JP2021107805A - 放射線検出器およびその製造方法 - Google Patents

放射線検出器およびその製造方法 Download PDF

Info

Publication number
JP2021107805A
JP2021107805A JP2020155406A JP2020155406A JP2021107805A JP 2021107805 A JP2021107805 A JP 2021107805A JP 2020155406 A JP2020155406 A JP 2020155406A JP 2020155406 A JP2020155406 A JP 2020155406A JP 2021107805 A JP2021107805 A JP 2021107805A
Authority
JP
Japan
Prior art keywords
radiation
detection element
radiation detection
shielding member
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020155406A
Other languages
English (en)
Inventor
山本 修一郎
Shuichiro Yamamoto
修一郎 山本
雅志 山▲さき▼
Masashi Yamasaki
雅志 山▲さき▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOBU KK
Original Assignee
JOBU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOBU KK filed Critical JOBU KK
Priority to JP2020155406A priority Critical patent/JP2021107805A/ja
Priority to US18/026,412 priority patent/US20230384468A1/en
Priority to JP2022550336A priority patent/JP7394496B2/ja
Priority to PCT/JP2021/011171 priority patent/WO2022059234A1/ja
Publication of JP2021107805A publication Critical patent/JP2021107805A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】小型化を実現可能とする放射線検出器およびその製造方法を提供する。【解決手段】上面から入射する放射線を検出する放射線検出素子2と、平面視で放射線検出素子2よりも大きく形成され且つ放射線検出素子2の下面に接続されていて放射線検出素子2から得られる信号を処理して外部に電気信号を出力する半導体素子3とを備える放射線検出器1の製造方法において、半導体素子3の上面に放射線検出素子2が配置された後に、放射線検出素子2の側面2aと半導体素子3の上面3aとに接触する状態で放射線を遮蔽する遮蔽部材7が配置される。【選択図】図2

Description

本発明は、放射線を検出する放射線検出器およびその製造方法に関するものであり、詳しくは小型化を実現可能とする放射線検出器およびその製造方法に関するものである。
放射線検出器が種々提案されている(例えば特許文献1参照)。特許文献1には、開口部を有する遮蔽部材が放射線検出素子の上方に配置された放射線検出器の構成が開示されている。
放射線検出素子の一部が遮蔽部材で覆われるため、平面視において放射線検出素子の周縁部には放射線が到達し難い状態となっていた。放射線検出素子の周縁部は放射線の検出に有効利用できなかった。放射線検出器を製造する際には、有効利用できない範囲を見込んで放射線検出素子の大きさが決定されていた。そのため平面視において放射線検出器を小型化することは困難であった。
上下方向において放射線検出素子から所定の間隔をあけて遮蔽部材が配置されていた。そのため上下方向において放射線検出器を小型化することは困難であった。
日本国特開2006−322745号公報
本発明は上記の問題を鑑みてなされたものであり、その目的は小型化を実現可能とする放射線検出器およびその製造方法を提供することである。
上記の目的を達成するための放射線検出器は、上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器において、放射線を遮蔽する遮蔽部材を備えていて、前記遮蔽部材が前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態で配置される構成を有することを特徴とする。
