JP2011254753A - Method of producing monosaccharide - Google Patents

Method of producing monosaccharide Download PDF

Info

Publication number
JP2011254753A
JP2011254753A JP2010132044A JP2010132044A JP2011254753A JP 2011254753 A JP2011254753 A JP 2011254753A JP 2010132044 A JP2010132044 A JP 2010132044A JP 2010132044 A JP2010132044 A JP 2010132044A JP 2011254753 A JP2011254753 A JP 2011254753A
Authority
JP
Japan
Prior art keywords
enzyme
monosaccharide
producing
hemicellulose
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010132044A
Other languages
Japanese (ja)
Other versions
JP5807273B2 (en
Inventor
Kumiko Kobayashi
久美子 小林
Ryota Nakamura
亮太 中村
Yasuhiko Ozaki
安彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2010132044A priority Critical patent/JP5807273B2/en
Publication of JP2011254753A publication Critical patent/JP2011254753A/en
Application granted granted Critical
Publication of JP5807273B2 publication Critical patent/JP5807273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of inexpensively and easily producing monosaccharides by efficiently isolating monosaccharides from hemicellulose.SOLUTION: The method of producing monosaccharides includes enzymatic treatment of hemicellulose. Monosaccharides can be efficiently isolated from hemicellulose by hydrolysis treatment under the condition of 0.5-2.5 pH and 60-120°C of reaction temperature before the enzymatic treatment. Preferably, a plant containing hemicellulose is supplied for the hydrolysis treatment, and the plant containing hemicellulose is preferably at least one selected from copra meal, palm nucleus meal, konjac potato and guar gum.

Description

本発明は、単糖の製造方法に関するものであり、さらに詳しくはヘミセルロースに酵素を作用させて得られる単糖、特にマンノースの製造方法に関する。   The present invention relates to a method for producing a monosaccharide, and more particularly to a method for producing a monosaccharide obtained by allowing an enzyme to act on hemicellulose, particularly mannose.

マンノース等の単糖類は、様々な生理活性作用が報告されており、機能性糖質として注目されている。例えば、マンノースには、マクロファージの活性化による傷の治癒の促進や細菌感染阻害、乳がん細胞の増殖抑制といった様々な機能が存在することが細胞レベルで解明されてきている。最近では、マンノースの経口投与により、糖尿病性白内障の進行を抑制したり先天的糖化障害において症状が改善するという報告もある。従って、今後、マンノース等の単糖類は、ヒトやその他の動物に対して、機能性成分として重要な役割を果たすと予想されるものである。   Monosaccharides such as mannose have been reported to have various physiologically active actions and have attracted attention as functional carbohydrates. For example, it has been elucidated at the cell level that mannose has various functions such as promotion of wound healing by inhibiting macrophage activation, inhibition of bacterial infection, and suppression of breast cancer cell growth. Recently, there are reports that oral administration of mannose suppresses the progression of diabetic cataract and improves symptoms in congenital glycation disorders. Therefore, in the future, monosaccharides such as mannose are expected to play an important role as functional components for humans and other animals.

一方、食品加工工場から排出される食品廃棄物等の産業廃棄物による環境汚染の問題は、社会問題となって久しく、各方面の努力にもかかわらず解決の糸口はなかなか見えてこないもどかしさがある。
食品廃棄物は、食品原料中の特定の有効成分を取り出した後の残留物であるが、タンパク質、脂肪分、繊維素等が数多く含まれているため、有効な機能性糖質の原料となり得る。
しかしながら、例えば、ビール粕、豆腐粕、フスマ、ミカンジュース粕等の食品廃棄物の多くは、水分含量が高いため腐敗し易いという欠点がある。また、食品廃棄物であるヤシ油抽出残渣粉砕物のコプラミールやパーム核油抽出残渣粉砕物のパーム核ミールについても、国内では一部飼料として用いられているものの、十分に有効利用されるには至ってはいない。
On the other hand, the problem of environmental pollution caused by industrial waste such as food waste discharged from food processing factories has long been a social problem, and despite the efforts of each side, the clues to solving it are difficult to see. is there.
Food waste is a residue after taking out specific active ingredients in food raw materials, but it can be an effective functional carbohydrate raw material because it contains many proteins, fats, fibrin etc. .
However, for example, many food wastes such as beer lees, tofu lees, bran, mandarin juice lees, etc. have a drawback of being easily rotted due to their high water content. In addition, copra meal of pulverized coconut oil extraction residue and palm kernel meal of pulverized palm kernel oil extraction residue, which are food wastes, are also used as feed in some parts of Japan. Not reached.

従来の検討において、食品廃棄物を原料としたマンノースの製造方法としては、ゾウゲヤシの種子から得られるマンナンを酸加水分解する方法(例えば、非特許文献1参照)、コプラミール又はパーム核ミールにヘミセルラーゼを作用させる方法(例えば、特許文献1参照)が報告されている。   In a conventional study, as a method for producing mannose using food waste as a raw material, a method of acid-hydrolyzing mannan obtained from seeds of elephant palm (see, for example, Non-Patent Document 1), hemicellulase into copra meal or palm kernel meal There has been reported a method of causing the effect to act (see, for example, Patent Document 1).

しかしながら、ゾウゲヤシの種子に存在するマンナンを単に酸加水分解のみ行う方法では、酸加水分解を過酷な条件(硫酸濃度75%)下で行わなければならず、しかも工程が繁雑であり、収率が低い等の問題もあった。さらに原料であるゾウゲヤシの供給量には限度があるため、得られるマンノースは極めて高価なものとなる問題があった。  However, in the method in which mannan present in the seeds of elephant palm is simply subjected to acid hydrolysis, the acid hydrolysis must be performed under severe conditions (sulfuric acid concentration 75%), and the process is complicated and the yield is high. There were also problems such as low. Furthermore, there is a problem that the amount of mannose obtained is extremely expensive because there is a limit to the amount of the raw material elephant palm.

さらにコプラミール又はパーム核ミールにヘミセルラーゼを作用させる方法(例えば、特許文献1参照)においても、ヘミセルラーゼからのマンノース遊離量が不十分であり、高価なヘミセルラーゼ等の酵素を大量に用いなければならない等の問題があるため、原料や酵素の特質等を踏まえると更なる改良の余地があった。   Furthermore, even in a method of causing hemicellulase to act on copra meal or palm kernel meal (for example, see Patent Document 1), the amount of mannose released from hemicellulase is insufficient, and a large amount of expensive enzyme such as hemicellulase must be used. There was room for further improvement based on the characteristics of raw materials and enzymes.

