan function enhanced foods, etc.) It can be blended and used in compositions such as (confectionery, bread, noodles, marine products, meat products, instant soup, etc.) and cosmetics (humectants, surfactants, release agents, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

A method for producing a depolymerized konjak glucomannan, said method being characterized by comprising adding to a konjak powder containing glucomannan a mixed aqueous solution of an inorganic acid with an alcohol in such an amount as to give a bath ratio of 1-5 to thereby adjust the pH value of the reaction system to 2 or lower, and then heating the resultant mixture at 70-130oC; and a depolymerized konjak glucomannan which has a weight-average molecular weight (Mw) of 3,000-100,000 and a polydispersity (Mw/Mn) of 1-2.

Description

低分子量化こんにゃくグルコマンナンの製造方法およびこの方法により得られる低分子量化こんにゃくグルコマンナンMethod for producing low molecular weight konjac glucomannan and low molecular weight konjac glucomannan obtained by this method
 本発明は、低分子量化こんにゃくグルコマンナンの製造方法およびこの方法により得られる低分子量化こんにゃくグルコマンナンに関する。 The present invention relates to a method for producing a low molecular weight konjac glucomannan and a low molecular weight konjac glucomannan obtained by this method.
 こんにゃくグルコマンナン(こんにゃく粉)は、こんにゃく芋に含まれる成分で、水溶性の増粘多糖類に分類される。通常、こんにゃくグルコマンナンは、こんにゃく芋を乾燥した後に、これを粉砕精製することにより、粒子状の粉末として得られるが、これに水を加えると膨潤し、粘稠性の高い物質となる。一般のこんにゃく製品は、この粘稠物質をアルカリ反応でゲル化させることにより製造されている。 Konjac glucomannan (konjac flour) is a component contained in konjac koji and is classified as a water-soluble thickening polysaccharide. Normally, konjac glucomannan is obtained as a particulate powder by drying and purifying konjac koji, but when water is added thereto, it swells and becomes a highly viscous substance. A general konjac product is produced by gelling this viscous material by an alkaline reaction.
 上記のようにして得られるこんにゃくグルコマンナンは、グルコースとマンノースが2:3~1:2の比率で重合した多糖類で、その分子量が100万程度の中性の天然高分子である。このものは、弾力性に富むため、こんにゃくゼリーなどのように新しいタイプのゼリー原料として使用されている他に、従来のゼリー原料に弾力性を持たせるなどの物性改質剤としての効果も認められている。 Konjac glucomannan obtained as described above is a polysaccharide in which glucose and mannose are polymerized in a ratio of 2: 3 to 1: 2, and is a neutral natural polymer having a molecular weight of about 1 million. Since this product is rich in elasticity, it is used as a new type of jelly raw material such as konjac jelly, and also has an effect as a physical property modifier such as giving elasticity to conventional jelly raw materials. It has been.
  また、こんにゃくグルコマンナンは、ヒトの消化管ではほとんど消化されず、腸内微生物により一部脂肪酸に変換されて利用されるのみであるため、カロリーが極めて低い食品(100gあたり5~7kcal)の一つとされ、摂取カロリーを制限する必要のある場合の食品素材としてよく利用される。また代表的な食物繊維で、血糖値や血中コレステロールを下げる効果や免疫増強活性があるとも言われている。 In addition, konjac glucomannan is hardly digested in the human digestive tract and is only partially converted into fatty acids by intestinal microorganisms and used. Therefore, konjac glucomannan is one of foods with extremely low calories (5-7 kcal per 100 g). It is often used as a food material when it is necessary to limit the calorie intake. Moreover, it is said that it is a typical dietary fiber and has an effect of lowering blood glucose level and blood cholesterol and immune enhancing activity.
 しかしながら、グルコマンナンに水を加えた際の高い粘稠性は、食品としてそのまま摂取した時に、口の中に粘りつき非常に食感が悪くなるという欠点となっていた。特に、こんにゃくグルコマンナンの機能性を利用するために、これを多量に食品に配合する必要があっても、高い粘性の問題から、十分な量を配合することが難しいという問題があった。 However, the high consistency when water is added to glucomannan has been a drawback that it is sticky in the mouth when taken as it is as a food, resulting in a very poor texture. In particular, in order to utilize the functionality of konjac glucomannan, there is a problem that it is difficult to add a sufficient amount due to the problem of high viscosity even if it is necessary to add a large amount thereof to food.
 上記したような、こんにゃくグルコマンナンの高い粘稠性の問題に対しては、グルコマンナンを低分子量化し、低粘度化を図ることが有効と考えられる。その手法の一つとして、例えば、グルコマンナンを酸加水分解することが知られている(特許文献1、特許文献2)。このうち、特許文献1には、グルコマンナン含有食材若しくはペースト化されたグルコマンナンを原料とし、酸性水に分散させ又はさらに加熱することによって低粘度化を図ることが記載されており、また、特許文献2には、有機酸類に水を加えた有機酸溶液にこんにゃく粉を混合し、有機酸類によりこんにゃく粉に含まれるグルコマンナンを加水分解して低分子化を図り、低粘度の液状とすることが記載されている。 For the high viscosity problem of konjac glucomannan as described above, it is considered effective to lower the molecular weight of glucomannan to lower the viscosity. As one of the methods, for example, it is known to hydrolyze glucomannan (Patent Document 1, Patent Document 2). Among these, Patent Document 1 describes that a glucomannan-containing food or pasted glucomannan is used as a raw material, and the viscosity is reduced by dispersing or further heating in acidic water. In Document 2, konjac flour is mixed with an organic acid solution obtained by adding water to organic acids, and glucomannan contained in konjac flour is hydrolyzed with organic acids to reduce the molecular weight, thereby producing a low-viscosity liquid. Is described.
 前述した従来技術によれば、溶解された高粘度のグルコマンナンを酸加水分解することによって低粘度の液状化されたグルコマンナンを得ることができる。しかしながら、これら方法により得られたものは、最終的形態が液状物であるため、流通や保存において、問題があった。 According to the above-described prior art, a low-viscosity liquefied glucomannan can be obtained by acid hydrolysis of the dissolved high-viscosity glucomannan. However, those obtained by these methods have problems in distribution and storage because the final form is liquid.
 また、液状化されたグルコマンナンを食品等に配合する場合でも、必要とするグルコマンナンの含有重量に対し、同時に水も配合することになるため、ユーザの希望するグルコマンナンの配合を得るのが困難になり、使用上も取り扱い性が悪いという問題が生じる。 In addition, even when liquefied glucomannan is blended in foods, etc., since water is also blended at the same time with respect to the required weight of glucomannan, it is possible to obtain the blending of glucomannan desired by the user. It becomes difficult and the problem that handling is bad also arises on use.
