JP2021141270A5 - - Google Patents

Download PDF

Info

Publication number
JP2021141270A5
JP2021141270A5 JP2020039656A JP2020039656A JP2021141270A5 JP 2021141270 A5 JP2021141270 A5 JP 2021141270A5 JP 2020039656 A JP2020039656 A JP 2020039656A JP 2020039656 A JP2020039656 A JP 2020039656A JP 2021141270 A5 JP2021141270 A5 JP 2021141270A5
Authority
JP
Japan
Prior art keywords
substrate
die bonding
bonding apparatus
imaging
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020039656A
Other languages
Japanese (ja)
Other versions
JP2021141270A (en
JP7373436B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2020039656A priority Critical patent/JP7373436B2/en
Priority claimed from JP2020039656A external-priority patent/JP7373436B2/en
Priority to TW110100795A priority patent/TWI798619B/en
Priority to CN202110219292.8A priority patent/CN113380661B/en
Priority to KR1020210028766A priority patent/KR102506283B1/en
Publication of JP2021141270A publication Critical patent/JP2021141270A/en
Publication of JP2021141270A5 publication Critical patent/JP2021141270A5/ja
Application granted granted Critical
Publication of JP7373436B2 publication Critical patent/JP7373436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

図1(a)は通常視野光学系を示す斜視図であり、図1(b)は広視野光学系を示す斜視図である。FIG. 1(a) is a perspective view showing a normal-field optical system, and FIG. 1(b) is a perspective view showing a wide-field optical system. 図2(a)はマクロレンズを用いた広視野光学系の概念図であり、図2(b)はテレセントリックレンズを用いた広視野光学系の概念図である。FIG. 2(a) is a conceptual diagram of a wide-field optical system using a macro lens, and FIG. 2(b) is a conceptual diagram of a wide-field optical system using a telecentric lens. 図3(a)はペーストの立体形状のイメージを示す図であり、図3(b)は基板をマクロレンズでワイドエリアに見た時のペースト上の輝線を示す図である。FIG. 3(a) is a diagram showing an image of the three-dimensional shape of the paste, and FIG. 3(b) is a diagram showing bright lines on the paste when the substrate is viewed in a wide area through a macro lens. 図4(a)は実施形態の撮像装置の多連化について説明する上面図であり、図4(b)は図4(a)において矢印A方向から見たときの側面図である。FIG. 4(a) is a top view for explaining the multiple arrangement of the imaging device of the embodiment, and FIG. 4(b) is a side view when viewed from the direction of arrow A in FIG. 4(a). 図5は実施形態の撮像装置に用いる照明装置について説明する図である。FIG. 5 is a diagram illustrating a lighting device used in the imaging device of the embodiment. 図6は複数の撮像装置の撮像視野の重複について説明する上面図である。FIG. 6 is a top view illustrating overlap of imaging fields of a plurality of imaging devices. 図7は図6において矢印A方向から見たときの側面図である。7 is a side view when viewed from the direction of arrow A in FIG. 6. FIG. 図8は撮像視野の重複量について説明する図である。FIG. 8 is a diagram for explaining the overlapping amount of imaging fields of view. 図9はイメージモザイキングと座標マッピングを説明する図である。FIG. 9 is a diagram for explaining image mosaicing and coordinate mapping. 図10はキャリブレーションプレートを用いたイメージモザイキングと座標変換を説明する模式図である。FIG. 10 is a schematic diagram for explaining image mosaicing and coordinate transformation using a calibration plate. 図11はディストーションを説明する図である。FIG. 11 is a diagram for explaining distortion. 図12はアフィン変換および射影変換の変換行列の式を示す図である。FIG. 12 is a diagram showing transformation matrix equations for affine transformation and projective transformation. 図13は基板のターゲットモデルによるイメージモザイキングと座標変換を説明する図である。FIG. 13 is a diagram for explaining image mosaicing and coordinate transformation using a substrate target model. 図14は撮像装置の経時変位の影響を説明する図である。FIG. 14 is a diagram for explaining the influence of temporal displacement of the imaging device. 図15は空間再補正を説明する図である。FIG. 15 is a diagram for explaining spatial re-correction. 図16はキャリブレーションプレートの高さを変える方法を説明する図である。FIG. 16 is a diagram explaining a method of changing the height of the calibration plate. 図17はシュートに設けるマーカを説明する図である。FIG. 17 is a diagram for explaining markers provided on the chute. 図18は変形例における撮像装置の多連化について説明する斜視図である。FIG. 18 is a perspective view for explaining multiple imaging devices in a modified example. 図19は実施例におけるダイボンダの概略を示す上面図である。FIG. 19 is a top view showing the outline of the die bonder in the embodiment. 図20は図19において矢印A方向から見たときに、ピックアップヘッド及びボンディングヘッドの動作を説明する図である。20A and 20B are diagrams for explaining the operation of the pickup head and the bonding head when viewed from the direction of arrow A in FIG. 図21は図19のダイ供給部の主要部を示す概略断面図である。21 is a schematic cross-sectional view showing the main part of the die supply section of FIG. 19. FIG. 図22は図19のダイボンダの制御系の概略構成を示すブロック図である。22 is a block diagram showing a schematic configuration of the control system of the die bonder of FIG. 19. FIG. 図23は半導体装置の製造方法を示すフローチャートである。FIG. 23 is a flow chart showing a method of manufacturing a semiconductor device.