特開2002−51795号公報JP 2002-51795 A

H.S. Isbell,Method in Carbohydrate Chemistry, R.L.Wistler, M.L.Wolfrom Eds(Academic Press, New York,1962)pp 145−147H. S. Isbell, Method in Carbohydrate Chemistry, R.I. L. Wistler, M.C. L. Wolfram Eds (Academic Press, New York, 1962) pp 145-147

本発明の目的は、ヘミセルロースから単糖を効率的に遊離させることによって、安価かつ簡便に単糖を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing monosaccharides inexpensively and easily by efficiently releasing monosaccharides from hemicellulose.

本発明者らは、このような課題を解決するために、鋭意研究を重ねた結果、ヘミセルロースに酵素を作用させる前に、特定の条件下で加水分解処理をすることにより、酵素処理時にヘミセルロースの構成成分を分解する反応が効率的に進み、最終的に単糖の遊離量が増加することを見出し、本発明を完成するに至った。
すなわち、本発明の要旨は以下のとおりである。
(1)ヘミセルロースの酵素処理を含む単糖の製造方法であって、前記酵素処理の前にpH0.5〜2.5、反応温度60〜120℃の条件下、加水分解処理を行うことを特徴とする単糖の製造方法。
(2)前記ヘミセルロースが、マンナン、グルコマンナン、ガラクトマンナンから選ばれる少なくとも1種を構成成分とすることを特徴とする(1)記載の単糖の製造方法。
(3)ヘミセルロースを含有する植物を加水分解処理に供することを特徴とする(1)記載の単糖の製造方法。
(4)前記ヘミセルロースを含有する植物が、コプラミール、パーム核ミール、こんにゃく芋、グアーガムから選ばれる少なくとも1種である(3)記載の単糖の製造方法。
(5)前記酵素処理に用いられる酵素が、マンナナーゼ、ガラクトマンナナーゼ、グルコマンナナーゼ、β―マンノシダーゼ、α―キシロシダーゼ、キシログルカナーゼ、アラビナナーゼ、β―キシロシダーゼ、キシラナーゼ、α―アラビノフラノシダーゼである(1)〜(4)いずれかに記載の単糖の製造方法。
(6)前記加水分解処理に用いる酸が、塩酸、硫酸、シュウ酸、リン酸、クエン酸、フマル酸から選ばれる少なくとも1種であることを特徴とする(1)〜(5)いずれかに記載の単糖の製造方法。
(7)前記単糖がマンノースであることを特徴とする(1)〜(6)いずれかに記載の単糖の製造方法。
As a result of intensive research to solve such problems, the present inventors have conducted hydrolysis treatment under specific conditions before the enzyme is allowed to act on hemicellulose. It was found that the reaction for decomposing the constituents proceeded efficiently, and finally the amount of monosaccharide released increased, and the present invention was completed.
That is, the gist of the present invention is as follows.
(1) A method for producing a monosaccharide comprising an enzyme treatment of hemicellulose, wherein the hydrolysis treatment is performed under the conditions of pH 0.5 to 2.5 and reaction temperature 60 to 120 ° C. before the enzyme treatment. A method for producing monosaccharides.
(2) The method for producing a monosaccharide according to (1), wherein the hemicellulose contains at least one selected from mannan, glucomannan and galactomannan as a constituent component.
(3) The method for producing a monosaccharide according to (1), wherein a plant containing hemicellulose is subjected to a hydrolysis treatment.
(4) The method for producing a monosaccharide according to (3), wherein the plant containing hemicellulose is at least one selected from copra meal, palm kernel meal, konjac koji, and guar gum.
(5) The enzyme used for the enzyme treatment is mannanase, galactomannanase, glucomannanase, β-mannosidase, α-xylosidase, xyloglucanase, arabinanase, β-xylosidase, xylanase, α-arabinofuranosidase (1) -(4) The manufacturing method of the monosaccharide in any one.
(6) The acid used for the hydrolysis treatment is at least one selected from hydrochloric acid, sulfuric acid, oxalic acid, phosphoric acid, citric acid, and fumaric acid, and any one of (1) to (5) The manufacturing method of the monosaccharide of description.
(7) The method for producing a monosaccharide according to any one of (1) to (6), wherein the monosaccharide is mannose.

本発明によれば、原料ヘミセルロースを特定の条件下で加水分解処理をした後、酵素を作用させることにより、ヘミセルロースから単糖を効率的に遊離させ、安価かつ簡便に単糖を得ることができる。  According to the present invention, the raw material hemicellulose is hydrolyzed under specific conditions, and then the enzyme is allowed to act so that the monosaccharide can be efficiently released from hemicellulose and the monosaccharide can be obtained inexpensively and easily. .

以下、本発明を詳細に説明する。
本発明におけるヘミセルロースとは、植物細胞壁に含まれるもののうちセルロースを除いた多糖類をいい、具体的には、キシラン、アラビナン、キシログルカン、マンナン等を構成成分とするものである。その中でも、マンノース等の単糖を多く含有する観点から、マンナン、グルコマンナン、ガラクトマンナン等を構成成分とするものが好ましい。
Hereinafter, the present invention will be described in detail.
The hemicellulose in the present invention refers to a polysaccharide excluding cellulose among those contained in the plant cell wall, and specifically includes xylan, arabinan, xyloglucan, mannan and the like as constituent components. Among these, from the viewpoint of containing a large amount of monosaccharides such as mannose, those containing mannan, glucomannan, galactomannan and the like as constituent components are preferable.