 本発明者らは先に、粉末状で、保存、流通等での取り扱いが便利であると共に、良好な取り扱い性を得ることができる低分子化されたこんにゃくグルコマンナン粉を得ることができる方法を見出し、特許出願した(特許文献3)。 The present inventors previously described a method for obtaining a low-molecular-weight konjac glucomannan powder that is powdery and convenient for storage, distribution, etc., and can obtain good handling properties. Heading and patent application (Patent Document 3).
 上記方法は、アルコール共存下、酸として有機酸を使用し、高温・加圧条件でこんにゃく粉を粉末状体のまま加水分解するというものであり、粉末状態のグルコマンナンが得られるというものである。しかしながら、得られるグルコマンナンに着色が見られることがあり、必ずしも工業的に満足のいくものではなかった。また、その重量平均分子量も10万程度のものであり、広く食品の配合成分や、医薬の担体、賦形剤などとして利用するには、更に分子量を小さくすることが求められている。 In the above method, an organic acid is used as an acid in the presence of alcohol, and konjac powder is hydrolyzed in a powdery state under high temperature and pressure conditions, and a powdered glucomannan is obtained. . However, coloring may be seen in the obtained glucomannan, which is not always industrially satisfactory. In addition, the weight average molecular weight is about 100,000, and it is required to further reduce the molecular weight in order to be widely used as a food ingredient, a pharmaceutical carrier, an excipient and the like.
特開2006-61030号公報JP 2006-61030 A 特開平7-313120号公報JP 7-313120 A 特開2008-35818号公報JP 2008-35818 A
 本発明は、上記実情に鑑みなされたものであり、取り扱いの便利な粉末状の低分子量化グルコマンナンを、工業的に利用しやすく、かつ変色の起こりにくい方法で得ることをその課題とするものである。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to obtain a powdery low molecular weight reduced glucomannan that is easy to handle by a method that is industrially easy to use and hardly causes discoloration. It is.
 本発明は、上記課題を解決するため、こんにゃくグルコマンナンの加水分解に関し、鋭意研究を行った結果、所定の条件で加水分解することで、分子量の小さいこんにゃくグルコマンナン低分子量化物を、着色などの問題を生じることなく得られること、また、このような低分子量化こんにゃくグルコマンナンの一部は、今まで知られていないものであり、水に溶解した際の粘度が低いため、極めて有利に食品等に配合、添加できることを見出し、本発明を完成した。 In order to solve the above-mentioned problems, the present invention, as a result of earnest research on the hydrolysis of konjac glucomannan, resulted in hydrolysis of konjac glucomannan having a low molecular weight, such as coloring, by hydrolysis under predetermined conditions. It can be obtained without causing problems, and some of such low molecular weight konjac glucomannan has not been known so far, and its viscosity when dissolved in water is low, so it is very advantageous for food. As a result, the present invention was completed.
 すなわち本発明は、グルコマンナンを含有するこんにゃく粉末に、その浴比として、1ないし5となる量の無機酸とアルコールの混合水溶液を加えて反応系のpHを2以下とし、これを70ないし130℃で加熱することを特徴とする低分子量化こんにゃくグルコマンナンの製造方法である。 That is, according to the present invention, to the konjac powder containing glucomannan, as a bath ratio, a mixed aqueous solution of an inorganic acid and an alcohol in an amount of 1 to 5 is added to reduce the pH of the reaction system to 2 or less, which is 70 to 130. A method for producing a low molecular weight konjac glucomannan, characterized by heating at a temperature of ° C.
 また本発明は、その重量平均分子量(Mw)が、3,000ないし100,000であり、その多分散性(Mw/Mn)が、1ないし2である低分子量化こんにゃくグルコマンナンである。ここでMnは数平均分子量を表す。 Also, the present invention is a low molecular weight konjac glucomannan having a weight average molecular weight (Mw) of 3,000 to 100,000 and a polydispersity (Mw / Mn) of 1 to 2. Here, Mn represents a number average molecular weight.
 更に本発明は、1%水溶液の25℃での粘度が1ないし5mPa・sである上記低分子量化こんにゃくグルコマンナンである。 Furthermore, the present invention is the above low molecular weight konjac glucomannan having a 1% aqueous solution having a viscosity of 1 to 5 mPa · s at 25 ° C.
 本発明方法によれば、一般的な作業条件により、こんにゃくグルコマンナンの低分子量化が可能となる。そして、得られる低分子量化こんにゃくグルコマンナンには、粘度が低いものであるため、その後の脱水・乾燥処理により、容易に低分子量化されたグルコマンナン粉を得ることができる。 According to the method of the present invention, konjac glucomannan can be reduced in molecular weight under general working conditions. Since the resulting low molecular weight konjac glucomannan has a low viscosity, a low molecular weight glucomannan powder can be easily obtained by subsequent dehydration and drying treatments.
 更に、本発明方法で得られる低分子量化こんにゃくグルコマンナンの一部には、今までにない低分子量のものが含まれ、このものは水に溶解した際の粘度も低いため、極めて有利に食品等に配合、添加できるものである。 Furthermore, some of the low molecular weight konjac glucomannan obtained by the method of the present invention includes an unprecedented low molecular weight, which has a low viscosity when dissolved in water. Etc. can be blended and added.
種々の酸を用い、種々のpHの酸-30容量%エタノール水溶液を用いて、こんにゃく粉を加水分解した際の、こんにゃくグルコマンナンの低分子量化の状態を示す図面である。1 is a diagram showing the state of low molecular weight of konjac glucomannan when hydrolyzing konjac flour using various acids and various acid pH-30 vol% ethanol aqueous solutions.
 本発明方法は、グルコマンナンを含有するこんにゃく粉末に、その浴比で1ないし5の無機酸とアルコールの混合水溶液を加えて反応系のpHを2以下とし、これを70ないし130℃の温度で処理し、低分子量化こんにゃくグルコマンナンを製造するものである。 In the method of the present invention, a glucomannan-containing konjac powder is added with a mixed aqueous solution of an inorganic acid and an alcohol having a bath ratio of 1 to 5 to bring the pH of the reaction system to 2 or less, and this is performed at a temperature of 70 to 130 ° C. It is processed to produce a low molecular weight konjac glucomannan.
 本発明方法の原料であるグルコマンナンを含有するこんにゃく粉末(以下、「こんにゃく原料粉末」という)としては、こんにゃく球茎を乾燥して得たいわゆる荒粉を粉砕し、これから飛粉を除いたこんにゃく精粉等が利用される。 As the konjac powder containing glucomannan, which is the raw material of the method of the present invention (hereinafter referred to as “konnyaku raw material powder”), so-called coarse powder obtained by drying konjac corms is pulverized, and then the konjac refined from which the flying powder is removed. Powder etc. are used.
 このこんにゃく原料粉末には、無機酸とアルコールの混合水溶液(以下、「酸-アルコール混液」という)が加えられ、その反応系のpHが2以下の強酸性とされる。このこんにゃく原料粉末に加えられる酸-アルコール混液の量は、その浴比で、1ないし5である。なお、浴比とは、不溶性の高分子に対する溶液の比率を意味し、10gの高分子に100mLの溶液を加えた場合の浴比は、10(100(mL)/10(g))と表現される。 This konjac raw material powder is mixed with an aqueous solution of an inorganic acid and an alcohol (hereinafter referred to as “acid-alcohol mixture”) to make the reaction system have a strongly acidic pH of 2 or less. The amount of the acid-alcohol mixed solution added to the konjac raw material powder is 1 to 5 in the bath ratio. The bath ratio means the ratio of the solution to the insoluble polymer, and the bath ratio when 100 mL of solution is added to 10 g of polymer is expressed as 10 (100 (mL) / 10 (g)). Is done.
