JP4789501B2 - Method for producing cellulase - Google Patents

Method for producing cellulase Download PDF

Info

Publication number
JP4789501B2
JP4789501B2 JP2005125975A JP2005125975A JP4789501B2 JP 4789501 B2 JP4789501 B2 JP 4789501B2 JP 2005125975 A JP2005125975 A JP 2005125975A JP 2005125975 A JP2005125975 A JP 2005125975A JP 4789501 B2 JP4789501 B2 JP 4789501B2
Authority
JP
Japan
Prior art keywords
cellulase
cellulose
cellooligosaccharide
producing
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005125975A
Other languages
Japanese (ja)
Other versions
JP2006296358A (en
JP2006296358A5 (en
Inventor
有亮 山崎
一郎 伊吹
光二 井阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005125975A priority Critical patent/JP4789501B2/en
Publication of JP2006296358A publication Critical patent/JP2006296358A/en
Publication of JP2006296358A5 publication Critical patent/JP2006296358A5/ja
Application granted granted Critical
Publication of JP4789501B2 publication Critical patent/JP4789501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、β−グルコシダーゼ活性の混入が低いセルラーゼを特別な精製工程を経ずに簡便に得るセルラーゼの製造方法に関する。さらに、β−グルコシダーゼ活性の混入が低いセルラーゼを使用し、セロオリゴ糖を選択的に高収率で生産するセロオリゴ糖の製造方法に関する。   The present invention relates to a method for producing cellulase, which easily obtains a cellulase with low β-glucosidase activity contamination without going through a special purification step. Furthermore, the present invention relates to a method for producing cellooligosaccharide, which uses cellulase with low β-glucosidase activity and selectively produces cellooligosaccharide in high yield.

セロオリゴ糖は、セロビオース、セロトリオース、セロテトラオース、セロペンタオース、セロヘキサオースの総称であり、グルコピラノース単位の1〜6個がβ−1,4結合した諸糖類である。
近年、セロオリゴ糖は、他のオリゴ糖と同様に、その生理機能が明らかになりつつあり、機能性食品の新素材として期待されている(非特許文献1参照)。
セロオリゴ糖を生産するに当たりセルロースの酵素分解反応系では、分解生成物として得られたセロオリゴ糖が、セルラーゼ中の酵素成分であるβ−グルコシダーゼにより、さらにグルコース単位へ分解されることで、セロオリゴ糖の収率が低下することが課題であった(非特許文献2参照)。
上記課題に絡み、従来、セルロース酵素分解時のセロオリゴ糖の収率向上を目的として多くの試みがなされてきた。
Cellooligosaccharide is a general term for cellobiose, cellotriose, cellotetraose, cellopentaose and cellohexaose, and is a variety of sugars in which 1 to 6 glucopyranose units are linked by β-1,4.
In recent years, cellooligosaccharides, like other oligosaccharides, are becoming clearer in physiological function and are expected as new materials for functional foods (see Non-Patent Document 1).
In producing cellooligosaccharide, in the enzymatic degradation system of cellulose, cellooligosaccharide obtained as a degradation product is further decomposed into glucose units by β-glucosidase which is an enzyme component in cellulase. The problem is that the yield decreases (see Non-Patent Document 2).
In the past, many attempts have been made to improve the yield of cellooligosaccharides during the enzymatic degradation of cellulose.

セルラーゼを使用し、セルロースを酵素分解することによりセロオリゴ糖を選択的に得る方法としては以下のものが挙げられる。
特許文献1には、非結晶性セルロースを多く含むセルロース原料を用い、セルラーゼによる加水分解反応をリグニンの存在下で行わせるとともに、加水分解反応により生成されるセロオリゴ糖のうち少なくともセロビオースを随時反応液から採取するセロオリゴ糖の製造方法が開示され、特許文献2には、天然リグノセルロースを含む原料を蒸解して蒸解後に乾燥を経ずに得られるウェットパルプを、セルラーゼにより部分加水分解してセロオリゴ糖のうち少なくともセロビオースを採取するセロオリゴ糖の製造方法が開示されている。
Examples of methods for selectively obtaining cellooligosaccharides by using cellulase and enzymatically decomposing cellulose include the following.
In Patent Document 1, a cellulose raw material containing a large amount of non-crystalline cellulose is used, and a hydrolysis reaction with cellulase is performed in the presence of lignin, and at least cellobiose among cellooligosaccharides produced by the hydrolysis reaction is occasionally reacted. A method for producing cellooligosaccharides collected from potato is disclosed. In Patent Document 2, wet pulp obtained by digesting a raw material containing natural lignocellulose and not drying after digestion is partially hydrolyzed with cellulase to obtain cellooligosaccharides. Among them, a method for producing a cellooligosaccharide that collects at least cellobiose is disclosed.

これらの製造方法は、セルラーゼに含まれるセロオリゴ糖分解酵素であるβ−グルコシダーゼをリグニンに吸着させ、β−グルコシダーゼの作用を抑止させることで、セロオリゴ糖のグルコースへの分解を抑制し、セロオリゴ糖の反応選択率を高められるものである。しかしながら、これらの製造方法では、得られる糖化液に多量のリグニンが含まれるため、結果としてセロオリゴ糖の収量が低くなる。また、高純度のセロオリゴ糖を得るには、糖化液からの脱リグニン処理が必要となるため精製工程が複雑となる問題があった。
特許文献3には、1〜20質量%のリグニンを含有するリグノセルロースをセルラーゼ及び白色腐朽菌等のリグニン分解菌とともに反応することで、セロオリゴ糖の1種であるセロビオースの製造方法が開示されている。この製造方法では、セルロースの脱リグニン処理を経ずに、セルラーゼの基質に対する作用を高めることができるが、その分解生成物にはセロビオース以外にリグニン分解物が混入するため、上記と同様にセロオリゴ糖の収量が低くなる。また、高純度のセロビオースを得るには、リグニン分解物の除去工程が必要となり、精製工程が複雑となるという問題があった。
These production methods adsorb β-glucosidase, which is a cellooligosaccharide degrading enzyme contained in cellulase, to lignin and inhibit the action of β-glucosidase, thereby suppressing the decomposition of cellooligosaccharide into glucose. The reaction selectivity can be increased. However, in these production methods, since a large amount of lignin is contained in the obtained saccharified solution, the yield of cellooligosaccharide is reduced as a result. In addition, in order to obtain a high-purity cellooligosaccharide, delignification treatment from a saccharified solution is required, so that there is a problem that the purification process becomes complicated.
Patent Document 3 discloses a method for producing cellobiose, which is a kind of cellooligosaccharide, by reacting lignocellulose containing 1-20% by mass of lignin together with cellulase and lignin-degrading bacteria such as white rot fungi. Yes. In this production method, the action of cellulase on the substrate can be enhanced without undergoing delignification treatment of cellulose. However, since the degradation product contains lignin degradation products in addition to cellobiose, cellooligosaccharides are used in the same manner as described above. Yield is low. In addition, in order to obtain high-purity cellobiose, there is a problem that a lignin degradation product removal step is required, and the purification step becomes complicated.