上記の目的を達成するための放射線検出器の製造方法は、上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器の製造方法において、前記半導体素子の上面に前記放射線検出素子が配置された後に、前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態で放射線を遮蔽する遮蔽部材が配置されることを特徴とする。
本発明によれば、放射線検出素子の側面に接触する状態で遮蔽部材が配置されるので、放射線検出素子の上面の全域を検出領域として有効利用できる。放射線検出素子による検出範囲を大きくできるので、放射線検出器の小型化を実現するには有利である。
放射線検出器を斜視で例示する説明図である。 図1の放射線検出器をAA矢視で例示する説明図である。 図1の放射線検出器を平面視で例示する説明図である。 図1の半導体素子を平面視で例示する説明図である。 放射線検出器の参考例を例示する説明図である。 図5の放射線検出器を平面視で例示する説明図である。 図2の放射線検出器の変形例を例示する説明図である。 図2の放射線検出器の変形例を例示する説明図である。
以下、放射線検出器およびその製造方法を図に示した実施形態に基づいて説明する。図中では放射線検出器の幅方向を矢印x、この幅方向xを直角に横断する縦方向を矢印y、上下方向を矢印zで示している。
図1および図2および図3に例示するように放射線検出器1は、上面から入射する放射線を検出する放射線検出素子2と、放射線検出素子2の下面に接続されていて放射線検出素子2から得られる信号を処理して外部の機構に電気信号を出力する半導体素子3を備えている。半導体素子3が電気信号を出力する外部の機構は、例えば半導体素子3の下方に配置される回路基板4で構成される。
放射線検出素子2は、上面から放射線が入射するとこれを電気信号に変換する機能を有していて、例えばCdTe(テルル化カドミウム)系半導体などの直接変換型半導体で構成される。この直接変換型半導体は、入射した放射線を光子とみなしてこの光子のエネルギに比例した電気信号を出力する構成を有している。放射線検出素子2は放射線を電気信号に変換する構成を有していればよい。この実施形態では放射線検出素子2は、直方体形状に形成されている。上下方向zの長さに対して幅方向xおよび縦方向yの長さが長い平板形状に放射線検出素子2は形成されている。放射線検出素子2は幅方向xおよび縦方向yに並べて配置される複数のピクセルを有していて、ピクセル毎に放射線の検出を可能としている。放射線検出素子2は例えば幅方向xに50mm、縦方向yに50mm、上下方向zに5mmの大きさに構成される。放射線検出素子2の大きさは上記に限らず、例えば幅方向xに4.0mm、縦方向yに16.0mm、上下方向zに1.5mmの大きさなど、放射線検出器1の使用目的等に応じて適宜変更できる。
図2に例示するように半導体素子3は、複数のバンプ5を介して放射線検出素子2と電気的に接続されている。放射線検出素子2の下面と半導体素子3の上面3aとが対向する状態で配置されている。半導体素子3は、具体的には光子計数型ASIC(application specific integrated circuit)で構成される。この光子計数型ASICは放射線検出素子2から得られる電気信号を増幅してデジタル化する構成を有している。
放射線検出素子2と半導体素子3の組み合わせは上記に限定されない。例えば放射線が入射すると発光するシンチレータで放射線検出素子2が構成されてもよい。この放射線検出素子2は放射線を光信号に変換する構成を有している。このとき半導体素子3は例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサや、フォトダイオードで構成される。CMOSイメージセンサ等は放射線検出素子2から得られる光信号を電気信号に変換する構成を有している。放射線検出素子2の下面と半導体素子3の上面3aとは光学的に接続される。また半導体素子3は例えば積分型の処理回路を搭載した積分型ASICで構成されてもよい。放射線検出素子2としてシンチレータまたは直接変換型半導体のいずれかが選択されて、これと組み合わせる状態で半導体素子3として積分型ASICまたは光子計数型ASICのいずれかが選択されてもよい。
図4に例示するように半導体素子3は、放射線検出素子2から得られる信号の処理を行なう処理領域3bと、この処理領域3b以外の部分からなる補助領域3cとを有している。図4では説明のため処理領域3bと補助領域3cとの境界を破線で示している。処理領域3bは放射線検出素子2の各ピクセルから受けた信号を電気信号として出力するための回路で構成されている。補助領域3cは、具体的には処理領域3bから受ける信号を外部に転送するデータ転送用回路やI/Oドライバや内部回路用定電圧発生回路等で構成されている。補助領域3cは例えばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等で構成されている。
