JP7487958B2 - Syneresis inhibitor, syneresis inhibitor method, and food and frozen food containing the syneresis inhibitor - Google Patents

Syneresis inhibitor, syneresis inhibitor method, and food and frozen food containing the syneresis inhibitor Download PDF

Info

Publication number
JP7487958B2
JP7487958B2 JP2022080284A JP2022080284A JP7487958B2 JP 7487958 B2 JP7487958 B2 JP 7487958B2 JP 2022080284 A JP2022080284 A JP 2022080284A JP 2022080284 A JP2022080284 A JP 2022080284A JP 7487958 B2 JP7487958 B2 JP 7487958B2
Authority
JP
Japan
Prior art keywords
viscosity
syneresis
glucomannan
food
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022080284A
Other languages
Japanese (ja)
Other versions
JP2023168901A (en
Inventor
怜美 根橋
芙希 奥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INA Food Industry Co Ltd
Original Assignee
INA Food Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INA Food Industry Co Ltd filed Critical INA Food Industry Co Ltd
Priority to JP2022080284A priority Critical patent/JP7487958B2/en
Publication of JP2023168901A publication Critical patent/JP2023168901A/en
Application granted granted Critical
Publication of JP7487958B2 publication Critical patent/JP7487958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Meat, Egg Or Seafood Products (AREA)
  • Confectionery (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Grain Derivatives (AREA)
  • Seeds, Soups, And Other Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)

Description

本発明は、離水抑制剤および離水抑制方法、ならびに離水抑制剤を含有する食品および冷凍食品に関する。 The present invention relates to a syneresis inhibitor and a method for syneresis inhibition, as well as foods and frozen foods that contain the syneresis inhibitor.

こんにゃく芋等の主成分として知られるグルコマンナンは、こんにゃくの原料として知られている。また、それ以外にも、グルコマンナンは、特許文献1(特開2021-170967号公報)に例示されるように食品のゲル化剤としても知られている。 Glucomannan, known as the main component of konjac root and other foods, is known as the raw material for konjac. In addition, glucomannan is also known as a food gelling agent, as exemplified in Patent Document 1 (JP Patent Publication 2021-170967).

特開2021-170967号公報JP 2021-170967 A

上記のグルコマンナンのようなゲル化剤が配合されたゲル状食品は広く知られているが、このようなゲル状食品に例示される水分を含有する食品においては、経時的に離水が生じてしまうという課題がある。特に、冷凍食品においては解凍時に離水することにより冷凍前後で食感が変化したり、食品中に空隙である所謂「ス」が入ったりしてしまうという課題がある。 Gel foods containing gelling agents such as glucomannan are widely known, but there is a problem with foods containing water, such as these gel foods, in that they lose moisture over time. In particular, frozen foods lose moisture when thawed, which can cause the texture to change before and after freezing, and can result in the appearance of voids in the food.

これに対して、本発明者は、グルコマンナンを改質することによって食品の離水抑制性および耐冷凍性が得られることを見出し、本発明に至った。 In response to this, the inventors discovered that modifying glucomannan can suppress syneresis and improve freeze resistance in foods, leading to the invention.

すなわち、本発明は、水分を含有する食品の離水を抑制することができ、特に解凍時の離水を抑制して冷凍前後の食感の変化や「ス」が入ることを防止できる離水抑制剤、ならびにこれを含有する食品および冷凍食品、さらに食品の離水抑制方法を提供することを目的とする。 In other words, the present invention aims to provide a syneresis inhibitor that can suppress syneresis in foods that contain moisture, and in particular, can suppress syneresis during thawing, thereby preventing changes in texture before and after freezing and the occurrence of "smoothness," as well as foods and frozen foods that contain the same, and a method for suppressing syneresis in foods.

本発明は、一実施形態として以下に記載するような解決手段により、前記課題を解決する。 The present invention solves the above problems by the solution described below as one embodiment.

本発明に係る離水抑制剤は、食品の離水抑制剤であって、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にあり、アルカリ条件下で加熱されることでゲル化する性質を有し、レーザー回折型粒度分布測定法により測定される粒度分布における体積平均粒子径が10μm~160μmの範囲にある低粘性グルコマンナンを含有することを特徴とする。 The syneresis inhibitor of the present invention is a syneresis inhibitor for foods, characterized in that it contains a low-viscosity glucomannan having a viscosity of 20 mPa·s to 800 mPa·s in a 1% aqueous solution at 25°C , which has the property of gelling when heated under alkaline conditions, and has a volume average particle diameter in the range of 10 μm to 160 μm in a particle size distribution measured by a laser diffraction particle size distribution measurement method .

また、本発明に係る離水抑制方法は、食品の離水抑制方法であって、前記食品に、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にあり、アルカリ条件下で加熱されることでゲル化する性質を有し、レーザー回折型粒度分布測定法により測定される粒度分布における体積平均粒子径が10μm~160μmの範囲にある低粘性グルコマンナンを配合することを特徴とする。 Further, the method for suppressing syneresis according to the present invention is a method for suppressing syneresis in a food, characterized in that the food is blended with a low-viscosity glucomannan having a viscosity of 20 mPa·s to 800 mPa·s in a 1% aqueous solution at 25°C, having the property of gelling when heated under alkaline conditions, and having a volume average particle diameter in the range of 10 μm to 160 μm in a particle size distribution measured by a laser diffraction particle size distribution measurement method.

本発明に係る25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナンは、こんにゃく粉やそこから抽出、精製されたグルコマンナン等の通常のグルコマンナンよりも、分子量が小さく、粘性が低い。したがって、ハイドロゾルである膨潤体の分子量が適度に小さくなり、適度な緻密さと強度とを有する網目構造が形成されることで、その中に水分を抱え込んで保水し、食品からの離水を抑制できる。また、当該網目構造に捕捉された水分は、食品の凍結時に氷結晶が大きくなり難く、また、解凍時に一定の離水が生じてもこれを網目構造の中に吸収して(抱え込んで)離水を抑制できる。したがって、冷凍食品においては、冷凍前後の食感の変化や「ス」が入ることを防止できる。さらに、膨潤体を構成するグルコマンナン分子の分子鎖が短くなることから、分子間の相互作用が起こり難く、網目構造は安定する。したがって、離水抑制効果を長期間に亘って維持することができる。 The low-viscosity glucomannan according to the present invention, whose 1% aqueous solution has a viscosity in the range of 20 mPa·s to 800 mPa·s at 25°C, has a smaller molecular weight and lower viscosity than ordinary glucomannan such as konjac flour and glucomannan extracted and refined therefrom. Therefore, the molecular weight of the swollen body, which is a hydrosol, becomes appropriately small, and a mesh structure with appropriate density and strength is formed, which holds and retains moisture therein and suppresses water release from the food. In addition, the moisture captured in the mesh structure is less likely to cause ice crystals to grow when the food is frozen, and even if a certain amount of water release occurs during thawing, this can be absorbed (held) in the mesh structure to suppress water release. Therefore, in frozen foods, it is possible to prevent changes in texture before and after freezing and the inclusion of "squid". Furthermore, since the molecular chains of the glucomannan molecules constituting the swollen body become shorter, interactions between molecules are less likely to occur and the mesh structure is stable. Therefore, the water release suppression effect can be maintained for a long period of time.

また、本発明に係る食品は、本発明に係る離水抑制剤を含有する食品である。また、本発明に係る冷凍食品は、前記食品に、製造、流通、保存または飲食に際して冷凍される冷凍食品が適用された冷凍食品である。本発明に係る離水抑制剤および離水抑制方法によれば、ゼリー、プリン、水羊羹等のゲル状製品は勿論、ジャム、ゼリー飲料製品、サラダ、炒めもの、佃煮等の調理品、さらに、アイスクリーム、凍結ゼリー飲料製品等の冷凍食品に対して、離水抑制性および耐冷凍性が得られる。 Furthermore, the food of the present invention is a food containing the syneresis inhibitor of the present invention. Furthermore, the frozen food of the present invention is a frozen food in which a frozen food that is frozen at the time of production, distribution, storage, or consumption is applied to the above-mentioned food. According to the syneresis inhibitor and syneresis inhibition method of the present invention, syneresis inhibition and freezing resistance can be obtained not only for gel products such as jelly, pudding, and mizu yokan, but also for cooked foods such as jams, jelly drink products, salads, stir-fries, and tsukudani, as well as frozen foods such as ice cream and frozen jelly drink products.

本発明によれば、水分を含有する食品の離水を抑制することができ、特に解凍時の離水を抑制して冷凍前後の食感の変化や「ス」が入ることを防止できる。 The present invention can suppress syneresis of foods that contain moisture, and in particular suppresses syneresis during thawing, preventing changes in texture before and after freezing and the appearance of "smoothness."

図1は、試験1の条件および結果を示す表である。FIG. 1 is a table showing the conditions and results of Test 1. 図2は、試験3の条件および結果を示す表である。FIG. 2 is a table showing the conditions and results of Test 3.

以下、本発明を実施するための形態について説明する。 The following describes how to implement the present invention.

先ず、本実施形態に係る離水抑制剤は、食品の離水抑制剤である。ここでいう「食品」は、水分を含有し、離水が生じる可能性のある食品であれば特に限定されず、喫食または喫飲される製品または調理品を含む。一例として、ゼリー、プリン、水羊羹等のゲル状製品、ジャム、喫食または喫飲されるゼリー飲料製品、サラダ、炒めもの、佃煮等の調理品等が挙げられる。また、ここでいう「離水」は解凍時の離水を含むことから、当該「食品」は、製造、流通、保存、または飲食に際して冷凍される冷凍食品を含む。一例として、アイスクリームや、例えば需要者等により喫食または喫飲に際して冷凍される凍結ゼリー飲料製品等を含む。 First, the syneresis inhibitor according to this embodiment is a syneresis inhibitor for food. The "food" referred to here is not particularly limited as long as it is a food that contains water and may undergo syneresis, and includes products or cooked foods that are eaten or consumed. Examples include gel-like products such as jelly, pudding, and mizu yokan, jam, jelly drink products that are eaten or consumed, and cooked foods such as salads, stir-fries, and tsukudani. In addition, since the "syneresis" referred to here includes syneresis upon thawing, the "food" in question includes frozen foods that are frozen when manufactured, distributed, stored, or consumed. Examples include ice cream and frozen jelly drink products that are frozen when eaten or consumed by consumers, etc.