 この酸-アルコール混液で使用されるアルコールとしては、エタノール、メタノール等の低級アルコールが挙げられるが、安全性の面からは、エタノールの使用が好ましい。このアルコールは、アルコール水溶液を使用しても良いが、アルコールと水を混合するとその体積が減少するので、正確なアルコール量とするために、無水アルコールを利用することが好ましい。 Examples of the alcohol used in the acid-alcohol mixed solution include lower alcohols such as ethanol and methanol. From the viewpoint of safety, it is preferable to use ethanol. As the alcohol, an alcohol aqueous solution may be used. However, since the volume of the alcohol decreases when the alcohol and water are mixed, it is preferable to use anhydrous alcohol in order to obtain an accurate amount of alcohol.
 また、酸-アルコール混液で使用される無機酸としては、塩酸、硫酸、リン酸、硝酸等が挙げられるが、使用性の面から塩酸が好ましい。この無機酸は、その水溶液として使用され、加水分解反応に適した量を使用すればよい。なお、後記するように有機酸を利用した場合は、常圧下では加水分解が進まない。 In addition, examples of the inorganic acid used in the acid-alcohol mixed solution include hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and the like, and hydrochloric acid is preferable from the viewpoint of usability. This inorganic acid is used as the aqueous solution, and an amount suitable for the hydrolysis reaction may be used. As will be described later, when an organic acid is used, hydrolysis does not proceed under normal pressure.
 この酸-アルコール混液におけるアルコール濃度は、30ないし80%程度、好ましくは、40ないし60%である。また、その酸濃度は、0.01ないし1N程度、好ましくは、0.1ないし0.5Nである。この酸の濃度を1N以上とすると着色が生じることがあり、また、0.01N未満である場合は、加水分解が十分でないことがあり、何れも好ましくない。 The alcohol concentration in this acid-alcohol mixture is about 30 to 80%, preferably 40 to 60%. The acid concentration is about 0.01 to 1N, preferably 0.1 to 0.5N. If the acid concentration is 1N or more, coloring may occur, and if it is less than 0.01N, hydrolysis may not be sufficient, which is not preferable.
 上記のように、酸-アルコール混液が加えられ、その反応系のpHが2以下とされたこんにゃく原料粉末は、水のみを加えた場合と異なり、固体の膨潤された状態で加水分解が進行する。この加水分解の時間は、特に制約されるものではないが、目的とするこんにゃくグルコマンナンの低分子化の程度により変化させることができ、一般には、3分ないし24時間程度、好ましくは、5分ないし10時間である。また、加水分解時の温度は、高い温度であることが好ましく、一般には、80ないし130℃程度である。 As described above, the konjac raw material powder to which the acid-alcohol mixed solution is added and the pH of the reaction system is 2 or less is different from the case of adding only water, and the hydrolysis proceeds in a solid swollen state. . The hydrolysis time is not particularly limited, but can be changed depending on the degree of molecular weight reduction of the target konjac glucomannan, and is generally about 3 to 24 hours, preferably 5 minutes. 10 hours. The temperature during hydrolysis is preferably a high temperature, and is generally about 80 to 130 ° C.
 上記のようにして、酸加水分解により低分子量化されたこんにゃくグルコマンナンは、以下、こんにゃく粉の精製等に用いられる公知方法に従って、脱水、洗浄および乾燥が行われる。すなわち、遠心分離等の固液分離手段で溶液を除くことができ、更に、アルコール水溶液等で洗浄し、電気乾燥機等を用いて乾燥することにより、低分子量化されたこんにゃくグルコマンナンを粉体として得ることができる。 As described above, the konjac glucomannan reduced in molecular weight by acid hydrolysis is dehydrated, washed and dried in accordance with a known method used for purifying konjac powder. That is, the solution can be removed by solid-liquid separation means such as centrifugation, and further washed with an aqueous alcohol solution and dried using an electric dryer, etc. Can be obtained as
 本発明方法においては、上記加水分解の条件を適宜調整することで、種々の分子量の低分子量化されたこんにゃくグルコマンナンを得ることができる。このうち、好ましいものとしては、重量平均分子量(Mw)が、3,000ないし100,000、好ましくは、3,000ないし50,000であり、その多分散性(Mw/Mn)が、1ないし2であるものを挙げることができる。 In the method of the present invention, konjac glucomannan having various molecular weights can be obtained by appropriately adjusting the hydrolysis conditions. Among these, the weight average molecular weight (Mw) is preferably from 3,000 to 100,000, preferably from 3,000 to 50,000, and the polydispersity (Mw / Mn) is preferably from 1 to 2 may be mentioned.
 上記した低分子量化こんにゃくグルコマンナンは、水に溶解してもほとんど粘稠性がなく、さらっとした溶液となる。すなわち、本発明の好ましい低分子量化こんにゃくグルコマンナンの好ましい粘度(25℃)は、その1%水溶液で1ないし5mPa・s程度である。そして、例えば、後記実施例に示すように、重量平均分子量が約4,000の低分子量化こんにゃくグルコマンナンの1%濃度の水溶液の粘度は、1.3mPa・s程度であり、水よりは高いが、市販のスティックタイプのインスタントコーヒーや紅茶とほぼ同程度の粘度である。 The above-described low molecular weight konjac glucomannan has almost no viscosity even when dissolved in water, and becomes a dry solution. That is, the preferable viscosity (25 ° C.) of the low molecular weight reduced konjac glucomannan of the present invention is about 1 to 5 mPa · s in its 1% aqueous solution. For example, as shown in Examples below, the viscosity of a 1% aqueous solution of low molecular weight reduced konjac glucomannan having a weight average molecular weight of about 4,000 is about 1.3 mPa · s, which is higher than water. However, the viscosity is almost the same as that of commercially available stick-type instant coffee and tea.
 上記した低分子量化こんにゃくグルコマンナンは、文献に記載のない新規物質であり、従って、従来こんにゃくグルコマンナンの配合が求められながら、粘度の点で困難とされた用途、例えば飲料等の配合成分として、有利に利用されるものである。 The above-described low molecular weight konjac glucomannan is a novel substance not described in the literature, and therefore, as a compounding ingredient for beverages and the like, which has been conventionally difficult in terms of viscosity while requiring the formulation of konjac glucomannan. Are advantageously used.
 本発明方法は、水と混合した場合は高粘稠性のペースト状物となり、実施が困難であった酸加水分解を、アルコール水溶液を使用し、こんにゃく原料粉末を固体状態で膨潤させ、これに特定条件下で無機酸溶液を作用させて加水分解することで、所望の低分子量化したこんにゃくグルコマンナンを得るというものである。そして、このものは簡単に粉末化できるので、流通や、保存性が高く、かつ取扱性も良いこんにゃくグルコマンナン原料を提供することができる。 The method of the present invention becomes a highly viscous paste when mixed with water, and acid hydrolysis, which has been difficult to carry out, uses an aqueous alcohol solution to swell the konjac raw material powder in a solid state. It is intended to obtain a desired low molecular weight konjac glucomannan by hydrolyzing with an inorganic acid solution under specific conditions. And since this thing can be easily pulverized, it can provide the konjac glucomannan raw material which has high distribution, storage stability and good handling properties.