本発明における原料ヘミセルロースを得る方法は特に限定されないが、パーム(アブラヤシ)、ココヤシ、ゾウゲヤシ、コーヒー、サイハイラン、こんにゃく芋、グアーガム等から抽出する方法が挙げられ、なかでも、マンノース等の単糖を多く含有する観点や低コストの観点から、こんにゃく芋、グアーガム、食品産業廃棄物であるコプラミール、パーム核ミールを用いることが好ましく、特にパーム核ミールがより好ましい。このような食品廃棄物を原料として用いることは、安価に製造する目的に則するだけでなく、廃棄物の有効利用という環境保護的側面からも非常に望ましい。  The method for obtaining the raw material hemicellulose in the present invention is not particularly limited, and examples thereof include a method of extracting from palm (oil palm), coconut palm, elephant palm, coffee, cyhylan, konjac koji, guar gum, etc. Among them, there are many monosaccharides such as mannose. From the viewpoint of inclusion and low cost, it is preferable to use konjac koji, guar gum, copra meal which is food industry waste, and palm kernel meal, and more preferably palm kernel meal. The use of such food waste as a raw material is very desirable not only for the purpose of manufacturing at low cost but also from the environmental protection aspect of effective use of waste.

本発明における単糖の製造方法においては、ヘミセルロースに酵素を作用させ単糖を遊離させるが、前記酵素処理を効率的に進めるために、前記酵素処理の前に特定の条件下で加水分解処理を行なうことが必要である。  In the method for producing monosaccharides in the present invention, an enzyme is allowed to act on hemicellulose to liberate monosaccharides, but in order to advance the enzyme treatment efficiently, hydrolysis treatment is performed under specific conditions before the enzyme treatment. It is necessary to do.

本発明における酵素処理前の加水分解条件としては、比較的穏やかな条件下で加水分解処理を行うことが必要であり、具体的にはpH0.5〜2.5、反応温度60〜120℃の条件下、加水分解処理を行うことが必要である。pH条件としては、pH0.5〜2.0が好ましく、pH0.5〜1.5がより好ましい。反応温度としては、80〜120℃が好ましく、90〜120℃がより好ましい。反応時間としては、特に限定されないが、0.1〜18時間が好ましく、反応時間と単糖遊離効果の観点から、1〜12時間がより好ましく、1.5〜6時間がいっそう好ましい。  As the hydrolysis conditions before the enzyme treatment in the present invention, it is necessary to perform the hydrolysis treatment under relatively mild conditions. Specifically, the pH is 0.5 to 2.5, and the reaction temperature is 60 to 120 ° C. Under the conditions, it is necessary to perform a hydrolysis treatment. As pH conditions, pH 0.5-2.0 are preferable and pH 0.5-1.5 are more preferable. As reaction temperature, 80-120 degreeC is preferable and 90-120 degreeC is more preferable. The reaction time is not particularly limited, but is preferably 0.1 to 18 hours, more preferably 1 to 12 hours, and even more preferably 1.5 to 6 hours, from the viewpoint of reaction time and monosaccharide releasing effect.

本発明における加水分解条件が、pH0.5〜2.5、反応温度60〜120℃を外れた場合、例えば、より穏やかな条件、即ち、pHがより中性側の条件、反応温度がより低い条件となった場合には、ヘミセルロースの側鎖に存する単糖成分の分解が不十分となるため、それに引続く酵素処理において、効率的に単糖を遊離させることができず好ましくない。例えば、より厳しい条件、即ち、pHがより酸性側の条件、反応温度がより高い条件となった場合には、ヘミセルロースの縮合等が起こるため、それに引続く酵素処理において、効率的に単糖を遊離させることができず好ましくない。なお、反応時間が18時間を超えた場合は、引続く酵素処理において、単糖の遊離効果が頭打ちとなるため、経済的な観点から好ましくない。   When the hydrolysis conditions in the present invention deviate from pH 0.5 to 2.5 and reaction temperature 60 to 120 ° C., for example, milder conditions, that is, conditions where pH is more neutral, reaction temperature is lower If the conditions are met, the monosaccharide component present in the side chain of hemicellulose will not be sufficiently decomposed, and the monosaccharide cannot be efficiently released in the subsequent enzyme treatment, which is not preferable. For example, under more severe conditions, i.e., conditions where the pH is more acidic, or conditions where the reaction temperature is higher, condensation of hemicellulose occurs and the like. It is not preferable because it cannot be liberated. In addition, when reaction time exceeds 18 hours, in the subsequent enzyme treatment, since the release effect of a monosaccharide reaches a peak, it is unpreferable from an economical viewpoint.

本発明における加水分解処理に用いる酸は特に限定されるものではなく、塩酸、硫酸、シュウ酸、リン酸、フマル酸、クエン酸等を用いることができるが、単糖遊離後の精製負荷の観点から、使用量を少なくできる塩酸、硫酸、シュウ酸がより好ましい。  The acid used for the hydrolysis treatment in the present invention is not particularly limited, and hydrochloric acid, sulfuric acid, oxalic acid, phosphoric acid, fumaric acid, citric acid and the like can be used. Therefore, hydrochloric acid, sulfuric acid, and oxalic acid that can reduce the amount used are more preferable.

本発明において、酵素処理前に前記の加水分解処理を行うことにより、酵素処理時にヘミセルロースから効率的に単糖を遊離させことができる理由は明らかではないが、比較的穏やかな条件下で加水分解処理をすることにより、ヘミセルロースの側鎖に存する単糖成分が優先的に分解するため、それに引続く酵素処理において、ヘミセルロース主鎖が容易に分解し易くなり、結果として効率的に単糖が遊離するものと考えられる。   In the present invention, the reason why the monosaccharide can be efficiently released from hemicellulose during the enzyme treatment by performing the hydrolysis treatment before the enzyme treatment is not clear, but the hydrolysis is performed under relatively mild conditions. By the treatment, the monosaccharide component existing in the side chain of hemicellulose is preferentially decomposed, so that in the subsequent enzyme treatment, the hemicellulose main chain is easily decomposed, and as a result, the monosaccharide is efficiently released. It is thought to do.

本発明における酵素処理に用いる酵素としては、ヘミセルラーゼに作用して単糖を遊離する活性を有する酵素であれば特に限定されないが、例えば、マンナナーゼ、ガラクトマンナナーゼ、グルコマンナナーゼ、β―マンノシダーゼ、α―キシロシダーゼ、キシログルカナーゼ、アラビナナーゼ、β―キシロシダーゼ、キシラナーゼ、α―アラビノフラノシダーゼ等のヘミセルロースの主鎖に作用する酵素が好ましい。その中でも、マンナン、グルコマンナン、又はガラクトマンナンに作用するマンナナーゼ、マンノシダーゼ等のマンノース分解酵素が好ましい。   The enzyme used for the enzyme treatment in the present invention is not particularly limited as long as it is an enzyme having an activity of acting on hemicellulase to release a monosaccharide. For example, mannanase, galactomannanase, glucomannanase, β-mannosidase, α- Enzymes that act on the main chain of hemicellulose, such as xylosidase, xyloglucanase, arabinanase, β-xylosidase, xylanase, α-arabinofuranosidase, are preferred. Among them, mannose degrading enzymes such as mannanase and mannosidase that act on mannan, glucomannan, or galactomannan are preferable.