複数の撮像画像の合成について図9から図15を用いて説明する。図9はイメージモザイキングと座標マッピングを説明する図である。図10はキャリブレーションプレートを用いたイメージモザイキングと座標変換を説明する模式図である。図11はディストーションを説明する図である。図12はアフィン変換および射影変換の変換行列の式を示す図である。図13は基板のターゲットモデルによるイメージモザイキングと座標変換を説明する図である。図14は多連リードフレームのタブ上にペースト状接着剤を塗布した状態を複数の撮像装置で撮像した画像であり、図14(a)は経時変異がない場合の撮像画像であり、図14(b)は経時変異がある場合の撮像画像である。図15は空間再補正を説明する図であり、図15(a)は空間再補正前の状態を示す図であり、図15(b)は空間再補正後の状態を示す図である。
Synthesis of a plurality of captured images will be described with reference to FIGS. 9 to 15. FIG. FIG. 9 is a diagram for explaining image mosaicing and coordinate mapping. FIG. 10 is a schematic diagram for explaining image mosaicing and coordinate transformation using a calibration plate. FIG. 11 is a diagram for explaining distortion. FIG. 12 is a diagram showing transformation matrix equations for affine transformation and projective transformation. FIG. 13 is a diagram for explaining image mosaicing and coordinate transformation using a substrate target model. FIG. 14 shows images of a state in which a paste adhesive is applied to tabs of a multiple lead frame, taken by a plurality of imaging devices, and FIG. (b) is a captured image when there is a time-lapse variation. 15A and 15B are diagrams for explaining spatial re-correction, FIG. 15A is a diagram showing a state before spatial re-correction, and FIG. 15B is a diagram showing a state after spatial re-correction.

上記(A)について図9から図12を用いて説明する。
図9に示すように、制御部CNTは、ダイボンディング装置の調整時に多連化された撮像装置の全ての撮像視野をカバーするスケールとなる座標マーカCMRKを映し、重複領域OVL範囲に入る座標マーカCMRKの同一交点IPを基準に画像を射影変換やアフィン変換等による座標変換をして、各撮像装置間の画像を滑らかにつなぎ合わせた一枚の画像(合成画像)を得る。ここで、座標マーカCMRKは、調整治具としてキャリブレーションプレートを用意し、そのプレートにマーキングして用いるものであり、座標マーカCMRKは例えば格子状のものである。座標変換時は全体の空間の位置関係を保証するマーカが必要になる。図9に示すような合成視野全体をカバーする座標マーカCMRKがあれば、射影変換等の座標変換時は全体の空間の位置関係を保証することができ、各交点ピッチで画像空間座標と実空間座標のマッチングは可能である。
The above (A) will be described with reference to FIGS. 9 to 12. FIG.
As shown in FIG. 9, the control unit CNT projects a coordinate marker CMRK, which is a scale covering all the imaging fields of the multiple imaging devices during adjustment of the die bonding apparatus, and a coordinate marker that falls within the range of the overlapping area OVL. A single image (composite image) is obtained by smoothly connecting the images of the imaging devices by subjecting the image to coordinate transformation such as projective transformation or affine transformation based on the same intersection point IP of the CMRK. Here, the coordinate marker CMRK is used by marking a calibration plate prepared as an adjustment jig and marking the plate, and the coordinate marker CMRK is, for example, a grid shape. During coordinate transformation, markers are required to guarantee the positional relationship of the entire space. If there is a coordinate marker CMRK that covers the entire synthetic field of view as shown in FIG. 9, the positional relationship in the entire space can be guaranteed during coordinate transformation such as projective transformation. Coordinate matching is possible.