なお、本願でいう「耐冷凍性」とは、解凍時の離水を抑制し、冷凍前後の食感の変化や「ス」が入ることを防止する性質をいう。耐冷凍性は、食品の離水を抑制する性質である離水抑制性に包含されるが、本実施形態に係る食品の解凍時の離水抑制効果を強調する目的で、「離水抑制性および耐冷凍性」と併記する場合がある。 In this application, "freeze resistance" refers to the property of suppressing syneresis during thawing and preventing changes in texture and the appearance of "snap" before and after freezing. Freeze resistance is included in syneresis suppression, which is the property of suppressing syneresis in food, but in order to emphasize the syneresis suppression effect of the food according to this embodiment when thawing, it may be described together as "syneresis suppression and freeze resistance."

次に、本実施形態に係る離水抑制剤は、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナンを含有することを特徴とする。以下、本実施形態に係る低粘性グルコマンナンについて説明する。 Next, the syneresis inhibitor according to this embodiment is characterized by containing low-viscosity glucomannan, the viscosity of a 1% aqueous solution of which at 25°C is in the range of 20 mPa·s to 800 mPa·s. The low-viscosity glucomannan according to this embodiment will be described below.

本実施形態に係る低粘性グルコマンナンは、こんにゃく粉やそこから抽出、精製されたグルコマンナン等の通常のグルコマンナンを改質した改質グルコマンナンであって、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナンである。ここで、「25℃における1%水溶液の粘度」は、グルコマンナン3.0gを310gの精製水に分散した後、95℃で3分間加熱して最終重量を300gに調整して取得したゾルの25℃における粘度(溶液温度25℃±1℃で1時間静置後に測定した粘度)をいう。粘度の測定には、B型回転粘度計を使用する。ローターの回転数を60rpmとし、回転し始めてから40秒後の測定値とする。使用ローターは、試料の粘度に応じて、粘度が1000mPa・s以上の試料にはNo.3、粘度が500mPa・s以上1000mPa・s未満の試料にはNo.2、粘度が500mPa・s未満の試料にはNo.1のローターを使用した。 The low-viscosity glucomannan according to this embodiment is a modified glucomannan obtained by modifying ordinary glucomannan such as konjac flour or glucomannan extracted and purified therefrom, and is a low-viscosity glucomannan having a viscosity of 20 mPa·s to 800 mPa·s in a 1% aqueous solution at 25°C. Here, "viscosity of a 1% aqueous solution at 25°C" refers to the viscosity at 25°C of a sol obtained by dispersing 3.0 g of glucomannan in 310 g of purified water, heating at 95°C for 3 minutes, and adjusting the final weight to 300 g (viscosity measured after leaving the solution at a temperature of 25°C ± 1°C for 1 hour). A B-type rotational viscometer is used to measure the viscosity. The rotor is rotated at 60 rpm, and the measured value is taken 40 seconds after the rotor starts rotating. The rotor used is determined according to the viscosity of the sample, and No. 1 is used for samples with a viscosity of 1000 mPa·s or more. 3. Rotor No. 2 was used for samples with a viscosity of 500 mPa·s or more but less than 1000 mPa·s, and rotor No. 1 was used for samples with a viscosity of less than 500 mPa·s.

本実施形態に係る低粘性グルコマンナンは、グルコマンナンを低分子化することによって製造することができる。グルコマンナンは、グルコースとマンノースとが所定の割合でβ-1,4-グリコシド結合した水溶性多糖類である。グルコマンナンは、一例として、こんにゃく芋に主成分として含有されており、このような原料から抽出、精製される。原料としてのグルコマンナンには、一例として、こんにゃく芋等のグルコマンナンを主成分とする原料を細かくした粉末や、さらにそれをアルコール洗浄や精製によって不純物を除去したりグルコマンナンの純度を高めたりした粉末等の、いずれの形態(段階)のものを用いてもよい。市販製品を用いてもよく、当該市販製品でいえば、一例として、「こんにゃく粉(荒粉、製粉等)」として流通する製品や、こんにゃく粉を原料とする「グルコマンナン」として流通する製品等、いずれを用いてもよい。原料のグルコマンナンを低分子化する方法は限定されない。例えば、酸加水分解、熱加水分解、粉砕処理、酵素処理等の方法を用いればよい。 The low-viscosity glucomannan according to this embodiment can be produced by reducing the molecular weight of glucomannan. Glucomannan is a water-soluble polysaccharide in which glucose and mannose are bonded by β-1,4-glycosidic bonds at a predetermined ratio. Glucomannan is contained as a main component in konjac root, for example, and is extracted and refined from such a raw material. For the raw material glucomannan, any form (stage) may be used, such as a powder made by finely grinding a raw material containing glucomannan as the main component, such as konjac root, or a powder obtained by removing impurities or increasing the purity of the glucomannan by washing with alcohol or refining it. Commercially available products may be used, and in terms of the commercially available products, for example, products distributed as "konjac flour (coarse flour, milled flour, etc.)" or products distributed as "glucomannan" made from konjac flour may be used. There is no limitation on the method for reducing the molecular weight of the raw material glucomannan. For example, methods such as acid hydrolysis, thermal hydrolysis, crushing treatment, and enzyme treatment may be used.

酸加水分解による方法では、グルコマンナンを酸性溶液中で加熱することにより加水分解し、アルカリにより中和した後に乾燥することによって、低分子化された低粘性グルコマンナンを得ることができる。使用する酸は、クエン酸、リンゴ酸、次亜塩素酸、リン酸、酢酸、塩酸、硫酸等が挙げられるが、特に限定されるものではない。また、これらのうちから複数種類を使用してもよい。また、使用するアルカリは、クエン酸ナトリウム、重曹、水酸化ナトリウム等が挙げられるが、特に限定されるものではない。また、これらのうちから複数種類を使用してもよい。さらに、乾燥方法は、熱風乾燥、ドラム乾燥、スプレー乾燥、フラッシュ乾燥、真空凍結乾燥等が挙げられるが、特に限定されるものではなく、スラリーから水分を蒸発させて乾燥物を分離できればよい。得られた乾燥物を、必要に応じて粉砕等により粉末化してもよい。また、乾燥方法は複数種類を使用してもよい。また、スラリーのpH、加熱温度、加熱時間を調整することによって粘度を調整できる。 In the acid hydrolysis method, glucomannan is hydrolyzed by heating in an acidic solution, neutralized with an alkali, and then dried to obtain low-molecular-weight, low-viscosity glucomannan. Examples of acids used include, but are not limited to, citric acid, malic acid, hypochlorous acid, phosphoric acid, acetic acid, hydrochloric acid, sulfuric acid, etc. In addition, multiple types of these may be used. Examples of alkalis used include, but are not limited to, sodium citrate, sodium bicarbonate, sodium hydroxide, etc. In addition, multiple types of these may be used. In addition, drying methods include, but are not limited to, hot air drying, drum drying, spray drying, flash drying, vacuum freeze drying, etc., as long as the water can be evaporated from the slurry and the dried product can be separated. The obtained dried product may be powdered by grinding, etc. as necessary. In addition, multiple types of drying methods may be used. In addition, the viscosity can be adjusted by adjusting the pH, heating temperature, and heating time of the slurry.

熱加水分解による方法では、乾燥状態のグルコマンナン粉末の状態、水もしくはアルコール水溶液にグルコマンナンを分散したスラリーの状態、または、水にグルコマンナンを溶解した水溶液の状態等で加熱することにより加水分解した後に乾燥することによって、低分子化された低粘性グルコマンナンを得ることができる。乾燥方法は、上記列挙した各方法により行うことができる。 In the thermal hydrolysis method, glucomannan in a dry powder form, in a slurry form in which glucomannan is dispersed in water or an aqueous alcohol solution, or in an aqueous solution in which glucomannan is dissolved in water, is heated to hydrolyze the glucomannan, and then dried to obtain low-molecular-weight, low-viscosity glucomannan. The drying method can be any of the methods listed above.

粉砕処理による方法では、グルコマンナンを粉砕することによって低分子化された低粘性グルコマンナンを得ることができる。粉砕方法は、ターボミル、カッターミル、ハンマーミル、スタンプミル、ロールミル、ボールミル、ピンミル、ジェットミル、石臼等が挙げられるが、特に限定されるものではない。また、これらのうちから複数種類を使用してもよい。粉砕処理は加水状態で行うこともでき、粉砕後は、通常の乾燥方法(例えば、スラリーの乾燥方法として上記列挙した各方法)により乾燥させることができる。 In the method using the grinding process, low-molecular-weight, low-viscosity glucomannan can be obtained by grinding glucomannan. The grinding method includes, but is not limited to, a turbo mill, a cutter mill, a hammer mill, a stamp mill, a roll mill, a ball mill, a pin mill, a jet mill, a stone mill, and the like. In addition, a plurality of types of these may be used. The grinding process can be performed in a water-added state, and after grinding, it can be dried by a normal drying method (for example, each of the methods listed above as a method for drying a slurry).

酵素処理による方法では、グルコマンナンを酵素により分解することによって低分子化された低粘性グルコマンナンを得ることができる。使用する酵素は、マンナナーゼ、アミラーゼ、プロテアーゼ、ペクチナーゼ、セルラーゼ、リパーゼ等が挙げられるが、特に限定されるものではない。また、これらのうちから複数種類を使用してもよい。酵素は、使用する酵素の至適条件で作用させることが好ましい。また、必要に応じて処理後のスラリーを前述の酸加水分解法と同様にして乾燥させ、得られた乾燥物を粉砕等により粉末化してもよい。 In the enzyme treatment method, glucomannan is decomposed with an enzyme to obtain low-molecular-weight, low-viscosity glucomannan. The enzymes used include, but are not limited to, mannanase, amylase, protease, pectinase, cellulase, lipase, etc., and multiple types of these may be used. It is preferable to allow the enzyme to act under optimal conditions for the enzyme used. If necessary, the treated slurry may be dried in the same manner as in the acid hydrolysis method described above, and the resulting dried product may be powdered by grinding, etc.