本発明においてヘミセルロースの主鎖に作用する酵素が特に好ましい理由は明らかではないが、前記の穏やかな条件下での加水分解前処理において、ヘミセルロースの分岐した側鎖が分解されることから、ヘミセルロースの主鎖に選択的に作用する酵素がより好ましいものと推測している。   The reason why the enzyme acting on the main chain of hemicellulose is not particularly preferred in the present invention is not clear, but the branched side chain of hemicellulose is decomposed in the hydrolysis pretreatment under the mild conditions described above. It is speculated that an enzyme that selectively acts on the main chain is more preferable.

なお、必要に応じて、ヘミセルロースの分岐した側鎖に存在するグルコースやガラクトース等を遊離する酵素であるグルコシダーゼ、ガラクトシダーゼ等を主鎖に作用する酵素と合わせて用いることもできる。さらに、これら異なる活性を有する2種類以上の酵素を混合することにより単糖収量を上げることができる。また、使用する酵素はその酵素の起源である菌株の培養物のうち、単糖を遊離する活性を有するいかなる画分を用いてもよく、また必要に応じてこれらの酵素を含有する画分を常法により精製あるいは部分精製して使用することもできる。   If necessary, glucosidase, galactosidase, or the like, which is an enzyme that liberates glucose, galactose, or the like present in the branched side chain of hemicellulose can be used in combination with an enzyme that acts on the main chain. Furthermore, the yield of monosaccharides can be increased by mixing two or more enzymes having different activities. In addition, the enzyme to be used may be any fraction of the culture of the strain that is the source of the enzyme, which has an activity to liberate monosaccharides, and if necessary, a fraction containing these enzymes. It can also be used after purification or partial purification by conventional methods.

本発明における酵素処理においては、酵素処理時のpHを酵素の至適pHに調製するために、有機酸、無機酸を添加することができる。有機酸としては、シュウ酸、酢酸、プロピオン酸、蟻酸、酢酸、乳酸、フマル酸、クエン酸等が挙げられ、無機酸としては、塩酸、硫酸、リン酸等を挙げられる。   In the enzyme treatment in the present invention, an organic acid or an inorganic acid can be added in order to adjust the pH during the enzyme treatment to the optimum pH of the enzyme. Examples of the organic acid include oxalic acid, acetic acid, propionic acid, formic acid, acetic acid, lactic acid, fumaric acid, citric acid, and the like, and examples of the inorganic acid include hydrochloric acid, sulfuric acid, phosphoric acid, and the like.

本発明においては、特定条件下での加水分解処理後に酵素を作用させることにより、ヘミセルロースが効率的に分解され、マンノース、グルコース、ガラクトース、フルクトース、アラビノース等の単糖が遊離した単糖液を得ることができる。得られた単糖液は、必要に応じて精製を行い、単糖の含有率をさらに高めることが可能である。精製法としては、骨炭、活性炭、炭酸飽充法、吸着樹脂、マグネシア法などで脱色を行い、イオン交換樹脂、イオン交換膜、電気透析等で脱塩、脱酸を行うなど、公知の方法により行なうことができる。精製法の組み合わせおよび精製条件としては、単糖を含む反応液中の色素、塩、および酸等の量およびその他の要因に応じて適宜選択すればよい。   In the present invention, by allowing the enzyme to act after hydrolysis under specific conditions, hemicellulose is efficiently decomposed to obtain a monosaccharide solution in which monosaccharides such as mannose, glucose, galactose, fructose, and arabinose are released. be able to. The obtained monosaccharide liquid can be purified as necessary to further increase the monosaccharide content. Purification methods include bone charcoal, activated carbon, carbonic acid saturation method, adsorption resin, magnesia method, etc., deionization and deoxidation by ion exchange resin, ion exchange membrane, electrodialysis, etc. Can be done. The combination of the purification methods and the purification conditions may be appropriately selected according to the amount of pigment, salt, acid, etc. in the reaction solution containing the monosaccharide and other factors.

以下に、実施例を掲げて更に具体的に本発明の方法を説明するが、本発明の技術的範囲は以下の例に制限されるものではない。  Hereinafter, the method of the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to the following examples.

<単糖の分析>
単糖の濃度はHPLCにより分析した。分析条件を以下に示す。
(1)ガラクトース、マンノース、フルクトースの分析条件
HPLC分析条件カラム:Aminex HPX87P(7.8×300mm、BI O RAD製)、移動相:水、流速:0.6mL/min、カラム温度:60℃、 検出:示差屈折計(RI)。
(2)グルコース、アラビノースの分析条件
HPLC分析条件カラム:Aminex HPX87H(7.8×300mm、BI O RAD製)、移動相:0.005N 硫酸、流速:0.6mL/min、カラ ム温度:60℃、検出:示差屈折計(RI)。
標準物質 グルコース: 商品名「D−(+)−グルコース」(ナカライテクス製)
ガラクトース: 商品名「D−(+)−ガラクトース」(ナカライテクス製)
アラビノース: 商品名「L−(+)−アラビノース」(ナカライテクス製)
マンノース: 商品名「D−(+)−マンノース」(ナカライテクス製)
フルクトース: 商品名「D−(−)−フルクトース」(ナカライテクス製)
<Analysis of monosaccharides>
The concentration of monosaccharide was analyzed by HPLC. The analysis conditions are shown below.
(1) Analytical conditions for galactose, mannose, fructose HPLC analytical condition column: Aminex HPX87P (7.8 × 300 mm, manufactured by BI O RAD), mobile phase: water, flow rate: 0.6 mL / min, column temperature: 60 ° C. Detection: differential refractometer (RI).
(2) Glucose and arabinose analysis conditions HPLC analysis condition column: Aminex HPX87H (7.8 × 300 mm, manufactured by BIORAD), mobile phase: 0.005N sulfuric acid, flow rate: 0.6 mL / min, column temperature: 60 ° C, detection: differential refractometer (RI).
Standard substance Glucose: Trade name “D-(+)-Glucose” (manufactured by Nacalai Techs)
Galactose: Trade name “D-(+)-galactose” (manufactured by Nacalai Techs)
Arabinose: Trade name “L-(+)-arabinose” (manufactured by Nacalai Techs)
Mannose: Product name “D-(+)-Mannose” (manufactured by Nakarai Tex)
Fructose: Product name "D-(-)-Fructose" (manufactured by Nakarai Tex)