また、特定のセルラーゼを使用し、セルロースを酵素分解することで、セロオリゴ糖の収率を向上させる方法としては、以下のものが挙げられる。
特許文献4には、セロビブリオ属に属する微生物が生産するセルラーゼの作用により、水性反応液中にてセルロース系物質からセロオリゴ糖を製造する方法において、限外ろ過反応器を組み合わせることにより生成物阻害を解除して、セロオリゴ糖を生成蓄積せしめるセロオリゴ糖の製造方法が開示されている。この方法によると、セルロース系物質の酵素分解による分解生成物として、セロビオース、セロトリオースのみからなるセロオリゴ糖が得られる。しかしながら、セロビブリオ属に属する微生物が生産する酵素は結晶性のセルロースには作用しにくく、反応時間を短縮し、収率を向上するためには基質として非晶質セルロースが必要であり、工程が複雑になるという問題があった。
Moreover, the following are mentioned as a method of improving the yield of cellooligosaccharide by using specific cellulase and carrying out the enzymatic decomposition of cellulose.
In Patent Document 4, product inhibition is achieved by combining an ultrafiltration reactor in a method for producing cellooligosaccharides from a cellulosic substance in an aqueous reaction solution by the action of cellulase produced by a microorganism belonging to the genus Cellobibrio. A method for producing a cellooligosaccharide that is released to accumulate and accumulate cellooligosaccharide is disclosed. According to this method, cellooligosaccharides composed only of cellobiose and cellotriose can be obtained as a decomposition product of enzymatic decomposition of the cellulosic material. However, enzymes produced by microorganisms belonging to the genus Cellobiblio are less likely to act on crystalline cellulose, and in order to shorten the reaction time and improve yield, amorphous cellulose is required as a substrate, and the process is complicated. There was a problem of becoming.

特許文献5には、セルロースをセルラーゼで分解し、セロオリゴ糖を生成させる方法において、予めセルラーゼをpH3.5〜5.0に平衡化した弱酸性陽イオン交換樹脂に接触させることにより、セルラーゼ中のβ−グルコシダーゼを選択的に除去し、かかるβ−グルコシダーゼを除去したセルラーゼをセルロースに接触させるセロオリゴ糖の製造方法が開示されている。係る製造方法によると、セルロースの酵素分解により、グルコースを低減し、セロオリゴ糖が60%以上の分解生成物を得ることができる。しかしながら、該製造方法では、セルロース中のβ−グルコシダーゼを除去する工程が必要となり、セロオリゴ糖製造工程が複雑になるという問題があった。また、このセルラーゼ精製工程では、未処理セルラーゼに対し、75〜1000倍の陽イオン交換樹脂が必要となるため、セルラーゼ処理量が制限され、セロオリゴ糖の生産性が充分ではなく、セルラーゼ精製コスト、陽イオン交換樹脂の分離精製剤コストが高くなるという問題があった。   In Patent Document 5, in the method of decomposing cellulose with cellulase to produce cellooligosaccharide, cellulase is contacted with a weakly acidic cation exchange resin previously equilibrated to pH 3.5 to 5.0, so that A method for producing cellooligosaccharides by selectively removing β-glucosidase and contacting cellulase from which β-glucosidase has been removed with cellulose is disclosed. According to such a production method, glucose can be reduced by enzymatic decomposition of cellulose, and a degradation product having 60% or more of cellooligosaccharide can be obtained. However, the production method requires a step of removing β-glucosidase in cellulose, and there is a problem that the cellooligosaccharide production step becomes complicated. In addition, since this cellulase purification step requires a cation exchange resin 75 to 1000 times that of untreated cellulase, the amount of cellulase treatment is limited, cellooligosaccharide productivity is not sufficient, cellulase purification cost, There was a problem that the cost of the separation and purification agent for the cation exchange resin increased.

特許文献6には、セルロースエステルあるいは、セルロースエーテルエステルのいずれかまたは両方とセルラーゼを溶解し、一定時間保温した後、pHを変化させ、不溶化した固形画分と溶液とを分離することによりセルラーゼ中に含有されるβ−グルコシダーゼを選択的に除去するセルラーゼ精製方法、また、このβ−グルコシダーゼが除去されたセルラーゼとセルロースとを水性媒体中に添加して懸濁液とし、該懸濁液を一定時間保温して、該懸濁液中にセロビオースを生成せしめ、該セロビオースを採取するセロビオースの製造方法が開示されている。   In Patent Document 6, cellulase is dissolved in cellulase by dissolving cellulose ester or cellulose ether ester or both and cellulase, keeping the temperature constant for a certain period of time, and then changing the pH to separate the insolubilized solid fraction from the solution. A cellulase purification method for selectively removing β-glucosidase contained in the solution, and cellulase from which β-glucosidase has been removed and cellulose are added to an aqueous medium to form a suspension. A method for producing cellobiose is disclosed in which cellobiose is collected by keeping the temperature for a period of time to produce cellobiose in the suspension.

特許文献7には、キトサンが可溶となるようにpHを調整してなる水性媒体中に、上記キトサンとセルラーゼを溶解し、一定時間保温した後、pHを変化させ、不溶化した固形画分と溶液とを分離することによりセルラーゼ中に含有されるβ−グルコシダーゼを選択的に除去するセルラーゼの精製方法、また、このβ−グルコシダーゼが除去されたセルラーゼとセルロースとを水性媒体中に添加して懸濁液とし、該懸濁液を一定時間保温して、該懸濁液中にセロビオースを生成せしめ、該セロビオースを採取するセロビオースの製造方法が開示されている。
これらの製造方法によると、セルラーゼをセルロース誘導体またはキトサンで吸着分離処理し、セルロース誘導体またはキトサンに吸着させた状態でセルロースと接触させることで、セロビオースの収率が向上する。しかしながら、この製造方法ではセルラーゼの精製処理が必要となるため、製造工程が複雑になり、セルラーゼ精製に使用するセルロース誘導体、キトサンが高価なためコスト高になる課題があった。また、セルラーゼをセルロース誘導体またはキトサンとともにセルロース酵素分解に用いるため、分解反応液から、それらを取り除く工程が必要になるという問題があった。
Patent Document 7 discloses a solid fraction obtained by dissolving the chitosan and cellulase in an aqueous medium obtained by adjusting the pH so that chitosan is soluble, keeping the temperature constant for a certain period of time, and then changing the pH to insolubilize. A cellulase purification method that selectively removes β-glucosidase contained in cellulase by separating the solution, and cellulase and cellulose from which β-glucosidase has been removed are added to an aqueous medium and suspended. A method for producing cellobiose is disclosed in which the suspension is kept warm for a certain period of time, cellobiose is produced in the suspension, and the cellobiose is collected.
According to these production methods, the yield of cellobiose is improved by subjecting cellulase to adsorption separation treatment with a cellulose derivative or chitosan, and contacting with cellulose in a state of being adsorbed on the cellulose derivative or chitosan. However, since this production method requires purification of cellulase, the production process is complicated, and the cellulose derivative and chitosan used for cellulase purification are expensive, and there is a problem of high cost. Moreover, since cellulase is used for cellulose enzyme decomposition together with cellulose derivatives or chitosan, there is a problem that a step of removing them from the decomposition reaction solution is required.

CelluloseCommunications,5,No2,91−97(1998)Cellulose Communications, 5, No 2, 91-97 (1998) 「セルラーゼ」講談社サイエンティフィック発行、97−104(1987)"Cellulase" Kodansha Scientific issue, 97-104 (1987) 特開平05−317073号公報JP 05-317073 A 特開平07−184678号公報Japanese Patent Application Laid-Open No. 07-184678 特開平08−089274号公報Japanese Patent Laid-Open No. 08-089274 特開平01−256394号公報Japanese Patent Laid-Open No. 01-256394 特開平05−115293号公報JP 05-115293 A 特開平05−227957号公報JP 05-227957 A 特開平05−227958号公報Japanese Patent Laid-Open No. 05-227958

本発明は、セルロース系物質を原料とし、セルラーゼ存在下で酵素分解することで、セロオリゴ糖を選択的に、高収率で生産する際に有用なセルラーゼを酵素の精製工程を経ることなしに簡便に得ることを目的とするセルラーゼの製造方法を提供する。   The present invention uses cellulosic material as a raw material and is enzymatically decomposed in the presence of cellulase, so that cellulase useful for producing cellooligosaccharide selectively and in high yield can be easily obtained without going through the enzyme purification step. The present invention also provides a method for producing cellulase.