なお、グルコマンナンを低分子化する前後において、グルコマンナン粒子(粉末等)を適宜所定のメッシュサイズの篩や風力によって分級してもよい。分級によればグルコマンナン粒子(粉末等)はその粒子サイズ(粒子径)によって分離されるが、当該分級は分子篩としての効果を所定程度発揮することから、例えば、所定のメッシュサイズの篩を使用して分級することで、グルコマンナンの粘度を微調整できる。したがって、グルコマンナンの低分子化における一工程として分級を実施してもよい。 Before or after the glucomannan is reduced in molecular weight, the glucomannan particles (powder, etc.) may be classified using a sieve of a specified mesh size or by wind force. By classification, the glucomannan particles (powder, etc.) are separated according to their particle size (particle diameter), and since the classification exerts a certain degree of effect as a molecular sieve, for example, the viscosity of the glucomannan can be finely adjusted by classification using a sieve of a specified mesh size. Therefore, classification may be performed as one step in the reduction of the molecular weight of the glucomannan.

このように、本実施形態に係る低粘性グルコマンナンは、通常のグルコマンナンよりも分子量が小さく、粘性が低い。低粘性グルコマンナンを水和させると通常のグルコマンナンと同様に膨潤し、網目構造(マトリックス構造)が形成される。低粘性グルコマンナンによれば、膨潤体の分子量が適度に小さくなり、適度な緻密さと強度とを有する網目構造が形成されることで、その中に水分を抱え込んで保水し、食品からの離水を抑制できる。また、当該網目構造に捕捉された水分は、食品の凍結時に氷結晶が大きくなり難く、また、解凍時に一定の離水が生じてもこれを網目構造中に吸収して(抱え込んで)離水を抑制できる。したがって、冷凍食品においては、冷凍前後の食感の変化や「ス」が入ることを防止できる。さらに、低粘性グルコマンナンによれば、膨潤体を構成するグルコマンナン分子の分子鎖が通常のグルコマンナンよりも短くなることから、分子間の相互作用が起こり難く、網目構造は安定する。したがって、離水抑制効果を長期間に亘って維持することができる。したがって、本実施形態に係る低粘性グルコマンナンを含有する離水抑制剤によれば、当該低粘性グルコマンナンを有効成分として、これが配合される食品の離水を長期間に亘って抑制できる。 Thus, the low-viscosity glucomannan according to this embodiment has a smaller molecular weight and lower viscosity than normal glucomannan. When low-viscosity glucomannan is hydrated, it swells in the same way as normal glucomannan, and a network structure (matrix structure) is formed. With low-viscosity glucomannan, the molecular weight of the swollen body becomes appropriately small, and a network structure with appropriate density and strength is formed, which holds and retains moisture therein, thereby suppressing water release from food. In addition, the moisture captured in the network structure is less likely to cause ice crystals to grow when the food is frozen, and even if a certain amount of water release occurs during thawing, it can be absorbed (held) in the network structure to suppress water release. Therefore, in frozen foods, it is possible to prevent changes in texture before and after freezing and the inclusion of "squid". Furthermore, with low-viscosity glucomannan, the molecular chain of the glucomannan molecule constituting the swollen body is shorter than that of normal glucomannan, so that interactions between molecules are less likely to occur and the network structure is stable. Therefore, the water release suppression effect can be maintained for a long period of time. Therefore, the syneresis inhibitor containing the low-viscosity glucomannan according to this embodiment can suppress syneresis in foods containing the low-viscosity glucomannan as an active ingredient for a long period of time.

このような作用効果は、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナンにあって、発揮され得る。当該粘度が20mPa・sよりも低いと、網目構造が弱く不安定で、保水性に劣ることから、十分な離水抑制効果が発揮され難くなる。また、当該粘度が800mPa・sよりも高いと、グルコマンナン分子の分子鎖が長くなることから分子間の相互作用が強く、経時的に分子鎖が凝集して網目構造が収縮し、その結果離水が生じてしまう。また、粘性が高くなると曵糸性および糊状感が生じて作業性が著しく劣るため、通常のグルコマンナンおよび800mPa・sを超えて相対的に高粘性に近いグルコマンナンでは、配合量が比較的少量に制限されてしまう。その結果、食品中の網目構造の密度が小さくなり、離水が生じ易くなる。さらに、網目構造の密度が小さいと、凍結時に氷結晶が大きくなって水分とグルコマンナン分子との分離が進み、解凍時に離水して冷凍前後で食感が変化したり、「ス」が入ったりしてしまう。 Such an effect can be achieved by low-viscosity glucomannan, the viscosity of which in a 1% aqueous solution at 25°C is in the range of 20 mPa·s to 800 mPa·s. If the viscosity is lower than 20 mPa·s, the mesh structure is weak and unstable, and water retention is poor, making it difficult to achieve a sufficient syneresis suppression effect. If the viscosity is higher than 800 mPa·s, the molecular chains of the glucomannan molecules become longer, resulting in strong intermolecular interactions, and the molecular chains aggregate over time, causing the mesh structure to shrink, resulting in syneresis. In addition, when the viscosity becomes high, threadiness and a pasty feel occur, significantly decreasing workability, so that the amount of glucomannan that is mixed is limited to a relatively small amount for normal glucomannan and glucomannan with a relatively high viscosity exceeding 800 mPa·s. As a result, the density of the mesh structure in the food becomes smaller, making it easier for syneresis to occur. Furthermore, if the density of the mesh structure is low, the ice crystals will grow larger during freezing, causing the water and glucomannan molecules to separate, and when thawed, water will be released, causing the texture to change before and after freezing, or the glucomannan molecules to become "smooth."

これに対して、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナンは、曵糸性および糊状感がなく作業性にも優れると共に、ヌル付き等の食感の変化が生じ難く配合量を比較的広範囲に調整できる。また、添加対象の温度に関わらず、また添加後に加熱、冷却または冷凍しても、当該低粘性グルコマンナンによって安定した網目構造が形成され、十分な離水抑制効果が得られる。さらに、後述の実施例によれば、ジャム、水羊羹のような高糖度食品や、佃煮のような高塩度食品に対しても十分な離水抑制効果が得られた(表4、表5、表6)。このように、本実施形態に係る低粘性グルコマンナンは、取扱性においても汎用的で優れている。 In contrast, low-viscosity glucomannan, whose 1% aqueous solution has a viscosity in the range of 20 mPa·s to 800 mPa·s at 25°C, is free from spinnability and pastiness, has excellent workability, and is less likely to cause changes in texture such as sliminess, allowing the amount to be adjusted over a relatively wide range. Furthermore, regardless of the temperature of the object to which it is added, or even if it is heated, cooled, or frozen after addition, the low-viscosity glucomannan forms a stable network structure, providing a sufficient syneresis inhibition effect. Furthermore, according to the examples described below, a sufficient syneresis inhibition effect was obtained even for high-sugar foods such as jam and mizu yokan, and high-salt foods such as tsukudani (food boiled in soy sauce) (Tables 4, 5, and 6). Thus, the low-viscosity glucomannan of this embodiment is versatile and excellent in terms of ease of handling.

また、本実施形態に係る低粘性グルコマンナンは、上記のように、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にあるが、後述の実施例によれば、当該範囲が25mPa・s~800mPa・sであるとより好ましく、当該範囲が40mPa・s~800mPa・sであるとさらに好ましい(図1)。粘度が800mPa・sよりも高くなると、グルコマンナン分子鎖が凝集して網目構造が収縮し、離水が生じてしまう。また、作業性が著しく劣って配合量が比較的少量に制限されてしまい、網目構造の密度が小さくなることによっても離水が生じ易くなる。一方、当該粘度が20mPa・sよりも低くなると、網目構造が弱く不安定で、保水性に劣ることから、十分な離水抑制効果が発揮され難くなる。 As described above, the low-viscosity glucomannan according to this embodiment has a viscosity of 20 mPa·s to 800 mPa·s in a 1% aqueous solution at 25°C. According to the examples described below, the range is more preferably 25 mPa·s to 800 mPa·s, and even more preferably 40 mPa·s to 800 mPa·s (Figure 1). If the viscosity is higher than 800 mPa·s, the glucomannan molecular chains aggregate and the network structure shrinks, causing water separation. In addition, the workability is significantly poor, the amount of the glucomannan is limited to a relatively small amount, and the density of the network structure is reduced, which also makes water separation more likely to occur. On the other hand, if the viscosity is lower than 20 mPa·s, the network structure is weak and unstable, and the water retention is poor, making it difficult to exert a sufficient water separation suppression effect.

また、本実施形態に係る低粘性グルコマンナンにおいて、適度な緻密さと強度とを有する網目構造が形成可能な物性の有無を示す(粘性の下限値を評価する)一つの基準としては、低粘性グルコマンナンが単独でアルカリによるゲル形成能を有することである。25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナンにあっては、アルカリ条件下で加熱されることでゲル化する(表2)。このことから、一例として、本実施形態に係る低粘性グルコマンナンをゲル化剤として所定の条件で添加することで、添加対象をゲル化させることができ、且つ、その離水を抑制することができる。一方、当該粘度が20mPa・sを下回る過度に低粘性のグルコマンナンでは、形成される網目構造の強度が弱すぎて単独でアルカリによるゲル形成能を有せず、例えば高分子の(高粘性の)通常のグルコマンナン等を所定量混合したりしなければゲル化しない。このような過度に低粘性のグルコマンナンは、離水抑制効果を殆ど発揮しない。 In addition, in the low-viscosity glucomannan according to this embodiment, one criterion for indicating whether or not the low-viscosity glucomannan has the physical property capable of forming a network structure having appropriate density and strength (for evaluating the lower limit of viscosity) is that the low-viscosity glucomannan has the ability to form a gel by alkali alone. In the case of low-viscosity glucomannan, the viscosity of a 1% aqueous solution at 25°C is in the range of 20 mPa·s to 800 mPa·s, it gels when heated under alkaline conditions (Table 2). From this, as an example, by adding the low-viscosity glucomannan according to this embodiment as a gelling agent under predetermined conditions, it is possible to gel the target to which it is added and to suppress its syneresis. On the other hand, in the case of excessively low-viscosity glucomannan with a viscosity below 20 mPa·s, the strength of the formed network structure is too weak to have the ability to form a gel by alkali alone, and it will not gel unless, for example, a predetermined amount of high-molecular (high-viscosity) normal glucomannan is mixed. Such excessively low-viscosity glucomannan hardly exerts the effect of suppressing syneresis.

