JP2021126624A - Ultrapure water production device and ultrapure water production method - Google Patents

Ultrapure water production device and ultrapure water production method Download PDF

Info

Publication number
JP2021126624A
JP2021126624A JP2020023619A JP2020023619A JP2021126624A JP 2021126624 A JP2021126624 A JP 2021126624A JP 2020023619 A JP2020023619 A JP 2020023619A JP 2020023619 A JP2020023619 A JP 2020023619A JP 2021126624 A JP2021126624 A JP 2021126624A
Authority
JP
Japan
Prior art keywords
water
ion exchange
ultrapure water
pure water
ultrapure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020023619A
Other languages
Japanese (ja)
Other versions
JP7183208B2 (en
Inventor
純一 井田
Junichi Ida
純一 井田
康晴 港
Yasuharu Minato
康晴 港
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2020023619A priority Critical patent/JP7183208B2/en
Priority to PCT/JP2020/034827 priority patent/WO2021161569A1/en
Priority to JP2020205121A priority patent/JP7405066B2/en
Publication of JP2021126624A publication Critical patent/JP2021126624A/en
Application granted granted Critical
Publication of JP7183208B2 publication Critical patent/JP7183208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

To inexpensively, stably and reliably produce ultrapure water of high purity that sufficiently meets water quality requirements, regardless of variation in the amount and quality of the water, while also achieving a reduced device installation area.SOLUTION: An ultrapure water production device is provided with: a pretreatment system that treats raw water; a primary water purification system that treats the water treated by the pretreatment system; and a subsystem that treats the water treated by the primary water purification system. The primary water purification system comprises, as constituent devices, at least a reverse osmosis membrane separation device, a degassing device, an ultraviolet oxidation device, and an ion exchange device in this order. The ultrapure water production device has a monitor that monitors the amount and/or quality of the water in the primary water purification system, and control means that controls operation conditions of one or more of the constituent devices according to a value detected by the monitor.SELECTED DRAWING: Figure 1

Description

本発明は、超純水製造装置及び超純水製造方法に関する。 The present invention relates to an ultrapure water production apparatus and an ultrapure water production method.

電子デバイス、特には半導体の製造工程にて洗浄水として多量に用いられる超純水は、前処理システム、一次純水システム、及びサブシステムから構成される超純水製造システムで、原水(工業用水、水道水、井水、電子デバイス製造工程から排出有れる使用済みの超純水等)を処理することにより製造される。 Ultrapure water, which is used in large quantities as cleaning water in the manufacturing process of electronic devices, especially semiconductors, is an ultrapure water production system consisting of a pretreatment system, a primary pure water system, and a subsystem, and is raw water (industrial water). , Tap water, well water, used ultrapure water discharged from the electronic device manufacturing process, etc.).

従来、このような超純水製造システムとしては、次のようなものが提案されている。 Conventionally, the following have been proposed as such an ultrapure water production system.

特許文献1には、一次純水システムと、該一次純水システムの処理水を処理するサブシステムとを備え、少なくとも該一次純水システムに逆浸透膜分離装置が設けられている超純水製造装置において、該一次純水システムに設置された逆浸透膜分離装置が高圧型逆浸透膜分離装置であり、且つ単段にて設置されていることを特徴とする超純水製造装置が提案されている。
特許文献2には、前処理システムと、該前処理システムによって処理された前処理水を処理して一次純水とする一次純水システムと、一次純水を処理するサブシステムとを有する超純水製造装置において、該一次純水システムが、逆浸透膜分離装置、脱ガス装置、電気脱イオン装置、紫外線酸化装置、及び非再生式イオン交換装置の順で接続された構成とされていることを特徴とする超純水製造装置が提案されている。
特許文献3には、一次純水システムと二次純水システムからなる超純水製造装置において、前記一次純水システムは、2床3塔型イオン交換装置と逆浸透膜装置と180〜190nmの波長を含む紫外線を照射する低圧紫外線ランプを備えた紫外線照射装置と混床式イオン交換装置の組合せを流路に沿って設けてなり、前記二次純水システムは、180〜190nmの波長を含む紫外線を照射する低圧紫外線ランプを備えた紫外線照射装置と混床式イオン交換装置の組合わせを流路に沿って少くとも1組設けてなることを特徴とする超純水製造装置が提案されている。
特許文献4には、前処理システム、一次純水システムと二次純水システムからなる超純水製造装置において、前記一次純水システムと二次純水システムに、それぞれ、180〜190nmの波長を含む紫外線を照射する低圧紫外線ランプを備えた紫外線照射装置と混床式イオン交換装置の組合わせを流路に沿って少くとも1組設けたことを特徴とする超純水製造装置が提案されている。
Patent Document 1 includes a primary pure water system and a subsystem for treating treated water of the primary pure water system, and at least the primary pure water system is provided with a reverse osmosis membrane separation device for producing ultrapure water. In the apparatus, an ultrapure water production apparatus characterized in that the reverse osmosis membrane separator installed in the primary pure water system is a high-pressure reverse osmosis membrane separator and is installed in a single stage has been proposed. ing.
Patent Document 2 includes an ultrapure water system having a pretreatment system, a primary pure water system for treating pretreated water treated by the pretreatment system to obtain primary pure water, and a subsystem for treating primary pure water. In the water production device, the primary pure water system is configured to be connected in the order of a reverse osmosis membrane separation device, a degassing device, an electrodeionization device, an ultraviolet oxidation device, and a non-regenerative ion exchange device. An ultrapure water production apparatus characterized by the above has been proposed.
According to Patent Document 3, in an ultrapure water production apparatus including a primary pure water system and a secondary pure water system, the primary pure water system includes a two-bed, three-tower type ion exchange apparatus, a reverse osmosis membrane apparatus, and a 180 to 190 nm diameter. A combination of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp that irradiates ultraviolet rays including a wavelength and a mixed-bed ion exchange device is provided along the flow path, and the secondary pure water system includes a wavelength of 180 to 190 nm. An ultrapure water production device has been proposed, characterized in that at least one pair of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp that irradiates ultraviolet rays and a mixed-bed ion exchange device is provided along the flow path. There is.
In Patent Document 4, in an ultrapure water production apparatus including a pretreatment system, a primary pure water system and a secondary pure water system, the primary pure water system and the secondary pure water system are each provided with a wavelength of 180 to 190 nm. An ultrapure water production device has been proposed, characterized in that at least one combination of an ultraviolet irradiation device equipped with a low-pressure ultraviolet lamp that irradiates containing ultraviolet rays and a mixed-bed ion exchange device is provided along the flow path. There is.

特開2012−245439号公報Japanese Unexamined Patent Publication No. 2012-245439 特開2003−266097号公報Japanese Unexamined Patent Publication No. 2003-266097 特開2004−25184号公報Japanese Unexamined Patent Publication No. 2004-25184 特開平7−75780号公報Japanese Unexamined Patent Publication No. 7-75780

近年、半導体等の電子デバイスの高集積化、回路パターンの微細化に伴い、洗浄水として用いられる超純水に対する水質向上の要求が更に高まっているのが現状である。
超純水製造装置又は超純水製造システムにおいて、ユースポイントにおける到達水質及び水質安定性を決定づけるのは、一次純水システムである。
一次純水システムの装置構成としては、逆浸透膜分離装置、脱気装置及びイオン交換装置のそれぞれが単段に設置されるものが一般的であるが、近年の要求水質の向上に対して、このような一般的な一次純水システムの装置構成では対応できない問題がある。
In recent years, with the increasing integration of electronic devices such as semiconductors and the miniaturization of circuit patterns, the current situation is that the demand for improving the water quality of ultrapure water used as cleaning water is further increasing.
In the ultrapure water production equipment or the ultrapure water production system, it is the primary pure water system that determines the reached water quality and water quality stability at the point of use.
As the device configuration of the primary pure water system, a reverse osmosis membrane separator, a degassing device, and an ion exchange device are generally installed in a single stage. There is a problem that cannot be dealt with by the device configuration of such a general primary pure water system.

このため、近年の最先端の半導体工場等において、一次純水システムを下記(A),(B)のように逆浸透膜分離装置及び/又はイオン交換装置(「イオン交換塔」を含む。以下同様)を複数段に設置した構成として、得られる超純水の高純度化を図っている。 For this reason, in recent state-of-the-art semiconductor factories and the like, the primary pure water system includes a reverse osmosis membrane separation device and / or an ion exchange device (hereinafter, "ion exchange tower") as shown in (A) and (B) below. The same) is installed in multiple stages to improve the purity of the obtained ultrapure water.