この実施形態では平面視において放射線検出素子2と同一となる大きさの処理領域3bを半導体素子3は有している。放射線検出素子2の各ピクセルに対応する回路が処理領域3bには形成されている。補助領域3cは半導体素子3の周縁部であり且つ放射線検出素子2の側面2aよりも外側となる領域に形成されている。この実施形態では補助領域3cは放射線検出素子2に覆われない状態となる。そのため図2および図3に例示するように、平面視において半導体素子3の方が放射線検出素子2よりも大きく形成されている。補助領域3cは処理領域3bから受ける信号を、導電性ワイヤ6を介して外部である回路基板4に転送するデータ転送用回路を有している。
平面視における処理領域3bと放射線検出素子2の大きさが同一である構成に限定されない。放射線検出素子2の方が大きく形成されてもよい。例えば補助領域3cの一部を覆う大きさを放射線検出素子2が有していてもよい。この場合、補助領域3cを覆う部分は放射線検出素子2として機能しない。また処理領域3bの方が大きく形成されてもよい。例えば放射線検出素子2から一部がはみ出す大きさを処理領域3bが有していてもよい。この場合、放射線検出素子2に覆われていない部分は処理領域3bとして機能しない。
回路基板4はその上面が、半導体素子3の下面と対向する状態で配置されている。半導体素子3と回路基板4とは導電性ワイヤ6により電気的に接続されている。図2に例示するように導電性ワイヤ6は、例えば半導体素子3の上面と回路基板4の上面とを接続する状態に配置されている。回路基板4は半導体素子3の下方に配置される構成に限定されない。半導体素子3の側方に回路基板4が配置される構成であってもよい。
導電性ワイヤ6の配置状態は上記に限定されない。半導体素子3の下面と回路基板4とを接続する構成を導電性ワイヤ6が有していてもよい。ただし半導体素子3の上面に導電性ワイヤ6が接続される構成の方が、放射線検出器1の上下方向zの厚みを小さくするには有利である。この構成は放射線検出器1の薄型化には有利となる。
図2に例示するように放射線検出素子2の側面2aと半導体素子3の上面3aとに接触する状態で、遮蔽部材7が配置されている。この実施形態では半導体素子3の周縁部であり且つ放射線検出素子2の側面2aよりも外側となる領域に遮蔽部材7が配置されている。半導体素子3の補助領域3cを覆う状態で遮蔽部材7が配置されているとも言える。上下方向zにおいて放射線検出素子2の上面よりも低い領域に遮蔽部材7が配置されることが望ましい。図2および図3では説明のため遮蔽部材7に斜線を付している。遮蔽部材7は放射線を遮蔽する物質で構成されている。図2では導電性ワイヤ6の一部であり遮蔽部材7に埋没している部分を説明のため破線で示している。
遮蔽部材7は例えば接着剤と放射線を遮蔽する粒子との混合物で構成される。接着剤と粒子との混合物は、塗布する際には流動性と比較的高い粘性とを有していて、その後硬化することで半導体素子3に放射線検出素子2を固定する構成を有していればよい。接着剤は、例えばエポキシ系樹脂接着剤、アクリル系接着剤、ウレタン系接着剤を利用できる。また接着剤は、紫外線を照射されることで硬化する光硬化性接着剤で構成されてもよい。
放射線を遮蔽する粒子は、例えばバリウム、タンタル、鉛、タングステン、ビスマスなどの重金属の粒子で構成される。また硫酸バリウム、五酸化タンタル、一酸化鉛、三酸化ビスマスなどの重金属の硫化物や酸化物で粒子が構成されてもよい。特に20KeV以下など放射線のエネルギが比較的低い場合は、二酸化ケイ素を主成分とするガラスや酸化アルミニウムなどの軽金属の酸化物等で放射線を遮蔽する粒子が構成されてもよい。また複数種の粒子の混合物で放射線を遮蔽する粒子を構成してもよい。
放射線検出器1の製造方法を以下に説明する。まず回路基板4の上面に半導体素子3が配置されて固定される。その後、半導体素子3と回路基板4とが導電性ワイヤ6で接続される。半導体素子3の上面3aに放射線検出素子2が配置される。その際に半導体素子3の上面3aと放射線検出素子2の下面とがバンプ5等により電気的に接続される。放射線検出素子2がシンチレータで構成される場合は、半導体素子3の上面3aと放射線検出素子2の下面とが光学的に接続される。その後、図2に例示するように放射線検出素子2の側面2aと半導体素子3の上面3aとの間に流動性を有するペースト状の遮蔽部材7が配置される。
側面2aと上面3aとに同時に接触する状態でペースト状の一塊の遮蔽部材7が配置される。その後遮蔽部材7が硬化することで、放射線検出素子2の側面2aと半導体素子3の上面3aとが遮蔽部材7を介して相対的に固定される。遮蔽部材7は導電性ワイヤ6の一部を巻き込み内部に取り込む状態で配置される。導電性ワイヤ6を通過する信号への影響を抑制するため、遮蔽部材7は絶縁体で構成されることが望ましい。
上下方向zにおける遮蔽部材7の厚みは、放射線検出器1に照射される放射線の強度に応じて適宜調整される。照射される放射線を十分に遮蔽できる厚みとなる状態で、遮蔽部材7は半導体素子3の上面3aに盛り付けられる。半導体素子3の上面3aの少なくとも一部を覆う状態で遮蔽部材7は配置されていればよい。望ましくは半導体素子3の上面3aのうち、放射線検出素子2で覆われていない部分の全体を覆う状態で遮蔽部材7を配置する。また遮蔽部材7は、半導体素子3の側面や回路基板4の上面に至る範囲に配置されてもよい。