また、本実施形態に係る低粘性グルコマンナンの製造にあたって、前述のように、粒子の分級を実施してよいが、後述の実施例によれば、粒子径は大き過ぎないことが好ましい(図1)。粒子径が細かいと、添加対象全体にグルコマンナン分子(すなわち網目構造)がより広がり易くなるため、離水抑制効果がより発揮され易くなる。具体的には、本実施形態に係る低粘性グルコマンナンは、レーザー回折型粒度分布測定法により測定される粒度分布における体積平均粒子径(MV:Mean Volume Diameter)が10μm~160μmの範囲にあるとより好ましい。ここでいう体積平均粒子径(MV)は、レーザー回折型粒度分布測定法により測定される体積基準の粒度分布における算術平均径である。ここで粒子径の下限を10μmとしているのは、これより微細な粒子の製造が比較的困難であることや、2次凝集等により取扱性が悪くなることによる。 In addition, in producing the low-viscosity glucomannan according to this embodiment, as described above, particle classification may be performed, but according to the examples described later, it is preferable that the particle diameter is not too large (Figure 1). If the particle diameter is small, the glucomannan molecules (i.e., the mesh structure) are more likely to spread throughout the entire object to which it is added, so that the syneresis suppression effect is more likely to be exhibited. Specifically, it is more preferable that the low-viscosity glucomannan according to this embodiment has a volume average particle diameter (MV: Mean Volume Diameter) in the particle size distribution measured by a laser diffraction type particle size distribution measurement method in the range of 10 μm to 160 μm. The volume average particle diameter (MV) here is the arithmetic mean diameter in the volume-based particle size distribution measured by a laser diffraction type particle size distribution measurement method. The reason why the lower limit of the particle diameter is set to 10 μm here is that it is relatively difficult to produce particles finer than this and that handling becomes poor due to secondary aggregation, etc.

当該粒子径を10μm~160μmの範囲に調整するには、一例として、グルコマンナンを低分子化して得られた低粘性グルコマンナンを、メッシュサイズ100~500程度の篩により分級すればよい。なお、本願では、メッシュサイズ100を目開き154μm、メッシュサイズ500を目開き26μmとする。 To adjust the particle size to the range of 10 μm to 160 μm, for example, low-viscosity glucomannan obtained by depolymerizing glucomannan may be classified using a sieve with a mesh size of about 100 to 500. In this application, a mesh size of 100 is defined as a mesh size of 154 μm, and a mesh size of 500 is defined as a mesh size of 26 μm.

本実施形態に係る離水抑制剤は、本実施形態に係る低粘性グルコマンナンの粉末としているが、この形態に限定されない。例えば、当該低粘性グルコマンナンの粉末を、デキストリン等の賦形剤その他糖類等の結着剤と混合して造粒し、顆粒やペレット等に成形してもよい。また、当該低粘性グルコマンナンの粉末や成形物を、カプセル等に内包してもよい。また、当該低粘性グルコマンナンの粉末や成形物を、水等に溶解させてペーストにしてもよい。また、当該低粘性グルコマンナンの粉末を貧溶媒に分散させて、良溶媒の添加対象に対してダマになり難くしてもよい。また、本実施形態に係る離水抑制剤は、本発明の目的を達し得る範囲で、当該低粘性グルコマンナンの他に、上記の造粒に係る賦形剤や結着剤、その他、甘味料、着色料、香料等を含有していてよい。 The syneresis inhibitor according to the present embodiment is a powder of low-viscosity glucomannan according to the present embodiment, but is not limited to this form. For example, the low-viscosity glucomannan powder may be mixed with an excipient such as dextrin or other binder such as sugar, granulated, and molded into granules or pellets. The low-viscosity glucomannan powder or molded product may be encapsulated in a capsule or the like. The low-viscosity glucomannan powder or molded product may be dissolved in water or the like to form a paste. The low-viscosity glucomannan powder may be dispersed in a poor solvent to make it less likely to form lumps in the good solvent to which it is added. The syneresis inhibitor according to the present embodiment may contain, in addition to the low-viscosity glucomannan, excipients and binders related to the granulation, as well as sweeteners, colorants, flavors, etc., within the scope of the object of the present invention.

本実施形態に係る食品の離水抑制方法としては、食品に本実施形態に係る離水抑制剤(すなわち本実施形態に係る低粘性グルコマンナン)を配合すればよい。より詳しくは、食品またはその配合成分に離水抑制剤を添加すればよい。食品の配合成分に添加してもよいとするのは、当該食品のいずれの製造段階(製造工程)においても、または、製造された当該食品においても、離水抑制剤を添加してもよい趣旨である。添加方法も限定されず、添加対象に離水抑制剤を直接添加しても勿論よいが、例えば粉末や成形物の離水抑制剤を予め水等に溶解させてもよく、または予め貧溶媒に分散させたりしてもよい。固形または流動性の離水抑制剤を食品の配合成分に混合してもよく、流動性の離水抑制剤を食品の上からかけてもよい。また、添加後、固形の離水抑制剤であれば、適宜溶解させるが、固形物が完全に消失せずにダマが残ってもよい。撹拌を行う場合も、手撹拌等による比較的弱い攪拌、ホモミキサー等の乳化機等による比較的強い攪拌等、適宜選択して行えばよい。添加対象の温度も限定されず(温度調整を行っても無調整でもよく)、添加後に加熱、冷却または冷凍してもよい。 As a method for suppressing syneresis of food according to this embodiment, the syneresis inhibitor according to this embodiment (i.e., the low-viscosity glucomannan according to this embodiment) may be blended into the food. More specifically, the syneresis inhibitor may be added to the food or its blended ingredients. The syneresis inhibitor may be added to the blended ingredients of the food at any stage (manufacturing process) of the production of the food, or to the produced food. The method of addition is not limited, and the syneresis inhibitor may be added directly to the target of addition, but for example, the syneresis inhibitor in the form of a powder or a molded product may be dissolved in water or dispersed in a poor solvent in advance. A solid or fluid syneresis inhibitor may be mixed into the blended ingredients of the food, or a fluid syneresis inhibitor may be poured over the food. In addition, if the syneresis inhibitor is solid after addition, it is dissolved as appropriate, but it is acceptable if the solid does not completely disappear and lumps remain. When stirring is performed, a relatively weak stirring by hand stirring, a relatively strong stirring by an emulsifier such as a homomixer, or the like may be appropriately selected. There are no limitations on the temperature of the substance to be added (it may be temperature adjusted or not), and it may be heated, cooled or frozen after addition.

続いて、本実施形態に係る食品(例えば、冷凍食品)は、本実施形態に係る離水抑制剤(すなわち本実施形態に係る低粘性グルコマンナン)が、上記のようにして、食品(例えば、冷凍食品)に配合されたもので、本実施形態に係る食品(例えば、冷凍食品)は、本実施形態に係る離水抑制剤(すなわち本実施形態に係る低粘性グルコマンナン)を含有する。なお、本実施形態に係る食品(例えば、冷凍食品)における離水抑制剤(低粘性グルコマンナン)の配合量(割合)は含有量(割合)にほぼ一致する。本実施形態に係る食品としては、例えば、ゼリー、プリン、水羊羹等のゲル状製品、ジャム、ゼリー飲料製品、サラダ、炒めもの、佃煮等の調理品、アイスクリーム、凍結ゼリー飲料製品等の冷凍食品等が挙げられる。本実施形態に係る離水抑制剤(すなわち本実施形態に係る低粘性グルコマンナン)を含有することで、長期間に亘って離水が抑制され、特に冷凍食品においては解凍時の離水が抑制されて冷凍前後の食感の変化や「ス」が入ることが防止される。 Next, the food according to this embodiment (e.g., frozen food) is a food (e.g., frozen food) in which the syneresis inhibitor according to this embodiment (i.e., the low-viscosity glucomannan according to this embodiment) is blended in the food (e.g., frozen food) as described above, and the food according to this embodiment (e.g., frozen food) contains the syneresis inhibitor according to this embodiment (i.e., the low-viscosity glucomannan according to this embodiment). The blending amount (ratio) of the syneresis inhibitor (low-viscosity glucomannan) in the food according to this embodiment (e.g., frozen food) is almost the same as the content (ratio). Examples of the food according to this embodiment include gel products such as jelly, pudding, and mizu yokan, jams, jelly drink products, salads, stir-fried foods, and cooked foods such as tsukudani, ice cream, frozen jelly drink products, and the like. By containing the syneresis inhibitor according to this embodiment (i.e., the low-viscosity glucomannan according to this embodiment), syneresis is suppressed for a long period of time, and in particular in frozen foods, syneresis during thawing is suppressed, preventing changes in texture before and after freezing and the inclusion of "squish".

精製こんにゃく粉である通常のグルコマンナン(伊那食品工業(株)製、「イナゲル マンナン100A」(イナゲルは、登録商標。以下、同じ))(マンナン1)、および当該グルコマンナンをそれぞれ所定程度に低粘性化(低分子化)した改質グルコマンナンである低粘性グルコマンナン(マンナン2-18:粘度が比較的高いものも含まれているが、ここでは通常のグルコマンナンよりも低粘性化したという趣旨で、便宜的に「低粘性グルコマンナン」と総称する)を、水分を含有する食品に添加して、離水性を評価した。 Regular glucomannan (Inagel Mannan 100A (Inagel is a registered trademark; the same applies below) manufactured by Ina Food Industry Co., Ltd.), which is refined konjac powder, and low-viscosity glucomannan (mannan 2-18: some have relatively high viscosities, but for the sake of convenience, they are collectively referred to as "low-viscosity glucomannan" here, as they have lower viscosity than regular glucomannan) modified glucomannan, which has been made low-viscosity (low molecular weight) to a specified degree, were added to foods containing moisture to evaluate their water-releasing properties.