本発明者等は、セルラーゼ生産菌をpH制御下で培養することによりグルコシダーゼの副生を削減したセルラーゼの製造方法を見出した。
さらに、セルラーゼ生産菌からβ−グルコシダーゼ活性の低い菌株を選択する方法を見出し、例えば、突然変異を誘発させ、変異体からβ−グルコシダーゼの副生が削減された株を取得することに成功した。
すなわち、本発明は、下記の通りである。
(1)セルラーゼ生産菌であるトリコデルマ リーセイ(Trichoderma reesei) NBRC31329菌株を、pH3.5未満に制御して培養することによりセルラーゼを製造し、得られたセルラーゼを使用し、セルロースを酵素分解することを特徴とするセロオリゴ糖の製造方法。
(2)セルラーゼ生産菌が、トリコデルマ リーセイ(Trichoderma reesei) NBRC31329菌株の変異株であるトリコデルマ リーセイ(Trichoderma reesei) GL−1(独立行政法人産業技術総合研究所 特許生物寄託センター 受託番号 FERM BP−10323)であることを特徴とする上記(1)に記載のセロオリゴ糖の製造方法。
The present inventors have found a method for producing cellulase in which cellulase-producing bacteria are cultured under pH control to reduce by-products of glucosidase.
Furthermore, the present inventors have found a method for selecting a strain having low β-glucosidase activity from cellulase-producing bacteria and succeeded in obtaining a strain in which β-glucosidase by-product is reduced from the mutant by, for example, inducing mutation.
That is, the present invention is as follows.
(1) Cellulase is produced by culturing Trichoderma reesei NBRC31329 strain, which is a cellulase-producing bacterium, at a pH of less than 3.5, and the resulting cellulase is used to enzymatically decompose cellulose. A method for producing cellooligosaccharide, which is characterized.
(2) The cellulase-producing bacterium is a Trichoderma reesei NBRC31329 mutant strain, Trichoderma reesei GL-1 (National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Accession Number FERM BP- 10323) The method for producing a cellooligosaccharide according to (1) above, wherein

本発明により、セルロース系物質の酵素分解によりセロオリゴ糖を製造する方法において、セロオリゴ糖を選択的に、高収率で製造することができる。   According to the present invention, in the method for producing cellooligosaccharides by enzymatic degradation of cellulosic substances, cellooligosaccharides can be selectively produced in high yield.

本発明のセルラーゼとは、セルロースを分解する酵素の総称であり、セルロースの分解活性を有していれば、本発明でいうセルラーゼに含まれる。セルラーゼ生産菌としては、例えば、公知のセルラーゼを生産する微生物である、トリコデルマ(Trichoderma)属、アクレモニウム(Acremonium)属、アスペルギルス(Aspergillus)属、バチルス(Bacillus)属等に属する微生物を挙げることができる。
本発明で得られるセルラーゼは、β−グルコシダーゼ活性とセルロース分解活性の活性比(β−グルコシダーゼ活性/結晶性セルロース分解活性)が0.35以下であり、より好ましくは0.30以下であり、さらに好ましくは0.25以下である。ここでいう活性比は、セルラーゼの結晶性セルロース分解能と、セロビオースの分解能(β−グルコシダーゼ)の比で表される。該活性比が小さければ小さいほど、オリゴ糖分解能が低く、オリゴ糖の生産性、選択性が向上するため好ましく、その下限は特に制限されないが、容易に達成させる活性比の範囲としては0.01以上である。
The cellulase of the present invention is a general term for enzymes that decompose cellulose, and is included in the cellulase referred to in the present invention as long as it has cellulolytic activity. Examples of cellulase-producing bacteria include microorganisms belonging to the genus Trichoderma, the genus Acremonium, the genus Aspergillus, the genus Bacillus, etc., which are microorganisms that produce known cellulases. it can.
The cellulase obtained in the present invention has an activity ratio of β-glucosidase activity to cellulose degrading activity (β-glucosidase activity / crystalline cellulose degrading activity) of 0.35 or less, more preferably 0.30 or less, Preferably it is 0.25 or less. The activity ratio here is represented by the ratio of the cellulase crystalline cellulose resolution and the cellobiose resolution (β-glucosidase). The smaller the activity ratio is, the lower the oligosaccharide resolution and the better the productivity and selectivity of the oligosaccharide. The lower limit is not particularly limited, but the range of the activity ratio that can be easily achieved is 0.01. That's it.

該酵素の活性測定法は次に示す方法で測定することができる。
(1)結晶セルロース分解活性
50mM酢酸−酢酸ナトリウム緩衝液(pH5)に懸濁した5質量%の結晶性セルロース(旭化成ケミカルズ製、商品名:セオラスPH−101を水分60%として、三英製作所製、商品名:万能攪拌混合機でフック羽根により、90分間、126rpmで混練攪拌したもの)の基質液0.4mlに適当に希釈した酵素液を0.1ml添加し、40℃水浴中で4時間反応後、95℃で10分間加熱して反応を停止させ、反応液中のグルコース濃度をHPLC法で定量する。1分間に遊離するグルコース及びセロオリゴ糖の総量が1μmoleである酵素量を1酵素単位(1U)と定義する。
The enzyme activity can be measured by the following method.
(1) Crystalline cellulose decomposition activity 5% by mass of crystalline cellulose suspended in 50 mM acetic acid-sodium acetate buffer (pH 5) (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name: Seolus PH-101 as 60% moisture, manufactured by Sanei Seisakusho) , Trade name: 0.1 ml of an enzyme solution appropriately diluted to 0.4 ml of a substrate solution of a universal stirring mixer kneaded and stirred at 126 rpm for 90 minutes with a hook blade, and then placed in a 40 ° C. water bath for 4 hours. After the reaction, the reaction is stopped by heating at 95 ° C. for 10 minutes, and the glucose concentration in the reaction solution is quantified by HPLC. The amount of enzyme in which the total amount of glucose and cellooligosaccharide released per minute is 1 μmole is defined as one enzyme unit (1 U).

(2)β−グルコシダーゼ活性
50mM酢酸−酢酸ナトリウム緩衝液(pH5)に溶解した2.5質量%のセロビオース(Aldrich製:特級グレード)の基質液0.4mlに酵素液を0.1ml添加し、40℃水浴中で4時間反応後、100℃で10分間加熱し反応を停止し、反応液中のグルコース濃度をHPLC法で定量する。1分間に1μmoleのグルコースを遊離する酵素量を1酵素単位(1U)と定義する。
上述の各種活性測定法において、反応液中のセロオリゴ糖、グルコースの定量は、高速液体クロマトグラフィー(カラム:島津製作所製、商品名:Asahipak NH2 P−50、高速液体クロマトグラフィー:島津製作所製、商品名SCL−10A型、移動層:アセトニトリル/水=75/25(容積比)循環量:1ml/min.試料液:10μl)でできる。
(2) β-glucosidase activity 0.1 ml of enzyme solution was added to 0.4 ml of a substrate solution of 2.5% by mass of cellobiose (manufactured by Aldrich: special grade) dissolved in 50 mM acetic acid-sodium acetate buffer (pH 5), After reacting in a 40 ° C. water bath for 4 hours, the reaction is stopped by heating at 100 ° C. for 10 minutes, and the glucose concentration in the reaction solution is quantified by HPLC. The amount of enzyme that liberates 1 μmole of glucose per minute is defined as one enzyme unit (1 U).
In the various activity measuring methods described above, cellooligosaccharide and glucose in the reaction solution are quantified by high performance liquid chromatography (column: manufactured by Shimadzu Corporation, trade name: Asahipak NH 2 P-50, high performance liquid chromatography: manufactured by Shimadzu Corporation, Product name: SCL-10A type, moving bed: acetonitrile / water = 75/25 (volume ratio) circulation rate: 1 ml / min. Sample solution: 10 μl).