(A) 複数の逆浸透膜(RO膜)分離装置を組み込んだ多段ROシステム
具体的には、以下のような、構成ユニット数7の装置構成が挙げられる。
逆浸透膜(RO膜)分離装置→混床式イオン交換装置(MB)→紫外線殺菌装置(UVst)→逆浸透膜(RO膜)分離装置→紫外線酸化装置(UVox)→非再生式イオン交換装置→脱気装置(MDG)
(B) 複数の電気再生式脱イオン装置を組み込んだ多段電気再生型イオン交換純水装置(CDI)システム
具体的には、以下のような、構成ユニット数6の装置構成が挙げられる。
逆浸透膜(RO膜)分離装置→逆浸透膜(RO膜)分離装置→脱気装置(MDG)→紫外線酸化装置(UVox)→多段電気再生型イオン交換純水装置(CDI)→多段電気再生型イオン交換純水装置(CDI)
(A) Multi-stage RO system incorporating a plurality of reverse osmosis membrane (RO membrane) separation devices Specifically, the following device configuration with 7 constituent units can be mentioned.
Reverse osmosis membrane (RO membrane) separator → Mixed bed type ion exchange device (MB) → UV sterilizer (UVst) → Reverse osmosis membrane (RO membrane) separator → UV oxidizer (UVox) → Non-regenerative ion exchange device → Deaerator (MDG)
(B) Multi-stage electroregenerative ion exchange pure water apparatus (CDI) system incorporating a plurality of electroregenerative deionizers Specifically, the following apparatus configuration with 6 constituent units can be mentioned.
Reverse osmosis membrane (RO membrane) separator → Reverse osmosis membrane (RO membrane) separator → Degassing device (MDG) → Ultraviolet oxidizing device (UVox) → Multi-stage electroregenerative ion exchange pure water device (CDI) → Multi-stage electroregeneration Type ion exchange pure water device (CDI)

ここで、本明細書における「ユニット」とは、一次純水システムにおける処理の主目的である「脱塩」、「脱気」、「有機物除去」のいずれか或いは複数の処理が可能な装置を意味し、構成ユニット数とは、システム、例えば一次純水システムに備えられるユニットの数を意味する。 Here, the term "unit" as used herein refers to an apparatus capable of performing one or more of "desalination", "deaeration", and "organic substance removal", which are the main purposes of treatment in a primary pure water system. Meaning, the number of constituent units means the number of units provided in a system, for example, a primary pure water system.

例えば、原水(工業用水、水道水、井水、電子デバイス製造工程から排出有れる使用済みの超純水等)を前処理システムによって処理して得られる前処理水を、上記(A),(B)のような一次純水システムで処理することで、比抵抗18MΩcm以上、TOC(Total Organic Carbon)濃度2μg/L以下、ホウ素(B)濃度1ng/L以下、シリカ(SiO)濃度0.1μg/L以下の高純度な水質の一次純水(一次純水システムの処理水、すなわち、一次純水システムの出口水)を得ることができる。 For example, the pretreated water obtained by treating raw water (industrial water, tap water, well water, used ultrapure water discharged from the electronic device manufacturing process, etc.) by a pretreatment system can be used as the above (A), ( By treating with a primary pure water system such as B), the specific resistance is 18 MΩcm or more, the TOC (Total Organic Carbon) concentration is 2 μg / L or less, the boron (B) concentration is 1 ng / L or less, and the silica (SiO 2 ) concentration is 0. It is possible to obtain primary pure water having a high purity of 1 μg / L or less (treated water of the primary pure water system, that is, outlet water of the primary pure water system).

しかしながら、上記(A),(B)のような一次純水システムは構成ユニット数が多いため、装置設置面積(フットプリント)が大きく、かつ、設備コスト(イニシャルコスト)及び運転コスト(ランニングコスト)が高くなるといった問題がある。 However, since the primary pure water system such as (A) and (B) has a large number of constituent units, the equipment installation area (footprint) is large, and the equipment cost (initial cost) and operating cost (running cost) are large. There is a problem that the cost becomes high.

また、超純水の水質の要求レベルは、今後益々高まることが予想され、一次純水システムのユニット数は更に増加し、水質を一定以上に保って供給するために、想定される最も過酷な条件でも安定した水質を保てるよう過剰な運転条件で運転が行われるようになる。しかも、一旦運転条件を決めれば供給水量も含め変動させることなく純水を供給し続けることになるため、半導体工場等の生産量が減って必要な超純水量が減少した場合も、一定量の純水を供給し続けるために余剰の超純水が排水されたり、回収再利用するため再度処理が行われることとなり、必要以上のコストがかかることになる。 In addition, the required level of water quality of ultrapure water is expected to increase more and more in the future, the number of units of the primary pure water system will increase further, and the most severe expected water quality will be maintained and supplied. Operation will be performed under excessive operating conditions so that stable water quality can be maintained even under conditions. Moreover, once the operating conditions are decided, pure water will continue to be supplied without changing the amount of water supplied, so even if the production volume of semiconductor factories etc. decreases and the required amount of ultrapure water decreases, a certain amount Excess ultrapure water is drained in order to continue supplying pure water, and treatment is performed again for recovery and reuse, resulting in an unnecessarily high cost.

本発明は、上記事情に鑑みてなされたものであり、要求水質を充分に満足した高純度の超純水を、水量や水質の変動にかかわらず、装置設置面積を抑えた上で安価に、安定かつ確実に製造することができる超純水製造装置及び超純水製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is capable of producing high-purity ultrapure water that sufficiently satisfies the required water quality, regardless of fluctuations in the amount and quality of water, while suppressing the installation area of the apparatus and at low cost. It is an object of the present invention to provide an ultrapure water production apparatus and an ultrapure water production method capable of stably and reliably producing.

本発明者らは、超純水製造装置に設けられる一次純水システムに適切な装置を適切な順番で設置した上で、水質及び/又は水量の変動に応じてこれらの装置の運転条件を制御することによって、構成ユニット数を低減した上で要求水質を充分に満足する高純度の超純水を安価に、安定かつ確実に製造することができることを見出した。
すなわち、本発明では、一次純水システムを逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、電気再生型イオン交換装置とをこの順で備える、4ユニット構成の一次純水システムとし、水量及び/又は水質を監視するモニターを設け、例えば、要求される生産量に応じて供給水量を変更することで生ずる水質の変動を抑えるため、モニターからの信号を基に、各ユニットの運転条件を自動で変更して水質を安定に保つ制御手段を設ける。
The present inventors install appropriate devices in the primary pure water system provided in the ultrapure water production device in an appropriate order, and then control the operating conditions of these devices according to fluctuations in water quality and / or water volume. By doing so, it has been found that it is possible to inexpensively, stably and reliably produce high-purity ultrapure water that sufficiently satisfies the required water quality while reducing the number of constituent units.
That is, in the present invention, the primary pure water system is a 4-unit primary pure water system including a reverse osmosis membrane separator, a degassing device, an ultraviolet oxidizing device, and an electroregenerative ion exchange device in this order. , Water quantity and / or a monitor to monitor the water quality is provided, and for example, in order to suppress the fluctuation of the water quality caused by changing the supply water quantity according to the required production quantity, the operation of each unit is performed based on the signal from the monitor. Provide control means to automatically change the conditions and keep the water quality stable.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 The present invention has been achieved based on such findings, and the gist of the present invention is as follows.

[1] 原水を処理する前処理システムと、該前処理システムの処理水を処理する一次純水システムと、該一次純水システムの処理水を処理するサブシステムとを備え、該一次純水システムが、構成装置として少なくとも逆浸透膜分離装置、脱気装置、紫外線酸化装置、及びイオン交換装置をこの順で備える超純水製造装置であって、該一次純水システムにおける水量及び/又は水質を監視するモニターと、該モニターで検出した値に応じて1以上の前記構成装置の運転条件を制御する制御手段とを有する超純水製造装置。 [1] The primary pure water system includes a pretreatment system for treating raw water, a primary pure water system for treating the treated water of the pretreatment system, and a subsystem for treating the treated water of the primary pure water system. However, it is an ultrapure water production device equipped with at least a back-penetrating film separation device, a degassing device, an ultraviolet oxidizing device, and an ion exchange device as constituent devices in this order, and the amount and / or water quality of water in the primary pure water system is determined. An ultrapure water production apparatus having a monitor to be monitored and a control means for controlling one or more operating conditions of the constituent apparatus according to a value detected by the monitor.

[2] 前記イオン交換装置が、電気再生式脱イオン装置を1段又は複数段直列に接続し電気再生型イオン交換装置である[1]に記載の超純水製造装置。 [2] The ultrapure water production apparatus according to [1], wherein the ion exchange device is an electroregenerative ion exchange device in which an electroregenerative deionizer is connected in series in one or a plurality of stages.