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。なお、以下の実施例で、分子量および粘度は、次のようにして測定した。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following examples, the molecular weight and viscosity were measured as follows.
 (1)分子量測定: 
 まず、サイズ排除クロマトグラフィー(カラム:GMPWXL(東ソー社製))で分子量分別し、次いで、各画分を光散乱検出器(DAWN DSP;Wyatt Technology社製)を用いて多角度光散乱測定し、絶対分子量とその分布を計測した。
(1) Molecular weight measurement:
First, molecular weight fractionation by size exclusion chromatography (column: GMPWXL (manufactured by Tosoh Corporation)), and then each fraction was subjected to multi-angle light scattering measurement using a light scattering detector (DAWN DSP; manufactured by Wyatt Technology), Absolute molecular weight and its distribution were measured.
 (2)粘度測定: 
 粘度測定機器として音叉型振動粘度計(エー・アンド・デイ社製、SV型粘度計 SV-10)を用い、25℃における粘度を測定した。
(2) Viscosity measurement:
A tuning fork type vibration viscometer (SV type viscometer SV-10, manufactured by A & D Corporation) was used as a viscosity measuring instrument, and the viscosity at 25 ° C. was measured.
実 施 例 1
 (1)所定量の60容量%の容量に相当するエタノールに所定量の40容量%に近い水を加え、次いで混合液のpHが1となるよう、塩酸を加えた。更に水を加えて所定量とし、最後に酸でpHを微調整し、pHが1の塩酸-60容量%エタノール水溶液を調製した。得られた酸-エタノール混液を、加水分解試薬として使用した。
Example 1
(1) Water close to a predetermined amount of 40% by volume was added to ethanol corresponding to a predetermined amount of 60% by volume, and then hydrochloric acid was added so that the pH of the mixed solution was 1. Further, water was added to make a predetermined amount, and finally the pH was finely adjusted with an acid to prepare a hydrochloric acid-60 vol% ethanol aqueous solution having a pH of 1. The obtained acid-ethanol mixture was used as a hydrolysis reagent.
 上で調製した、酸‐エタノール水溶液3Lを三角フラスコに入れ、これにこんにゃく精粉(あかぎおおだま)900gを加え(浴比:3.3)、湯浴中、80℃で45分間加熱し、酸加水分解反応を行った。反応中、連続で撹拌を行なった。なお、酸加水分解反応において、こんにゃく精粉と酸-エタノール混液の添加順序は逆にしても良い。 3 L of acid-ethanol aqueous solution prepared above is put into an Erlenmeyer flask, and 900 g of konjac fine powder (Akagi Odama) is added thereto (bath ratio: 3.3), heated in a hot water bath at 80 ° C. for 45 minutes, An acid hydrolysis reaction was performed. Stirring was continuously performed during the reaction. In the acid hydrolysis reaction, the order of adding the konjac fine powder and the acid-ethanol mixture may be reversed.
 以上のようにして酸加水分解を行った後、こんにゃく粉の精製に用いられている公知方法に準じて、脱水、洗浄および乾燥を行った。すなわち、1000rpm程度の回転速度の遠心分離により、液体を除き、その後50%程度のアルコール水溶液で数回洗浄し、60℃程度で乾燥し、低分子量化こんにゃくグルコマンナン粉(製品1)を得た。 After acid hydrolysis as described above, dehydration, washing and drying were performed according to a known method used for the purification of konjac flour. That is, the liquid was removed by centrifugation at a rotational speed of about 1000 rpm, and then washed several times with about 50% alcohol aqueous solution and dried at about 60 ° C. to obtain a low molecular weight konjac glucomannan powder (Product 1). .
 (2)上記(1)において、加熱時間を、90分および180分とする以外は、同様に加水分解を行い、低分子量化こんにゃくグルコマンナン粉(製品2および製品3)を得た。得られた製品1ないし製品3の重量平均分子量と、その多分散性を下の表1に示す。なお表中には、原料であるこんにゃく精粉でのグルコマンナンの分子量およびその多分散性も示した。 (2) In the above (1), hydrolysis was performed in the same manner except that the heating time was 90 minutes and 180 minutes to obtain low molecular weight konjac glucomannan powder (Product 2 and Product 3). Table 1 below shows the weight average molecular weights of the obtained products 1 to 3 and their polydispersities. The table also shows the molecular weight of glucomannan and its polydispersity in the konjac fine powder as a raw material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果から明らかなように、分子量100万を超えるこんにゃくグルコマンナンが、45分間の酸加水分解により、10万程度の分子量となり、更に90~180分間の加水分解では、2.3万~1.8万程度の分子量となった。 As is clear from this result, konjac glucomannan having a molecular weight exceeding 1 million has a molecular weight of about 100,000 by acid hydrolysis for 45 minutes, and 23,000 to 1.1 in hydrolysis for 90 to 180 minutes. The molecular weight was about 80,000.
実 施 例 2
 実施例1(1)に準じて、pHが1の塩酸-30容量%エタノール水溶液を調製し、加水分解試薬とした。この加水分解試薬100mLをフラスコに取り、これに実施例1と同じこんにゃく精粉10gを加え(浴比:10)、湯浴中、80℃で20分間~120分間加熱し、酸加水分解を行った。それぞれ、実施例1(1)と同様に、脱水、洗浄および乾燥を行ない、製品4~9を得た。この結果を表2に示す。
Example 2
According to Example 1 (1), a hydrochloric acid-30 vol% ethanol aqueous solution having a pH of 1 was prepared and used as a hydrolysis reagent. Take 100 mL of this hydrolysis reagent in a flask, add 10 g of the same konjac flour as in Example 1 (bath ratio: 10), and heat in a hot water bath at 80 ° C. for 20 to 120 minutes to perform acid hydrolysis. It was. In the same manner as in Example 1 (1), dehydration, washing and drying were performed to obtain products 4 to 9. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この結果から、60分を超える加水分解で、分子量が1万以下の低分子量化グルコマンナンが得られることが明らかになった。 From this result, it was revealed that low molecular weight glucomannan having a molecular weight of 10,000 or less can be obtained by hydrolysis exceeding 60 minutes.
実 施 例 3
 実施例1(1)に準じて、pHが約1、1.5、2、3、4および5の塩酸-30容量%エタノール水溶液を調製し、それぞれ加水分解試薬とした。この加水分解試薬各100mLをフラスコに取り、これに実施例1と同じこんにゃく精粉10gをそれぞれ加え(浴比:10)、湯浴中、80℃で60分間加熱し、酸加水分解を行った。次いで、それぞれを実施例1(1)と同様に、脱水、洗浄および乾燥を行ない、製品10~15を得た。この結果を表3に示す。
Example 3
According to Example 1 (1), hydrochloric acid—30 vol% ethanol aqueous solution having a pH of about 1, 1.5, 2, 3, 4, and 5 was prepared and used as a hydrolysis reagent. 100 mL of each of these hydrolysis reagents was placed in a flask, 10 g of the same konjac fine powder as in Example 1 was added thereto (bath ratio: 10), and heated in a hot water bath at 80 ° C. for 60 minutes for acid hydrolysis. . Subsequently, each was dehydrated, washed and dried in the same manner as in Example 1 (1) to obtain products 10 to 15. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この結果から、pH2以下、特にpH1近辺の加水分解で、こんにゃくグルコマンナンの低分子量化が認められることが明らかになった。 From this result, it became clear that lower molecular weight of konjac glucomannan was observed by hydrolysis at pH 2 or lower, particularly around pH 1.