(β−グルコシダーゼ活性/結晶性セルロース分解活性)比が低い菌株は、例えば、次の方法で得られる。
セルラーゼ生産能を有する微生物を、必要であれば紫外線照射やニトロソグアニジンのような変異誘発剤の使用など、公知の変異誘導処理し、それらの菌株から(β−グルコシダーゼ活性/結晶性セルロース分解活性)比が低い菌株を選ぶ。変異誘導処理に用いる微生物としては、例えば、親株としてTrichoderma reesei NBRC31329を用い、ポテトデキストロース寒天斜面培地上で28℃、3〜10日間培養する。生成した胞子を生理的食塩水に105 〜108 個/mlになるよう懸濁し、EMS(ethyl methane slfonate)で変異処理を施す(100〜500μg/ml、pH7.0、28℃、5〜24時間)。
(β−グルコシダーゼ活性/結晶性セルロース分解活性)比が低い菌株の選択は、この変異誘発処理胞子の懸濁液から遠心分離により胞子を集め、よく洗浄し、グルコースを炭素源として培養し、培養物の酵素活性を公知の方法で測定することで達成される。
例えば、各変異処理菌株の培養物を用いて、セロビオースまたは結晶セルロースを基質として酵素分解し、生成した還元糖を定量してもよく、公知の発色基質を使用し培養物と酵素反応させることで定性的に目的の菌株を選択してもよい。
A strain having a low (β-glucosidase activity / crystalline cellulose degradation activity) ratio can be obtained, for example, by the following method.
If necessary, microorganisms capable of producing cellulase are subjected to known mutagenesis treatments such as ultraviolet irradiation and the use of mutagens such as nitrosoguanidine, and from those strains (β-glucosidase activity / crystalline cellulolytic activity) Select strains with a low ratio. As a microorganism used for the mutagenesis treatment, for example, Trichoderma reesei NBRC31329 is used as a parent strain and cultured on a potato dextrose agar slope medium at 28 ° C. for 3 to 10 days. The produced spores are suspended in physiological saline to a concentration of 10 5 to 10 8 cells / ml, and subjected to mutation treatment with EMS (ethyl methyl slfonate) (100 to 500 μg / ml, pH 7.0, 28 ° C., 5 to 5 ° C.). 24 hours).
Selection of a strain with a low ratio of (β-glucosidase activity / crystalline cellulose degradation activity) is performed by collecting spores from this mutagenized spore suspension by centrifugation, washing well, culturing glucose as a carbon source, and culturing. This is achieved by measuring the enzyme activity of the product by a known method.
For example, by using a culture of each mutant-treated strain, enzymatic degradation using cellobiose or crystalline cellulose as a substrate, and the resulting reducing sugar may be quantified. By using a known chromogenic substrate, an enzymatic reaction with the culture is performed. A target strain may be selected qualitatively.

セルラーゼ生産菌よりセルラーゼを得る方法は、その菌株を培養し、培養上清液を取得することによって得られる。培地に使用される炭素源としては、セルロースパウダー、セロビオース、濾紙、一般紙類、オガクズ、ふすま、もみがら、バガス、大豆粕、コーヒー粕、澱粉、ラクトース等が使用される。窒素源としては、硫安、硝安などの無機アンモニウム塩、尿素、アミノ酸、肉エキス、酵母エキス、ポリペプトン、蛋白分解物等の有機窒素含有物が使用される。無機塩類としては、KH2PO4、 MgSO4・7H2O、 CaCl2・2H2O、FeCI3 ・6H2O、 MnCl3・4H2O、 ZnSO4・7H2O等が使用される。必要ならば有機微量栄養物を含有する培地が使用される。培養には通常の通気撹拌培養装置が用いられ、前記培地を使用して、生産菌株の生育可能な温度、生育可能なpH付近で制御する。ついで、培養液から遠心分離、濾過などの公知の方法によって菌体を除去し上清液を得る。この上清液は、このまま粗酵素液として使用することができる。 A method for obtaining cellulase from a cellulase-producing bacterium is obtained by culturing the strain and obtaining a culture supernatant. As the carbon source used in the medium, cellulose powder, cellobiose, filter paper, general paper, sawdust, bran, rice bran, bagasse, soybean meal, coffee cake, starch, lactose, and the like are used. As the nitrogen source, inorganic nitrogen salts such as ammonium sulfate and ammonium nitrate, organic nitrogen-containing substances such as urea, amino acids, meat extract, yeast extract, polypeptone, and protein degradation products are used. As inorganic salts, KH 2 PO 4 , MgSO 4 .7H 2 O, CaCl 2 .2H 2 O, FeCI 3 .6H 2 O, MnCl 3 .4H 2 O, ZnSO 4 .7H 2 O, etc. are used. If necessary, a medium containing organic micronutrients is used. A normal aeration and agitation culture apparatus is used for culturing, and the medium is used to control the temperature at which the production strain can grow and around the pH at which it can grow. Subsequently, the cells are removed from the culture solution by a known method such as centrifugation or filtration to obtain a supernatant. This supernatant can be used as a crude enzyme solution as it is.

また、さらに(β−グルコシダーゼ活性/結晶セルロース分解活性)比を低く抑える培養方法として、例えば、培養中、培養液のpHをpH3.5未満、かつセルラーゼ生産菌の生育可能なpH以上に制御する方法が挙げられる。具体的には、上記Trichoderma reesei NBRC31329株もしくはその変異株をポテトデキストロース寒天斜面で25〜35℃、3〜10日間培養し、培養懸濁および溶解させ、セルロースを炭素源とする培地を500ml容量の三角フラスコに100ml分注し、オートクレーブで滅菌した培地に植菌し、28℃で2〜4日間前培養を行う。さらに同じ組成の培地3lを5lのジャーファーメンターに仕込みオートクレーブで殺菌した培地に、前培養液を移植し、28℃で攪拌200〜400rpm、通気0.3〜1vvmで培養を行い、培養中NaOHもしくはアンモニア水でpH2〜3.5、好ましくは2.5〜3.0に制御する。4〜7日間培養を行った後、培養液を遠心分離、濾過などの公知の方法によって菌体を除去し上清液を得る。この上清液は、このまま粗酵素液として使用することができる。 Further, as a culture method for further reducing the (β-glucosidase activity / crystalline cellulose degradation activity) ratio, for example, during the culture, the pH of the culture solution is controlled to be less than pH 3.5 and higher than the pH at which cellulase-producing bacteria can grow. A method is mentioned. Specifically, the above-mentioned Trichoderma reesei NBRC31329 strain or its mutant strain is cultured at 25-35 ° C. for 3-10 days on a potato dextrose agar slope, cultured and suspended, dissolved, and a medium containing cellulose as a carbon source has a volume of 500 ml. Dispense 100 ml into an Erlenmeyer flask, inoculate into a medium sterilized by autoclave, and perform preculture at 28 ° C. for 2 to 4 days. Furthermore, 3 l of the same medium was placed in a 5 l jar fermenter and sterilized by autoclaving. The preculture was transplanted, cultured at 28 ° C. with stirring at 200 to 400 rpm and aeration 0.3 to 1 vvm, and NaOH was cultured. Alternatively, the pH is controlled to 2 to 3.5, preferably 2.5 to 3.0 with aqueous ammonia. After culturing for 4 to 7 days, the culture solution is removed by known methods such as centrifugation and filtration to obtain a supernatant. This supernatant can be used as a crude enzyme solution as it is.