まず、制御部CNTは、アフィン変換もしくは射影変換にて隣接する撮像装置のいずれかを基準にもう一方の撮像装置の画像の画素座標を変換する。ここでは例として基準画像が画像IV1、変換画像を画像IV2として説明する。変換は互いの変換される画像における交点IPの座標(黒点座標)が対応する基準画像における交点IPの座標(黒点座標)に合うよう、アフィン変換もしくは射影変換の変換行列の各パラメータを算出する。ここで、一般的に、アフィン変換の変換行列は図12の式(1)に示され、射影変換の行列式は図12の式(2)に示される。変換行列の算出には一般に三点の座標があればよいが、変換を一義的ではなく、格子状のマス目に相当する部分別に行うことでより正確な変換が可能になるため、マス目毎に変換を行うのが好ましい。
First, the control unit CNT transforms the pixel coordinates of the image of the other imaging device based on one of the adjacent imaging devices by affine transformation or projective transformation. Here, as an example, the reference image is the image IV1, and the conversion image is the image IV2. Transformation calculates each parameter of a transformation matrix of affine transformation or projective transformation so that the coordinates (black point coordinates) of the intersection point IP in the images to be transformed match the coordinates (black point coordinates) of the intersection point IP in the corresponding reference image. Here, in general, the transformation matrix of affine transformation is shown in equation (1) of FIG. 12, and the determinant of projective transformation is shown in equation (2) of FIG. In general, it is sufficient to have the coordinates of three points to calculate the transformation matrix. It is preferable to convert to

座標合わせは画素座標系にて行うため、画像IV2の変換後の座標は整数値になることを求められるが、アフィン変換や射影変換にて変換された画素は、必ずその場所に収まるわけではなく、変換後座標が中間の値になる場合がある。そのような時は変換後の画像の各座標は、近接する変換後の座標の濃淡値からニアレストネイバー法やバイリニア法、バイキュービック法などで代表される濃淡値補間を行う。
Coordinates are aligned in the pixel coordinate system, so the coordinates of image IV2 after transformation are required to be integer values. , the converted coordinates may be intermediate values. In such a case, each coordinate of the image after conversion is subjected to gray value interpolation represented by the nearest neighbor method, bilinear method, bicubic method, etc. from the gray value of the adjacent coordinates after conversion.

この変位を検出した際に、制御部CNTは基板S上の位置決め用ターゲットマークTM等の特徴マーカを用いて画像を合成変換する射影変換行列やアフィン変換行列を再計算する。このとき、求めた射影変換行列やアフィン変換行列は画像のつなぎ合わせはできるが、図15(a)に示すように、画像空間と実空間のマッチングができていない状態になる場合がある。そのため、制御部CNTは最初に測定していたシュートSCT上のマーカSMRKを用いて、その座標を基準に再変換を行う。これにより、図15(b)に示すような合成画像を得る。
When this displacement is detected, the control unit CNT recalculates the projective transformation matrix and the affine transformation matrix for synthesizing and transforming the image using the characteristic marker such as the positioning target mark TM on the substrate S. FIG. At this time, the obtained projective transformation matrix and affine transformation matrix can connect images, but as shown in FIG. 15(a), the image space and real space may not be matched. Therefore, the control unit CNT uses the marker SMRK on the chute SCT that was measured first, and performs retransformation based on the coordinates. As a result, a synthesized image as shown in FIG. 15(b) is obtained.