(グルコマンナンの低粘性化(低分子化))
マンナン2-11は、マンナン1を酸加水分解により低分子化したものを分級して得た。すなわち、50%アルコール水溶液にマンナン1を分散させてスラリーを取得し、これにクエン酸を添加して酸性に調整し、加熱した後、クエン酸ナトリウムを添加して中和した。その後、スラリーを熱風乾燥させたものを、200メッシュ(目開き77μm)の篩により分級して、マンナン2-11を得た。
マンナン2-11は、酸加水分解処理におけるpH条件(スラリーを酸性に調整する際のpH)および加熱条件(加熱温度および加熱時間)を変更することにより、それぞれ粘度の異なる低粘性グルコマンナンに製造した。
それぞれに設定した具体的条件は、以下の通りである。
マンナン2 pH:4.5 加熱条件:90℃で2時間
マンナン3 pH:5.5 加熱条件:80℃で2時間
マンナン4 pH:5.0 加熱条件:75℃で3時間
マンナン5 pH:5.0 加熱条件:80℃で3時間
マンナン6 pH:4.5 加熱条件:85℃で2時間
マンナン7 pH:4.0 加熱条件:80℃で2時間
マンナン8 pH:4.0 加熱条件:70℃で4時間
マンナン9 pH:3.5 加熱条件:65℃で1時間
マンナン10 pH:2.5 加熱条件:55℃で1時間
マンナン11 pH:2.5 加熱条件:55℃で2時間
(Reducing the viscosity of glucomannan (reducing its molecular weight))
Mannan 2-11 was obtained by classifying mannan 1, which was hydrolyzed to a lower molecular weight by acid hydrolysis. That is, mannan 1 was dispersed in a 50% alcoholic aqueous solution to obtain a slurry, which was then acidified by adding citric acid, heated, and neutralized by adding sodium citrate. The slurry was then dried with hot air and classified using a 200 mesh (77 μm mesh) sieve to obtain mannan 2-11.
Mannan 2-11 was produced into low-viscosity glucomannans with different viscosities by changing the pH conditions (pH when adjusting the slurry to acidic) and heating conditions (heating temperature and heating time) in the acid hydrolysis treatment.
The specific conditions set for each are as follows:
Mannan 2 pH: 4.5 Heating condition: 90°C for 2 hours Mannan 3 pH: 5.5 Heating condition: 80°C for 2 hours Mannan 4 pH: 5.0 Heating condition: 75°C for 3 hours Mannan 5 pH: 5.0 Heating condition: 80°C for 3 hours Mannan 6 pH: 4.5 Heating condition: 85°C for 2 hours Mannan 7 pH: 4.0 Heating condition: 80°C for 2 hours Mannan 8 pH: 4.0 Heating condition: 70°C for 4 hours Mannan 9 pH: 3.5 Heating condition: 65°C for 1 hour Mannan 10 pH: 2.5 Heating condition: 55°C for 1 hour Mannan 11 pH: 2.5 Heating condition: 55°C for 2 hours

マンナン12は、マンナン1を石臼により粉砕し、200メッシュの篩により分級して得た。 Mannan 12 was obtained by crushing mannan 1 in a mill and classifying it through a 200 mesh sieve.

マンナン13は、マンナン1を酵素処理により低分子化したものを分級して得た。すなわち、50%アルコール水溶液にマンナン1を分散させてスラリーを取得し、これにマンナナーゼを添加して40℃で1時間加熱した。スラリーを熱風乾燥させたものを、200メッシュの篩により分級して、マンナン13を得た。 Mannan 13 was obtained by classifying mannan 1, which had been enzymatically treated to reduce its molecular weight. Specifically, mannan 1 was dispersed in a 50% aqueous alcohol solution to obtain a slurry, to which mannanase was added and heated at 40°C for 1 hour. The slurry was dried with hot air and classified using a 200-mesh sieve to obtain mannan 13.

マンナン14-18は、マンナン1を酸加水分解により低分子化したものを分級して得た。すなわち、50%アルコール水溶液にマンナン1を分散させてスラリーを取得し、これにクエン酸を添加してpH4.5に調整し、90℃で2時間加熱した後、クエン酸ナトリウムを添加して中和した。その後、スラリーを熱風乾燥させたものを、ジェットミルにより粉砕した後、篩により分級して、マンナン14-18を得た。
マンナン14-18は、酸加水分解処理におけるpH条件および加熱条件については上記の設定に合わせ、一方、篩のメッシュサイズを変更することにより、それぞれ粘度の異なる低粘性グルコマンナンに製造した。
それぞれに使用した篩は、以下の通りである。
マンナン14 メッシュサイズ 80(目開き178μm)
マンナン15 メッシュサイズ100(目開き154μm)
マンナン16 メッシュサイズ180(目開き 91μm)
マンナン17 メッシュサイズ300(目開き 45μm)
マンナン18 メッシュサイズ400(目開き 34μm)
Mannan 14-18 was obtained by classifying mannan 1, which was hydrolyzed to a lower molecular weight by acid hydrolysis. That is, mannan 1 was dispersed in a 50% alcohol aqueous solution to obtain a slurry, which was then adjusted to pH 4.5 by adding citric acid, heated at 90°C for 2 hours, and neutralized by adding sodium citrate. The slurry was then dried with hot air, pulverized in a jet mill, and classified through a sieve to obtain mannan 14-18.
Mannan 14-18 was produced as low-viscosity glucomannans with different viscosities by adjusting the pH and heating conditions in the acid hydrolysis treatment to those described above, while changing the mesh size of the sieve.
The sieves used for each were as follows:
Mannan 14 Mesh size 80 (opening 178 μm)
Mannan 15 Mesh size 100 (opening 154 μm)
Mannan 16 mesh size 180 (opening 91 μm)
Mannan 17 mesh size 300 (opening 45 μm)
Mannan 18 mesh size 400 (opening 34 μm)

(グルコマンナンおよび低粘性グルコマンナンの粘度および粒子径)
表1に、マンナン1およびマンナン2-18の粘度を、粒子径と共に示す。表中の「1%粘度」は、本実施形態の説明において説明した「25℃における1%水溶液の粘度」を表す。また、表中の「粒子径」は、本実施形態の説明において説明した「体積平均粒子径(MV)」を表す。
(Viscosity and particle size of glucomannan and low viscosity glucomannan)
Table 1 shows the viscosities of Mannan 1 and Mannan 2-18 together with their particle sizes. In the table, "1% viscosity" refers to the "viscosity of a 1% aqueous solution at 25°C" described in the description of this embodiment. In addition, "particle size" in the table refers to the "volume average particle size (MV)" described in the description of this embodiment.

(低粘性グルコマンナンのゲル化能)
表1に示す低粘性グルコマンナンのうち、最も粘度の低いマンナン8-11について、アルカリ条件下でのゲル化能の有無を確認した。確認方法は、先ず、マンナンを水に分散させた後、水に溶かした水酸化カルシウムを混合して、最終的に、マンナン:5質量%、水酸化カルシウム:0.25質量%、水:残部(合計:100質量%)に調整した。当該調整液を容器に流し込み、容器ごと90℃で1時間加熱を行い、冷却後にゲル化したか否か確認した。
(Gelling ability of low viscosity glucomannan)
Among the low-viscosity glucomannans shown in Table 1, mannan 8-11, which has the lowest viscosity, was examined for its gelling ability under alkaline conditions. The method of examination was as follows: first, mannan was dispersed in water, and then calcium hydroxide dissolved in water was mixed to finally adjust the mixture to mannan: 5% by mass, calcium hydroxide: 0.25% by mass, and water: the remainder (total: 100% by mass). The adjusted liquid was poured into a container, and the container was heated at 90°C for 1 hour, and it was confirmed whether gelling occurred after cooling.

なお、参考として、マンナン8-11について、25℃における2%水溶液の粘度(グルコマンナン6.0gを310gの精製水に分散した後、95℃で3分間加熱して最終重量を300gに調整して取得したゾルの25℃における粘度)、および25℃における3%水溶液の粘度(グルコマンナン9.0gを310gの精製水に分散した後、95℃で3分間加熱して最終重量を300gに調整して取得したゾルの25℃における粘度)も測定した。測定方法は、本実施形態の説明において説明した「25℃における1%水溶液の粘度」の測定方法と同じ方法で行った。表2に、結果を1%水溶液の粘度と共に示す。 For reference, the viscosity of a 2% aqueous solution of mannan 8-11 at 25°C (the viscosity of a sol obtained by dispersing 6.0 g of glucomannan in 310 g of purified water, heating at 95°C for 3 minutes and adjusting the final weight to 300 g at 25°C) and the viscosity of a 3% aqueous solution at 25°C (the viscosity of a sol obtained by dispersing 9.0 g of glucomannan in 310 g of purified water, heating at 95°C for 3 minutes and adjusting the final weight to 300 g at 25°C) were also measured. The measurement method was the same as the measurement method for the "viscosity of a 1% aqueous solution at 25°C" described in the description of this embodiment. The results are shown in Table 2 together with the viscosity of the 1% aqueous solution.

表2に示すように、25℃における1%水溶液の粘度が20mPa・s以上のマンナン8、9はゲル化したが、当該粘度が15mPa・sのマンナン10および当該粘度が4mPa・sのマンナン11はゲル化しなかった。なお、マンナン8、9よりも粘性の高い(分子量の大きい)マンナン1-7、12-18は当然にアルカリ条件下でのゲル化能を有すると考えられる。 As shown in Table 2, mannans 8 and 9, which have a viscosity of 20 mPa·s or more in a 1% aqueous solution at 25°C, gelled, but mannan 10, which has a viscosity of 15 mPa·s, and mannan 11, which has a viscosity of 4 mPa·s, did not gel. Furthermore, mannans 1-7 and 12-18, which have a higher viscosity (larger molecular weight) than mannans 8 and 9, are naturally considered to have the ability to gel under alkaline conditions.

(食品の離水性の評価方法)
マンナン1-18を添加した食品の離水性を、以下の方法で評価した。
(Method for evaluating water-releasing properties of food)
The water syneresis properties of foods containing added mannan 1-18 were evaluated by the following method.