以下にセロオリゴ糖の製造方法を説明する。
酵素分解方法は、公知の方法を使用すればよく、特に制限されるものではないが、一例としては、基質としてセルロース系物質を水性媒体中に懸濁させ、本発明のセルラーゼを添加し、攪拌または振とうしながら、加温して糖化反応を行う方法が挙げられる。
上記方法において、懸濁方法、攪拌方法、セルラーゼ・基質の添加方法・添加順序、それらの濃度等の反応条件は、セロオリゴ糖がより高収率で得られるよう適宜調整されるものである。その際の、反応液のpH及び温度は、酵素が失活しない範囲内であればよく、一般的には、常圧で反応を行う場合、温度は5〜95℃、pHは1〜11の範囲でよい。また、この圧力、温度、pHについても、上記同様、セロオリゴ糖がより高収率で得られるよう適宜調整されるものであるが、上述のTrichoderma reesei NBRC31329株またはその変異株をセルラーゼ生産菌とし、得られたセルラーゼを用いる場合には、セルロースの酵素分解は、常圧で、酢酸またはリン酸緩衝液中で、温度50〜60℃、pH3.0〜5.5の範囲で行うことが好ましい。
A method for producing cellooligosaccharide will be described below.
The enzymatic decomposition method may be any known method, and is not particularly limited. For example, the cellulosic substance is suspended in an aqueous medium as a substrate, the cellulase of the present invention is added, and the mixture is stirred. Alternatively, a method of heating and carrying out a saccharification reaction may be mentioned.
In the above method, the suspension method, the stirring method, the addition method / order of addition of cellulase / substrate, the concentration thereof, and other reaction conditions are appropriately adjusted so that the cellooligosaccharide can be obtained in a higher yield. In this case, the pH and temperature of the reaction solution may be within the range where the enzyme is not deactivated. Generally, when the reaction is performed at normal pressure, the temperature is 5 to 95 ° C., and the pH is 1 to 11. Range may be sufficient. Also, the pressure, temperature, for the pH, the same, but in which cellooligosaccharides is appropriately adjusted so that higher yields are obtained, the Trichoderma reesei NBRC31329 strain or a mutant strain of the above-described cellulase producing fungus, In the case of using the obtained cellulase, the enzymatic degradation of cellulose is preferably carried out at normal pressure and in an acetic acid or phosphate buffer solution at a temperature of 50 to 60 ° C. and a pH of 3.0 to 5.5.

この酵素反応は、バッチ式で行っても、連続式で行ってもよい。酵素分解反応において、セロビオースによる生成物阻害を回避するためには、反応系内のセロビオース濃度を特定範囲に保つことが、セロオリゴ糖の生産性を向上する上で重要である。反応系内のセロビオース濃度を特定範囲に保つ方法としては、限外ろ過、逆浸透ろ過等の膜ろ過により、反応系から生成したセロビオースを抜き出す方法でもよく、活性炭、竹、木材等の乾燥植物粉等の有機多孔質基材、二酸化珪素等の無機多孔質基材等を反応系に導入し、それらにセロビオースを吸着させる方法でもよく、セルロース基質をカラム等に固定化し、セルラーゼを含む反応液を流通させる方法でもよく、セルラーゼを高分子等に固定化し、セルロースを含む反応液を流通させる方法でもよい。
上述の酵素分解により得られたセロオリゴ糖を主成分とする水溶液は、必要に応じて、脱色、脱塩、酵素除去等の精製処理を施すことができる。精製方法は、公知の方法であれば特に制限されないが、例えば、活性炭処理、イオン交換樹脂処理、クロマトグラフィー処理、精密ろ過、限外ろ過、逆浸透ろ過等の濾過処理、晶析処理等を使用してもよく、これらを単独で使用しても、2種以上を組み合わせてもよい。
This enzyme reaction may be performed in a batch system or a continuous system. In order to avoid product inhibition by cellobiose in the enzymatic degradation reaction, it is important to maintain the cellobiose concentration in the reaction system within a specific range in order to improve the productivity of cellooligosaccharide. As a method of keeping the cellobiose concentration in the reaction system within a specific range, a method of extracting cellobiose generated from the reaction system by membrane filtration such as ultrafiltration or reverse osmosis filtration may be used. Dry plant powder such as activated carbon, bamboo, wood, etc. Alternatively, an organic porous substrate such as silicon dioxide or an inorganic porous substrate such as silicon dioxide may be introduced into the reaction system, and cellobiose may be adsorbed to the reaction system. A cellulose substrate is fixed to a column or the like, and a reaction solution containing cellulase is prepared. The method of making it distribute | circulate may be sufficient and the method of fix | immobilizing a cellulase to a polymer etc. and distribute | circulating the reaction liquid containing a cellulose may be sufficient.
The aqueous solution mainly composed of cellooligosaccharide obtained by the above-described enzymatic decomposition can be subjected to purification treatment such as decolorization, desalting, and enzyme removal, as necessary. The purification method is not particularly limited as long as it is a known method. For example, activated carbon treatment, ion exchange resin treatment, chromatography treatment, microfiltration, ultrafiltration, reverse osmosis filtration and other filtration treatments, crystallization treatment, etc. are used. These may be used alone or in combination of two or more.

上記の方法で精製されたセロオリゴ糖を主成分とする水溶液は、そのまま使用することができるが、必要に応じて、乾燥により固化させてもよい。乾燥方法は、公知の方法であれば特に制限されないが、例えば、噴霧乾燥、凍結乾燥、ドラム乾燥、薄膜乾燥、棚段乾燥、気流乾燥、真空乾燥等を使用してもよく、これらを単独で使用しても、2種以上を組み合わせてもよい。
上記の精製、乾燥処理時のセロオリゴ糖の媒体としては、水以外に、必要に応じて、有機溶剤等を使用してもよい。ここで使用される有機溶剤にも、特に制限されないが、例えば、医薬品、食品およびそれらの添加剤を製造する工程で使用されるものが好ましく、「医薬品添加物事典」(薬事日報社(株)発行)、「日本薬局方」、「食品添加物公定書」(いずれも廣川書店発行)に溶剤として分類されるものが挙げられる。水、有機溶剤は、それらを単独で使用しても、2種以上を併用することも自由であり、1種の媒体で一旦分散させた後、その媒体を除去し、異なる媒体に分散させてもよい。
The aqueous solution mainly composed of cellooligosaccharide purified by the above method can be used as it is, but if necessary, it may be solidified by drying. The drying method is not particularly limited as long as it is a known method, but for example, spray drying, freeze drying, drum drying, thin film drying, shelf drying, airflow drying, vacuum drying, etc. may be used, and these may be used alone. You may use, or may combine 2 or more types.
As the cellooligosaccharide medium during the above purification and drying treatment, an organic solvent or the like may be used as necessary in addition to water. Although it does not restrict | limit especially also in the organic solvent used here, For example, what is used in the process of manufacturing a pharmaceutical, foodstuffs, and those additives is preferable, and "pharmaceutical additive encyclopedia" (Pharmaceutical Daily Inc.) Issued), “Japanese Pharmacopoeia” and “Food Additives Official Document” (both published by Yodogawa Shoten). Water and organic solvents can be used alone or in combination of two or more, and once dispersed in one medium, the medium is removed and dispersed in a different medium. Also good.

上記の工程を経たセロオリゴ糖の形態には、特に制限はないが、例えば、常温で固体、懸濁液、エマルジョン、シロップ、溶液状で使用できる。固体状セロオリゴ糖の一例としては、粉末、顆粒、ペレット、成形体、積層体、固体分散体等が挙げられる。
本発明により得られるセロオリゴ糖の用途は、特に制限されないが、例えば、食品、化粧品、医薬品、一般工業製品等の分野で、食品成分、化粧品成分、色素成分、香料成分、医薬品薬効成分、農薬成分、飼料成分、肥料成分、培地成分、分析用試薬成分、および添加剤、中間原料、発酵原料等として使用してもよい。
Although there is no restriction | limiting in particular in the form of the cellooligosaccharide which passed through said process, For example, it can be used with solid, a suspension, an emulsion, a syrup, and a solution form at normal temperature. Examples of solid cellooligosaccharides include powders, granules, pellets, molded bodies, laminates, and solid dispersions.
The use of the cellooligosaccharide obtained by the present invention is not particularly limited. For example, in the fields of food, cosmetics, pharmaceuticals, general industrial products, etc., food ingredients, cosmetic ingredients, pigment ingredients, perfume ingredients, pharmaceutical medicinal ingredients, agricultural chemical ingredients , Feed ingredients, fertilizer ingredients, culture medium ingredients, analytical reagent ingredients, and additives, intermediate raw materials, fermentation raw materials and the like.