[3] [1]又は[2]に記載の超純水製造装置を用いて超純水を製造する超純水製造方法。 [3] An ultrapure water production method for producing ultrapure water using the ultrapure water production apparatus according to [1] or [2].

[4] 前記イオン交換装置の処理水として、比抵抗値18MΩcm以上、TOC濃度2μm/L以下、ホウ素濃度1ng/L以下、及びシリカ濃度0.1μg/L以下の処理水を得る[3]に記載の超純水製造方法。 [4] As the treated water of the ion exchange device, the treated water having a specific resistance value of 18 MΩcm or more, a TOC concentration of 2 μm / L or less, a boron concentration of 1 ng / L or less, and a silica concentration of 0.1 μg / L or less is obtained in [3]. The ultrapure water production method described.

本発明によれば、少ない構成ユニット数で、従って、装置設置面積が小さく、低コストの超純水製造装置により、必要水量を変更させても水量に応じて各ユニットを最適の状態で運転させることで、要求水質を充分に満足した高純度の超純水を安定かつ確実に安価に製造することができる。
また、水質の変動に対しても、同様にその変動に応じて、各ユニットを最適の状態で運転させることで、要求水質を充分に満足した高純度の超純水を安定かつ確実に安価に製造することができる。
According to the present invention, each unit is operated in an optimum state according to the amount of water even if the required amount of water is changed by a low-cost ultrapure water production device having a small number of constituent units and therefore a small device installation area. As a result, high-purity ultrapure water that fully satisfies the required water quality can be stably and reliably produced at low cost.
In addition, even with regard to fluctuations in water quality, by operating each unit in the optimum state in response to the fluctuations, high-purity ultrapure water that fully satisfies the required water quality can be stably and reliably inexpensively produced. Can be manufactured.

本発明の超純水製造装置の一次純水システムの実施の形態の一例を示す構成図である。It is a block diagram which shows an example of embodiment of the primary pure water system of the ultrapure water production apparatus of this invention.

以下、本発明を実施するための形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が限定されて解釈されることはない。 Hereinafter, modes for carrying out the present invention will be described. It should be noted that the embodiments described below show an example of typical embodiments of the present invention, and the scope of the present invention is not limited and interpreted by this.

本発明の超純水製造装置は、前処理システムと、一次純水システムと、サブシステムとを備え、一次純水システムが、逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、イオン交換装置とをこの順で備えるものである。
本発明の超純水製造装置及びこの超純水製造装置を用いる本発明の超純水製造方法によれば、要求水質を充分に満足した高純度の超純水を、装置設置面積、さらには設備コスト(イニシャルコスト)及び運転コスト(ランニングコスト)を抑えながら安価に、安定かつ確実に製造することができる。
The ultrapure water production apparatus of the present invention includes a pretreatment system, a primary pure water system, and a subsystem. An ion exchange device is provided in this order.
According to the ultrapure water production apparatus of the present invention and the ultrapure water production method of the present invention using the ultrapure water production apparatus, high-purity ultrapure water that sufficiently satisfies the required water quality can be obtained in the device installation area and further. It can be manufactured inexpensively, stably and reliably while suppressing equipment cost (initial cost) and operating cost (running cost).

なお、以下においては、主として本発明の超純水製造装置の特徴的な一次純水システムについて説明するが、本発明の超純水製造装置における前処理システムやサブシステムの構成については特に制限はない。
例えば、前処理システムとしては、凝集、加圧浮上(沈殿)、濾過(膜濾過)装置などにより、原水(工業用水、水道水、井水、電子デバイス製造工程から排出有れる使用済みの超純水等)中の懸濁物質やコロイド物質、更には高分子系有機物、疎水性有機物などの除去を行うシステムが挙げられる。
また、サブシステムとしては、低圧紫外線酸化装置、イオン交換純水装置及び限外濾過膜分離装置を備え、一次純水システムで得られた純水の純度をより一層高めて超純水とするものが挙げられる。サブシステムにおける低圧紫外線酸化装置では、低圧紫外線ランプより出される波長185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換純水装置で除去される。限外濾過膜分離装置では、微粒子が除去され、イオン交換純水装置の流出粒子も除去される。
In the following, the characteristic primary pure water system of the ultrapure water production apparatus of the present invention will be mainly described, but the configuration of the pretreatment system and the subsystem in the ultrapure water production apparatus of the present invention is not particularly limited. No.
For example, as a pretreatment system, raw water (industrial water, tap water, well water, used ultra-pure that is discharged from the electronic device manufacturing process) by agglomeration, pressure flotation (precipitation), filtration (film filtration), etc. Examples thereof include a system for removing suspended substances and colloidal substances in water, etc., as well as high molecular weight organic substances and hydrophobic organic substances.
In addition, the subsystem is equipped with a low-pressure ultraviolet oxidizing device, an ion-exchanged pure water device, and an ultrafiltration membrane separation device, and further enhances the purity of the pure water obtained by the primary pure water system to obtain ultrapure water. Can be mentioned. In the low-pressure ultraviolet oxidizing device in the subsystem, the TOC is decomposed into organic acids and even CO 2 by the ultraviolet rays having a wavelength of 185 nm emitted from the low-pressure ultraviolet lamp. The organic matter and CO 2 produced by the decomposition are removed by the ion exchange pure water device in the subsequent stage. In the ultrafiltration membrane separation device, fine particles are removed, and outflow particles of the ion exchange pure water device are also removed.

[一次純水システムの装置構成]
本発明の超純水製造装置の一次純水システムは、逆浸透膜分離装置と、脱気装置と、紫外線酸化装置と、イオン交換装置とをこの順で備える、僅か4ユニット構成のシステムである。一次純水システムは、原水(工業用水、水道水、井水、電子デバイス製造工程から排出有れる使用済みの超純水等)を前処理システムによって処理した処理水(前処理水)中のイオンや有機成分の除去を行う。
本発明の超純水製造装置によって製造された超純水の水質は、一次純水システムが僅か4ユニット構成であるにもかかわらず、例えば、先に述べた(A),(B)の一次純水システムのように逆浸透膜分離装置及び/又はイオン交換装置を複数段に設置した一次純水システムを備える超純水製造装置によって製造された超純水の水質に対して同等以上の水質を有するものとすることができる。
従って、本発明の超純水製造装置によって製造された超純水は、要求水質を充分に満足した高純度の超純水である。
[Device configuration of primary pure water system]
The primary pure water system of the ultrapure water production apparatus of the present invention is a system having only 4 units, which includes a reverse osmosis membrane separating apparatus, a degassing apparatus, an ultraviolet oxidizing apparatus, and an ion exchange apparatus in this order. .. The primary pure water system is an ion in treated water (pretreated water) obtained by treating raw water (industrial water, tap water, well water, used ultrapure water discharged from the electronic device manufacturing process, etc.) by the pretreatment system. And remove organic components.
The water quality of the ultrapure water produced by the ultrapure water production apparatus of the present invention is, for example, the primary of (A) and (B) described above, even though the primary pure water system has only 4 units. Water quality equal to or better than the water quality of ultrapure water produced by an ultrapure water production device equipped with a primary pure water system in which a back-penetration membrane separator and / or an ion exchange device is installed in multiple stages like a pure water system. Can have.
Therefore, the ultrapure water produced by the ultrapure water production apparatus of the present invention is a high-purity ultrapure water that sufficiently satisfies the required water quality.

以下、本発明に係る一次純水システムの各構成装置について説明する。 Hereinafter, each component of the primary pure water system according to the present invention will be described.

<逆浸透膜分離装置>
本発明の実施形態に係る逆浸透膜分離装置は、塩類を除去すると共に有機物も除去する。逆浸透膜分離装置として、従来、海水淡水化に用いられている逆浸透膜分離装置、例えば操作圧0.2〜7.0MPa程度の高圧型逆浸透膜分離装置を用いることができる。逆浸透膜の形状は、本発明の目的を達成し、その効果を奏するものであればよく、任意の形状でよいが、例えば、スパイラル型形状、中空糸型形状、平膜型形状等が挙げられる。
<Reverse osmosis membrane separation device>
The reverse osmosis membrane separation device according to the embodiment of the present invention removes salts as well as organic substances. As the reverse osmosis membrane separation device, a reverse osmosis membrane separation device conventionally used for desalination of seawater, for example, a high-pressure reverse osmosis membrane separation device having an operating pressure of about 0.2 to 7.0 MPa can be used. The shape of the reverse osmosis membrane may be any shape as long as it achieves the object of the present invention and exerts its effect, and examples thereof include a spiral shape, a hollow fiber shape, and a flat membrane shape. Be done.