実施例1
パーム核ミール(カーギル社製)1gに、水4.8mL、1M塩酸1.2mLを加え、pH1.3に調整した後、100℃、2時間の加水分解処理を行った。放冷後、1M水酸化ナトリウム0.4mL、水4.6mLを添加してpH3.6に調整後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.003gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分で酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Example 1
4.8 mL of water and 1.2 mL of 1M hydrochloric acid were added to 1 g of palm kernel meal (manufactured by Cargill) to adjust the pH to 1.3, followed by hydrolysis at 100 ° C. for 2 hours. After allowing to cool, 0.4 mL of 1 M sodium hydroxide and 4.6 mL of water were added to adjust the pH to 3.6, and then 0.003 g of the enzyme cellulosin GM5 (mannanase manufactured by HBI, unit number: 10,000 units / g) was added. After shaking for 48 hours at 60 ° C. and enzyme treatment, enzyme inactivation was carried out at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

実施例2
パーム核ミール(カーギル社製)1gに、水5.52mL、1M硫酸0.48mLを加え、pH1.3に調整した後、100℃、2時間の加水分解処理を行った。放冷後、1M水酸化ナトリウム0.67mL、水4.33mLを添加してpH3.6に調整後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.003gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Example 2
After adding 5.52 mL of water and 0.48 mL of 1M sulfuric acid to 1 g of palm kernel meal (manufactured by Cargill), the pH was adjusted to 1.3, followed by hydrolysis at 100 ° C. for 2 hours. After cooling, 0.67 mL of 1M sodium hydroxide and 4.33 mL of water were added to adjust the pH to 3.6, and then 0.003 g of the enzyme cellulosin GM5 (manufactured by HBI, mannanase, unit: 10,000 units / g) was added, After shaking at 60 ° C. for 48 hours to perform enzyme treatment, the enzyme was inactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

実施例3
パーム核ミール(カーギル社製)1gに、水4.0mL、1Mシュウ酸2.0mLを加え、pH1.3に調整した後、100℃、2時間の加水分解処理を行った。放冷後、1M水酸化ナトリウム2.1mL、水2.9mLを添加してpH3.6に調整後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.003gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Example 3
After adding 4.0 mL of water and 2.0 mL of 1M oxalic acid to 1 g of palm kernel meal (manufactured by Cargill), the pH was adjusted to 1.3, followed by hydrolysis at 100 ° C. for 2 hours. After cooling, 2.1 mL of 1M sodium hydroxide and 2.9 mL of water were added to adjust the pH to 3.6, and then the enzyme cellulosin GM5 (manufactured by HBI, mannanase, unit number: 10,000 units / g) was added, After shaking at 60 ° C. for 48 hours to perform enzyme treatment, the enzyme was inactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

比較例1
パーム核ミール(カーギル社製)1gに水10.8mL、1Mシュウ酸0.2mLを加え、pH3.6に調整した後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.003gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。なお、酵素処理前の加水分解処理は行わなかった。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Comparative Example 1
After adding 10.8 mL of water and 0.2 mL of 1M oxalic acid to 1 g of palm kernel meal (manufactured by Cargill) and adjusting to pH 3.6, the enzyme cellulosin GM5 (mannanase manufactured by HBI, unit number: 10,000 units / g) 0 0.003 g was added, and the mixture was shaken at 60 ° C. for 48 hours to perform enzyme treatment, followed by enzyme inactivation at 100 ° C. for 10 minutes. In addition, the hydrolysis process before an enzyme process was not performed. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

比較例2
パーム核ミール(カーギル社製)1gに水6.0mL加え、pH7.0にて、100℃、2時間の加水分解処理を行った。放冷後、1Mシュウ酸0.17mL、水4.83mLを添加して、pH3.6に調整した後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.003gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Comparative Example 2
6.0 mL of water was added to 1 g of palm kernel meal (manufactured by Cargill), and hydrolysis treatment was performed at 100 ° C. for 2 hours at pH 7.0. After cooling, 0.17 mL of 1M oxalic acid and 4.83 mL of water were added to adjust the pH to 3.6, and then 0.003 g of the enzyme cellulosin GM5 (mannanase manufactured by HBI, unit number: 10,000 units / g) was added. The mixture was shaken at 60 ° C. for 48 hours to perform enzyme treatment, and then the enzyme was inactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

比較例3
パーム核ミール(カーギル社製)1gに水5.85mL、1Mシュウ酸0.15mLを加え、pH4.0に調整した後、100℃、2時間の加水分解処理を行った。放冷後、1Mシュウ酸0.02mL、水4.98mLを添加してpH3.6に調整後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.003gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Comparative Example 3
Water (855 mL) and 1M oxalic acid (0.15 mL) were added to 1 g of palm kernel meal (manufactured by Cargill) to adjust the pH to 4.0, followed by hydrolysis at 100 ° C. for 2 hours. After allowing to cool, 0.02 mL of 1M oxalic acid and 4.98 mL of water were added to adjust the pH to 3.6, and then 0.003 g of the enzyme cellulosin GM5 (mannanase manufactured by HBI, unit number: 10,000 units / g) was added, After shaking at 48 ° C. for 48 hours to carry out the enzyme treatment, the enzyme was inactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

比較例4
パーム核ミール(カーギル社製)1gに水1.45mL、1M硫酸4.21mLを加え、pH0に調整した後、100℃、2時間の加水分解処理を行った。放冷後、1M水酸化ナトリウム1.78mL、水4.21mLを添加してpH3.6に調整後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.003gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Comparative Example 4
1.45 mL of water and 4.21 mL of 1M sulfuric acid were added to 1 g of palm kernel meal (manufactured by Cargill) and adjusted to pH 0, followed by hydrolysis at 100 ° C. for 2 hours. After allowing to cool, 1.78 mL of 1M sodium hydroxide and 4.21 mL of water were added to adjust the pH to 3.6, and then 0.003 g of the enzyme cellulosin GM5 (mannanase manufactured by HBI, unit number: 10,000 units / g) was added, After shaking at 60 ° C. for 48 hours to perform enzyme treatment, the enzyme was inactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

比較例5
実施例3と同様の条件にて、酵素処理前の加水分解処理のみを行ったのち、実施例3のろ液量と同様とするため、水5mLを加えた。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Comparative Example 5
After performing only the hydrolysis treatment before the enzyme treatment under the same conditions as in Example 3, 5 mL of water was added in the same manner as the filtrate amount in Example 3. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

実施例1〜3、比較例1〜5について得られた糖成分の分析結果を表1に示す。   Table 1 shows the analysis results of the sugar components obtained for Examples 1 to 3 and Comparative Examples 1 to 5.