本発明により得られるセロオリゴ糖は、食品では、例えば、ゼリー、プリン、ヨーグルト等のゲル、マヨネーズ、ドレッシング、ソース類、たれ類、スープ、野菜加工品等の調味料、カレー、ハヤシ、ミートソース、シチュー、スープ等のレトルト食品、チルド食品、ハンバーグ、ベーコン、ソーセージ、サラミソーセージ、ハム類等の畜産加工品、蒲鉾、ちくわ、魚肉ハム・ソーセージ、揚げ蒲鉾等の水練製品、パン、生麺、乾麺、マカロニ、スパゲッティ、中華饅頭の皮、ケーキミックス、プレミックス、ホワイトソース、餃子・春巻等の皮類などの小麦加工食品、カレー、ソース、スープ、佃煮、ジャムなどの缶詰、瓶詰類、キャンデー、トローチ、錠菓、チョコレート、ビスケット、クッキー、米菓、和洋菓子、洋生菓子、スナック菓子、砂糖菓子、プリンなどの菓子類、フライ類、コロッケ、餃子、中華饅頭等の調理加工品、野菜ペースト、肉のミンチ、果実ペースト、魚介類のペースト等のペースト類などに使用される。また、アイスクリーム、アイスミルク、ラクトアイス、ホイップクリーム、練乳、バター、ヨーグルト、チーズ、ホワイトソース等の乳製品、マーガリン、ファットスプレッド、ショートニング等の油脂加工品等に使用される。さらに、コーラ等の炭酸飲料、炭酸入り、アルコール入り、乳製品と混合した果実飲料、果汁又は、果実入り飲料、乳性飲料等の飲料、コーヒー、牛乳、豆乳、ココア牛乳、フルーツ牛乳、ヨーグルト等の乳酸/乳性飲料等、煎茶、ウーロン茶、抹茶、紅茶等の茶飲料等に使用してもよい。   Cellooligosaccharides obtained by the present invention are used in foods, for example, gels such as jelly, pudding, and yogurt, mayonnaise, dressings, sauces, sauces, soups, processed vegetables and other seasonings, curry, hayashi, meat sauce, stew , Retort food such as soup, chilled food, hamburger, bacon, sausage, salami sausage, livestock products such as hams, water paste products such as salmon, chikuwa, fish ham and sausage, fried rice cake, bread, raw noodles, dry noodles, Processed wheat foods such as macaroni, spaghetti, Chinese bun skin, cake mix, premix, white sauce, gyoza and spring rolls, canned curry, sauce, soup, boiled, jam, bottling, candy, Lozenges, tablet confectionery, chocolate, biscuits, cookies, rice confectionery, Japanese and Western confectionery, Western confectionery, snacks Child, confectionery sugar confectionery, such as pudding, fries, croquettes, dumplings, cooking processed products such as Chinese bun, vegetable paste, meat of minced, fruit paste, is used, for example, paste such as seafood paste. Moreover, it is used for dairy products such as ice cream, ice milk, lact ice, whipped cream, condensed milk, butter, yogurt, cheese, white sauce, and processed oils and fats such as margarine, fat spread, and shortening. In addition, carbonated drinks such as cola, carbonated drinks, alcohol drinks, fruit drinks mixed with dairy products, fruit juice or drinks containing fruits, milk drinks, coffee, milk, soy milk, cocoa milk, fruit milk, yogurt, etc. May be used for tea beverages such as lactic acid / milky beverages, sencha, oolong tea, matcha tea, black tea, and the like.

本発明で得られるセロオリゴ糖は、乳酸菌、乳酸かん菌等の活性化等の腸内有用細菌叢賦活、血中糖濃度、血中インシュリン濃度の低減、血中コレステロールの低減、体脂肪率の低減、脂質・糖質代謝促進機能、便通・便臭改善、抗う触性等の各種生理活性が期待できるため、上記の通常食品用途に加え、生理活性物質として、機能性食品、健康食品、ダイエット食品等の用途で使用してもよい。
また、本発明により得られるセロオリゴ糖は、高純度であるため、各種セロオリゴ糖誘導体への化学変換原料として使用してもよい。
Cellooligosaccharides obtained in the present invention are useful for intestinal useful bacterial flora such as activation of lactic acid bacteria, lactobacilli, etc., blood sugar concentration, blood insulin concentration reduction, blood cholesterol reduction, body fat percentage reduction In addition to the above normal food applications, functional foods, health foods, diet foods, etc. in addition to the above normal food applications It may be used for such purposes.
Moreover, since the cellooligosaccharide obtained by this invention is highly purified, you may use it as a chemical conversion raw material to various cellooligosaccharide derivatives.

本発明を実施例などに基づいて更に具体的に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。
[実施例1]
Tricoderma reesei NBRC31329を、ポテトデキストロース寒天斜面培地上で28℃、7日間培養する。生成した胞子を100mMリン酸カルシウム緩衝液(pH7)2mlに106 個/mlになるよう懸濁し、EMS(ethyl methane slfonate)を24ul添加し、28℃で16時間振とうし、変異処理を施す。この胞子懸濁液から遠心分離により胞子を集め、100mMリン酸カルシウム緩衝液(pH7)でよく洗浄し、平板あたり100〜300胞子になるように希釈し、グルコース1g、酵母エキス1g、(NH4 2SO4 2g、KH2PO44g、Na2HPO4 2g、 MgSO4・7H2O 200mg、 CaCl2・2H2O 1mg、トリトンX−100 、トレースエレメント1ml(硼酸6mg、モリブデン酸アンモニウム4水和物26mg、塩化鉄(3)6水和物100mg、硫酸銅5水和物40mg、硫酸マンガン4水和物8mg、硫酸亜鉛7水和物200mgを全量100mlの精製水に溶解させたもの)、寒天20gを1lの水に溶解または懸濁させた後、オートクレーブで滅菌し、さらにメンブレンフィルターでろ過滅菌し、28℃で5日間培養した培養液の、β−グルコシダーゼ活性および結晶セルロース分解活性を測定し、変異株GL−1(独立行政法人産業技術総合研究所 特許生物寄託センター、受託番号 FERM BP−10323)を選択した。
The present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
[Example 1]
Tricoderma reesei NBRC31329 is cultured on potato dextrose agar slant at 28 ° C. for 7 days. The produced spores are suspended in 2 ml of 100 mM calcium phosphate buffer (pH 7) so as to have a concentration of 10 6 cells / ml, 24 ul of EMS (ethyl methanol slfonate) is added, and shaken at 28 ° C. for 16 hours to carry out a mutation treatment. Spores are collected from this spore suspension by centrifugation, washed well with 100 mM calcium phosphate buffer (pH 7), diluted to 100-300 spores per plate, 1 g glucose, 1 g yeast extract, (NH 4 ) 2. SO 4 2 g, KH 2 PO 4 4 g, Na 2 HPO 4 2 g, MgSO 4 .7H 2 O 200 mg, CaCl 2 .2H 2 O 1 mg, Triton X-100, Trace element 1 ml (Boric acid 6 mg, Ammonium molybdate tetrahydrate 26 mg, iron chloride (3) hexahydrate 100 mg, copper sulfate pentahydrate 40 mg, manganese sulfate tetrahydrate 8 mg, zinc sulfate heptahydrate 200 mg dissolved in 100 ml of purified water in total) Dissolve or suspend 20 g of agar in 1 l of water, sterilize with an autoclave, sterilize by filtration with a membrane filter, and culture at 28 ° C. for 5 days. To measure the Koshidaze activity and crystalline cellulose degradation activity, was selected mutant strain GL-1 (National Institute of Advanced Industrial Science and Technology, International Patent Organism Depositary, accession number FERM BP -10323) a.