制御部CNTは、高さ変位に対応するため、キャリブレーションプレートCPを上下に微動させて、高さ毎に射影変換行列を得る。制御部CNTは既知の基板の厚さやペースト高さ、ダイ厚などからアライメントパターン位置や検査視野位置の予想高さを算出し、高さ毎に保持しているどの射影変換行列を用いるか自動選択する。制御部CNTは隣接する撮像装置間の重複領域にて基板上の同一ポイントの認識を行い、高さを測定する。制御部CNTはその測定値から使用する射影変換行列を自動選択する。

In order to deal with height displacement, the control unit CNT finely moves the calibration plate CP up and down to obtain a projective transformation matrix for each height. The control unit CNT calculates the expected height of the alignment pattern position and inspection field position from known substrate thickness, paste height, die thickness, etc., and automatically selects which projection transformation matrix to use for each height. do. The control unit CNT recognizes the same point on the substrate in the overlapping area between adjacent imaging devices and measures the height. The control unit CNT automatically selects the projective transformation matrix to be used from the measured values.

Claims (23)

基板を搬送する搬送路と、
前記搬送路の上方に前記基板の幅方向に沿って一列に固定配設された複数の撮像装置と、
前記基板の上に位置する前記幅方向に沿った一列の複数のアタッチメント領域を前記複数の撮像装置で撮像して複数の画像を取得し、取得した複数の前記画像に基づいて合成画像を生成し、前記合成画像に基づいて前記アタッチメント領域の撮像対象物を認識するよう構成される制御部と、
を備え、
各撮像装置の撮像視野は前記基板の上で重複し、重複した前記撮像視野は前記アタッチメント領域よりも大きく構成されるダイボンディング装置。
a transport path for transporting the substrate;
a plurality of imaging devices fixedly arranged in a row above the transport path along the width direction of the substrate;
A plurality of attachment regions arranged in a row along the width direction and positioned on the substrate are imaged by the plurality of imaging devices to obtain a plurality of images, and a composite image is generated based on the plurality of the obtained images. a controller configured to recognize an imaging target in the attachment area based on the composite image;
with
The die bonding apparatus according to claim 1, wherein imaging fields of view of respective imaging devices overlap on the substrate, and the overlapping imaging fields of view are larger than the attachment area.
請求項1のダイボンディング装置において、
前記制御部は、重複した前記撮像視野に位置する座標マーカに基づいて前記合成画像を生成するよう構成されるダイボンディング装置。
The die bonding apparatus of claim 1,
The die bonding apparatus, wherein the controller is configured to generate the composite image based on coordinate markers located in the overlapping imaging fields.
請求項2のダイボンディング装置において、
前記座標マーカは全ての前記撮像装置の視野をカバーする格子状のスケールであり、
前記制御部は、前記座標マーカを映し、重複した前記撮像視野に入る前記座標マーカの同一交点を基準に画像を射影変換して、各撮像装置間の画像をつなぎ合わせて前記合成画像を生成するよう構成されるダイボンディング装置。
In the die bonding apparatus of claim 2,
the coordinate marker is a grid-like scale covering the field of view of all the imaging devices;
The control unit displays the coordinate markers, performs projective transformation on the image with reference to the same intersection of the coordinate markers in the overlapping imaging fields, and joins the images of the imaging devices to generate the composite image. A die bonding apparatus configured as follows.
請求項3のダイボンディング装置において、
前記搬送路は、前記基板の幅方向の両端の外側にそれぞれ複数の基準マーカを有し、
前記基板は所定の間隔で配置される複数のタブを有し、
前記制御部は、前記タブの間隔または前記基準マーカの間隔を前記撮像装置で測定し、前記撮像装置間の変位を検出するように構成されるダイボンディング装置。
In the die bonding apparatus of claim 3,
the transport path has a plurality of reference markers outside both ends in the width direction of the substrate,
The substrate has a plurality of tabs arranged at predetermined intervals,
The die bonding apparatus, wherein the controller is configured to measure the interval between the tabs or the interval between the reference markers with the imaging device and detect the displacement between the imaging devices.