表1に示したように、本発明の条件下加水分解処理を行った後に酵素処理を行なった実施例1〜3においては、前記加水分解処理を行わなかった比較例1、前記加水分解処理条件を外れた加水分解処理を行った比較例2〜4、前記加水分解処理のみを行った比較例5と比べて、単糖の遊離量が顕著に増大し、本発明の単糖の製造方法が、安価かつ簡便な単糖の製造方法として極めて有効であることが明らかとなった。 As shown in Table 1, in Examples 1 to 3 in which the enzyme treatment was performed after the hydrolysis treatment under the conditions of the present invention, Comparative Example 1 in which the hydrolysis treatment was not performed, the hydrolysis treatment conditions In comparison with Comparative Examples 2 to 4 in which the hydrolysis treatment was removed, and in Comparative Example 5 in which only the hydrolysis treatment was performed, the amount of monosaccharide released was significantly increased, and the method for producing a monosaccharide of the present invention was It was revealed that the method is extremely effective as an inexpensive and simple method for producing monosaccharides.

実施例4
こんにゃく芋精粉(商品名「手作りこんにゃくの精粉」、JA全農ぐんま社製)30gに、水580mL、1M塩酸20mLを加え、pH1.3に調整した後、100℃、2時間の加水分解処理を行った。放冷後、1M水酸化ナトリウム6.3mL、水13.3mLを添加してpH3.6に調整した後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.15gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Example 4
After adding 580 mL of water and 20 mL of 1M hydrochloric acid to 30 g of konjac koji fine powder (trade name “handmade konjac flour”, manufactured by JA Zenno Gunma Co., Ltd.), adjusting to pH 1.3, followed by hydrolysis at 100 ° C. for 2 hours Went. After allowing to cool, 1M sodium hydroxide (6.3 mL) and water (13.3 mL) were added to adjust the pH to 3.6, and then the enzyme cellulosin GM5 (manufactured by HBI, mannanase, unit number: 10,000 units / g) was added. The mixture was shaken at 60 ° C. for 48 hours to perform enzyme treatment, and then the enzyme was inactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

実施例5
こんにゃく芋精粉(商品名「手作りこんにゃくの精粉」、JA全農ぐんま社製)30gに、水593mL、1M硫酸7mLを加え、pH1.3に調整した後、100℃、2時間の加水分解処理を行った。放冷後、1M水酸化ナトリウム12mL、水8mLを添加し、pH3.6に調整した後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.15gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Example 5
After adding 593 mL of water and 7 mL of 1M sulfuric acid to 30 g of konjac koji fine powder (trade name “handmade konjac fine powder”, manufactured by JA Zenno Gunma Co., Ltd.), adjusting the pH to 1.3, followed by hydrolysis at 100 ° C. for 2 hours Went. After allowing to cool, 12 mL of 1M sodium hydroxide and 8 mL of water were added and adjusted to pH 3.6, and then 0.15 g of the enzyme cellulosin GM5 (manufactured by HBI, mannanase, unit number: 10,000 units / g) was added at 60 ° C. After 48 hours of shaking and enzyme treatment, the enzyme was inactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

実施例6
こんにゃく芋精粉(商品名「手作りこんにゃくの精粉」、JA全農ぐんま社製)30gに、水566mL、1Mシュウ酸34mLを加え、pH1.3に調整した後、100℃、2時間の加水分解処理を行った。放冷後、1M水酸化ナトリウム20mL添加し、pH3.6に調整した後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.15gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Example 6
Add 30 ml of konjac koji fine powder (trade name “handmade konjac fine powder”, manufactured by JA Zenno Gunma Co., Ltd.) to 51.3 ml of water and 34 ml of 1M oxalic acid, adjust to pH 1.3, and then hydrolyze at 100 ° C. for 2 hours. Processed. After cooling, 20 mL of 1M sodium hydroxide was added to adjust the pH to 3.6, and then 0.15 g of the enzyme cellulosin GM5 (HBI mannanase, unit: 10,000 units / g) was added and shaken at 60 ° C. for 48 hours. After enzyme treatment, the enzyme was inactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

比較例6
こんにゃく芋精粉(商品名「手作りこんにゃくの精粉」、JA全農ぐんま社製)30gに、水615mL、1M硫酸5mLを加え、pH3.6に調整した後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.15gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。なお、酵素処理前の加水分解処理は行わなかった。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Comparative Example 6
After adding 615 mL of water and 5 mL of 1M sulfuric acid to 30 g of konjac koji fine powder (trade name “handmade konjac fine powder” manufactured by JA Zenno Gunma Co., Ltd.) and adjusting to pH 3.6, the enzyme cellulosin GM5 (mannanase, unit made by HBI) (Number: 10,000 units / g) 0.15 g was added, and the mixture was shaken at 60 ° C. for 48 hours to carry out the enzyme treatment, followed by enzyme inactivation at 100 ° C. for 10 minutes. In addition, the hydrolysis process before an enzyme process was not performed. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

比較例7
こんにゃく芋精粉(商品名「手作りこんにゃくの精粉」、JA全農ぐんま社製)30gに、水600mL加え、pH7.0にて、100℃、2時間の加水分解処理を行った。放冷後、1M硫酸5mL、水15mLを加え、pH3.6に調整した後、酵素セルロシンGM5(HBI製 マンナナーゼ、ユニット数:10,000unit/g)0.15gを加え、60℃で48時間振とうし、酵素処理を行なった後、100℃10分の酵素失活を行った。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Comparative Example 7
600 ml of water was added to 30 g of konjac koji fine powder (trade name “handmade konjac fine powder”, manufactured by JA Zenno Gunma Co., Ltd.), and hydrolyzed at 100 ° C. for 2 hours at pH 7.0. After standing to cool, 5 mL of 1 M sulfuric acid and 15 mL of water were added to adjust the pH to 3.6, and then 0.15 g of the enzyme cellulosin GM5 (HBI mannanase, unit number: 10,000 units / g) was added and shaken at 60 ° C. for 48 hours. After the enzyme treatment, the enzyme was deactivated at 100 ° C. for 10 minutes. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