[実施例2]
Trichoderma reesei NBRC31329および実施例1で取得した変異株GL−1株の各菌株をポテトデキストロース寒天斜面培地上で、25℃で7日間培養して胞子を十分形成させる。その1白金耳をポリペプトン1.0g、酵母エキス0.5g、KH2PO42.0g 、(NH4 2SO4 1.5g 、MgSO4 ・7H2O 0.3g 、CaCl2 ・2H2O 0.3g 、ツイーン80[半井化学薬品(株)製] 1.0ml、微量元素液(H3BO4 6mg 、(NH4 6Mo7O24 ・4H2O 26mg 、 FeCl3・6H2O 100mg、 CuSO4・5H2O 40mg 、 MnSO4・4H2O 8mg、 ZnSO4・7H2O 200mgを水 100mlに溶解並びに懸濁した液)1.0ml 、酒石酸 7.5g を水1lに溶解および懸濁させ、pH4.0に調整し、500ml容量の三角フラスコに100ml分注し、結晶セルロース(旭化成ケミカルズ製、商品名PH−101)1gを添加後、オートクレーブで滅菌した培地に接種して、28℃で5日間振盪培養した。5日目に培養液を遠心分離し、その上清のセルラーゼ活性およびβ−グルコシダーゼ活性を測定した。その結果を表1に示す。
[Example 2]
Each strain of Trichoderma reesei NBRC31329 and the mutant strain GL-1 obtained in Example 1 is cultured on a potato dextrose agar slope medium at 25 ° C. for 7 days to sufficiently form spores. Part 1 1.0 g of polypeptone, 0.5 g of yeast extract, KH 2 PO 4 2.0 g, (NH 4 ) 2 SO 4 1.5 g, MgSO 4 .7H 2 O 0.3 g, CaCl 2 .2H 2 O 0.3 g , Tween 80 [manufactured by Hanai Chemicals Co., Ltd.] 1.0 ml, trace element liquid (H 3 BO 4 6 mg, (NH 4 ) 6 Mo 7 O 24 · 4H 2 O 26 mg, FeCl 3 · 6H 2 O 100 mg, CuSO 4 (5H 2 O 40 mg, MnSO 4 · 4H 2 O 8 mg, ZnSO 4 · 7H 2 O 200 mg dissolved and suspended in 100 ml of water) 1.0 ml and tartaric acid 7.5 g dissolved and suspended in 1 l of water, pH 4. Adjust to 0, dispense 100 ml into a 500 ml Erlenmeyer flask, add 1 g of crystalline cellulose (trade name PH-101, manufactured by Asahi Kasei Chemicals), inoculate into a medium sterilized by autoclave, and shake at 28 ° C. for 5 days Cultured. On the fifth day, the culture solution was centrifuged, and the cellulase activity and β-glucosidase activity of the supernatant were measured. The results are shown in Table 1.

[実施例3]
ポテトデキストロース培地(Difco 社製)にTrichoderma reesei NBRC31329を接種し、37℃で7日間培養を行う。その培地表面から胞子を1白金耳取り、ポリペプトン1g、酵母エキス0.5g、リン酸1カリウム2g、硫酸アンモニウム1.5g、硫酸マグネシウム0.3g、塩化カルシウム0.3g、トレースエレメント1ml(硼酸6mg、モリブデン酸アンモニウム4水和物26mg、塩化鉄(3)6水和物100mg、硫酸銅5水和物40mg、硫酸マンガン4水和物8mg、硫酸亜鉛7水和物200mgを全量100mlの精製水に溶解させたもの)、アデカノールLG−109 1mlを全量1lの精製水に懸濁および溶解させ500ml容量の三角フラスコに100ml分注し、各フラスコに結晶セルロース(旭化成ケミカルズ製、商品名:PH−101)1g添加後、オートクレーブで滅菌した培地に植菌し、28℃で3日間前培養を行う。さらに同じ培地3lを仕込んだ5lジャーファーメンターに前培養液を30ml移植し、28℃、攪拌400rpm、通気0.5vvmで培養を行い、培養中NaOH水溶液でpHの下限をpH3.0に制御した。5日間培養を行った培養後の液を遠心分離し、上清を粗酵素として得た。得られた酵素液の結晶性セルラーゼ分解活性およびβ−グルコシダーゼ活性を前述の方法で測定した。培養中のpH経時変化を図1に、活性測定結果を表2に示す。
[Example 3]
Potato dextrose medium (Difco) is inoculated with Trichoderma reesei NBRC31329 and cultured at 37 ° C. for 7 days. One platinum spore was taken from the surface of the medium, 1 g polypeptone, 0.5 g yeast extract, 2 g potassium phosphate, 1.5 g ammonium sulfate, 0.3 g magnesium sulfate, 0.3 g calcium chloride, 1 ml trace element (6 mg boric acid, Ammonium molybdate tetrahydrate 26 mg, iron chloride (3) hexahydrate 100 mg, copper sulfate pentahydrate 40 mg, manganese sulfate tetrahydrate 8 mg, and zinc sulfate heptahydrate 200 mg were added to 100 ml of purified water. 1 ml of Adecanol LG-109 was suspended and dissolved in 1 l of purified water, and 100 ml was dispensed into a 500 ml Erlenmeyer flask. Crystalline cellulose (trade name: PH-101, manufactured by Asahi Kasei Chemicals) was placed in each flask. ) After adding 1g, inoculate the medium sterilized by autoclave and pre-culture at 28 ° C for 3 days Yeah. Furthermore, 30 ml of the preculture was transplanted to a 5 l jar fermenter charged with 3 l of the same medium, cultured at 28 ° C., stirring at 400 rpm and aeration of 0.5 vvm, and the lower limit of pH was controlled at pH 3.0 with NaOH aqueous solution during the cultivation. . After culturing for 5 days, the cultured solution was centrifuged to obtain a supernatant as a crude enzyme. Crystalline cellulase decomposing activity and β-glucosidase activity of the obtained enzyme solution were measured by the methods described above. Changes in pH over time during the culture are shown in FIG. 1, and the activity measurement results are shown in Table 2.

[実施例4]
実施例3と同様の方法でTrichoderma reesei NBRC31329を培養する際、培養中NaOHでpHの下限をpH2.5に制御し、粗酵素液を得た。得られた酵素液の結晶性セルラーゼ分解活性およびβ−グルコシダーゼ活性を前述の方法で測定した。培養中のpH経時変化を図1に、活性測定結果を表2に示す。
[比較例1]
実施例3と同様の方法でTrichoderma reesei NBRC31329を培養する際、培養中NaOHでpHの下限をpH3.5、もしくはpH4、もしくはpH5に制御し、粗酵素液を得た。得られた酵素液の結晶性セルラーゼ分解活性およびβ−グルコシダーゼ活性を前述の方法で測定した。培養中のpH経時変化を図1に、活性測定結果を表2に示す。
[Example 4]
When culturing Trichoderma reesei NBRC31329 in the same manner as in Example 3, the lower limit of pH was controlled at pH 2.5 with NaOH during the cultivation to obtain a crude enzyme solution. Crystalline cellulase decomposing activity and β-glucosidase activity of the obtained enzyme solution were measured by the methods described above. Changes in pH over time during the culture are shown in FIG. 1, and the activity measurement results are shown in Table 2.
[Comparative Example 1]
When culturing Trichoderma reesei NBRC31329 in the same manner as in Example 3, the lower limit of pH was controlled to pH3.5, pH4, or pH5 with NaOH during the cultivation to obtain a crude enzyme solution. Crystalline cellulase decomposing activity and β-glucosidase activity of the obtained enzyme solution were measured by the methods described above. Changes in pH over time during the culture are shown in FIG. 1, and the activity measurement results are shown in Table 2.