<脱気装置>
本発明の実施形態に係る脱気装置は、IC(無機炭素)、溶存酸素の除去を行う。
逆浸透膜分離装置の後段に脱気装置(脱ガス装置)を備える理由は以下の通りである。
すなわち、逆浸透膜分離装置の前段に脱気装置を設けた場合、原水中に存在する濁質あるいはAl、SiO等により脱気装置に備えられている脱気膜あるいは充填材(真空脱気装置等における充填材)が汚染され、脱気効率が低下するおそれがある。これらの濁質あるいはAl、SiO等は高圧型逆浸透膜分離装置にて除去可能であるため、高圧型逆浸透膜分離装置によって処理した後、透過水を脱気装置に通水することにより、脱気効率の低下を防止することができる。
<Degassing device>
The degassing device according to the embodiment of the present invention removes IC (inorganic carbon) and dissolved oxygen.
The reason why the degassing device (degassing device) is provided after the reverse osmosis membrane separation device is as follows.
That is, when a degassing device is provided in front of the reverse osmosis membrane separation device, the degassing membrane or filler (vacuum degassing) provided in the degassing device due to the turbidity existing in the raw water or Al, SiO 2, etc. The filler in the equipment, etc.) may be contaminated and the degassing efficiency may decrease. Since these turbid substances or Al, SiO 2, etc. can be removed by the high-pressure reverse osmosis membrane separation device, the permeated water is passed through the degassing device after being treated by the high-pressure reverse osmosis membrane separation device. , It is possible to prevent a decrease in degassing efficiency.

また、脱気装置をイオン交換装置、及び紫外線酸化装置の前段に設置する理由は以下の通りである。
すなわち、脱気装置にて除去可能であるIC(無機炭素)成分は、紫外線酸化装置に対してはラジカルスカベンジャーとなり、イオン交換装置に対してはアニオン負荷となる。また、同様に、脱気装置にて除去可能である溶存酸素が過剰に存在する場合、溶存酸素は、上記のIC(無機炭素)成分と同様に、紫外線酸化装置に対してはラジカルスカベンジャーとなり、また、イオン交換装置に対しては溶存酸素は樹脂酸化劣化を引き起こす要因物質となる。
したがって、脱気装置は紫外線酸化装置及びイオン交換装置の前段に設置する必要がある。
The reason for installing the degassing device in front of the ion exchange device and the ultraviolet oxidizing device is as follows.
That is, the IC (inorganic carbon) component that can be removed by the degassing device becomes a radical scavenger for the ultraviolet oxidizing device and an anion load for the ion exchange device. Similarly, when there is an excess of dissolved oxygen that can be removed by the degassing device, the dissolved oxygen becomes a radical scavenger for the ultraviolet oxidizing device, similar to the IC (inorganic carbon) component described above. In addition, dissolved oxygen is a factor that causes oxidative deterioration of the resin for the ion exchange device.
Therefore, the degassing device needs to be installed in front of the ultraviolet oxidizing device and the ion exchange device.

脱気装置は、本発明の目的を達成し、本発明の効果を奏するものであれば、任意の脱気装置でよいが、例えば、脱炭酸塔、膜脱気装置、真空脱気装置、窒素脱気装置、触媒樹脂脱酸素装置等を用いることができる。 The degassing device may be any decarboxylating device as long as it achieves the object of the present invention and exerts the effect of the present invention. For example, a decarboxylation tower, a membrane degassing device, a vacuum degassing device, and nitrogen. A degassing device, a catalytic resin deoxidizing device, or the like can be used.

<紫外線酸化装置>
脱気装置の後段、及びイオン交換装置の前段に紫外線酸化装置を設置する理由は以下の通りである。
すなわち、紫外線酸化装置においては水(被処理水)中の有機物をOHラジカルの酸化力によりCOと有機酸に分解する。紫外線酸化装置にて生成したCOあるいは有機酸は後段のイオン交換装置で除去することができる。
<Ultraviolet oxidizing device>
The reason for installing the ultraviolet oxidizing device in the rear stage of the deaerator and in the front stage of the ion exchange device is as follows.
That is, in the ultraviolet oxidizing apparatus, organic substances in water (water to be treated) are decomposed into CO 2 and organic acids by the oxidizing power of OH radicals. The CO 2 or organic acid generated by the ultraviolet oxidizing device can be removed by the ion exchange device in the subsequent stage.

本発明の実施形態に係る紫外線酸化装置は、波長185nmの光を放出するものであって、本発明の目的を達成し、本発明の効果を奏するものであれば特に限定されるものではない。
本発明の実施形態において、紫外線酸化装置としては、有機物分解効率の観点から、ランプ及び外管が共に不純物が極めて少ない合成石英で構成された紫外線酸化装置を使用することが好ましい。
The ultraviolet oxidizing apparatus according to the embodiment of the present invention is not particularly limited as long as it emits light having a wavelength of 185 nm and achieves the object of the present invention and exerts the effect of the present invention.
In the embodiment of the present invention, as the ultraviolet oxidizing device, it is preferable to use an ultraviolet oxidizing device in which both the lamp and the outer tube are made of synthetic quartz having extremely few impurities from the viewpoint of organic matter decomposition efficiency.

<イオン交換装置>
本発明の実施形態に係るイオン交換装置は、水中の塩類を除去すると共に荷電性有機物の除去を行う。
イオン交換装置は、本発明の目的を達成し、本発明の効果を奏するものであれば特に限定されるものではないが、本発明の実施形態に係るイオン交換装置としては、再生式イオン交換装置が好ましい。
再生型イオン交換装置としては、例えば、2床2塔式再生型イオン交換装置、2床1塔式再生型イオン交換装置、混床式再生型イオン交換装置、電気再生式脱イオン装置を1段又は複数段直列に接続した電気再生型イオン交換装置等が挙げられる。中でも再生薬品を用いず連続的に再生が行われる電気再生型イオン交換装置、具体的には、電気再生式脱イオン装置を1段又は複数段直列に接続した再生型イオン交換装置が好ましい。
<Ion exchange device>
The ion exchange device according to the embodiment of the present invention removes salts in water and removes charged organic substances.
The ion exchange device is not particularly limited as long as it achieves the object of the present invention and exerts the effect of the present invention, but the ion exchange device according to the embodiment of the present invention is a regenerative ion exchange device. Is preferable.
Examples of the regenerative ion exchange device include a two-bed, two-tower regenerative ion exchange device, a two-bed, one-tower regenerative ion exchange device, a mixed-bed regenerative ion exchange device, and an electroregenerative ion exchange device. Alternatively, an electroregenerative ion exchange device or the like connected in series in a plurality of stages can be mentioned. Among them, an electroregenerative ion exchange device that continuously regenerates without using a regenerated chemical, specifically, a regenerative ion exchange device in which one or a plurality of stages of an electroregenerative deionizer are connected in series is preferable.

<モニター・制御手段>
本発明の超純水製造装置に係る一次純水システムは、水量及び/又は水質を監視するモニターと、このモニターで検出した値に応じて1以上の構成装置、即ち、逆浸透膜分離装置、脱気装置、紫外線酸化装置、イオン交換装置のいずれか1以上を制御する制御手段を有する。水量を監視するモニターとしては、特に制限はなく、各構成装置の出口に設けた処理水量の流量計であってもよく、入口に設けた給水量の流量計であってもよい。また、水質を監視するモニターとしては、各構成装置の入口水や出口水の水質を監視するpH計、比抵抗計等が挙げられる。
制御手段は、モニターからの計測信号に応じて最適な運転状態にするための計算を行う演算部を有し、演算結果をもとに各構成装置の運転条件を自動調整する。
<Monitor / control means>
The primary pure water system according to the ultrapure water production apparatus of the present invention includes a monitor for monitoring the amount and / or water quality of water, and one or more constituent devices according to the value detected by the monitor, that is, a reverse osmosis membrane separation device. It has a control means for controlling any one or more of a degassing device, an ultraviolet oxidizing device, and an ion exchange device. The monitor for monitoring the amount of water is not particularly limited, and may be a flow meter for the amount of treated water provided at the outlet of each component device or a flow meter for the amount of water supplied at the inlet. Further, examples of the monitor for monitoring the water quality include a pH meter and a resistivity meter for monitoring the water quality of the inlet water and the outlet water of each component device.
The control means has a calculation unit that performs a calculation for optimizing the operation state according to a measurement signal from the monitor, and automatically adjusts the operation conditions of each component device based on the calculation result.

本発明に係るモニターと制御手段の構成については特に制限はないが、例えば以下のようなものが挙げられる。 The configuration of the monitor and the control means according to the present invention is not particularly limited, and examples thereof include the following.