離水状態:ゼリー(試験1、試験2、試験3)および水羊羹(試験5)については、原料液を円筒型容器(内径50mm、高さ30mm)に満量充填しトップシールを行い、85℃で30分ボイル殺菌を行った。蒸しプリン(試験7)については、原料液を円筒型容器(内径60mm、高さ70mm)に満量充填しトップシールを行い、後述のように40分程度蒸し上げた。
その後、4℃で1か月保存した後、容器から食品を取り出し、食品の表面およびトップシールの裏側に付着した水分を脱脂綿で拭き取り、当該脱脂綿の重量変化を測定した。当該重量変化を以下の基準で評価した。
◎:重量変化が0.60g未満である。
○:重量変化が0.60g以上1.20g未満である。
△:重量変化が1.20g以上2.00g未満である。
×:重量変化が2.00g以上である。
Syneresis state: For jelly (Test 1, Test 2, Test 3) and mizu yokan (Test 5), the liquid ingredients were filled to the full in a cylindrical container (inner diameter 50 mm, height 30 mm), the top was sealed, and sterilized by boiling for 30 minutes at 85° C. For steamed pudding (Test 7), the liquid ingredients were filled to the full in a cylindrical container (inner diameter 60 mm, height 70 mm), the top was sealed, and steamed for about 40 minutes as described below.
After storing the food at 4°C for one month, the food was removed from the container, and the moisture on the surface of the food and the back side of the top seal was wiped off with absorbent cotton, and the weight change of the absorbent cotton was measured. The weight change was evaluated according to the following criteria.
A: The weight change is less than 0.60 g.
◯: The weight change is 0.60 g or more and less than 1.20 g.
Δ: The weight change is 1.20 g or more and less than 2.00 g.
×: The weight change is 2.00 g or more.

また、ジャム(試験4)および佃煮(試験6)については、製造した食品を円筒型容器(内径45mm、高さ15mm)に隙間なく充填し、円形の濾紙(定性濾紙No.2:直径125mm)の中央部に、容器の開口部が濾紙に接するように載せ、室温で30分静置した後、濾紙の重量変化を測定した。当該重量変化を以下の基準で評価した。
また、野菜炒め(試験8)については、野菜炒め50gを金属バットに入れ、金属バットを傾けて流出した離水を脱脂綿で拭き取り、当該脱脂綿の重量変化を測定した。当該重量変化を以下の基準で評価した。
◎:重量変化が1.20g未満である。
○:重量変化が1.20g以上2.00g未満である。
△:重量変化が2.00g以上2.80g未満である。
×:重量変化が2.80g以上である。
For jam (Test 4) and tsukudani (Test 6), the produced foods were packed tightly into a cylindrical container (inner diameter 45 mm, height 15 mm), placed in the center of a circular filter paper (Qualitative filter paper No. 2: diameter 125 mm) so that the opening of the container was in contact with the filter paper, and left to stand at room temperature for 30 minutes, after which the weight change of the filter paper was measured. The weight change was evaluated according to the following criteria.
For stir-fried vegetables (Test 8), 50 g of stir-fried vegetables was placed in a metal tray, the metal tray was tilted, and the water that flowed out was wiped off with absorbent cotton, and the weight change of the absorbent cotton was measured. The weight change was evaluated according to the following criteria.
A: The weight change is less than 1.20 g.
◯: The weight change is 1.20 g or more and less than 2.00 g.
Δ: The weight change is 2.00 g or more and less than 2.80 g.
×: The weight change is 2.80 g or more.

解凍状態:食品または固化する前の原料液を-20℃で1週間冷凍保存した後、4℃で24時間静置することにより解凍した食品を、目視および喫食して以下の基準で評価した。なお、評価に当たって、冷凍保存前の食感と比較するため、製造後の食品も目視および喫食した。評価は10名のパネラーが独立して行った。最も多かった評価を評価結果とした。
◎:食品に「ス」は無く、冷凍保存前と全く変わらない食感を有している。
○:食品に「ス」は無く、冷凍保存前とほぼ変わらない食感を有している。
△:食品に「ス」は無いが、冷凍保存前と比べて少し食感が変化している。
×:食品に「ス」が入って、冷凍保存前と比べて食感が変化している。
Thawed state: The food or raw material liquid before solidification was frozen and stored at -20°C for one week, and then thawed by leaving it to stand at 4°C for 24 hours. The food was visually inspected and eaten and evaluated according to the following criteria. In order to compare the texture with that before freezing and storage, the food after production was also visually inspected and eaten. The evaluation was performed independently by 10 panelists. The most common evaluation was regarded as the evaluation result.
◎: The food has no "smell" and has the same texture as before it was frozen.
○: The food has no "smell" and has almost the same texture as before freezing.
△: The food has no "smell", but the texture has changed slightly compared to before it was frozen.
×: The food has "smell" in it, and the texture has changed compared to before it was frozen.

(食品の他の物性の測定方法)
ゼリー(試験1、試験2、試験3)については、ゼリー強度および破断距離を、以下の方法で測定した。原料液を円筒型容器(内径50mm、高さ30mm)に満量充填し、冷却してゲル化させた。容器に蓋をして水分の蒸発を防止した状態で、10℃で24時間保存して測定検体とした。当該測定検体に対して、テクスチャーアナライザ(英弘精機製)を用いて、断面積1cm、長さ3cmの合成樹脂製の円柱状プランジャを20mm/分の速度でゲルが破断するまで進入させ、その際の最大応力をゼリー強度[g/cm]、破断時のプランジャの進入距離を破断距離[mm]として測定した。
(Methods for measuring other physical properties of food)
For the jellies (Test 1, Test 2, Test 3), the jelly strength and breaking distance were measured by the following method. A cylindrical container (inner diameter 50 mm, height 30 mm) was filled with the raw material liquid and cooled to gel. The container was covered to prevent evaporation of water and stored at 10°C for 24 hours to prepare a measurement specimen. A synthetic resin cylindrical plunger with a cross-sectional area of 1 cm2 and a length of 3 cm was inserted into the measurement specimen at a speed of 20 mm/min using a texture analyzer (manufactured by Eiko Seiki Co., Ltd.) until the gel broke, and the maximum stress at that time was measured as the jelly strength [g/ cm2 ], and the plunger insertion distance at the time of breakage was measured as the breaking distance [mm].

(試験1)
図1に示す配合にて、マンナン1-18を添加したゼリーを製造した。グラニュー糖とマンナンとカラギナンとを粉体混合したものを水に混ぜ合わせ、さらにかき混ぜながら沸騰させて溶解した。加熱を止めて、5倍濃縮ぶどう果汁と無水結晶クエン酸とクエン酸ナトリウムとを混ぜ合わせてpH3.8の原料液を調整した。当該原料液を円筒型容器(内径50mm、高さ30mm)に満量充填しトップシールを行い、85℃で30分ボイル殺菌を行った。その後、離水状態評価用検体および解凍状態評価用検体として、それぞれの条件で保存した後、評価した。また、ゼリー強度および破断距離を前述の方法で測定した。図1に、ゼリーの配合および結果を示す。
(Test 1)
A jelly containing mannan 1-18 was produced according to the composition shown in FIG. 1. Granulated sugar, mannan, and carrageenan were mixed in water and boiled while stirring to dissolve. Heating was stopped, and 5-fold concentrated grape juice, anhydrous crystalline citric acid, and sodium citrate were mixed to prepare a raw material liquid with a pH of 3.8. The raw material liquid was filled to the fullest in a cylindrical container (inner diameter 50 mm, height 30 mm), top-sealed, and boiled for 30 minutes at 85°C for sterilization. After that, samples for evaluating the water-release state and samples for evaluating the thawed state were stored under the respective conditions and then evaluated. The jelly strength and breaking distance were also measured by the above-mentioned method. The composition of the jelly and the results are shown in FIG. 1.

図1に示すように、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナン(マンナン2、4-9、12-18)を添加したゼリーでは、離水状態および解凍状態共に良好で(評価:○以上)、離水が抑制されて、冷凍前後で食感が全くもしくはほぼ変化せず、「ス」が入ることもなく、十分な離水抑制効果が見られた(実施例1-14)。このうち、マンナン9を除く当該粘度が25mPa・s~800mPa・sの範囲、且つマンナン14を除く粒子径が160μm以下の低粘性グルコマンナン(マンナン2、4-8、12、13、15-18)によると、より離水抑制効果が高く、さらにマンナン7、8を除く当該粒度が40mPa・s~800mPa・sの範囲(マンナン2、4-6、12、13、15-18)によると、さらに離水抑制効果が高かった。一方、精製こんにゃく粉である通常のグルコマンナン(マンナン1)および1%粘度が2150mPa・sと800mPa・sを上回るグルコマンナン(マンナン3)、ならびに1%粘度が20mPa・sを下回るグルコマンナン(マンナン10、11)によると、離水が生じたり、冷凍前後の食感が変化したりして、さらに「ス」が入ってしまったゼリーもあった。 As shown in Figure 1, in jellies to which low-viscosity glucomannans (mannan 2, 4-9, 12-18) with a viscosity of 20 mPa·s to 800 mPa·s in a 1% aqueous solution at 25°C were added, both the syneresis state and the thawed state were good (rating: ○ or better), syneresis was suppressed, there was no or almost no change in texture before and after freezing, and no "smooth" texture was observed, demonstrating a sufficient syneresis suppression effect (Example 1-14). Of these, low-viscosity glucomannans (mannans 2, 4-8, 12, 13, 15-18) with a viscosity in the range of 25 mPa·s to 800 mPa·s (excluding mannan 9) and a particle size of 160 μm or less (excluding mannan 14) had a higher syneresis suppression effect, and those with a particle size in the range of 40 mPa·s to 800 mPa·s (mannans 2, 4-6, 12, 13, 15-18) with a particle size in the range of 40 mPa·s to 800 mPa·s (excluding mannans 7 and 8) had an even higher syneresis suppression effect. On the other hand, normal glucomannan (mannan 1), which is a refined konjac powder, glucomannan (mannan 3) with a 1% viscosity of 2150 mPa·s, which exceeds 800 mPa·s, and glucomannan (mannan 10, 11) with a 1% viscosity below 20 mPa·s caused syneresis or changed texture before and after freezing, and some jellies even had "slush" in them.