実 施 例 4
 実施例1(1)に準じて、pHが1の塩酸-40容量%エタノール水溶液を調製し、加水分解試薬とした。この加水分解試薬各300mLをフラスコに取り、これに実施例1と同じこんにゃく精粉100gをそれぞれ加え(浴比:3)、湯浴中、80℃で60分間、300分間および600分間加熱し、酸加水分解を行った。次いで、それぞれを実施例1(1)と同様に、脱水、洗浄および乾燥を行ない、製品16~18を得た。この結果を下の表4に示す。
Example 4
According to Example 1 (1), a hydrochloric acid-40 volume% ethanol aqueous solution having a pH of 1 was prepared and used as a hydrolysis reagent. Take each 300 mL of this hydrolysis reagent in a flask, add 100 g of the same konjac flour as in Example 1 (bath ratio: 3), and heat in a hot water bath at 80 ° C. for 60 minutes, 300 minutes and 600 minutes, Acid hydrolysis was performed. Subsequently, each was dehydrated, washed and dried in the same manner as in Example 1 (1) to obtain products 16 to 18. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 この結果から、加水分解時間の増加とともにこんにゃくグルコマンナンの低分子量化が進行することが明らかになった。 From this result, it became clear that the molecular weight reduction of konjac glucomannan progressed with increasing hydrolysis time.
実 施 例 5
 実施例1(1)に準じて、pHが1の塩酸-60容量%エタノール水溶液を調製し、それぞれ加水分解試薬とした。この加水分解試薬に対し、その浴比が3.3および2.6となるよう各300mLをフラスコに取り、これに実施例1と同じこんにゃく精粉をそれぞれ加え、湯浴中、80℃で45分間加熱し、酸加水分解を行った。次いで、それぞれを実施例1(1)と同様に、脱水、洗浄および乾燥を行ない、製品19および20を得た。この結果を下の表5に示す。
Example 5
According to Example 1 (1), a hydrochloric acid-60 vol% ethanol aqueous solution having a pH of 1 was prepared and used as a hydrolysis reagent. To this hydrolyzing reagent, 300 mL each was taken in a flask so that the bath ratio was 3.3 and 2.6, and the same konjac fine powder as in Example 1 was added thereto. Heated for a minute to carry out acid hydrolysis. Subsequently, dehydration, washing and drying were performed in the same manner as in Example 1 (1) to obtain products 19 and 20. The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 この結果から、浴比が大きい方が、同じ加水分解時間であっても、こんにゃくグルコマンナンの低分子量化が進行することが明らかになった。 From this result, it has been clarified that the higher the bath ratio, the lower the molecular weight of konjac glucomannan proceeds even with the same hydrolysis time.
実 施 例 6
 実施例1(1)に準じて、表6に示す塩酸-エタノール水溶液(pH1)を調製し、それぞれ加水分解試薬とした。この加水分解試薬に対し、表6に示す浴比となるよう実施例1と同じこんにゃく精粉をそれぞれ加え、湯浴中、80℃で60分間加熱し、酸加水分解を行った。次いで、それぞれを実施例1(1)と同様に、脱水、洗浄および乾燥を行ない、製品21~23を得た。この結果を下の表6に示す。
Example 6
According to Example 1 (1), hydrochloric acid-ethanol aqueous solutions (pH 1) shown in Table 6 were prepared and used as hydrolysis reagents. To this hydrolysis reagent, the same konjac fine powder as in Example 1 was added so that the bath ratio shown in Table 6 was obtained, and the mixture was heated in a hot water bath at 80 ° C. for 60 minutes for acid hydrolysis. Subsequently, dehydration, washing and drying were performed in the same manner as in Example 1 (1) to obtain products 21 to 23. The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実 施 例 7
 実施例1(1)に準じ、種々の酸を用い、種々のpHの酸-30容量%エタノール水溶液を調製し、それぞれ加水分解試薬とした。この加水分解試薬各100mLをフラスコに取り、これに実施例1と同じこんにゃく精粉10gをそれぞれ加え(浴比:10)、湯浴中、80℃で60分間加熱し、酸加水分解を行った。次いで、それぞれを実施例1(1)と同様に、脱水、洗浄および乾燥を行なった。この結果を図1に示す。
Example 7
According to Example 1 (1), various acids were used to prepare acid-30 vol% ethanol aqueous solutions having various pHs, which were respectively used as hydrolysis reagents. 100 mL of each of these hydrolysis reagents was placed in a flask, 10 g of the same konjac fine powder as in Example 1 was added thereto (bath ratio: 10), and heated in a hot water bath at 80 ° C. for 60 minutes for acid hydrolysis. . Subsequently, each was dehydrated, washed and dried in the same manner as in Example 1 (1). The result is shown in FIG.
 この結果から、pH2以下において、酸として塩酸、硫酸、リン酸および硝酸を利用した場合は、こんにゃくグルコマンナンの低分子量化が認められるが、酢酸、乳酸、リンゴ酸等の有機酸では、こんにゃくグルコマンナンの低分子量化が認められないことが明らかになった。 From these results, when hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid are used as acids at pH 2 or lower, konjac glucomannan has a low molecular weight. However, in organic acids such as acetic acid, lactic acid and malic acid, konjac gluco It became clear that the low molecular weight of mannan was not observed.
実 施 例 8
 表7の番号1ないし5に示す条件で、こんにゃく原料粉末(あかぎおおだま)を加水分解した。まず、表7に示す濃度で塩酸とエタノールを含む加水分解液を調製した。この加水分解液にこんにゃく原料粉末を、表7の浴比となるように加え、同表の温度および時間で加水分解を行った。
Example 8
The konjac raw material powder (Akagi Odama) was hydrolyzed under the conditions indicated by numbers 1 to 5 in Table 7. First, a hydrolyzed solution containing hydrochloric acid and ethanol at concentrations shown in Table 7 was prepared. The konjac raw material powder was added to this hydrolyzed solution so as to have the bath ratio shown in Table 7, and hydrolysis was performed at the temperature and time shown in the same table.
 なお128℃での加水分解には、市販の圧力鍋を使用し、圧力鍋が100℃になった時ガラス容器に入れた原料を入れ、128℃になった時点を加水分解開始時間とした。また、加水分解反応の停止は、圧力鍋を急冷することにより行った。 For the hydrolysis at 128 ° C., a commercially available pressure cooker was used. When the pressure cooker reached 100 ° C., the raw material placed in the glass container was added, and the time when it reached 128 ° C. was defined as the hydrolysis start time. The hydrolysis reaction was stopped by rapidly cooling the pressure cooker.
 得られた低分子量化グルコマンナンについて、その分子量および多分散性を測定した。また、その1%水溶液の粘度(25℃)を測定した。これらの結果も表7に示す。なお、こんにゃく原料粉末について測定した、分子量、多分散性および1%水溶液の粘度(25℃)も併せて同表に示した。 The molecular weight and polydispersity of the obtained low molecular weight glucomannan were measured. Moreover, the viscosity (25 degreeC) of the 1% aqueous solution was measured. These results are also shown in Table 7. The molecular weight, polydispersity, and viscosity of a 1% aqueous solution (25 ° C.) measured for the konjac raw material powder are also shown in the same table.