比較例8
実施例6と同様の条件にて、酵素処理前の加水分解処理のみを行った後、実施例6のろ液量と同様とするため、水20mLを加えた。得られた粗糖液を珪藻土ろ過し、ろ液の糖成分の分析を行った。
Comparative Example 8
After performing only the hydrolysis treatment before the enzyme treatment under the same conditions as in Example 6, 20 mL of water was added in the same manner as the filtrate amount in Example 6. The obtained crude sugar liquid was filtered through diatomaceous earth, and the sugar component of the filtrate was analyzed.

実施例4〜6、比較例6〜8について得られた糖成分の分析結果を表2に示す。   The analysis results of the sugar components obtained for Examples 4 to 6 and Comparative Examples 6 to 8 are shown in Table 2.

表2に示したように、本発明の条件下加水分解処理を行った後に酵素処理を行なった実施例4〜6においては、前記加水分解処理を行わなかった比較例6、前記加水分解処理条件を外れた加熱処理を行った比較例7、前記加水分解処理のみを行った比較例8と比べて、単糖の遊離量が顕著に増大し、本発明の単糖の製造方法が、安価かつ簡便な単糖の製造方法として極めて有効であることが明らかとなった。   As shown in Table 2, in Examples 4 to 6 in which the enzyme treatment was performed after the hydrolysis treatment under the conditions of the present invention, Comparative Example 6 in which the hydrolysis treatment was not performed, and the hydrolysis treatment conditions In comparison with Comparative Example 7 in which the heat treatment was removed from the above, and Comparative Example 8 in which only the hydrolysis treatment was performed, the amount of monosaccharide released was significantly increased, and the method for producing a monosaccharide of the present invention was inexpensive and It became clear that it was extremely effective as a simple method for producing monosaccharides.

Claims (7)

ヘミセルロースの酵素処理を含む単糖の製造方法であって、前記酵素処理の前にpH0.5〜2.5、反応温度60〜120℃の条件下、加水分解処理を行うことを特徴とする単糖の製造方法。 A method for producing a monosaccharide comprising an enzyme treatment of hemicellulose, wherein the hydrolysis treatment is performed under the conditions of pH 0.5 to 2.5 and reaction temperature 60 to 120 ° C. before the enzyme treatment. A method for producing sugar. 前記ヘミセルロースが、マンナン、グルコマンナン、ガラクトマンナンから選ばれる少なくとも1種を構成成分とすることを特徴とする請求項1記載の単糖の製造方法。 The method for producing a monosaccharide according to claim 1, wherein the hemicellulose contains at least one selected from mannan, glucomannan and galactomannan as a constituent component. ヘミセルロースを含有する植物を加水分解処理に供することを特徴とする請求項1記載の単糖の製造方法。 The method for producing a monosaccharide according to claim 1, wherein a plant containing hemicellulose is subjected to a hydrolysis treatment. 前記ヘミセルロースを含有する植物が、コプラミール、パーム核ミール、こんにゃく芋、グアーガムから選ばれる少なくとも1種である請求項3記載の単糖の製造方法。 The method for producing a monosaccharide according to claim 3, wherein the plant containing hemicellulose is at least one selected from copra meal, palm kernel meal, konjac koji, and guar gum. 前記酵素処理に用いられる酵素が、マンナナーゼ、ガラクトマンナナーゼ、グルコマンナナーゼ、β―マンノシダーゼ、α―キシロシダーゼ、キシログルカナーゼ、アラビナナーゼ、β―キシロシダーゼ、キシラナーゼ、α―アラビノフラノシダーゼである請求項1〜4いずれか1項に記載の単糖の製造方法。 The enzyme used for the enzyme treatment is mannanase, galactomannanase, glucomannanase, β-mannosidase, α-xylosidase, xyloglucanase, arabinanase, β-xylosidase, xylanase, α-arabinofuranosidase. A process for producing the monosaccharide according to claim 1. 前記加水分解処理に用いる酸が、塩酸、硫酸、シュウ酸、リン酸、クエン酸、フマル酸から選ばれる少なくとも1種であることを特徴とする請求項1〜5いずれか1項に記載の単糖の製造方法。 The acid used in the hydrolysis treatment is at least one selected from hydrochloric acid, sulfuric acid, oxalic acid, phosphoric acid, citric acid, and fumaric acid. A method for producing sugar. 前記単糖がマンノースであることを特徴とする請求項1〜6いずれか1項に記載の単糖の製造方法。
















The method for producing a monosaccharide according to any one of claims 1 to 6, wherein the monosaccharide is mannose.
















JP2010132044A 2010-06-09 2010-06-09 Monosaccharide production method Active JP5807273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010132044A JP5807273B2 (en) 2010-06-09 2010-06-09 Monosaccharide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132044A JP5807273B2 (en) 2010-06-09 2010-06-09 Monosaccharide production method

Publications (2)

Publication Number Publication Date
JP2011254753A true JP2011254753A (en) 2011-12-22
JP5807273B2 JP5807273B2 (en) 2015-11-10

Family

ID=45471675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132044A Active JP5807273B2 (en) 2010-06-09 2010-06-09 Monosaccharide production method

Country Status (1)