(試験2)
試験1では、グルコマンナンの配合量(割合)を同じにして食品の離水性を比較したが、図1に示すように、粘性の異なるグルコマンナンにより食品であるゼリーの物性(ゼリー強度および破断距離)も異なっていた。そこで、本試験2では、グルコマンナンの配合量(割合)を調整することによりゼリー強度を同程度に合わせて食品の離水性を比較した。なお、ゼリー強度を同程度に合わせることで、マンナン11を除いて破断距離も同程度に合った。表3に、ゼリーの配合および結果を示す。
(Test 2)
In Test 1, the water release properties of foods were compared with the same amount (ratio) of glucomannan, but as shown in Figure 1, the physical properties of the jelly food (jelly strength and breaking distance) were different due to the glucomannan having different viscosities. Therefore, in Test 2, the water release properties of foods were compared by adjusting the amount (ratio) of glucomannan to make the jelly strength at the same level. Note that by making the jelly strength at the same level, the breaking distance was also made at the same level, except for mannan 11. Table 3 shows the jelly formulations and results.

表3に示すように、試験1の結果と同様に、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナン(マンナン6、8)によると、十分な離水抑制効果が見られた。一方、精製こんにゃく粉である通常のグルコマンナン(マンナン1)および1%粘度が20mPa・sを下回るグルコマンナン(マンナン10、11)によると、離水が生じたり、冷凍前後の食感が変化したりして、さらに「ス」が入ってしまったゼリーもあった。このことから、食品の離水抑制効果は、ほぼグルコマンナンの物性だけに起因するものであり、食品の離水性に対する食品自体の物性(例えば、ゼリー強度、破断距離)その他グルコマンナン以外の配合成分の物性の影響は、殆どないか無視できる程度であると考えられる。 As shown in Table 3, similar to the results of Test 1, low-viscosity glucomannans (mannan 6, 8) with a viscosity of 20 mPa·s to 800 mPa·s in a 1% aqueous solution at 25°C showed sufficient syneresis suppression effect. On the other hand, normal glucomannan (mannan 1), which is refined konjac powder, and glucomannans (mannan 10, 11) with a 1% viscosity below 20 mPa·s caused syneresis, changed texture before and after freezing, and some jellies even had "slurries" in them. From this, it is believed that the syneresis suppression effect of food is almost entirely due to the physical properties of glucomannan, and that the physical properties of the food itself (e.g., jelly strength, breaking distance) and other physical properties of ingredients other than glucomannan have little or no effect on the syneresis of food, or are negligible.

(試験3)
本試験3では、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナン(マンナン4、6、9)を、様々な配合量(割合)で添加したゼリーを製造し、離水性を評価した。図2に、ゼリーの配合および結果を示す(試験1の結果を一部再掲する)。
(Test 3)
In this test 3, jellies were produced by adding various amounts (ratios) of low-viscosity glucomannans (mannans 4, 6, and 9) whose viscosities in 1% aqueous solutions at 25°C range from 20 mPa·s to 800 mPa·s, and the water syneresis was evaluated. Figure 2 shows the jelly formulations and results (some of the results from test 1 are repeated).

図2に示すように、いずれの配合量(割合)においても十分な離水抑制効果が見られた。本試験3の結果から、1%粘度が20mPa・s~300mPa・s程度の範囲にある低粘性グルコマンナンでは、食品に少なくとも0.1質量%以上または0.15質量%以上添加すること、また、1%粘度が500mPa・s~800mPa・s程度の範囲にある低粘性グルコマンナンでは、食品に少なくとも0.01質量%以上添加することで、所定の離水抑制効果が得られると考えられる。 As shown in Figure 2, a sufficient syneresis-inhibiting effect was observed at all blend amounts (ratios). From the results of this Test 3, it is believed that a specified syneresis-inhibiting effect can be obtained by adding at least 0.1% by mass or 0.15% by mass or more of low-viscosity glucomannan with a 1% viscosity in the range of approximately 20 mPa·s to 300 mPa·s to foods, and by adding at least 0.01% by mass or more of low-viscosity glucomannan with a 1% viscosity in the range of approximately 500 mPa·s to 800 mPa·s to foods.

(試験4)
試験4および試験5では、比較的高糖度の食品を対象にして離水性を評価した。先ず、試験4では、表4に示す配合にて、マンナン6またはマンナン11を添加したジャムを製造した。鍋にイチゴおよび水を入れ15分煮た。これに砂糖400gを混ぜ合わせてさらに15分煮た。これに砂糖100gとペクチンとマンナンとを粉体混合したものを混ぜ合わせて再度沸騰した後にレモン果汁を加えて煮詰め、最終重量:約1.1kg、最終糖度:約65のジャムを製造した。なお、ここでの糖度は、屈折計で測定したブリックス値(Brix値)である(以下、同じ)。
製造したジャムの離水状態を前述の方法および基準で評価した。また、マンナン6を添加したジャムについては、室温で1か月保存した後に、再度同じ方法および基準で離水状態を評価した。表4に、ジャムの配合および結果を示す。
(Test 4)
In Tests 4 and 5, the water syneresis was evaluated for foods with relatively high sugar content. First, in Test 4, jam was made with the addition of Mannan 6 or Mannan 11 according to the composition shown in Table 4. Strawberries and water were placed in a pot and boiled for 15 minutes. 400g of sugar was added and boiled for another 15 minutes. 100g of sugar and a powder mixture of pectin and mannan were added and boiled again, and lemon juice was added and boiled down to produce a jam with a final weight of about 1.1 kg and a final sugar content of about 65. The sugar content here is the Brix value measured with a refractometer (the same applies below).
The syneresis state of the jams produced was evaluated according to the above-mentioned method and criteria. In addition, the jams containing Mannan 6 were stored at room temperature for one month, and then the syneresis state was evaluated again according to the same method and criteria. Table 4 shows the jam compositions and the results.

表4に示すように、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナン(マンナン6:283mPa・s)によると、ジャムのような高糖度の食品に対しても十分な離水抑制効果を発揮した(実施例26)。さらに、ジャムを1か月保存した後でも十分な離水抑制効果を発揮した(実施例27)。 As shown in Table 4, low-viscosity glucomannan (mannan 6: 283 mPa·s), whose 1% aqueous solution has a viscosity in the range of 20 mPa·s to 800 mPa·s at 25°C, exhibited sufficient syneresis inhibition effect even for foods with high sugar content such as jam (Example 26). Furthermore, sufficient syneresis inhibition effect was exhibited even after the jam was stored for one month (Example 27).

(試験5)
次に、表5に示す配合にて、マンナン5またはマンナン11を添加した水羊羹を製造した。水に寒天およびマンナンを加えて沸騰させた。これに白双糖を混ぜ合わせて溶かし、さらに並餡(配糖率70%、糖度55)を混ぜ合わせて加熱した。糖度30になったところで加熱を止め、食塩を加えて、最終重量:約1kg、最終糖度:約30の原料液を調整した。当該原料液を40℃程度まで冷却し、円筒型容器(内径50mm、高さ30mm)に満量充填しトップシールを行い、85℃で30分ボイル殺菌を行った。その後、離水状態評価用検体および解凍状態評価用検体として、それぞれの条件で保存した後、評価した。表5に、水羊羹の配合および結果を示す。
(Test 5)
Next, water jelly with mannan 5 or mannan 11 added was produced according to the composition shown in Table 5. Agar and mannan were added to water and boiled. White sugar was mixed and dissolved in this, and then regular bean paste (sugar content 70%, sugar content 55) was mixed and heated. When the sugar content reached 30, heating was stopped and salt was added to prepare a raw material liquid with a final weight of about 1 kg and a final sugar content of about 30. The raw material liquid was cooled to about 40°C, filled to the full capacity in a cylindrical container (inner diameter 50 mm, height 30 mm), top sealed, and boiled for sterilization at 85°C for 30 minutes. After that, the samples for evaluating the water release state and the samples for evaluating the thawed state were stored under the respective conditions and then evaluated. Table 5 shows the composition and results of the water jelly.

表5に示すように、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナン(マンナン5:496mPa・s)によると、水羊羹のような高糖度の食品に対しても十分な離水抑制効果を発揮した(実施例28)。 As shown in Table 5, low-viscosity glucomannan (mannan 5: 496 mPa·s), whose 1% aqueous solution has a viscosity in the range of 20 mPa·s to 800 mPa·s at 25°C, exhibited sufficient syneresis inhibition effect even for foods with high sugar content such as mizu yokan (Japanese bean jelly) (Example 28).

(試験6)
試験6では、比較的高塩度の食品を対象にして離水性を評価した。表6に示す配合にて、マンナン5またはマンナン11を添加したイカナゴの佃煮を製造した。調味液の各材料を混ぜ合わせて沸騰させ、これに具材としての通常の処理を施したイカナゴを加え、焦げ付かないように撹拌しながら15分煮上げて佃煮を製造した。製造した佃煮を、解凍状態評価用検体として前述の条件で保存した後、評価した。表6に、佃煮の配合および結果を示す。
(Test 6)
In Test 6, the water release was evaluated for foods with relatively high salinity. Sand eel tsukudani was produced with the addition of mannan 5 or mannan 11 according to the composition shown in Table 6. The seasoning liquid ingredients were mixed and boiled, and sand eels that had been treated as ingredients in the usual way were added to the mixture, and the mixture was boiled for 15 minutes while stirring to prevent burning to produce tsukudani. The produced tsukudani was stored under the above-mentioned conditions as a specimen for evaluating the thawed state, and then evaluated. Table 6 shows the composition and results of the tsukudani.

表6に示すように、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナン(マンナン5:496mPa・s)によると、佃煮のような高塩度の食品に対しても十分な離水抑制効果を発揮した(実施例29)。 As shown in Table 6, low-viscosity glucomannan (mannan 5: 496 mPa·s), whose 1% aqueous solution has a viscosity in the range of 20 mPa·s to 800 mPa·s at 25°C, exhibited sufficient syneresis inhibition effect even for high-salt foods such as tsukudani (food boiled in soy sauce) (Example 29).

(試験7)
また、表7に示す配合にて、マンナン9またはマンナン11を添加した蒸しプリンを製造した。砂糖とマンナンとを粉体混合したものを割りほぐした卵に泡立たないように混ぜ合わせた。一方、牛乳を沸騰直前まで加熱しバニラエッセンスを加えた。当該牛乳に当該卵液を泡立たないように加え、濾してから円筒型容器(内径60mm、高さ70mm)に満量充填し、トップシールを行った後、これを容器ごと90℃のスチームコンベクションオーブンで40分程度蒸し上げて蒸しプリンを製造した。その後、離水状態評価用検体および解凍状態評価用検体として、それぞれの条件で保存した後、評価した。表7に、蒸しプリンの配合および結果を示す。
(Test 7)
In addition, steamed puddings were produced with the addition of mannan 9 or mannan 11 in the formulation shown in Table 7. A powder mixture of sugar and mannan was mixed into cracked eggs without foaming. Meanwhile, milk was heated to just before boiling and vanilla essence was added. The egg liquid was added to the milk without foaming, filtered, and then filled to the full capacity in a cylindrical container (inner diameter 60 mm, height 70 mm), top sealed, and then steamed in a steam convection oven at 90°C for about 40 minutes to produce steamed puddings. Thereafter, the samples for evaluating the water release state and the samples for evaluating the thawed state were stored under the respective conditions and then evaluated. Table 7 shows the formulation and results of the steamed puddings.

表7に示すように、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナン(マンナン9:21mPa・s)を添加した蒸しプリンでは、十分な離水抑制効果が見られた(実施例30)。 As shown in Table 7, a sufficient syneresis suppression effect was observed in steamed pudding to which low-viscosity glucomannan (mannan 9: 21 mPa·s), whose 1% aqueous solution has a viscosity in the range of 20 mPa·s to 800 mPa·s at 25°C, was added (Example 30).

(試験8)
また、表8に示す配合にて、マンナン8またはマンナン11を添加した野菜炒めを製造した。具材を炒め、粉末調味料およびマンナンを振り入れて、野菜炒めを調理した。調理した野菜炒めの離水状態を前述の方法および基準で評価した。また、マンナン8を添加した野菜炒めについては、室温で12時間静置した後に、再度同じ方法および基準で離水状態を評価した。表8に、野菜炒めの配合および結果を示す。
(Test 8)
In addition, stir-fried vegetables were produced with the addition of Mannan 8 or Mannan 11 according to the composition shown in Table 8. The ingredients were fried, and the powdered seasoning and Mannan were sprinkled in to cook the stir-fried vegetables. The water syneresis state of the cooked stir-fried vegetables was evaluated according to the above-mentioned method and criteria. The stir-fried vegetables with Mannan 8 were left to stand at room temperature for 12 hours, and then the water syneresis state was evaluated again according to the same method and criteria. Table 8 shows the composition and results of the stir-fried vegetables.

表8に示すように、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にある低粘性グルコマンナン(マンナン8:28mPa・s)を添加した野菜炒めでは、十分な離水抑制効果が見られた(実施例31)。さらに、12時間後後も十分な離水抑制効果が見られた(実施例32)。 As shown in Table 8, when stir-fried vegetables were added with low-viscosity glucomannan (mannan 8: 28 mPa·s), whose 1% aqueous solution has a viscosity in the range of 20 mPa·s to 800 mPa·s at 25°C, sufficient syneresis inhibition effect was observed (Example 31). Furthermore, sufficient syneresis inhibition effect was observed even after 12 hours (Example 32).

Claims (7)

食品の離水抑制剤であって、
25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にあり、アルカリ条件下で加熱されることでゲル化する性質を有し、レーザー回折型粒度分布測定法により測定される粒度分布における体積平均粒子径が10μm~160μmの範囲にある低粘性グルコマンナンを含有すること
を特徴とする離水抑制剤。
A syneresis inhibitor for food, comprising:
A syneresis inhibitor characterized by containing a low-viscosity glucomannan having a viscosity of 20 mPa·s to 800 mPa·s in a 1% aqueous solution at 25°C, which gels when heated under alkaline conditions, and having a volume average particle diameter in the range of 10 μm to 160 μm in a particle size distribution measured by a laser diffraction particle size distribution measurement method.
前記食品が、製造、流通、保存または飲食に際して冷凍される冷凍食品であること
を特徴とする請求項1記載の離水抑制剤。
2. The syneresis inhibitor according to claim 1, wherein the food is a frozen food which is frozen at the time of production, distribution, storage or consumption.
前記食品が、糖度30以上の食品であることThe food has a sugar content of 30 or more.
を特徴とする請求項1記載の離水抑制剤。The syneresis inhibitor according to claim 1,
食品の離水抑制方法であって、
前記食品に、25℃における1%水溶液の粘度が20mPa・s~800mPa・sの範囲にあり、アルカリ条件下で加熱されることでゲル化する性質を有し、レーザー回折型粒度分布測定法により測定される粒度分布における体積平均粒子径が10μm~160μmの範囲にある低粘性グルコマンナンを配合すること
を特徴とする離水抑制方法。
A method for suppressing syneresis of food, comprising:
The food is blended with a low-viscosity glucomannan having a viscosity of 20 mPa·s to 800 mPa·s in a 1% aqueous solution at 25°C, a property of gelling when heated under alkaline conditions , and a volume average particle diameter in a particle size distribution measured by a laser diffraction particle size distribution measurement method in the range of 10 μm to 160 μm . A method for suppressing syneresis, characterized in that
前記食品が、製造、流通、保存または飲食に際して冷凍される冷凍食品であること
を特徴とする請求項記載の離水抑制方法。
5. The method for suppressing syneresis according to claim 4 , wherein the food is a frozen food that is frozen at the time of production, distribution, storage or consumption.
前記食品が、糖度30以上の食品であることThe food has a sugar content of 30 or more.
を特徴とする請求項4記載の離水抑制方法。The method for suppressing syneresis according to claim 4, characterized by:
前記食品に、前記低粘性グルコマンナンを0.15質量%以上配合することThe food product is formulated with 0.15% by mass or more of the low viscosity glucomannan.
を特徴とする請求項4~6のいずれか一項に記載の離水抑制方法。The method for suppressing syneresis according to any one of claims 4 to 6, characterized in that
JP2022080284A 2022-05-16 2022-05-16 Syneresis inhibitor, syneresis inhibitor method, and food and frozen food containing the syneresis inhibitor Active JP7487958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022080284A JP7487958B2 (en) 2022-05-16 2022-05-16 Syneresis inhibitor, syneresis inhibitor method, and food and frozen food containing the syneresis inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022080284A JP7487958B2 (en) 2022-05-16 2022-05-16 Syneresis inhibitor, syneresis inhibitor method, and food and frozen food containing the syneresis inhibitor

Publications (2)

Publication Number Publication Date
JP2023168901A JP2023168901A (en) 2023-11-29
JP7487958B2 true JP7487958B2 (en) 2024-05-21

Family

ID=88923464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022080284A Active JP7487958B2 (en) 2022-05-16 2022-05-16 Syneresis inhibitor, syneresis inhibitor method, and food and frozen food containing the syneresis inhibitor

Country Status (1)

Country Link
JP (1) JP7487958B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297024A (en) 2008-05-16 2009-12-24 Mitsubishi Chemicals Corp Food product-conditioning agent and food product
WO2011033807A1 (en) 2009-09-15 2011-03-24 清水化学株式会社 Material for improving properties of foods and drinks
WO2013051146A1 (en) 2011-10-07 2013-04-11 株式会社 荻野商店 Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby
JP2014023475A (en) 2012-07-26 2014-02-06 Asahi Kasei Chemicals Corp Gelatinizer
JP2014076041A (en) 2012-09-19 2014-05-01 Asahi Kasei Chemicals Corp Gel formulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322477A (en) * 1995-05-26 1996-12-10 Takashi Otsuka Glucomannan hydrolyzate, devils-tongue containing the same and production of glucomannan hydrolyzate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297024A (en) 2008-05-16 2009-12-24 Mitsubishi Chemicals Corp Food product-conditioning agent and food product
WO2011033807A1 (en) 2009-09-15 2011-03-24 清水化学株式会社 Material for improving properties of foods and drinks
WO2013051146A1 (en) 2011-10-07 2013-04-11 株式会社 荻野商店 Method for producing depolymerized konjak glucomannan and depolymerized konjak glucomannan obtained thereby
JP2014023475A (en) 2012-07-26 2014-02-06 Asahi Kasei Chemicals Corp Gelatinizer
JP2014076041A (en) 2012-09-19 2014-05-01 Asahi Kasei Chemicals Corp Gel formulation

Also Published As

Publication number Publication date
JP2023168901A (en) 2023-11-29

Similar Documents

Publication Publication Date Title
US5624612A (en) Nonaggregating hydrocolloid microparticulates, intermediates therefor, and processes for their preparation
US6149962A (en) Gel composition method of making and products containing same
JP4151885B2 (en) Water dispersible cellulose and method for producing the same
NO162741B (en) COATED DIET FIBER AND PROCEDURE FOR THE MANUFACTURE OF SUCH DIET FIBER.
JP4152788B2 (en) Gel composition
JP7487958B2 (en) Syneresis inhibitor, syneresis inhibitor method, and food and frozen food containing the syneresis inhibitor
WO2012133672A1 (en) Oil-in-water dispersion type oil-containing liquid food
JP2004248536A (en) Heat-resistant gel
JP6186202B2 (en) Method for producing a composition comprising finely divided glucomannan gel dispersed in a liquid
CN105876769A (en) Anti-cracking method of quick-frozen sweet soup balls
CN114586953A (en) Embedded natural aloe bead and preparation method thereof
CN106616380B (en) Thick broad-bean sauce and preparation method thereof
JP7235498B2 (en) Method for producing konjac powder
WO2018070382A1 (en) Konjac powder and production method therefor
JP5644210B2 (en) Acid oil-in-water emulsified food
JP6383560B2 (en) Dry composition, water-absorbing swelling agent and food containing the same
JP7311926B1 (en) Dispersion stabilizer, method for stabilizing dispersion, and liquid composition containing solids
JPS6134459B2 (en)
JP7210062B1 (en) Property improving agent for gel food, method for improving property of gel food, and gel food
JP2023039734A (en) Food material and production method of the same
CN105852052A (en) Method for preventing instant frozen glue pudding from cracking
JP2005348721A (en) Freeze-dried food
WO2019168171A1 (en) Amorphophallus konjac powder and manufacturing method for same
JPS6053585B2 (en) Heat stable filling composition
JP4814859B2 (en) Egg salad and anti-shape-reducing agent for egg salad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240430

R150 Certificate of patent or registration of utility model

Ref document number: 7487958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150