請求項4のダイボンディング装置において、
前記基板は、さらに、特徴マーカを有し、
前記制御部は、前記撮像装置間の変位を検出した場合、前記特徴マーカに基づいて画像を合成変換する射影変換行列を再計算するように構成されるダイボンディング装置。
In the die bonding apparatus of claim 4,
the substrate further comprises a characteristic marker;
The die bonding device, wherein the control unit is configured to recalculate a projective transformation matrix for synthesizing an image based on the characteristic marker when a displacement between the imaging devices is detected.
請求項5のダイボンディング装置において、
前記制御部は、予め測定していた前記基準マーカに基づいて、その座標を基準に前記射影変換行列を再計算するように構成されるダイボンディング装置。
In the die bonding apparatus of claim 5,
The control unit is configured to recalculate the projective transformation matrix based on the coordinates of the previously measured reference marker.
請求項6のダイボンディング装置において、
前記制御部は、前記基板を上下に微動させて、高さ毎に射影変換行列を求め、
前記基板の厚さまたはペースト高さまたはダイ厚からアライメントパターン位置または検査視野位置の予想高さを算出し、算出した予想高さに基づいて高さ毎に保持している前記射影変換行列の何れかを選択するように構成されるダイボンディング装置。
In the die bonding apparatus of claim 6,
The control unit finely moves the substrate up and down to obtain a projective transformation matrix for each height,
Calculate the expected height of the alignment pattern position or the inspection field position from the thickness of the substrate, the paste height, or the die thickness, and based on the calculated expected height, any of the projection transformation matrices held for each height A die bonding apparatus configured to select between:
請求項7のダイボンディング装置において、
前記制御部は、隣接する撮像装置間の重複した撮像視野において前記基板の上の同一ポイントの認識を行い、高さを測定し、測定された前記高さに基づいて高さ毎に保持している前記射影変換行列を選択するように構成されるダイボンディング装置。
In the die bonding apparatus of claim 7,
The control unit recognizes the same point on the substrate in an overlapping field of view between adjacent imaging devices, measures the height, and maintains each height based on the measured height. die bonding apparatus configured to select the projective transformation matrix.
請求項1から8の何れか1項のダイボンディング装置において、
さらに、複数の前記撮像装置のそれぞれに対応して設けられた複数の照明装置を備え、
前記制御部は、複数の前記照明装置を独立して調光するよう構成されるダイボンディング装置。
In the die bonding apparatus according to any one of claims 1 to 8,
Furthermore, comprising a plurality of lighting devices provided corresponding to each of the plurality of imaging devices,
The die bonding apparatus, wherein the controller is configured to independently dim the plurality of lighting devices.
請求項1から8の何れか1項のダイボンディング装置において、
前記制御部は、前記基板を当該基板の長さ方向に搬送して次の列の複数のアタッチメント領域を前記複数の撮像装置で撮像するよう構成されるダイボンディング装置。
In the die bonding apparatus according to any one of claims 1 to 8,
The control unit is a die bonding apparatus configured to convey the substrate in the length direction of the substrate and image the plurality of attachment regions in the next row with the plurality of imaging devices.
請求項1から8の何れか1項のダイボンディング装置において、
前記撮像対象物は前記基板に塗布されたペースト状接着剤であるダイボンディング装置。
In the die bonding apparatus according to any one of claims 1 to 8,
A die bonding apparatus, wherein the object to be imaged is a paste adhesive applied to the substrate.
請求項11のダイボンディング装置において、
前記制御部は前記撮像装置により前記基板に塗布されたペースト状接着剤の外観検査を行うよう構成されるダイボンディング装置。
The die bonding apparatus of claim 11, wherein
The die bonding apparatus, wherein the control unit is configured to perform a visual inspection of the paste adhesive applied to the substrate by the imaging device.
請求項1から8の何れか1項のダイボンディング装置において、
前記撮像対象物は前記基板または既にボンディングされたダイの上にボンディングされたダイであるダイボンディング装置。
In the die bonding apparatus according to any one of claims 1 to 8,
A die bonding apparatus, wherein the imaging object is a die bonded on the substrate or an already bonded die.
複数のアタッチメント領域を有する基板を搬送する搬送路と、前記搬送路の上方に前記基板の幅方向に沿って一列に固定配設された複数の撮像装置と、複数の前記撮像装置のそれぞれに対応して設けられた複数の照明装置と、を備え、各撮像装置の撮像視野は前記基板の上で重複し、重複した前記撮像視野は前記アタッチメント領域よりも大きくするよう構成されるダイボンディング装置に基板を搬入する工程と、
前記基板の上に位置する前記幅方向に沿った一列の複数の前記アタッチメント領域を前記複数の撮像装置で撮像して複数の画像を取得し、取得した複数の前記画像に基づいて合成画像を生成し、前記合成画像に基づいて前記アタッチメント領域の撮像対象物を認識する工程と、
前記基板を当該基板の長さ方向に搬送して次の列の複数のアタッチメント領域を前記複数の撮像装置で撮像する工程と、
を備える半導体装置の製造方法。
Corresponding to each of a transport path for transporting a substrate having a plurality of attachment areas, a plurality of imaging devices fixedly arranged in a row above the transport path along the width direction of the substrate, and the plurality of imaging devices and a plurality of lighting devices provided as a die bonding device, wherein the imaging field of view of each imaging device overlaps on the substrate, and the overlapping imaging field of view is larger than the attachment area. a step of loading the substrate;
A row of the attachment regions located on the substrate along the width direction is imaged by the plurality of imaging devices to obtain a plurality of images, and a composite image is generated based on the obtained plurality of images. and recognizing an object to be imaged in the attachment area based on the synthesized image;
a step of conveying the substrate in the length direction of the substrate and imaging a plurality of attachment regions in the next row with the plurality of imaging devices;
A method of manufacturing a semiconductor device comprising:
請求項14の半導体装置の製造方法において、
重複した前記撮像視野に位置する座標マーカに基づいて前記合成画像を生成する半導体装置の製造方法。
In the method of manufacturing a semiconductor device according to claim 14,
A method of manufacturing a semiconductor device, wherein the synthesized image is generated based on the coordinate markers located in the overlapping imaging fields.
請求項15の半導体装置の製造方法において、
前記座標マーカは全ての前記撮像装置の視野をカバーする格子状のスケールであり、
前記座標マーカを映し、重複した前記撮像視野に入る前記座標マーカの同一交点を基準に画像を射影変換して、各撮像装置間の画像をつなぎ合わせて前記合成画像を生成する半導体装置の製造方法。
In the method of manufacturing a semiconductor device according to claim 15,
the coordinate marker is a grid-like scale covering the field of view of all the imaging devices;
A method of manufacturing a semiconductor device, in which the coordinate markers are projected, an image is projectively transformed with reference to the same intersection of the coordinate markers entering the overlapping imaging fields, and the images of the imaging devices are joined to generate the composite image. .
請求項16の半導体装置の製造方法において、
前記搬送路は、前記基板の幅方向の両端の外側にそれぞれ複数の基準マーカを有し、
前記基板は所定の間隔で配置される複数のタブを有し、
前記タブの間隔または前記基準マーカの間隔を前記撮像装置で測定し、前記撮像装置間の変位を検出する半導体装置の製造方法。
In the method of manufacturing a semiconductor device according to claim 16,
the transport path has a plurality of reference markers outside both ends in the width direction of the substrate,
The substrate has a plurality of tabs arranged at predetermined intervals,
A method of manufacturing a semiconductor device, wherein the distance between the tabs or the distance between the reference markers is measured by the imaging device, and the displacement between the imaging devices is detected.
請求項17の半導体装置の製造方法において、
前記基板は、さらに、特徴マーカを有し、
前記撮像装置間の変位を検出した場合、前記特徴マーカに基づいて画像を合成変換する射影変換行列を再計算する半導体装置の製造方法。
In the method of manufacturing a semiconductor device according to claim 17,
the substrate further comprises a characteristic marker;
A method of manufacturing a semiconductor device, wherein when a displacement between the imaging devices is detected, a projective transformation matrix for synthesizing and transforming an image is recalculated based on the characteristic marker.
請求項18の半導体装置の製造方法において、
予め測定していた前記基準マーカに基づいて、その座標を基準に前記射影変換行列を再計算する半導体装置の製造方法。
In the method of manufacturing a semiconductor device according to claim 18,
A method of manufacturing a semiconductor device, wherein the projective transformation matrix is recalculated based on the coordinates of the previously measured reference marker.
請求項19の半導体装置の製造方法において、
前記基板を上下に微動させて、高さ毎に射影変換行列を求め、
前記基板の厚さまたはペースト高さまたはダイ厚からアライメントパターン位置または検査視野位置の予想高さを算出し、算出した予想高さに基づいて高さ毎に保持している前記射影変換行列の何れかを選択する半導体装置の製造方法。
In the method of manufacturing a semiconductor device according to claim 19,
Finely move the substrate up and down to obtain a projective transformation matrix for each height,
Calculate the expected height of the alignment pattern position or the inspection field position from the thickness of the substrate, the paste height, or the die thickness, and based on the calculated expected height, any of the projection transformation matrices held for each height A manufacturing method of a semiconductor device to select.
請求項20の半導体装置の製造方法において、
隣接する撮像装置間の重複した撮像視野において前記基板の上の同一ポイントの認識を行い、高さを測定し、測定された前記高さに基づいて高さ毎に保持している前記射影変換行列を選択する半導体装置の製造方法。
In the method of manufacturing a semiconductor device according to claim 20,
recognizing the same point on the substrate in an overlapping field of view between adjacent imaging devices, measuring the height, and maintaining the projective transformation matrix for each height based on the measured height; A method of manufacturing a semiconductor device that selects
請求項14から21の何れか1項の半導体装置の製造方法において、
さらに、前記基板にペースト状接着剤を塗布する工程を備え、
前記撮像対象物は塗布された前記ペースト状接着剤である半導体装置の製造方法。
In the method for manufacturing a semiconductor device according to any one of claims 14 to 21,
Furthermore, it comprises a step of applying a paste adhesive to the substrate,
A method of manufacturing a semiconductor device, wherein the object to be imaged is the applied paste adhesive.
請求項14から21の何れか1項の半導体装置の製造方法において、
さらに、前記基板または既にボンディングされたダイの上にダイをボンディングする工程を備え、
前記撮像対象物はボンディングされた前記ダイである半導体装置の製造方法。
In the method for manufacturing a semiconductor device according to any one of claims 14 to 21,
further comprising bonding a die onto the substrate or an already bonded die;
A method of manufacturing a semiconductor device, wherein the object to be imaged is the bonded die.
JP2020039656A 2020-03-09 2020-03-09 Die bonding equipment and semiconductor device manufacturing method Active JP7373436B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020039656A JP7373436B2 (en) 2020-03-09 2020-03-09 Die bonding equipment and semiconductor device manufacturing method
TW110100795A TWI798619B (en) 2020-03-09 2021-01-08 Die bonding device and method for manufacturing semiconductor device
CN202110219292.8A CN113380661B (en) 2020-03-09 2021-02-26 Chip mounting apparatus and method for manufacturing semiconductor device
KR1020210028766A KR102506283B1 (en) 2020-03-09 2021-03-04 Die bonding apparatus and manufacturing method of semiconductor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020039656A JP7373436B2 (en) 2020-03-09 2020-03-09 Die bonding equipment and semiconductor device manufacturing method

Publications (3)

Publication Number Publication Date
JP2021141270A JP2021141270A (en) 2021-09-16
JP2021141270A5 true JP2021141270A5 (en) 2022-11-08
JP7373436B2 JP7373436B2 (en) 2023-11-02

Family

ID=77569626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039656A Active JP7373436B2 (en) 2020-03-09 2020-03-09 Die bonding equipment and semiconductor device manufacturing method

Country Status (4)

Country Link
JP (1) JP7373436B2 (en)
KR (1) KR102506283B1 (en)
CN (1) CN113380661B (en)
TW (1) TWI798619B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115008007B (en) * 2022-06-15 2023-09-22 东莞市德镌精密设备有限公司 Needling type PCB welding crystal arranging machine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316259A (en) * 1995-05-15 1996-11-29 Rohm Co Ltd Method and apparatus for wire bonding of semiconductor product
JP4596422B2 (en) * 2005-05-20 2010-12-08 キヤノンマシナリー株式会社 Imaging device for die bonder
JP2008170298A (en) 2007-01-12 2008-07-24 Oki Electric Ind Co Ltd Visual inspecting device and visual inspection method
JP4844431B2 (en) 2007-03-01 2011-12-28 パナソニック株式会社 Electronic component mounting apparatus and information code reading method in electronic component mounting apparatus
US20110175997A1 (en) 2008-01-23 2011-07-21 Cyberoptics Corporation High speed optical inspection system with multiple illumination imagery
MY169616A (en) * 2009-02-06 2019-04-23 Agency Science Tech & Res Methods for examining a bonding structure of a substrate and bonding structure inspection devices
WO2011037905A1 (en) * 2009-09-22 2011-03-31 Cyberoptics Corporation High speed, high resolution, three dimensional solar cell inspection system
JP5421967B2 (en) * 2011-09-07 2014-02-19 東京エレクトロン株式会社 Joining method, program, computer storage medium, and joining system
JP2013172011A (en) 2012-02-21 2013-09-02 Panasonic Corp Component mounting device, imaging device, and imaging method
JP2013187509A (en) * 2012-03-09 2013-09-19 Seiko Epson Corp Positional information acquiring method of mounting members, positional information acquiring device of the same and manufacturing method of electronic device
JP6022782B2 (en) 2012-03-19 2016-11-09 ファスフォードテクノロジ株式会社 Die bonder
JP6219838B2 (en) * 2012-11-02 2017-10-25 富士機械製造株式会社 Component mounter
JP2014203917A (en) * 2013-04-03 2014-10-27 株式会社ディスコ Plate-like material
JP2014216621A (en) 2013-04-30 2014-11-17 株式会社日立製作所 Substrate processing apparatus and substrate processing method
JP6435099B2 (en) 2014-02-26 2018-12-05 Juki株式会社 Electronic component mounting apparatus and electronic component mounting method
JP6818608B2 (en) * 2017-03-28 2021-01-20 ファスフォードテクノロジ株式会社 Manufacturing method of die bonding equipment and semiconductor equipment
KR102327786B1 (en) * 2017-10-26 2021-11-17 가부시키가이샤 신가와 bonding device
JP6976205B2 (en) 2018-03-19 2021-12-08 東レエンジニアリング株式会社 Chip position measuring device
JP7018341B2 (en) * 2018-03-26 2022-02-10 ファスフォードテクノロジ株式会社 Manufacturing method of die bonding equipment and semiconductor equipment
JP7161870B2 (en) * 2018-06-27 2022-10-27 ファスフォードテクノロジ株式会社 Die bonder and semiconductor device manufacturing method
JP7102271B2 (en) * 2018-07-17 2022-07-19 ファスフォードテクノロジ株式会社 Semiconductor manufacturing equipment and manufacturing method of semiconductor equipment
JP7105135B2 (en) * 2018-08-17 2022-07-22 東京エレクトロン株式会社 PROCESSING CONDITIONS CORRECTION METHOD AND SUBSTRATE PROCESSING SYSTEM

Similar Documents

Publication Publication Date Title
CN111505606B (en) Method and device for calibrating relative pose of multi-camera and laser radar system
KR101141345B1 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
TWI361396B (en) Image synthesis system for a vehicle and the manufacturing method thereof mage synthesis device and method
JP4637845B2 (en) Geometric correction method in multi-projection system
US7652251B1 (en) Registration methods for fusing corresponding infrared and visible light images
JP5140761B2 (en) Method for calibrating a measurement system, computer program, electronic control unit, and measurement system
KR101513107B1 (en) Adjusting apparatus laser beam machining apparatus adjusting method and adjusting program
US20090299684A1 (en) Method for calibrating cameras installed on vehicle
JP2009069146A (en) Method and device for three dimensionally digitizing object
JP7269864B2 (en) Work photographed image processing device and work photographed image processing method
KR20170038648A (en) Exposure apparatus, alignment method of the exposure apparatus, and program
TW202016879A (en) Method of assembly calibration for multi-camera system and related device
JP2004015205A (en) Multi-projection system and correction data acquisition method in multi-projection system
JP2004342067A (en) Image processing method, image processor and computer program
WO2014181581A1 (en) Calibration device, calibration system, and imaging device
JP2021141270A5 (en)
JP6696230B2 (en) Stereo calibration device and stereo calibration method for line sensor camera
TW201600835A (en) Luminance measurement method, luminance measurement device, and image quality adjustment technique using the method and device
JP2010130628A (en) Imaging apparatus, image compositing device and image compositing method
CN111986267A (en) Coordinate system calibration method of multi-camera vision system
KR101245529B1 (en) Camera calibration method
JP2008251797A (en) Reference position detection apparatus and method, and drawing apparatus
JP7373436B2 (en) Die bonding equipment and semiconductor device manufacturing method
JPWO2018173192A1 (en) Parallelism determination method for articulated robot and tilt adjustment device for articulated robot
JPH0969973A (en) Position adjusting method for solid-state image pickup element