[実施例5]
実施例3と同様の方法で実施例1で得たGL−1株を培養した。培養を行う際、培養中NaOHでpHの下限をpH3もしくはpH4に制御し粗酵素液を得た。培養中のpH経時変化を図2に示す。
[実施例6]
結晶セルロース5質量%(旭化成ケミカルズ製、商品名:セオラスPH−101を水分60%として、三英製作所製、商品名:万能攪拌混合機でフック羽根により、90分間、126rpmで混練攪拌したもの)8mlに実施例3および実施例5で得たセルラーゼ粗酵素液を2ml添加し、55℃攪拌条件下で加水分解を行った。2時間、4時間、6時間、8時間反応後、95℃で15分間加熱し、酵素反応を停止し、遠心分離により上清液を得、前述のHPLC法によりセロオリゴ糖およびグルコースの濃度を測定した。結果を図3に示す。
[比較例2]
実施例6と同様の方法で結晶性セルロースを酵素分解する際、比較例1で得たセルラーゼを粗酵素液として使用した。結果を図3に示す。
[Example 5]
The GL-1 strain obtained in Example 1 was cultured in the same manner as in Example 3. When culturing, a crude enzyme solution was obtained by controlling the lower limit of pH to pH 3 or pH 4 with NaOH during the culture. FIG. 2 shows changes with time in pH during the culture.
[Example 6]
5% by mass of crystalline cellulose (manufactured by Asahi Kasei Chemicals Co., Ltd., trade name: Theolas PH-101, 60% moisture, manufactured by Sanei Seisakusho, trade name: kneaded and stirred at 126 rpm for 90 minutes with a hook blade in a universal stirring mixer) 2 ml of the cellulase crude enzyme solution obtained in Example 3 and Example 5 was added to 8 ml, and hydrolysis was performed under a stirring condition at 55 ° C. After reaction for 2 hours, 4 hours, 6 hours, and 8 hours, heat at 95 ° C for 15 minutes to stop the enzyme reaction, obtain a supernatant by centrifugation, and measure the concentration of cellooligosaccharide and glucose by the HPLC method described above did. The results are shown in FIG.
[Comparative Example 2]
When enzymatically degrading crystalline cellulose in the same manner as in Example 6, the cellulase obtained in Comparative Example 1 was used as a crude enzyme solution. The results are shown in FIG.

Figure 0004789501
Figure 0004789501

Figure 0004789501
Figure 0004789501

本発明の製造方法により得られるセロオリゴ糖は、通常の食品素材に加え、機能性食品素材、医薬品およびその他化学品の中間体合成材料等の化学変換原料、発酵原料として食品、医薬品、一般工業製品分野で好適に利用できる。   The cellooligosaccharides obtained by the production method of the present invention include, in addition to normal food materials, functional food materials, chemical conversion raw materials such as pharmaceuticals and other chemical intermediate synthesis materials, foods, pharmaceuticals, and general industrial products as fermentation raw materials. It can be suitably used in the field.

実施例3、4、比較例1の培養におけるpHの経時変化を示す。The time-dependent change of pH in the culture | cultivation of Example 3, 4 and the comparative example 1 is shown. 実施例5の培養におけるpHの経時変化を示す。The time-dependent change of pH in the culture | cultivation of Example 5 is shown. 実施例6、比較例2の酵素分解反応により得られる反応液中のセルロース分解量とセロオリゴ糖の純度の関係を示す。The relationship between the amount of cellulose degradation in the reaction liquid obtained by the enzymatic decomposition reaction of Example 6 and Comparative Example 2 and the purity of cellooligosaccharide is shown.

Claims (2)

セルラーゼ生産菌であるトリコデルマ リーセイ(Trichoderma reesei) NBRC31329菌株を、pH3.5未満に制御して培養することによりセルラーゼを製造し、得られたセルラーゼを使用し、セルロースを酵素分解することを特徴とするセロオリゴ糖の製造方法。 A cellulase is produced by culturing a cellulase-producing bacterium Trichoderma reesei NBRC31329 strain at a pH of less than 3.5, and the resulting cellulase is used to enzymatically decompose cellulose. A method for producing cellooligosaccharides . セルラーゼ生産菌が、トリコデルマ リーセイ(Trichoderma reesei) NBRC31329菌株の変異株であるトリコデルマ リーセイ(Trichoderma reesei) GL−1(独立行政法人産業技術総合研究所 特許生物寄託センター 受託番号 FERM BP−10323)であることを特徴とする請求項1に記載のセロオリゴ糖の製造方法。 The cellulase-producing bacterium is a Trichoderma reesei NBRC31329 mutant, Trichoderma reesei GL-1 (National Institute of Advanced Industrial Science and Technology, Patent Biodeposition Center Accession No. FERM BP- 10323) The method for producing a cellooligosaccharide according to claim 1.
JP2005125975A 2005-04-25 2005-04-25 Method for producing cellulase Expired - Fee Related JP4789501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125975A JP4789501B2 (en) 2005-04-25 2005-04-25 Method for producing cellulase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125975A JP4789501B2 (en) 2005-04-25 2005-04-25 Method for producing cellulase

Publications (3)

Publication Number Publication Date
JP2006296358A JP2006296358A (en) 2006-11-02
JP2006296358A5 JP2006296358A5 (en) 2008-06-19
JP4789501B2 true JP4789501B2 (en) 2011-10-12

Family

ID=37465223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125975A Expired - Fee Related JP4789501B2 (en) 2005-04-25 2005-04-25 Method for producing cellulase

Country Status (1)

Country Link
JP (1) JP4789501B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838211B2 (en) * 2007-08-21 2011-12-14 旭化成ケミカルズ株式会社 Lipase inhibitor
JP5069576B2 (en) * 2008-01-29 2012-11-07 旭化成ケミカルズ株式会社 Enzyme composition capable of accumulating high concentration of cellobiose and method for producing cellooligosaccharides using the same
JP2009201473A (en) * 2008-02-29 2009-09-10 Yamaguchi Univ Process for production of quinic acid and/or caffeic acid
JP5584988B2 (en) * 2009-03-27 2014-09-10 東レ株式会社 Method for producing cellulase
JP7289480B2 (en) * 2018-06-28 2023-06-12 関西化学機械製作株式会社 Method for producing a cellulase agent and method for producing a saccharified fermentation product using the cellulase agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9017452D0 (en) * 1990-08-09 1990-09-26 Alko Ltd Novel foodstuff formulations
CA2097180C (en) * 1990-12-10 2007-08-14 Timothy Fowler Saccharification of cellulose by cloning and amplification of the .beta.-glucosidase gene of trichoderma reesei
JP3075609B2 (en) * 1991-10-29 2000-08-14 株式会社ニチレイ Method for producing cellooligosaccharide
JPH05227957A (en) * 1992-02-07 1993-09-07 Shin Etsu Chem Co Ltd Purification of cellulase and production of cellobiose
JP2001112496A (en) * 1999-10-20 2001-04-24 Nippon Paper Industries Co Ltd Production of cellooligosaccharide

Also Published As

Publication number Publication date
JP2006296358A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4372787B2 (en) Method for producing cellooligosaccharide
JP5792105B2 (en) Method for producing lacto-N-biose I
JP5014018B2 (en) Helicobacter pylori suppressor or bacteriostatic agent
JP5243435B2 (en) Method for producing cellulase and cellooligosaccharide
JP4789501B2 (en) Method for producing cellulase
JP2010200720A (en) Taste quality improver
JP2007330177A (en) Activator of enteric bacterium
TWI429748B (en) Cellulase and fiber oligosaccharide production method
JP5069576B2 (en) Enzyme composition capable of accumulating high concentration of cellobiose and method for producing cellooligosaccharides using the same
JP5038181B2 (en) Method for producing cellulase and cellooligosaccharide
JP5340528B2 (en) Lipid reducing agent in internal organs
JP7088483B2 (en) Manufacturing method of water-soluble dietary fiber composition, manufacturing method of food and drink, and novel microorganisms
JP6535280B2 (en) Mutant strain of cellulase producing bacterium, method for producing cellulase and method for producing cellooligosaccharide
JP5800741B2 (en) Method for producing lacto-N-biose I
JP4933575B2 (en) High protein and high nutrition baked goods
JP4493021B2 (en) Cyclic inulooligosaccharide and difructose dianhydride-containing composition
Vera et al. Galacto-oligosaccharides 41
Vera et al. Galacto-oligosaccharides
JPS62239991A (en) Production of chitin decomposing enzyme and production of de-composition product of chitin using said enzyme

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees