JP2021136243A - Multilayer wiring board and manufacturing method of the same - Google Patents

Multilayer wiring board and manufacturing method of the same Download PDF

Info

Publication number
JP2021136243A
JP2021136243A JP2020028688A JP2020028688A JP2021136243A JP 2021136243 A JP2021136243 A JP 2021136243A JP 2020028688 A JP2020028688 A JP 2020028688A JP 2020028688 A JP2020028688 A JP 2020028688A JP 2021136243 A JP2021136243 A JP 2021136243A
Authority
JP
Japan
Prior art keywords
conductor pattern
thermosetting resin
wiring board
layer
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020028688A
Other languages
Japanese (ja)
Other versions
JP7479162B2 (en
Inventor
慎吾 臼田
Shingo Usuda
慎吾 臼田
絢貴 岩田
Junki Iwata
絢貴 岩田
将言 荒井
Shogen Arai
将言 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Simmtech Graphics
Simmtech Graphics Co Ltd
Original Assignee
Simmtech Graphics
Simmtech Graphics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Simmtech Graphics, Simmtech Graphics Co Ltd filed Critical Simmtech Graphics
Priority to JP2020028688A priority Critical patent/JP7479162B2/en
Publication of JP2021136243A publication Critical patent/JP2021136243A/en
Application granted granted Critical
Publication of JP7479162B2 publication Critical patent/JP7479162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

To provide a multilayer wiring board with a thin type structure, capable of increasing a ratio of a coil in a cross-sectional area while increasing the number of winding of a coil.SOLUTION: A multilayer wiring board 1 comprises a lamination body 2 on which a plurality of base materials 4 is laminated, and is structured so that a conductive pattern 3a and an inter-lamination connection conductor 3c form a coil. Each layer in the lamination body 2 is adhered with a second thermoset resin 5, and a thermoset resin layer 6 made of a first thermoset resin is interposed between the conductive patter 3a of each layer in the lamination body 2.SELECTED DRAWING: Figure 1

Description

本発明は、多層配線基板に関する。 The present invention relates to a multilayer wiring board.

従来、導体パターンが形成された熱可塑性樹脂基材を積層して熱圧着した多層基板が提案されている(特許文献1:特許第6562160号公報)。また、コア基板を有する多層配線基板をビルドアップ工法によって形成する多層配線基板の製造方法が提案されている(特許文献2:特許第6274491号公報)。 Conventionally, a multilayer substrate in which a thermoplastic resin base material on which a conductor pattern is formed is laminated and heat-bonded has been proposed (Patent Document 1: Japanese Patent No. 6562160). Further, a method for manufacturing a multilayer wiring board in which a multilayer wiring board having a core substrate is formed by a build-up method has been proposed (Patent Document 2: Japanese Patent No. 6274491).

特許第6562160号公報Japanese Patent No. 6562160 特許第6274491号公報Japanese Patent No. 6274491

携帯情報端末やIoT機器の普及に伴って、電子機器においても省スペースに対応した薄型構造が要求される。一例として、多層配線基板に形成されたコイルをアクチュエータとして用いる場合、マグネットを駆動するコイルの推力を高めるにはコイルの巻数を増やすとともに断面積におけるコイルの比率を大きくする必要がある。しかし、特許文献1のように熱可塑性樹脂基材を積層して熱圧着した場合、基材が熱溶融して導体パターンが層間ショートするリスクがあり、厚みが薄くなるにしたがって層間ショートのリスクが大きくなるという問題がある。また、特許文献2のようなビルドアップ工法は、プリプレグを用いたリジッド基板の製造に用いられており、コイルが形成された多層配線基板に必要とされるような高難易度の薄型化は十分検討されていないのが実情である。 With the widespread use of personal digital assistants and IoT devices, electronic devices are also required to have a thin structure that can save space. As an example, when a coil formed on a multilayer wiring board is used as an actuator, it is necessary to increase the number of turns of the coil and increase the ratio of the coil in the cross-sectional area in order to increase the thrust of the coil that drives the magnet. However, when the thermoplastic resin base materials are laminated and heat-bonded as in Patent Document 1, there is a risk that the base materials are thermally melted and the conductor pattern is short-circuited between layers, and as the thickness becomes thin, there is a risk of short-circuiting between layers. There is a problem of getting bigger. Further, the build-up method as in Patent Document 2 is used for manufacturing a rigid substrate using a prepreg, and it is sufficiently difficult to reduce the thickness as required for a multi-layer wiring board on which a coil is formed. The reality is that it has not been considered.

本発明は、上記事情に鑑みてなされ、コイルの巻数を増やすとともに断面積におけるコイルの比率を大きくしつつ従来よりも薄型構造にすることが可能な多層配線基板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a multilayer wiring board capable of having a thinner structure than the conventional one while increasing the number of turns of the coil and increasing the ratio of the coil in the cross-sectional area.

一実施形態として、以下に開示するような解決手段により、前記課題を解決する。 As an embodiment, the problem is solved by a solution means as disclosed below.

本発明に係る多層配線基板は、複数の基材が積層された積層体を備え、導体パターンと層間接続導体とでコイルが形成されている構成であって、前記積層体における各層は第2熱硬化性樹脂によって接着されているとともに、前記積層体における各層の前記導体パターンの間に第1熱硬化性樹脂からなる熱硬化性樹脂層が介在していることを特徴とする。 The multilayer wiring substrate according to the present invention includes a laminate in which a plurality of substrates are laminated, and has a configuration in which a coil is formed by a conductor pattern and an interlayer connecting conductor, and each layer in the laminate has a second heat. It is characterized in that it is adhered by a curable resin and a thermosetting resin layer made of a first thermosetting resin is interposed between the conductor patterns of each layer in the laminated body.

この構成によれば、第2熱硬化性樹脂によって各層が接着されるとともに、第1熱硬化性樹脂からなる熱硬化性樹脂層によって導体パターンの層間絶縁が確保できるので、コイルの巻数を増やすとともに断面積におけるコイルの比率を大きくした薄型構造にできる。 According to this configuration, each layer is bonded by the second thermosetting resin, and the interlayer insulation of the conductor pattern can be secured by the thermosetting resin layer made of the first thermosetting resin, so that the number of coil turns can be increased. A thin structure can be formed in which the ratio of coils in the cross-sectional area is increased.

本発明に係る多層配線基板の製造方法は、複数の基材が積層された積層体を備え、導体パターンと層間接続導体とでコイルが形成されている多層配線基板の製造方法であって、各層を第2熱硬化性樹脂によって接着するとともに、各層の前記導体パターンの間に第1熱硬化性樹脂からなる熱硬化性樹脂層を介在させて積層体を形成する積層体製造プロセスを有することを特徴とする。 The method for manufacturing a multi-layer wiring board according to the present invention is a method for manufacturing a multi-layer wiring board in which a laminated body in which a plurality of base materials are laminated and a coil is formed by a conductor pattern and an interlayer connecting conductor, and each layer is manufactured. With a second thermosetting resin, and having a laminate manufacturing process in which a thermosetting resin layer made of a first thermosetting resin is interposed between the conductor patterns of each layer to form a laminate. It is a feature.

この構成によれば、第1熱硬化性樹脂からなる熱硬化性樹脂層によって導体パターンの層間絶縁を確保しつつ、第2熱硬化性樹脂によって各層を接着して積層体を形成するので、コイルの巻数を増やすとともに断面積におけるコイルの比率を大きくした薄型構造の多層配線基板を製造することができる。 According to this configuration, the coil is formed by adhering each layer with the second thermosetting resin while ensuring the interlayer insulation of the conductor pattern by the thermosetting resin layer made of the first thermosetting resin. It is possible to manufacture a multi-layer wiring board having a thin structure in which the number of turns of the coil is increased and the ratio of coils in the cross-sectional area is increased.

本発明によればコイルの巻数を増やすとともに断面積におけるコイルの比率を大きくしつつ従来よりも薄型構造にした多層配線基板が実現できる。 According to the present invention, it is possible to realize a multi-layer wiring board having a thinner structure than the conventional one while increasing the number of turns of the coil and increasing the ratio of the coil in the cross-sectional area.

図1は本発明の実施形態に係る多層配線基板の例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a multilayer wiring board according to an embodiment of the present invention. 図2Aは本実施形態に係る多層配線基板の製造方法の例であってダミーコア基板にピーラブル銅箔を配して配線パターンを形成した状態を模式的に示す断面図であり、図2Bは図2Aの状態に続いて樹脂付銅箔を配した状態を模式的に示す断面図であり、図2Cは図2Bの状態に続いて配線パターンを形成した状態を模式的に示す断面図である。FIG. 2A is an example of a method for manufacturing a multilayer wiring board according to the present embodiment, and is a cross-sectional view schematically showing a state in which a peelable copper foil is arranged on a dummy core substrate to form a wiring pattern, and FIG. 2B is FIG. 2A. FIG. 2C is a cross-sectional view schematically showing a state in which a copper foil with resin is arranged following the state of FIG. 2B, and FIG. 2C is a cross-sectional view schematically showing a state in which a wiring pattern is formed following the state of FIG. 2B. 図3Aは図2Cの状態に続いて樹脂付銅箔を配して配線パターンを形成した状態を模式的に示す断面図であり、図3Bは図3Aの状態に続いて積層体をダミーコア基板から分離した状態を模式的に示す断面図であり、図3Cは図3Bの状態に続いて分離した積層体からピーラブル銅箔をエッチングした状態を模式的に示す断面図である。FIG. 3A is a cross-sectional view schematically showing a state in which a copper foil with resin is arranged to form a wiring pattern following the state of FIG. 2C, and FIG. 3B shows a laminated body from a dummy core substrate following the state of FIG. 3A. FIG. 3C is a cross-sectional view schematically showing a separated state, and FIG. 3C is a cross-sectional view schematically showing a state in which a peelable copper foil is etched from the separated laminated body following the state of FIG. 3B. 図4は本実施形態に係る多層配線基板における実施例を模式的に示す構造図である。FIG. 4 is a structural diagram schematically showing an embodiment of the multilayer wiring board according to the present embodiment. 図5は図4に示す実施例のV−V断面を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing a VV cross section of the embodiment shown in FIG.

以下、図面を参照して、本発明の実施形態について詳しく説明する。図1は本実施形態に係る多層配線基板1の例を模式的に示す断面図である。多層配線基板1は積層体2を備えており、積層体2には、第1導体パターン3aと第2導体パターン3bとが配設されている。そして、導体パターン3aと層間接続導体3cと導体パターン3bとでコイルが形成されている構成である。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing an example of the multilayer wiring board 1 according to the present embodiment. The multilayer wiring board 1 includes a laminated body 2, and a first conductor pattern 3a and a second conductor pattern 3b are arranged on the laminated body 2. A coil is formed by the conductor pattern 3a, the interlayer connecting conductor 3c, and the conductor pattern 3b. In all the drawings for explaining the embodiment, members having the same function may be designated by the same reference numerals, and the repeated description thereof may be omitted.

図1に示すように、多層配線基板1は、積層体2における第1主面側の第1導体パターン3aのうちの外部接続用の第1端に、めっき8aが形成されており、第1主面側の第1導体パターン3aのうちの第1端以外はカバーレイ7aで覆われている。また、積層体2における第2主面側の第2導体パターン3bのうちの外部接続用の第2端に、めっき8bが形成されており、第2主面側の第2導体パターン3bのうちの第2端以外はカバーレイ7bで覆われている。第1導体パターン3aと第2導体パターン3bは、一例として銅からなる。層間接続導体3cは、一例として銅または銅合金からなる。めっき8aとめっき8bは、一例としてニッケル・パラジウム・金からなる。カバーレイ7aとカバーレイ7bは、一例としてポリイミドフィルムまたはソルダーレジストインクからなる。 As shown in FIG. 1, in the multilayer wiring board 1, plating 8a is formed at the first end of the first conductor pattern 3a on the first main surface side of the laminated body 2 for external connection, and the first A coverlay 7a covers all but the first end of the first conductor pattern 3a on the main surface side. Further, plating 8b is formed at the second end of the second conductor pattern 3b on the second main surface side of the laminated body 2 for external connection, and the second conductor pattern 3b on the second main surface side is formed. Except for the second end of the cover ray 7b. The first conductor pattern 3a and the second conductor pattern 3b are made of copper as an example. The interlayer connecting conductor 3c is made of copper or a copper alloy as an example. Plating 8a and plating 8b are made of nickel, palladium, and gold as an example. The coverlay 7a and the coverlay 7b are made of a polyimide film or a solder resist ink as an example.

基材4は、第1導体パターン3aの片面に第1熱硬化性樹脂からなる熱硬化性樹脂層6が形成され、熱硬化性樹脂層6の片面に未硬化の第2熱硬化性樹脂5が形成されたものであり、樹脂付き銅箔とも称される。第2熱硬化性樹脂5は第1熱硬化性樹脂とは異なる材質である。一例として、熱硬化性樹脂層6はポリイミドからなり、第2熱硬化性樹脂5はエポキシからなる。一例として、熱硬化性樹脂層6はエポキシからなり、第2熱硬化性樹脂5はポリイミドからなる。 In the base material 4, a thermosetting resin layer 6 made of a first thermosetting resin is formed on one side of the first conductor pattern 3a, and an uncured second thermosetting resin 5 is formed on one side of the thermosetting resin layer 6. Is formed, and it is also called a copper foil with resin. The second thermosetting resin 5 is a material different from that of the first thermosetting resin. As an example, the thermosetting resin layer 6 is made of polyimide, and the second thermosetting resin 5 is made of epoxy. As an example, the thermosetting resin layer 6 is made of epoxy, and the second thermosetting resin 5 is made of polyimide.

本実施形態は、導体パターン3aと層間接続導体3cとでコイルが形成されている多層配線基板1であって、積層体2における各層は第2熱硬化性樹脂5によって接着されているとともに、積層体2における各層の各層の第1導体パターン3aおよび第2導体パターン3bの間にそれぞれ熱硬化性樹脂層6が介在している構成である。この構成によれば、第2熱硬化性樹脂5によって各層が接着されるとともに、熱硬化性樹脂層6によって第1導体パターン3aおよび第2導体パターン3bの層間絶縁が確保できるので、コイルの巻数を増やすとともに断面積におけるコイルの比率を大きくした薄型構造にできる。一例として、第1導体パターン3aおよび第2導体パターン3bは銅からなり、第2熱硬化性樹脂5はエポキシであり、熱硬化性樹脂層6はポリイミドからなる。 The present embodiment is a multilayer wiring board 1 in which a coil is formed by a conductor pattern 3a and an interlayer connecting conductor 3c, and each layer in the laminated body 2 is bonded by a second thermosetting resin 5 and laminated. The structure is such that the thermosetting resin layer 6 is interposed between the first conductor pattern 3a and the second conductor pattern 3b of each layer of the body 2. According to this configuration, each layer is bonded by the second thermosetting resin 5, and the interlayer insulation of the first conductor pattern 3a and the second conductor pattern 3b can be ensured by the thermosetting resin layer 6, so that the number of coil turns. It is possible to make a thin structure by increasing the number of coils and increasing the ratio of coils in the cross-sectional area. As an example, the first conductor pattern 3a and the second conductor pattern 3b are made of copper, the second thermosetting resin 5 is made of epoxy, and the thermosetting resin layer 6 is made of polyimide.

図1に示すように、積層体2における、第1導体パターン3aおよび第2導体パターン3bの積層数は、合計4以上である。この構成によれば、コイルの巻数を十分に増やすことができる。第1導体パターン3aおよび第2導体パターン3bの積層数は、偶数が好ましい。この構成によれば、図4に示すように、コイルにおける第1端3a1と第2端3b1とがそれぞれコイル状パターンの外縁部に配されるので、コイルに通電するための配線回路を設けることが容易にできる。一例として、第1端3a1が配されている第1導体パターン3aと、第2端3b1が配されている第2導体パターン3bとに、コイルに通電するための配線回路を設ける。 As shown in FIG. 1, the total number of layers of the first conductor pattern 3a and the second conductor pattern 3b in the laminated body 2 is 4 or more. According to this configuration, the number of turns of the coil can be sufficiently increased. The number of layers of the first conductor pattern 3a and the second conductor pattern 3b is preferably an even number. According to this configuration, as shown in FIG. 4, since the first end 3a1 and the second end 3b1 of the coil are arranged at the outer edge of the coil-shaped pattern, a wiring circuit for energizing the coil is provided. Can be easily done. As an example, a wiring circuit for energizing the coil is provided in the first conductor pattern 3a in which the first end 3a1 is arranged and the second conductor pattern 3b in which the second end 3b1 is arranged.

熱硬化性樹脂層6の厚みは10[μm]未満であり、第1導体パターン3aの厚みは熱硬化性樹脂層6の厚みの3倍以上であることが好ましい。この構成によれば、積層方向の断面積における第1導体パターン3aの構成比率を40[%]超にした薄型かつ高推力のコイルが容易に形成できる。熱硬化性樹脂層6の厚みは、一例として2〜5[μm]であり、第1導体パターン3aの厚みは一例として15[μm]以上である。なお、上記の構成に限定されない。 The thickness of the thermosetting resin layer 6 is preferably less than 10 [μm], and the thickness of the first conductor pattern 3a is preferably three times or more the thickness of the thermosetting resin layer 6. According to this configuration, a thin and high-thrust coil having a composition ratio of the first conductor pattern 3a in the cross-sectional area in the stacking direction exceeding 40 [%] can be easily formed. The thickness of the thermosetting resin layer 6 is 2 to 5 [μm] as an example, and the thickness of the first conductor pattern 3a is 15 [μm] or more as an example. The configuration is not limited to the above.

第1導体パターン3aは平面視でスパイラル状であり、積層するにしたがって幅が広くなるとともに厚みが小さくなる構成、または積層するにしたがって幅が狭くなるとともに厚みが大きくなる構成のいずれかであることが好ましい。この構成によれば、積層に伴って第1導体パターン3aにおける断面積あたりの抵抗値が大きくなることを抑制した薄型かつ高推力のスパイラル状のコイルが容易に形成できる。 The first conductor pattern 3a has a spiral shape in a plan view, and has either a structure in which the width increases and the thickness decreases as the layers are stacked, or a structure in which the width decreases and the thickness increases as the layers are stacked. Is preferable. According to this configuration, it is possible to easily form a thin and high-thrust spiral coil in which the resistance value per cross-sectional area in the first conductor pattern 3a is suppressed to increase with stacking.

前記導体パターンのうち、積層体2における第2主面側の第2導体パターン3bは、積層体2における第1主面側の第1導体パターン3aよりも高抵抗かつ高密度で配線されていることが好ましい。この構成によれば、積層体2における第2主面をマグネットに近接配置した場合、積層体2における第2主面側の第2導体パターン3bが高密度配線されているので、薄型かつ高推力が容易に得られる。 Among the conductor patterns, the second conductor pattern 3b on the second main surface side of the laminated body 2 is wired with higher resistance and higher density than the first conductor pattern 3a on the first main surface side of the laminated body 2. Is preferable. According to this configuration, when the second main surface of the laminated body 2 is arranged close to the magnet, the second conductor pattern 3b on the second main surface side of the laminated body 2 is wired at high density, so that it is thin and has high thrust. Is easily obtained.

続いて、本実施形態の半導体装置の製造方法について、以下に説明する。 Subsequently, the method for manufacturing the semiconductor device of the present embodiment will be described below.

本実施形態に係る多層配線基板1の製造方法は、複数の基材4が積層された積層体2を備え、導体パターン3aと層間接続導体3cとでコイルが形成されている多層配線基板1に適用され、各層を第2熱硬化性樹脂5によって接着するとともに、各層の第1導体パターン3aおよび第2導体パターン3bの間にそれぞれ熱硬化性樹脂層6を介在させて積層体2を形成する積層体製造プロセスを有する。この構成によれば、熱硬化性樹脂層6によって第1導体パターン3aおよび第2導体パターン3bの層間絶縁を確保しつつ、多層化し第2熱硬化性樹脂5によって各層を接着して積層体2を形成するので、コイルの巻数を増やすとともに断面積におけるコイルの比率を大きくしつつ従来よりも薄型構造の多層配線基板1を製造することができる。一例として、多層配線基板1は、ビルドアップ工法によって製造される。 The method for manufacturing the multilayer wiring board 1 according to the present embodiment includes a multilayer wiring board 1 in which a plurality of base materials 4 are laminated, and a coil is formed by a conductor pattern 3a and an interlayer connection conductor 3c. It is applied, and each layer is adhered by the second thermosetting resin 5, and the laminated body 2 is formed by interposing the thermosetting resin layer 6 between the first conductor pattern 3a and the second conductor pattern 3b of each layer. It has a laminate manufacturing process. According to this configuration, while ensuring the interlayer insulation of the first conductor pattern 3a and the second conductor pattern 3b by the thermosetting resin layer 6, the layers are laminated by the second thermosetting resin 5 and the laminated body 2 is adhered. Therefore, it is possible to manufacture the multilayer wiring board 1 having a thinner structure than the conventional one while increasing the number of turns of the coil and increasing the ratio of the coil in the cross-sectional area. As an example, the multilayer wiring board 1 is manufactured by a build-up method.

図2A〜図2Cおよび図3A〜図3Cは本実施形態に係る多層配線基板の製造手順の一例である。積層体製造プロセスは、一例としてピーラブル銅箔11が第1主面と前記第1主面の反対側の第2主面とに配されたダミーコア基板9を用いて、各ピーラブル銅箔11の片面にそれぞれ積層体2を形成する。この構成によれば、生産性が大幅に向上し、平坦かつ薄型構造の多層配線基板1を製造できる。なお、第1主面と第2主面とは相対的な位置関係を示すものであり、物理的な上面や下面に限定されない。 2A to 2C and FIGS. 3A to 3C are examples of the manufacturing procedure of the multilayer wiring board according to the present embodiment. In the laminate manufacturing process, as an example, a dummy core substrate 9 in which the peelable copper foil 11 is arranged on the first main surface and the second main surface opposite to the first main surface is used, and one side of each peelable copper foil 11 is used. The laminated body 2 is formed in each of the above. According to this configuration, the productivity is greatly improved, and the multilayer wiring board 1 having a flat and thin structure can be manufactured. The first main surface and the second main surface show a relative positional relationship, and are not limited to the physical upper surface and lower surface.

先ず、図2Aに示すように、ダミーコア基板9の第1主面に配されたピーラブル銅箔11とダミーコア基板9の第2主面に配されたピーラブル銅箔11とにそれぞれ第2導体パターン3bを形成する。第2導体パターン3bの形成はETS技術など既知の技術が適用される。 First, as shown in FIG. 2A, the peelable copper foil 11 arranged on the first main surface of the dummy core substrate 9 and the peelable copper foil 11 arranged on the second main surface of the dummy core substrate 9 have a second conductor pattern 3b, respectively. To form. A known technique such as ETS technique is applied to the formation of the second conductor pattern 3b.

次に、図2Bに示すように、図2Aにおける第1導体パターン3aにそれぞれ基材4を配設する。基材4は所定箇所にレーザ加工によってビアを形成する。基材4は、一例として、導体パターン3aにポリイミドを塗布し熱硬化して熱硬化性樹脂層6を形成しさらに未硬化状態のエポキシを塗布したものであり、樹脂付銅箔とも称される。そして、図2Cに示すように、図2Bにおける導体パターン3aをエッチング処理して第1導体パターン3aを形成する。 Next, as shown in FIG. 2B, the base material 4 is arranged in each of the first conductor patterns 3a in FIG. 2A. The base material 4 forms vias at predetermined locations by laser processing. As an example, the base material 4 is formed by applying polyimide to a conductor pattern 3a and thermosetting to form a thermosetting resin layer 6, and further applying an uncured epoxy, which is also called a copper foil with resin. .. Then, as shown in FIG. 2C, the conductor pattern 3a in FIG. 2B is etched to form the first conductor pattern 3a.

次に、図3Aに示すように、図2Bと図2Cに示すプロセスを繰り返して積層体2を形成し、図3Bに示すように、積層体2を熱圧着してから、ダミーコア基板9から分離する。そして、図3Cに示すように、分離した積層体2からピーラブル銅箔11をエッチング処理によって除去する。 Next, as shown in FIG. 3A, the process shown in FIGS. 2B and 2C is repeated to form the laminated body 2, and as shown in FIG. 3B, the laminated body 2 is heat-bonded and then separated from the dummy core substrate 9. do. Then, as shown in FIG. 3C, the peelable copper foil 11 is removed from the separated laminate 2 by an etching process.

その後、図1に示すように、一例として、第1端と第2端以外をカバーレイ7aとカバーレイ7bとで覆い、めっき8aとめっき8bを形成する。 After that, as shown in FIG. 1, as an example, the coverslay 7a and the coverlay 7b cover the parts other than the first end and the second end to form the plating 8a and the plating 8b.

(実施例)
図5は、図4に示す実施例のV−V断面を拡大して示す断面図である。基材4は、銅からなる導体パターン3aにポリイミドを塗布し熱硬化して熱硬化性樹脂層6を形成しさらに未硬化状態のエポキシを塗布したものである。図4の例は、第1導体パターン3aおよび第2導体パターン3bの積層数は、合計4である。第2導体パターン3bは、第1導体パターン3aよりも高抵抗かつ高密度で配線されている。そして、第2導体パターン3bから積層方向に離れるにしたがって、第1導体パターン3aの線幅を広く形成して低抵抗化を図っている。
(Example)
FIG. 5 is an enlarged cross-sectional view showing a VV cross section of the embodiment shown in FIG. The base material 4 is obtained by applying polyimide to a conductor pattern 3a made of copper and heat-curing it to form a thermosetting resin layer 6, and further coating an uncured epoxy. In the example of FIG. 4, the total number of layers of the first conductor pattern 3a and the second conductor pattern 3b is 4. The second conductor pattern 3b is wired with higher resistance and higher density than the first conductor pattern 3a. Then, the line width of the first conductor pattern 3a is widened as the distance from the second conductor pattern 3b is increased in the stacking direction to reduce the resistance.

上述の例では、第1導体パターン3aおよび第2導体パターン3bの積層数が合計4の構成で説明したが、これに限定されず、積層数を合計3にすることや、積層数を合計5以上にすることも可能である。上述の例では、積層体2を熱圧着してから、ダミーコア基板9から分離する例で説明したが、これに限定されず、ダミーコア基板9から分離してから積層体2を熱圧着することも可能である。積層体の形成はMSAPやETSなど既知の加工技術を適用できる。以上、本発明は、上述した実施の形態に限定されるものではない。 In the above example, the configuration is described in which the number of layers of the first conductor pattern 3a and the second conductor pattern 3b is 4 in total, but the present invention is not limited to this, and the number of layers is 3 in total and the number of layers is 5 in total. It is also possible to do the above. In the above example, the laminated body 2 is heat-bonded and then separated from the dummy core substrate 9, but the present invention is not limited to this, and the laminate 2 may be heat-bonded after being separated from the dummy core substrate 9. It is possible. Known processing techniques such as MSAP and ETS can be applied to the formation of the laminate. As described above, the present invention is not limited to the above-described embodiment.

1 多層配線基板
2 積層体
3a 第1導体パターン(導体パターン)
3b 第2導体パターン(導体パターン)
3c 層間接続導体
4 基材(樹脂付銅箔)
5 第2熱硬化性樹脂
6 熱硬化性樹脂層
7a、7b カバーレイ
8a、8b めっき
9 ダミーコア基板
11 ピーラブル銅箔
1 Multi-layer wiring board 2 Laminate 3a 1st conductor pattern (conductor pattern)
3b 2nd conductor pattern (conductor pattern)
3c interlayer connection conductor 4 Base material (copper foil with resin)
5 Second thermosetting resin 6 Thermosetting resin layer 7a, 7b Coverlay 8a, 8b Plating 9 Dummy core substrate 11 Peelable copper foil

Claims (7)

複数の基材が積層された積層体を備え、導体パターンと層間接続導体とでコイルが形成されている構成であって、
前記積層体における各層は第2熱硬化性樹脂によって接着されているとともに、前記積層体における各層の前記導体パターンの間に第1熱硬化性樹脂からなる熱硬化性樹脂層が介在していること
を特徴とする多層配線基板。
It has a structure in which a laminated body in which a plurality of base materials are laminated is provided, and a coil is formed by a conductor pattern and an interlayer connecting conductor.
Each layer in the laminated body is adhered by a second thermosetting resin, and a thermosetting resin layer made of a first thermosetting resin is interposed between the conductor patterns of each layer in the laminated body. A multi-layer wiring board characterized by.
前記積層体は、前記導体パターンを第1導体パターンとして、さらに第2導体パターンが配設されており、前記第1導体パターンおよび前記第2導体パターンの積層数は、合計4以上であること
を特徴とする請求項1記載の多層配線基板。
In the laminated body, the conductor pattern is used as the first conductor pattern, and the second conductor pattern is further arranged, and the total number of layers of the first conductor pattern and the second conductor pattern is 4 or more. The multilayer wiring board according to claim 1.
前記導体パターンは銅からなり、前記第2熱硬化性樹脂はエポキシであり、前記第1熱硬化性樹脂はポリイミドであること
を特徴とする請求項1または2記載の多層配線基板。
The multilayer wiring board according to claim 1 or 2, wherein the conductor pattern is made of copper, the second thermosetting resin is epoxy, and the first thermosetting resin is polyimide.
前記熱硬化性樹脂層の厚みは10μm未満であり、前記導体パターンの厚みは前記熱硬化性樹脂層の厚みの3倍以上であること
を特徴とする請求項1〜3のいずれか一項記載の多層配線基板。
The invention according to any one of claims 1 to 3, wherein the thickness of the thermosetting resin layer is less than 10 μm, and the thickness of the conductor pattern is three times or more the thickness of the thermosetting resin layer. Multi-layer wiring board.
前記導体パターンは平面視でスパイラル状であり、積層するにしたがって幅が広くなるとともに厚みが小さくなる構成、または積層するにしたがって幅が狭くなるとともに厚みが大きくなる構成のいずれかであること
を特徴とする請求項4記載の多層配線基板。
The conductor pattern has a spiral shape in a plan view, and is characterized in that it has either a structure in which the width increases and the thickness decreases as the layers are stacked, or a structure in which the width decreases and the thickness increases as the layers are stacked. The multilayer wiring board according to claim 4.
前記導体パターンのうち、前記積層体における第2主面側の第2導体パターンは、前記積層体における第1主面側の第1導体パターンよりも高抵抗かつ高密度で配線されていること
を特徴とする請求項4または5記載の多層配線基板。
Among the conductor patterns, the second conductor pattern on the second main surface side of the laminated body is wired with higher resistance and higher density than the first conductor pattern on the first main surface side of the laminated body. The multilayer wiring board according to claim 4 or 5.
複数の基材が積層された積層体を備え、導体パターンと層間接続導体とでコイルが形成されている多層配線基板の製造方法であって、各層を第2熱硬化性樹脂によって接着するとともに、各層の前記導体パターンの間に第1熱硬化性樹脂からなる熱硬化性樹脂層を介在させて積層体を形成する積層体製造プロセスを有すること
を特徴とする多層配線基板の製造方法。
This is a method for manufacturing a multi-layer wiring board in which a laminated body in which a plurality of base materials are laminated and a coil is formed by a conductor pattern and an interlayer connecting conductor. A method for manufacturing a multilayer wiring board, which comprises a laminate manufacturing process in which a thermosetting resin layer made of a first thermosetting resin is interposed between the conductor patterns of each layer to form a laminate.
JP2020028688A 2020-02-21 2020-02-21 Multilayer wiring board and its manufacturing method Active JP7479162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028688A JP7479162B2 (en) 2020-02-21 2020-02-21 Multilayer wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028688A JP7479162B2 (en) 2020-02-21 2020-02-21 Multilayer wiring board and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021136243A true JP2021136243A (en) 2021-09-13
JP7479162B2 JP7479162B2 (en) 2024-05-08

Family

ID=77661554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028688A Active JP7479162B2 (en) 2020-02-21 2020-02-21 Multilayer wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7479162B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080113696A (en) 2007-06-25 2008-12-31 삼성전자주식회사 Perpendicular magnetic recording head and method for manufacturing the same
JP5126338B2 (en) 2010-10-21 2013-01-23 Tdk株式会社 Transformer parts
JP5831498B2 (en) 2013-05-22 2015-12-09 Tdk株式会社 Coil component and manufacturing method thereof
KR101983191B1 (en) 2017-07-25 2019-05-28 삼성전기주식회사 Inductor and method for manufacturing the same
JP7307524B2 (en) 2017-09-15 2023-07-12 Tdk株式会社 COIL COMPONENT AND COIL COMPONENT MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP7479162B2 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
JP4876272B2 (en) Printed circuit board and manufacturing method thereof
JP4538486B2 (en) Multilayer substrate and manufacturing method thereof
JP2007165888A (en) Printed-circuit substrate in which electron devices are built, and its manufacturing method
JP2007142406A (en) Method of manufacturing embedded printed circuit board
JP2013520007A (en) Printed circuit board and manufacturing method thereof
JP2009277916A (en) Wiring board, manufacturing method thereof, and semiconductor package
JP2011159855A (en) Partially multilayer printed circuit board, and method of manufacturing the same
KR20160111153A (en) Inductor and method of maufacturing the same
JP2011199077A (en) Method of manufacturing multilayer wiring board
US20120055706A1 (en) Printed circuit board and method of manufacturing the same
JP2016063130A (en) Printed wiring board and semiconductor package
JP2016066705A (en) Printed wiring board and method for manufacturing the same
TW201806455A (en) Circuit board with pads and method same
JP5555368B1 (en) Wiring board manufacturing method
JP2014082441A (en) Multi-layer type coreless substrate and method of manufacturing the same
JP2018032661A (en) Printed wiring board and method for manufacturing the same
JP2021136243A (en) Multilayer wiring board and manufacturing method of the same
TWI293015B (en) Multilayered printed wiring board and method for manufacturing the multilayered printed wiring board
JP2010062464A (en) Method of manufacturing inductor-incorporated printed wiring board, and inductor-incorporated printed wiring board
JP2019067864A (en) Method for manufacturing printed wiring board
TWI461135B (en) Method for fabricating circuit board
JP7187821B2 (en) Printed wiring board and manufacturing method thereof
WO2018047612A1 (en) Component-incorporated substrate and method for manufacturing same
JP5408754B1 (en) Multilayer wiring board and manufacturing method thereof
JP4503578B2 (en) Printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240423