逆浸透膜分離装置については、流量計と流量調整のための流量制御バルブ及び逆浸透膜分離装置の給水に注入する薬液の注入用ポンプを設け、演算部からの信号で流量制御バルブ、薬液の注入量が制御できるように構成する。
脱気装置、例えば膜脱気装置については、真空圧力計と真空度を制御できる圧力制御バルブ及び窒素ガス等のスイープガスの流量計とガス流量を制御できるバルブ等の制御装置を設け、演算部の信号によりそれぞれを制御できるように構成する。
紫外線酸化装置については、紫外線の出力を制御できる出力制御装置を設け、演算部からの信号で出力を制御できるように構成する。
イオン交換装置、例えば、電気再生型イオン交換装置については、流量計と流量調整のための流量制御バルブおよび電流を制御できる電流制御装置を設け、演算部からの信号で流量や電気出力を制御できるように構成する。
For the reverse osmosis membrane separation device, a flow meter, a flow rate control valve for adjusting the flow rate, and a pump for injecting the chemical solution to be injected into the water supply of the reverse osmosis membrane separation device are provided. The injection volume is configured to be controllable.
For the degassing device, for example, the membrane degassing device, a vacuum pressure gauge, a pressure control valve capable of controlling the degree of vacuum, a flow meter for sweep gas such as nitrogen gas, and a control device such as a valve capable of controlling the gas flow rate are provided, and a calculation unit is provided. It is configured so that each can be controlled by the signal of.
The ultraviolet oxidizing device is provided with an output control device capable of controlling the output of ultraviolet rays, and is configured so that the output can be controlled by a signal from the arithmetic unit.
For an ion exchange device, for example, an electroregenerative ion exchange device, a flow meter, a flow control valve for adjusting the flow rate, and a current control device capable of controlling the current are provided, and the flow rate and the electric output can be controlled by a signal from the calculation unit. It is configured as follows.

上記のモニター、演算部、及び流量計や流量制御バルブ、圧力制御バルブ、薬注ポンプ、電流制御装置等の制御装置は、1台以上の必要な台数が設けられ、その台数には特に制限はないが、水質や流量のモニター及びモニターからの信号を処理する演算部、演算部らの信号を受けて流量や薬液の注入量を制御する流量制御バルブやポンプは一般に使用されているものでよく、特に限定しない。 The above-mentioned monitor, calculation unit, and control devices such as a flow meter, a flow control valve, a pressure control valve, a chemical injection pump, and a current control device are provided in a required number of one or more, and the number is not particularly limited. However, the flow control valves and pumps that monitor the water quality and flow rate, process the signals from the monitors, and control the flow rate and the injection amount of the chemical solution by receiving the signals from the calculation units may be generally used. , Not particularly limited.

[一次純水システムの実施形態]
以下に、図1を参照して本発明に係る一次純水システムの実施形態を説明する。
[Implementation of primary pure water system]
Hereinafter, embodiments of the primary pure water system according to the present invention will be described with reference to FIG.

図1において、1は貯留タンクであり、前処理システムからの前処理水が配管11より導入される。この配管11には配管12よりスライムコントロール剤が、配管13よりスケール防止剤がそれぞれ薬注ポンプP,Pにより注入される。貯留タンク1内の前処理水は配管14を経て高圧ポンプPにより逆浸透膜分離装置2に導入され、透過水と濃縮水に膜分離され、それぞれ配管15,16より取り出される。逆浸透膜分離装置2の給水配管14には、pH調整剤の注入配管17が設けられており、pH調整剤が薬注ポンプPにより注入される。この給水配管14には、水質モニターとしてのpH計Mと、給水流量計FI、給水圧力計PIが設けられている。透過水配管15には、流量計FIと処理水流量制御バルブVと処理水圧力計PIが設けられ、濃縮水配管16には流量計FIと濃縮水流量制御バルブVが設けられている。 In FIG. 1, reference numeral 1 denotes a storage tank, and pretreated water from the pretreatment system is introduced from the pipe 11. Slime control agent from the pipe 12 to the pipe 11, a scale inhibitor from the pipe 13 is injected by the respective chemical feed pump P 1, P 2. Pretreated water in the storage tank 1 is introduced into the reverse osmosis membrane separation device 2 by a high-pressure pump P 3 via a pipe 14, are membrane separation to permeate and retentate are extracted from each pipe 15, 16. A water supply pipe 14 of the reverse osmosis membrane separation apparatus 2, the injection pipe 17 of the pH adjusting agent is provided, pH adjusting agent is injected by the chemical feed pump P 4. The water supply pipe 14 is provided with a pH meter M 1 as a water quality monitor, a water supply flow meter FI 1 , and a water supply pressure meter PI 1. The permeated water pipe 15 is provided with a flow meter FI 2 , a treated water flow rate control valve V 1 and a treated water pressure gauge PI 2 , and the concentrated water pipe 16 is provided with a flow meter FI 3 and a concentrated water flow control valve V 2. Has been done.

逆浸透膜分離装置2の濃縮水は配管16より系外へ排出され、透過水は配管15より脱気装置(本実施形態では、脱気膜により液体室と気体室とが区画された膜脱気装置)3に送給されて脱気処理される。脱気処理水は配管17より紫外線酸化装置4に送給される。
この脱気装置3では、気体室に配管18よりスイープ用の窒素ガスが導入されると共に、真空ポンプPにより配管19を経て真空引きされることで、液体室を流通する水の脱気処理が行われる。配管18には窒素ガス流量制御バルブVと窒素ガス流量計FIが設けられている。真空引き配管19には圧力制御バルブVと真空圧力計PIが設けられている。
The concentrated water of the reverse osmosis membrane separator 2 is discharged from the pipe 16 to the outside of the system, and the permeated water is degassed from the pipe 15 (in the present embodiment, the membrane degassing in which the liquid chamber and the gas chamber are separated by the degassing membrane). It is sent to the air device) 3 and degassed. The degassed treated water is supplied from the pipe 17 to the ultraviolet oxidizing device 4.
In the deaerator 3, together with the nitrogen gas for the sweep from the pipe 18 into the gas chamber is introduced, that is evacuated through a pipe 19 by the vacuum pump P 4, deaeration of the water flowing through the fluid chamber Is done. The pipe 18 is provided with a nitrogen gas flow rate control valve V 3 and a nitrogen gas flow meter FI 4 . The vacuum drawing pipe 19 is provided with a pressure control valve V 4 and a vacuum pressure gauge PI 3.

6は紫外線酸化装置4の供給電流量を制御する電流制御装置である。この紫外線酸化装置4の処理水は配管20を経て電気再生型イオン交換装置5の脱塩室に送給されて処理される。この配管20には、電気再生型イオン交換装置5の脱塩室入口流量計FIが設けられている。7は電気再生型イオン交換装置5の供給電流量を制御する電流制御装置である。また、電気再生型イオン交換装置5の濃縮室への流入配管21、流出配管22にはそれぞれ濃縮室入口水用流量制御バルブVと出口水用流量制御バルブVが設けられ、配管22には濃縮室出口流量計FIが設けられている。 Reference numeral 6 denotes a current control device that controls the amount of supply current of the ultraviolet oxidizing device 4. The treated water of the ultraviolet oxidizing device 4 is sent to the desalting chamber of the electroregenerative ion exchange device 5 via the pipe 20 for processing. The pipe 20 is provided with a desalination chamber inlet flow meter FI 5 of the electroregenerative ion exchange device 5. Reference numeral 7 denotes a current control device that controls the amount of supply current of the electroregenerative ion exchange device 5. Further, the inlet pipe 21 into the concentrating compartment of the electrodeionization ion exchange apparatus 5, respectively concentrating chamber inlet water flow control valve V 5 and the outlet water flow control valve V 6 is provided in the outlet pipe 22, the pipe 22 Is equipped with a concentration chamber outlet flow meter FI 6 .

この電気再生型イオン交換装置5の脱塩室から取り出される脱塩処理水(一次純水)は配管23を経てサブシステムに送給され、更に処理されて超純水が製造される。
この一次純水配管23には、脱塩室出口流量計FIと圧力計PIが設けられていると共に、水質モニターとしての比抵抗計M、TOC計M、シリカ濃度計M及びホウ素濃度計Mが設けられている。
The desalted water (primary pure water) taken out from the desalting chamber of the electroregenerative ion exchange device 5 is sent to the subsystem via the pipe 23 and further processed to produce ultrapure water.
The primary pure water pipe 23 is provided with a desalination chamber outlet flow meter FI 7 and a pressure gauge PI 4 , as well as a resistivity meter M 2 as a water quality monitor, a TOC meter M 3 , a silica concentration meter M 4, and a silica concentration meter M 4. A boron densitometer M 5 is provided.

図1の一次純水システムでは、各モニターM,M,M,M,Mの計測値と、流量計FI,FI,FI,FI,FI,FI,FI、圧力計PI,PI,PI,PIの計測値が図示しない制御手段の演算部に入力され、この演算部で各装置の最適運転状態に見合う運転条件が演算され、この演算結果に基づいて薬注ポンプや流量制御バルブ、電流制御装置の制御信号が出力される。 In the primary pure water system of Fig. 1, the measured values of each monitor M 1 , M 2 , M 3 , M 4 , M 5 and the flow meters FI 1 , FI 2 , FI 3 , FI 4 , FI 5 , FI 6 , The measured values of FI 7 , pressure gauges PI 1 , PI 2 , PI 3 , and PI 4 are input to the calculation unit of the control means (not shown), and the operation conditions suitable for the optimum operating state of each device are calculated by this calculation unit. Based on the calculation result, the control signal of the chemical injection pump, the flow rate control valve, and the current control device is output.

以下に、図1に示す一次純水システムを組み込んだ超純水製造装置により、水量や水質の変動に対応して、各構成装置の運転条件を制御する制御方法について具体的に説明する。 Hereinafter, a control method for controlling the operating conditions of each constituent device in response to fluctuations in the amount of water and water quality by the ultrapure water production device incorporating the primary pure water system shown in FIG. 1 will be specifically described.

制御例I:サブシステムで使用水量が増加する場合
高圧ポンプPの出力を上げ、逆浸透膜分離装置2の入口水量(給水量)を増やす。逆浸透膜分離装置2の入口側では、逆浸透膜分離装置流量計FIに合わせて、薬注ポンプP,Pの薬注制御が行われると共に、pH計Mの値が一定になるように薬注ポンプPが制御される。
逆浸透膜分離装置2では、給水流量計FIに合わせて濃縮水流量制御バルブVが開き、逆浸透膜分離装置2の水量のバランスを維持しながら、逆浸透膜分離装置2の処理水量(透過水量)を増やす。
Control Example I: If using water in sub-system increases to increase the output of the high-pressure pump P 3, increasing the inlet water of the reverse osmosis membrane separation apparatus 2 (water supply). In the inlet side reverse osmosis membrane separation apparatus 2 in accordance with the reverse osmosis membrane separation apparatus flowmeter FI 1, with dosing control of chemical feed pump P 1, P 2 is performed, the value of the pH meter M 1 is constant chemical feeding, chemical dosing pump P 3 is controlled so that.
In the reverse osmosis membrane separation device 2, the concentrated water flow rate control valve V 2 opens in accordance with the water supply flow meter FI 1, and the amount of treated water in the reverse osmosis membrane separation device 2 is maintained while maintaining the balance of the water volume in the reverse osmosis membrane separation device 2. Increase (permeated water volume).

脱気装置3では、逆浸透膜分離装置2の処理水出口流量計FIの計測値の増加に応じて、窒素ガス流量制御バルブVが開き、窒素ガスの注入量を増やす。また、真空圧力計Vが所定の真空度になるよう、圧力制御バルブVが開き、真空ポンプPの出力を上げ、脱気装置3の真空度を上げる。 In the degassing device 3, the nitrogen gas flow rate control valve V 3 opens in response to the increase in the measured value of the treated water outlet flow meter FI 2 of the reverse osmosis membrane separation device 2, and the injection amount of nitrogen gas is increased. Further, the pressure control valve V 4 is opened so that the vacuum pressure gauge V 4 has a predetermined vacuum degree, the output of the vacuum pump P 4 is increased, and the vacuum degree of the degassing device 3 is increased.

紫外線酸化装置4は、水量が増えると所定時間に分解させる有機物の量が増えるため、紫外線酸化装置4の電流制御装置6により供給電流値を上昇させて有機物の分解を促進する。 Since the amount of organic substances decomposed in a predetermined time increases as the amount of water increases, the ultraviolet oxidizing device 4 increases the supply current value by the current control device 6 of the ultraviolet oxidizing device 4 to promote the decomposition of organic substances.

電気再生型イオン交換装置5は、脱塩室入口流量計FIの計測値の増加に応じて、濃縮室出口流量計FIを監視しながら、電気再生型イオン交換装置5の濃縮室入口水用流量制御バルブVが開き、濃縮水の流量を増やし、電気再生型イオン交換装置5内の水量バランスを調整する。また、電気再生型イオン交換装置5の脱塩室入口流量が増えると、処理するイオン量が増えるため、電気再生型イオン交換装置5の電流制御装置7により電気再生型イオン交換装置5への供給電流値を上昇させる。 The electroregenerative ion exchange device 5 monitors the concentrating chamber outlet flow meter FI 6 in response to an increase in the measured value of the desalination chamber inlet flow meter FI 5, while monitoring the concentrating chamber inlet water of the electroregenerating chamber inlet flow meter FI 5. The flow rate control valve V 5 is opened to increase the flow rate of concentrated water and adjust the balance of the amount of water in the electroregenerative ion exchange device 5. Further, as the flow rate at the inlet of the desalting chamber of the electroregenerative ion exchange device 5 increases, the amount of ions to be processed increases. Increase the current value.

以上の操作で、サブシステムでの使用水量が増加する場合、その増加量に応じて、水質を維持した上で、一次純水システムの処理水としての一次純水生産量を増やすことができる。 When the amount of water used in the subsystem increases by the above operation, the amount of primary pure water produced as the treated water of the primary pure water system can be increased while maintaining the water quality according to the increased amount.

制御例II:サブシステムで使用水量が減少する場合
高圧ポンプPの出力を下げ、逆浸透膜分離装置2の入口水量(給水量)を減らす。逆浸透膜分離装置2の入口側では、逆浸透膜分離装置流量計FIに合わせて、薬注ポンプP,Pの薬注の制御が行われると共に、pH計Mの値が一定になるように薬注ポンプPが制御される。
逆浸透膜分離装置2では、給水流量計FIに合わせて濃縮水流量制御バルブVが閉まり、逆浸透膜分離装置2の水量のバランスを維持しながら、逆浸透膜分離装置2の処理水量(透過水量)を減らす。
Control Example II: If water consumption in the subsystem is reduced to lower the output of the high-pressure pump P 3, reducing the inlet water of the reverse osmosis membrane separation apparatus 2 (water supply). In the reverse osmosis membrane separation apparatus 2 in the inlet side, in accordance with the reverse osmosis membrane separation apparatus flowmeter FI 1, together with the control of the chemical feed pump P 1, P 2 of the dosing is performed, the value of the pH meter M 1 is constant chemical feeding, chemical dosing pump P 3 is controlled to be.
In the reverse osmosis membrane separation device 2, the concentrated water flow rate control valve V 2 is closed in accordance with the water supply flow meter FI 1, and the amount of treated water in the reverse osmosis membrane separation device 2 is maintained while maintaining the balance of the water volume in the reverse osmosis membrane separation device 2. Reduce (permeated water volume).

脱気装置3では、逆浸透膜分離装置2の処理水出口流量計FIの計測値の減少に応じて、窒素ガス流量制御バルブVが閉まり、窒素ガスの注入量を減らす。また、真空圧力計Vが所定の真空度になるよう、圧力制御バルブVが閉まり、真空ポンプPの出力を下げ、脱気装置3の真空度を下げる。 In the degassing device 3, the nitrogen gas flow rate control valve V 3 is closed in accordance with the decrease in the measured value of the treated water outlet flow meter FI 2 of the reverse osmosis membrane separation device 2, and the injection amount of nitrogen gas is reduced. Further, the pressure control valve V 4 is closed so that the vacuum pressure gauge V 4 has a predetermined vacuum degree, the output of the vacuum pump P 4 is lowered, and the vacuum degree of the degassing device 3 is lowered.

紫外線酸化装置4は、水量が減ると所定時間に分解させる有機物の量が減るため、紫外線酸化装置の電流制御装置6により供給電流値を低減させて過剰な電気エネルギーを減らす。 When the amount of water in the ultraviolet oxidizing device 4 decreases, the amount of organic substances decomposed in a predetermined time decreases. Therefore, the current control device 6 of the ultraviolet oxidizing device reduces the supply current value to reduce excess electrical energy.

電気再生型イオン交換装置5は、脱塩室入口流量計FIの計測値の減少に応じて、濃縮室出口流量計FIを監視しながら、電気再生型イオン交換装置の濃縮室入口水用流量制御バルブVが閉め、濃縮水の流量を減らし、電気再生型イオン交換装置5内の水量バランスを調整する。また、電気再生型イオン交換装置5の脱塩室入口流量が減ると、処理するイオン量が減るため、電気再生型イオン交換装置5の電流制御装置7により電気再生型イオン交換装置5への供給電流値を低減させて過剰な電気エネルギーを減らす。 The electroregeneration type ion exchange device 5 is for the concentration chamber inlet water of the electroregeneration type ion exchange device while monitoring the concentration chamber outlet flow meter FI 6 according to the decrease in the measured value of the desalination chamber inlet flow meter FI 5. The flow rate control valve V 5 is closed to reduce the flow rate of concentrated water and adjust the water volume balance in the electroregenerative ion exchange device 5. Further, when the flow rate at the inlet of the desalting chamber of the electric regeneration type ion exchange device 5 decreases, the amount of ions to be processed decreases, so that the current control device 7 of the electric regeneration type ion exchange device 5 supplies the electric regeneration type ion exchange device 5 to the electric regeneration type ion exchange device 5. Reduce the current value to reduce excess electrical energy.