 
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007
 この結果から、本発明で得られる低分子量化こんにゃくグルコマンナンは、粘稠性が低く、一般の飲料等に配合可能であることが明らかになった。 From these results, it has been clarified that the low molecular weight konjac glucomannan obtained in the present invention has low viscosity and can be blended into general beverages.
産業上の利用分野Industrial application fields
 本発明方法により得られる低分子量化こんにゃくグルコマンナンは、その最終形態が粉末・粒子状であり、しかもその分子量が小さいので、これを水等に加えても、粘度が高くなることはない。 The low molecular weight konjac glucomannan obtained by the method of the present invention has a final form of powder and particles, and its molecular weight is small, so even if it is added to water or the like, its viscosity does not increase.
 従って、この低分子量化こんにゃくグルコマンナンは、種々の用途、例えば、飲料、健康食品(食物繊維強化食品・こんにゃくグルコマンナン機能強化食品等)、嚥下困難者用補助食品等の飲食物、食品添加物(菓子・パン・麺類・水産練製品・肉練製品・インスタントスープ等)、化粧品(保湿剤・界面活性剤・剥離剤等)等組成物に配合、使用することが可能になる。
 
Therefore, this low molecular weight konjac glucomannan is used for various uses, for example, beverages, health foods (dietary fiber reinforced foods, konjac glucomannan function enhanced foods, etc.) It can be blended and used in compositions such as (confectionery, bread, noodles, marine products, meat products, instant soup, etc.) and cosmetics (humectants, surfactants, release agents, etc.).

Claims (10)

  1.  グルコマンナンを含有するこんにゃく粉末に、その浴比として、1ないし5となる量の無機酸とアルコールの混合水溶液を加えて反応系のpHを2以下とし、これを70ないし130℃で加熱することを特徴とする低分子量化こんにゃくグルコマンナンの製造方法。 To the konjac powder containing glucomannan, a mixed aqueous solution of an inorganic acid and an alcohol in an amount of 1 to 5 is added as a bath ratio to bring the pH of the reaction system to 2 or less, and this is heated at 70 to 130 ° C. A method for producing a low molecular weight konjac glucomannan characterized by the following:
  2.  無機酸が、塩酸、硫酸、リン酸および硝酸よりなる群から選ばれた無機酸である請求項1記載の低分子量化グルコマンナンの製造方法。 The method for producing a low molecular weight glucomannan according to claim 1, wherein the inorganic acid is an inorganic acid selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid.
  3.  アルコールが、エタノールである請求項1または2記載の低分子量化グルコマンナンの製造方法。 The method for producing a low molecular weight glucomannan according to claim 1 or 2, wherein the alcohol is ethanol.
  4.  加熱を、5分ないし10時間行う請求項1ないし3の何れかの項記載の低分子量化グルコマンナンの製造方法。 The method for producing a low molecular weight glucomannan according to any one of claims 1 to 3, wherein the heating is performed for 5 minutes to 10 hours.
  5.  グルコマンナンを含有するこんにゃく粉末が、こんにゃく精粉である請求項1ないし4の何れかの項記載の低分子量化グルコマンナンの製造方法。 The method for producing a low molecular weight glucomannan according to any one of claims 1 to 4, wherein the konjac powder containing glucomannan is konjac fine powder.
  6.  重量平均分子量(Mw)が、3,000ないし100,000であり、その多分散性(Mw/Mn)が、1ないし2である低分子量化こんにゃくグルコマンナン。 Low molecular weight konjac glucomannan having a weight average molecular weight (Mw) of 3,000 to 100,000 and a polydispersity (Mw / Mn) of 1 to 2.
  7.  1%水溶液の、25℃における粘度が、1ないし5mPa.sである請求項6記載の低分子量化こんにゃくグルコマンナン。 The viscosity of a 1% aqueous solution at 25 ° C. is 1 to 5 mPa.s. The low molecular weight konjac glucomannan according to claim 6, which is s.
  8.  請求項1記載の低分子量化こんにゃくグルコマンナンの製造方法により製造される請求項6または7記載の低分子量化こんにゃくグルコマンナン。 The low molecular weight konjac glucomannan according to claim 6 or 7, which is produced by the method for producing a low molecular weight konjac glucomannan according to claim 1.
  9.  請求項6または7記載の低分子量化こんにゃくグルコマンナンを含有する製剤。 A preparation containing the low molecular weight konjac glucomannan according to claim 6 or 7.
  10.  請求項6または7記載の低分子量化こんにゃくグルコマンナンを含有する飲食物。 A food or drink containing the low molecular weight konjac glucomannan according to claim 6 or 7.
PCT/JP2011/073172 2011-10-07 2011-10-07 Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby WO2013051146A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073172 WO2013051146A1 (en) 2011-10-07 2011-10-07 Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073172 WO2013051146A1 (en) 2011-10-07 2011-10-07 Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby

Publications (1)

Publication Number Publication Date
WO2013051146A1 true WO2013051146A1 (en) 2013-04-11

Family

ID=48043337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073172 WO2013051146A1 (en) 2011-10-07 2011-10-07 Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby

Country Status (1)

Country Link
WO (1) WO2013051146A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622980B1 (en) * 2013-01-30 2014-11-12 清水化学株式会社 Glucomannan for food and beverage addition and food and beverage containing the same
WO2014196619A1 (en) * 2013-06-07 2014-12-11 株式会社 荻野商店 Method for producing sterile konjak glucomannan powder and sterile konjak glucomannan powder obtained thereby
CN107163156A (en) * 2017-05-17 2017-09-15 宁波拜尔玛生物科技有限公司 Glucomannan based on nanometer technology preparation and its application in the oil industry
CN107266598A (en) * 2017-05-17 2017-10-20 宁波拜尔玛生物科技有限公司 The functional sugar prepared based on nanometer technology and its application in field of medicaments
CN112813502A (en) * 2020-12-30 2021-05-18 常州高特新材料股份有限公司 Monocrystalline silicon etching texturing additive and application thereof
JP2021159064A (en) * 2020-04-01 2021-10-11 陝西理工大学 Konjac powder multienzyme hydrolysate and preparation method thereof
JP2023020621A (en) * 2021-07-30 2023-02-09 岩井機械工業株式会社 Sterilization device
JP2023168901A (en) * 2022-05-16 2023-11-29 伊那食品工業株式会社 Syneresis inhibitor and syneresis inhibiting method, and food and frozen food including syneresis inhibitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365647A (en) * 1989-08-03 1991-03-20 Toki Bussan Kk Molecular weight standard substance fir for saccharide composed of glucomannan and manufacture thereof
WO2005044283A1 (en) * 2003-11-11 2005-05-19 Nishikawa Rubber Co., Ltd. Allergic constitution ameliorator
JP2008035818A (en) * 2006-08-09 2008-02-21 Ogino Shoten:Kk Method for producing depolymerized glucomannan and the resultant glucomannan flour
JP2008247837A (en) * 2007-03-30 2008-10-16 Hiroshima Univ Allergic constitution-improving agent
JP2008266265A (en) * 2007-04-24 2008-11-06 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Antiviral agent
WO2011033807A1 (en) * 2009-09-15 2011-03-24 清水化学株式会社 Material for improving properties of foods and drinks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365647A (en) * 1989-08-03 1991-03-20 Toki Bussan Kk Molecular weight standard substance fir for saccharide composed of glucomannan and manufacture thereof
WO2005044283A1 (en) * 2003-11-11 2005-05-19 Nishikawa Rubber Co., Ltd. Allergic constitution ameliorator
JP2008035818A (en) * 2006-08-09 2008-02-21 Ogino Shoten:Kk Method for producing depolymerized glucomannan and the resultant glucomannan flour
JP2008247837A (en) * 2007-03-30 2008-10-16 Hiroshima Univ Allergic constitution-improving agent
JP2008266265A (en) * 2007-04-24 2008-11-06 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Antiviral agent
WO2011033807A1 (en) * 2009-09-15 2011-03-24 清水化学株式会社 Material for improving properties of foods and drinks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HISAO SHIMIZU: "Sakumotsu Yurai Sozai no Kino to Oyo Teinendo Glucomannan no Tokusei to Oyo", FOOD SCIENCE, vol. 48, 2006, pages 77 - 81 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622980B1 (en) * 2013-01-30 2014-11-12 清水化学株式会社 Glucomannan for food and beverage addition and food and beverage containing the same
WO2014196619A1 (en) * 2013-06-07 2014-12-11 株式会社 荻野商店 Method for producing sterile konjak glucomannan powder and sterile konjak glucomannan powder obtained thereby
JPWO2014196619A1 (en) * 2013-06-07 2017-02-23 株式会社荻野商店 Method for producing sterilized konjac glucomannan powder and sterilized konjac glucomannan powder obtained by this method
CN107163156A (en) * 2017-05-17 2017-09-15 宁波拜尔玛生物科技有限公司 Glucomannan based on nanometer technology preparation and its application in the oil industry
CN107266598A (en) * 2017-05-17 2017-10-20 宁波拜尔玛生物科技有限公司 The functional sugar prepared based on nanometer technology and its application in field of medicaments
CN107163156B (en) * 2017-05-17 2019-07-09 宁波拜尔玛生物科技有限公司 Glucomannan based on nanotechnology preparation and its application in the oil industry
JP2021159064A (en) * 2020-04-01 2021-10-11 陝西理工大学 Konjac powder multienzyme hydrolysate and preparation method thereof
CN112813502A (en) * 2020-12-30 2021-05-18 常州高特新材料股份有限公司 Monocrystalline silicon etching texturing additive and application thereof
CN112813502B (en) * 2020-12-30 2022-05-20 常州高特新材料股份有限公司 Monocrystalline silicon etching texturing additive and application thereof
JP2023020621A (en) * 2021-07-30 2023-02-09 岩井機械工業株式会社 Sterilization device
JP2023168901A (en) * 2022-05-16 2023-11-29 伊那食品工業株式会社 Syneresis inhibitor and syneresis inhibiting method, and food and frozen food including syneresis inhibitor
JP7487958B2 (en) 2022-05-16 2024-05-21 伊那食品工業株式会社 Syneresis inhibitor, syneresis inhibitor method, and food and frozen food containing the syneresis inhibitor

Similar Documents

Publication Publication Date Title
WO2013051146A1 (en) Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby
Liu et al. Effect of Mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch
US11884752B2 (en) Inhibited non-pregelatinized granular starches
Jiang et al. Properties of pectin extracted from fermented and steeped hawthorn wine pomace: A comparison
Kök et al. A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan
DK1902070T3 (en) LONG-CHAIN INULIN
JP5734436B2 (en) High-performance cellulose composite
Liu et al. Effects of soluble dietary fiber on the crystallinity, pasting, rheological, and morphological properties of corn resistant starch
JP4987234B2 (en) Method for modifying xanthan gum and its application
JP2011144350A (en) Hydroxypropylmethylcellulose having high thermal gel strength and method for producing the same, and food comprising the same
CN108777974A (en) The blend of bean dregs and fibre-bearing pectin
Zhang et al. Effects of different modified starches and gums on the physicochemical, functional, and microstructural properties of tapioca pearls
Li et al. Rheological properties of chia seed gum extracted by high-speed shearing and its comparison with commercial polysaccharides
Firdayanti et al. Carrageenan extraction from red seaweed (Kappaphycopsis cottonii) using the bead mill method
CN115916846A (en) Inhibited porous granular starch and methods of making and using same
JP6618698B2 (en) Modified curdlan thickening polysaccharide
JPWO2013051146A1 (en) Method for producing low molecular weight konjac glucomannan and low molecular weight konjac glucomannan obtained by this method
JP6800861B2 (en) Method for manufacturing thickening polysaccharide-containing preparation
Roy et al. Influence of disaccharide and monosaccharide on the rheological behavior of dry-heated alocasia starch under high pressure assisted treatment
JP2018023330A (en) Instant food product
KE et al. Preliminary characteristics of non-starch polysaccharide from chayote (Sechium edule)
JP6116895B2 (en) Gelling agent for food and drink containing starch
JP2009173607A (en) Film composition of capsule and capsule
JP5622980B1 (en) Glucomannan for food and beverage addition and food and beverage containing the same
CN109678976A (en) A kind of preparation process of the double starch adipates of acetylation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873674

Country of ref document: EP

Kind code of ref document: A1