Country Link
JP (1) JP5807273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035875A1 (en) * 2014-09-05 2016-03-10 東レ株式会社 Method for producing sugar liquid
JP2016067290A (en) * 2014-09-30 2016-05-09 株式会社ダイセル Production method of composition containing mannose and/or mannooligosaccharide
CN108220309A (en) * 2016-12-10 2018-06-29 中国科学院大连化学物理研究所 A kind of endo cellulase encoding gene and its preparation and application
JP2021159064A (en) * 2020-04-01 2021-10-11 陝西理工大学 Konjac powder multienzyme hydrolysate and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312997A (en) * 1988-06-08 1989-12-18 Uop Inc Combination method for producing selected monosaccharide from corn grain coat by hydrolysis
JPH10117800A (en) * 1996-08-30 1998-05-12 Akita Pref Gov Production of monosaccharide, oligosaccharide and solubilized polysaccharide
JPH11113600A (en) * 1997-10-13 1999-04-27 Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai Production of water-soluble saccharide from grain hull
JPH11137288A (en) * 1997-02-17 1999-05-25 Osaka City Production of mannose
JP2000070000A (en) * 1998-08-28 2000-03-07 Sanwa Kosan Kk Production of d-mannose by acid hydrolysis
JP2005239979A (en) * 2004-02-27 2005-09-08 Junichi Nemoto Process for separation of phosphoric acid and lignocellulose hydrolysate, and preparation process of glucose
JP2008141998A (en) * 2006-12-08 2008-06-26 Nippon Koonsutaac Kk Method for producing l-arabinose-containing composition
WO2009071996A2 (en) * 2007-12-05 2009-06-11 Adisseo France S.A.S. Biocarburant preparation using pencillium funi culosum imi 378536 enzymes
JP2009189291A (en) * 2008-02-14 2009-08-27 National Agriculture & Food Research Organization Saccharifying method for cellulose-containing biomass
WO2009149027A2 (en) * 2008-06-02 2009-12-10 Eudes De Crecy A method of producing fatty acids for biofuel, biodiesel, and other valuable chemicals
JP2010057464A (en) * 2008-09-08 2010-03-18 Unitika Ltd Method for producing l-arabinose-containing material or l-arabinose

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312997A (en) * 1988-06-08 1989-12-18 Uop Inc Combination method for producing selected monosaccharide from corn grain coat by hydrolysis
JPH10117800A (en) * 1996-08-30 1998-05-12 Akita Pref Gov Production of monosaccharide, oligosaccharide and solubilized polysaccharide
JPH11137288A (en) * 1997-02-17 1999-05-25 Osaka City Production of mannose
JPH11113600A (en) * 1997-10-13 1999-04-27 Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai Production of water-soluble saccharide from grain hull
JP2000070000A (en) * 1998-08-28 2000-03-07 Sanwa Kosan Kk Production of d-mannose by acid hydrolysis
JP2005239979A (en) * 2004-02-27 2005-09-08 Junichi Nemoto Process for separation of phosphoric acid and lignocellulose hydrolysate, and preparation process of glucose
JP2008141998A (en) * 2006-12-08 2008-06-26 Nippon Koonsutaac Kk Method for producing l-arabinose-containing composition
WO2009071996A2 (en) * 2007-12-05 2009-06-11 Adisseo France S.A.S. Biocarburant preparation using pencillium funi culosum imi 378536 enzymes
JP2009189291A (en) * 2008-02-14 2009-08-27 National Agriculture & Food Research Organization Saccharifying method for cellulose-containing biomass
WO2009149027A2 (en) * 2008-06-02 2009-12-10 Eudes De Crecy A method of producing fatty acids for biofuel, biodiesel, and other valuable chemicals
JP2010057464A (en) * 2008-09-08 2010-03-18 Unitika Ltd Method for producing l-arabinose-containing material or l-arabinose

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035875A1 (en) * 2014-09-05 2016-03-10 東レ株式会社 Method for producing sugar liquid
JPWO2016035875A1 (en) * 2014-09-05 2017-06-15 東レ株式会社 Method for producing sugar solution
US10781466B2 (en) 2014-09-05 2020-09-22 Toray Industries, Inc. Method of producing sugar liquid
JP2016067290A (en) * 2014-09-30 2016-05-09 株式会社ダイセル Production method of composition containing mannose and/or mannooligosaccharide
CN108220309A (en) * 2016-12-10 2018-06-29 中国科学院大连化学物理研究所 A kind of endo cellulase encoding gene and its preparation and application
CN108220309B (en) * 2016-12-10 2021-05-11 中国科学院大连化学物理研究所 Endo-cellulase coding gene and preparation and application thereof
JP2021159064A (en) * 2020-04-01 2021-10-11 陝西理工大学 Konjac powder multienzyme hydrolysate and preparation method thereof

Also Published As

Publication number Publication date
JP5807273B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
US10954276B2 (en) Enzyme-based protein separation and enrichment from soy meal, wheat meal, and other protein-rich materials derived from plant seeds, fruits and other biomass
EP2007817B1 (en) Compositions of water soluble beta-glucans
US20120190093A1 (en) Method for producing b-glucanase and xylanase using fungus body debris, and liquid culture medium
JP5807273B2 (en) Monosaccharide production method
CN101778947B (en) Nutritional compositions
JP4789501B2 (en) Method for producing cellulase
JPWO2009022415A1 (en) Method for producing cellulase and cellooligosaccharide
Rahman et al. Substrate specificity of the α-l-arabinofuranosidase from Rhizomucor pusillus HHT-1
JPH11137288A (en) Production of mannose
JP2009207462A (en) Method for producing sugar for synthetic raw material
JP2002101876A (en) New beta-glucosidase
JP5339500B2 (en) Mannose purification method
TWI429748B (en) Cellulase and fiber oligosaccharide production method
JP2001231591A (en) Method of producing mannose and/or mannose oligosaccharide
JPH1118793A (en) Production of mannobiose
JP5069576B2 (en) Enzyme composition capable of accumulating high concentration of cellobiose and method for producing cellooligosaccharides using the same
JP5873635B2 (en) Method for producing monosaccharide-containing composition
JP7088483B2 (en) Manufacturing method of water-soluble dietary fiber composition, manufacturing method of food and drink, and novel microorganisms
JP5038181B2 (en) Method for producing cellulase and cellooligosaccharide
JP5260007B2 (en) Method for saccharification of celluloses
US10119156B2 (en) Glucose production method and glucose produced by said method
JP2000139490A (en) Production of mannose and mannooligosaccharide
JP2004033002A (en) Method for producing l-arabinose and method for producing substance treated with l-arabinose-containing enzyme
JP2000253895A (en) Partially acetylated chitosan, chitooligosaccharide mixture and production of chitooligosaccharide
KR20080090777A (en) Process for manufacturing tagatose using by-product produced from processes for isolated soy protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150811

R150 Certificate of patent or registration of utility model

Ref document number: 5807273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250