以上の操作で、サブシステムでの使用水量が減少する場合、その減少量に応じて必要最低限の薬注と電気エネルギーで、処理水の水質を維持した上で、一次純水システムの処理水としての一次純水生産量を減らすことができる。 If the amount of water used in the subsystem decreases due to the above operation, the treated water of the primary pure water system is treated after maintaining the quality of the treated water with the minimum necessary chemical injection and electrical energy according to the reduced amount. The amount of primary pure water produced can be reduced.

制御例III:サブシステムでの使用水量は一定で、一次純水の水質が低下した場合、
制御例I,IIでは、サブシステムの使用水量が変動する場合の制御例を示したが、サブシステムでの使用水量は一定で変動しない(電気再生型イオン交換装置5の脱塩室出口流量計FIは一定)が、製造される一次純水の水質が変動する場合、例えば水質モニターの計測値が悪化して水質が低下した場合(例えば、比抵抗計Mの計測値が下がった場合)は以下のような制御を行うことができる。
Control example III: When the amount of water used in the subsystem is constant and the quality of the primary pure water deteriorates,
In control examples I and II, a control example is shown when the amount of water used in the subsystem fluctuates, but the amount of water used in the subsystem is constant and does not fluctuate (the desalination chamber outlet flowmeter of the electroregenerative ion exchange device 5). FI 7 is constant), but when the water quality of the produced primary pure water fluctuates, for example, when the measured value of the water quality monitor deteriorates and the water quality deteriorates (for example, when the measured value of the resistivity ohmmeter M 2 decreases) ) Can perform the following controls.

比抵抗計Mの計測値が低くなったときは、比抵抗を上げるために、高圧ポンプPの出力を上げて逆浸透膜分離装置2の給水量を増やす。逆浸透膜分離装置2の入口側では、給水流量計FIに合わせて、薬注ポンプP,Pの薬注制御が行われると共に、pH計Mの値が一定になるように薬注ポンプPが制御される。
ここで増えた給水流量計FIの値に応じて、逆浸透膜分離装置2では、流量制御バルブVが開き、逆浸透膜分離装置2の水量のバランスを変更させ、処理水の回収率を下げた上で処理水量(透過水量)を増やす。処理水の回収率を下げることで、逆浸透膜分離装置2の処理水の水質を上げることができる。
When the measured value of the resistivity meter M 2 becomes low, the output of the high-pressure pump P 3 is increased to increase the amount of water supplied by the reverse osmosis membrane separation device 2 in order to increase the resistivity. In the reverse osmosis membrane separation apparatus 2 in the inlet side, in accordance with the feed water flow meter FI 1, with dosing control of chemical feed pump P 1, P 2 is performed, so that the value of pH meter M 1 is constant drug Note pump P 3 is controlled.
In the reverse osmosis membrane separation device 2, the flow rate control valve V 2 is opened according to the value of the water supply flow meter FI 1 increased here, the balance of the amount of water in the reverse osmosis membrane separation device 2 is changed, and the recovery rate of the treated water is changed. Increase the amount of treated water (permeated water amount) after lowering. By lowering the recovery rate of the treated water, the quality of the treated water of the reverse osmosis membrane separation device 2 can be improved.

脱気装置3では、逆浸透膜分離装置2の処理水出口流量計FIの計測値の増加に応じて、窒素ガス流量制御バルブVが開き、窒素ガスの注入量を増やす。また、真空圧力計Vが所定の真空度になるよう、圧力制御バルブVが開き、真空ポンプPの出力を上げ、脱気装置3の真空度を上げる。 In the degassing device 3, the nitrogen gas flow rate control valve V 3 opens in response to the increase in the measured value of the treated water outlet flow meter FI 2 of the reverse osmosis membrane separation device 2, and the injection amount of nitrogen gas is increased. Further, the pressure control valve V 4 is opened so that the vacuum pressure gauge V 4 has a predetermined vacuum degree, the output of the vacuum pump P 4 is increased, and the vacuum degree of the degassing device 3 is increased.

紫外線酸化装置4は、水量が増えると所定時間に分解させる有機物の量が増えるため、紫外線酸化装置4の電流制御装置6により供給電流値を上昇させて有機物の分解を促進する。 Since the amount of organic substances decomposed in a predetermined time increases as the amount of water increases, the ultraviolet oxidizing device 4 increases the supply current value by the current control device 6 of the ultraviolet oxidizing device 4 to promote the decomposition of organic substances.

電気再生型イオン交換装置5は、脱塩室入口流量計FIの計測値の増加に応じて、濃縮室出口流量計FIを監視しながら、電気再生型イオン交換装置の濃縮室入口水用流量制御バルブVが開き、濃縮水の流量を増やし、電気再生型イオン交換装置5内の水量バランスを変更してイオン交換効率を上げる。また、水質の低下でイオン量が増えているため、電気再生型イオン交換装置5の電流制御装置7により電気再生型イオン交換装置5への供給電流値を上昇させて脱塩効率を上げる。 The electroregenerative ion exchange device 5 is for the concentration chamber inlet water of the electroregenerative ion exchange device while monitoring the concentration chamber outlet flow meter FI 6 in response to the increase in the measured value of the desalination chamber inlet flow meter FI 5. The flow rate control valve V 5 opens to increase the flow rate of concentrated water and change the balance of the amount of water in the electroregenerative ion exchange device 5 to improve the ion exchange efficiency. Further, since the amount of ions is increasing due to the deterioration of water quality, the current control device 7 of the electroregenerative ion exchange device 5 increases the supply current value to the electroregenerative ion exchange device 5 to improve the desalting efficiency.

以上の操作で、一次純水の水質低下に応じて、水質を回復させた上で、一次純水システムの処理水としての一次純水を安定に供給することができる。 By the above operation, it is possible to stably supply the primary pure water as the treated water of the primary pure water system after recovering the water quality in response to the deterioration of the water quality of the primary pure water.

本発明によれば、このように水量や水質の変動に応じて流量計や水質モニターの信号から演算部で水質が一定になるようにデータを解析し、流量制御バルブの開度や薬注ポンプの出力、紫外線酸化装置や電気再生型イオン交換装置の電流値を制御することで電気エネルギーを抑えて、一定の水質を保つ一次純水を安定に供給することが可能となる。 According to the present invention, the data is analyzed from the signals of the flow meter and the water quality monitor so that the water quality becomes constant in the calculation unit according to the fluctuation of the water amount and the water quality, and the opening degree of the flow control valve and the chemical injection pump are analyzed. By controlling the output of the device and the current value of the ultraviolet oxidizing device and the electroregenerative ion exchange device, it is possible to suppress the electrical energy and stably supply the primary pure water that maintains a constant water quality.

本発明の超純水製造方法では、このような本発明の超純水製造装置を用いて、一次純水システムにおける処理水である一次純水として、比抵抗値18MΩcm以上、TOC濃度2μg/L以下、ホウ素濃度1ng/L以下、及びシリカ濃度0.1μg/L以下の処理水を得、このような水質の一次純水を更にサブシステムで処理して、比抵抗値18.2MΩcm以上、TOC濃度0.1μg/L以下、ホウ素濃度1ng/L以下、及びシリカ濃度0.1μg/L以下の超純水を製造することが好ましい。 In the ultrapure water production method of the present invention, using such an ultrapure water production apparatus of the present invention, as the primary pure water which is the treated water in the primary pure water system, the specific resistance value is 18 MΩcm or more and the TOC concentration is 2 μg / L. Hereinafter, treated water having a boron concentration of 1 ng / L or less and a silica concentration of 0.1 μg / L or less is obtained, and primary pure water of such water quality is further treated by a subsystem to have a specific resistance value of 18.2 MΩcm or more and TOC. It is preferable to produce ultrapure water having a concentration of 0.1 μg / L or less, a boron concentration of 1 ng / L or less, and a silica concentration of 0.1 μg / L or less.

1 貯留タンク
2 逆浸透膜分離装置
3 脱気装置
4 紫外線酸化装置
5 電気再生型イオン交換装置
1 Storage tank 2 Reverse osmosis membrane separation device 3 Degassing device 4 Ultraviolet oxidation device 5 Electric regeneration type ion exchange device

Claims (4)

原水を処理する前処理システムと、該前処理システムの処理水を処理する一次純水システムと、該一次純水システムの処理水を処理するサブシステムとを備え、
該一次純水システムが、構成装置として少なくとも逆浸透膜分離装置、脱気装置、紫外線酸化装置、及びイオン交換装置をこの順で備える超純水製造装置であって、該一次純水システムにおける水量及び/又は水質を監視するモニターと、該モニターで検出した値に応じて1以上の前記構成装置の運転条件を制御する制御手段とを有する超純水製造装置。
It is provided with a pretreatment system for treating raw water, a primary pure water system for treating the treated water of the pretreatment system, and a subsystem for treating the treated water of the primary pure water system.
The primary pure water system is an ultrapure water production device including at least a reverse osmosis membrane separation device, a degassing device, an ultraviolet oxidizing device, and an ion exchange device as constituent devices in this order, and the amount of water in the primary pure water system. An ultrapure water production apparatus having a monitor for monitoring water quality and / or a control means for controlling one or more operating conditions of the constituent devices according to a value detected by the monitor.
前記イオン交換装置が、電気再生式脱イオン装置を1段又は複数段直列に接続し電気再生型イオン交換装置である請求項1に記載の超純水製造装置。 The ultrapure water production apparatus according to claim 1, wherein the ion exchange device is an electroregenerative ion exchange device in which an electroregenerative deionizer is connected in series in one or a plurality of stages. 請求項1又は2に記載の超純水製造装置を用いて超純水を製造する超純水製造方法。 An ultrapure water production method for producing ultrapure water using the ultrapure water production apparatus according to claim 1 or 2. 前記イオン交換装置の処理水として、比抵抗値18MΩcm以上、TOC濃度2μm/L以下、ホウ素濃度1ng/L以下、及びシリカ濃度0.1μg/L以下の処理水を得る請求項3に記載の超純水製造方法。 The ultrapure water according to claim 3, wherein as the treated water of the ion exchange device, treated water having a specific resistance value of 18 MΩcm or more, a TOC concentration of 2 μm / L or less, a boron concentration of 1 ng / L or less, and a silica concentration of 0.1 μg / L or less is obtained. Pure water production method.
JP2020023619A 2020-02-14 2020-02-14 Ultrapure water production device and ultrapure water production method Active JP7183208B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020023619A JP7183208B2 (en) 2020-02-14 2020-02-14 Ultrapure water production device and ultrapure water production method
PCT/JP2020/034827 WO2021161569A1 (en) 2020-02-14 2020-09-15 Ultrapure water production device and ultrapure water production method
JP2020205121A JP7405066B2 (en) 2020-02-14 2020-12-10 Ultrapure water production equipment and ultrapure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023619A JP7183208B2 (en) 2020-02-14 2020-02-14 Ultrapure water production device and ultrapure water production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020205121A Division JP7405066B2 (en) 2020-02-14 2020-12-10 Ultrapure water production equipment and ultrapure water production method

Publications (2)

Publication Number Publication Date
JP2021126624A true JP2021126624A (en) 2021-09-02
JP7183208B2 JP7183208B2 (en) 2022-12-05

Family

ID=77292270

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020023619A Active JP7183208B2 (en) 2020-02-14 2020-02-14 Ultrapure water production device and ultrapure water production method
JP2020205121A Active JP7405066B2 (en) 2020-02-14 2020-12-10 Ultrapure water production equipment and ultrapure water production method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020205121A Active JP7405066B2 (en) 2020-02-14 2020-12-10 Ultrapure water production equipment and ultrapure water production method

Country Status (2)

Country Link
JP (2) JP7183208B2 (en)
WO (1) WO2021161569A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110877942A (en) * 2019-12-31 2020-03-13 苏州伟志水处理设备有限公司 Automatic operation method of ultrapure water equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180254A (en) * 1996-12-24 1998-07-07 Nomura Micro Sci Co Ltd Method and device for producing pure water
JP2012205989A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Pure water producing apparatus
JP2016117001A (en) * 2014-12-19 2016-06-30 栗田工業株式会社 Super pure water production device and super pure water production method
JP2018079447A (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Water treatment method and device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051865A (en) 1998-08-06 2000-02-22 Kurita Water Ind Ltd Electric regeneration type desalting apparatus
JP5211414B2 (en) 2001-03-12 2013-06-12 栗田工業株式会社 Ultrapure water production equipment
JP2003062403A (en) * 2001-08-24 2003-03-04 Ebara Corp Operating method for membrane degasifier
JP2003181459A (en) 2001-12-18 2003-07-02 Asahi Glass Co Ltd Method for producing deionized water
JP2007245120A (en) 2006-03-20 2007-09-27 Japan Organo Co Ltd Electrically operated apparatus for producing deionized water
JP5280038B2 (en) 2007-11-06 2013-09-04 野村マイクロ・サイエンス株式会社 Ultrapure water production equipment
US8771522B2 (en) 2008-07-28 2014-07-08 Kurita Water Industries Ltd. Method and apparatus for treating organic matter-containing water
JP5379025B2 (en) 2010-01-06 2013-12-25 オルガノ株式会社 Electric deionized water production equipment
JP5768626B2 (en) * 2011-09-27 2015-08-26 三浦工業株式会社 Water treatment system
JP2016107249A (en) 2014-12-10 2016-06-20 野村マイクロ・サイエンス株式会社 Ultrapure water production system and method
JP6682401B2 (en) 2016-08-18 2020-04-15 オルガノ株式会社 Water treatment method using reverse osmosis membrane
JP6819175B2 (en) 2016-09-20 2021-01-27 栗田工業株式会社 Diluting chemical manufacturing equipment and diluting chemical manufacturing method
JP6907514B2 (en) 2016-11-28 2021-07-21 栗田工業株式会社 Ultrapure water production system and ultrapure water production method
JP7454330B2 (en) 2018-06-20 2024-03-22 オルガノ株式会社 Boron removal method in treated water, boron removal system, ultrapure water production system, and boron concentration measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180254A (en) * 1996-12-24 1998-07-07 Nomura Micro Sci Co Ltd Method and device for producing pure water
JP2012205989A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Pure water producing apparatus
JP2016117001A (en) * 2014-12-19 2016-06-30 栗田工業株式会社 Super pure water production device and super pure water production method
JP2018079447A (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Water treatment method and device

Also Published As

Publication number Publication date
JP7183208B2 (en) 2022-12-05
JP2021126644A (en) 2021-09-02
JP7405066B2 (en) 2023-12-26
WO2021161569A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
KR102602540B1 (en) Ultrapure water production device and method of operating the ultrapure water production device
JP6228531B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2016107249A (en) Ultrapure water production system and method
KR102459286B1 (en) A method for removing boron in treated water, a boron removal system, an ultrapure water production system, and a method for measuring boron concentration
CN111252971A (en) Ultrapure water manufacturing system and ultrapure water manufacturing method using same
JP5834492B2 (en) Ultrapure water production equipment
WO2020184045A1 (en) Apparatus for removing boron, method for removing boron, apparatus for producing pure water and method for producing pure water
JP5953726B2 (en) Ultrapure water production method and apparatus
WO2021161569A1 (en) Ultrapure water production device and ultrapure water production method
WO2023149415A1 (en) Pure water production apparatus and operation method for pure water production apparatus
JP2017127875A (en) Ultrapure water system and ultrapure water production method
JP4432583B2 (en) Ultrapure water production equipment
JP7368310B2 (en) Boron removal equipment and boron removal method, and pure water production equipment and pure water production method
JP7306074B2 (en) Ultrapure water production device and ultrapure water production method
JP4208270B2 (en) Pure water production method
JP7192519B2 (en) Ultra-pure boron-removed ultra-pure water production apparatus and ultra-pure boron-removed ultra-pure water production method
JPH10216749A (en) Ultrapure water making apparatus
JP2006122908A (en) Pure water producing method
WO2024075731A1 (en) Method for producing pure water from which boron has been removed, pure water production device, and ultrapure water production system
WO2022239483A1 (en) Method and device for producing ultrapure water
CN212269740U (en) Ultrapure water manufacturing system
CN216513257U (en) Efficient energy-saving environment-friendly water treatment equipment and boiler water supply system
CN215975396U (en) EDI system water quality circulation adjusting device
US20230271138A1 (en) Apparatus for producing ultrapure water
WO2014010075A1 (en) Ultrapure water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200915

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210224

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20210601

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210601

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220426

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220531

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20220531

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220719

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220920

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221004

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221122

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R150 Certificate of patent or registration of utility model

Ref document number: 7183208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150