放射線検出素子2の側面2aと接触する一方で放射線検出素子2の上面とは接触しない状態で遮蔽部材7が配置される。望ましくは少なくとも側面2aと接触する位置では上下方向zにおいて放射線検出素子2の上面よりも、遮蔽部材7は低い位置に配置される。この構成によれば放射線検出素子2に到達すべき放射線が遮蔽部材7により遮蔽される不具合を回避できる。放射線検出素子2の上面の全体を放射線の検出に利用できる。放射線検出素子2を構成する全てのピクセルを放射線の検出に有効利用できる。放射線検出器1は、平面視においてより小さい放射線検出素子2でより広い範囲の放射線を検出することが可能となる。放射線検出器1の小型化を実現するには有利である。
上下方向zにおいて放射線検出素子2の上面よりも低い位置に遮蔽部材7の全体が配置される場合は、放射線検出器1を上下方向zにおいて小型化するには有利である。放射線検出素子2の上面よりも高い位置に遮蔽部材7が配置される場合であっても、側面2aと接触する位置では放射線検出素子2の上面よりも低い位置に遮蔽部材7が配置されることが望ましい。この構成によれば放射線検出器1の製造時に、放射線検出素子2の上面に遮蔽部材7が付着することを簡易かつ確実に防止できる。
図5に例示するように従来の放射線検出器1Xは、放射線検出素子2の周縁部が遮蔽部材7Xで覆われる構成であった。具体的には幅方向xに遮蔽部材7Xと重なる長さdの部分を、放射線検出素子2は放射線の検出に利用できなかった。この放射線検出素子2は放射線の検出に利用できないピクセルが複数あった。そのため従来の放射線検出器1Xは、実際の検出に必要となる大きさよりも大きい放射線検出素子2を備えている必要があった。
図5に例示するように従来は遮蔽部材7Xが放射線検出素子2の一部を上方から覆う状態であった。そのため放射線検出素子2と遮蔽部材7Xとの接触を避けるため、上下方向zに一定の間隔hをあける必要があった。放射線検出器1Xを上下方向zに小さくする薄型化を実現することが困難であった。
これに対して本発明の放射線検出器1は、放射線検出素子2の側面2aに遮蔽部材7が接触する状態である。放射線検出器1の薄型化を実現するには有利である。
放射線検出素子2の側面2aに接触する状態で隙間なく遮蔽部材7を配置できる。遮蔽部材7による遮蔽効果を向上するには有利である。放射線検出素子2の側面2aと遮蔽部材7との間の微細な隙間等から放射線が透過して半導体素子3に到達する不具合を回避しやすくなる。半導体素子3に到達する放射線により、半導体素子3の特性が徐々に変化する不具合を回避できる。半導体素子3の劣化や特性変化を回避できるので、放射線検出器1による検出精度を維持するには有利である。半導体素子3の特性が徐々に変化すると半導体素子3の劣化に気が付かず、誤った放射線画像等を取得し続ける不具合がある。
図6に例示するように従来は放射線検出素子2の周縁部を覆う遮蔽部材7Xの端部が、平面視において傾いて配置される状態(図6左方の遮蔽部材7X参照)や、真っ直ぐに加工されず凹凸を有する状態(図6右方の遮蔽部材7X参照)となっていた。そのため放射線検出素子2のピクセルごとの検出条件が異なることがあった。遮蔽部材7Xと放射線検出素子2との精密な位置合わせや、遮蔽部材7Xの端部を高精度でまっすぐに加工するには、放射線検出器1の製造コストが大幅に増加する不具合があった。図6では説明のため遮蔽部材7Xに覆われている放射線検出素子2等の一部を破線で示している。
本発明の放射線検出器1は、放射線検出素子2の全てのピクセルにおいて遮蔽部材7の影響を受けずに放射線を検出できる。放射線検出器1の製造コストを大幅に抑制しつつ、放射線の検出精度を向上するには有利である。
図7に例示するように遮蔽部材7は、例えば熱可塑性エラストマーに無機物を分散させてフィルム状に成形したフィルム状部材で構成されてもよい。フィルムを構成する樹脂材料に放射線を遮蔽する粒子を分散させてフィルム状部材を構成してもよい。フィルム状の遮蔽部材7は、幅方向xにおいて一端が放射線検出素子2の側面2aと接触して、他端が半導体素子3の上面3aと接触する状態で配置される(図7左方の遮蔽部材7参照)。その後、加熱されることで遮蔽部材7は変形して側面2aおよび上面3aに密着する状態となる(図7右方の遮蔽部材7参照)。放射線検出素子2および半導体素子3に対して遮蔽部材7は隙間なく配置される。放射線が半導体素子3に到達することを抑制するには有利である。
またフィルム状の遮蔽部材7により、放射線検出素子2を半導体素子3に固定できる。半導体素子3に放射線検出素子2を強固に固定するには有利である。
図7に例示するように放射線検出素子2の下面と半導体素子3の上面との隙間に接着剤を配置する構成としてもよい。放射線検出素子2と半導体素子3とをさらに強固に固定するには有利である。その際、放射線検出素子2と半導体素子3との隙間に気泡など接着剤以外の物質が混入しないように注意して製造する必要がある。
一方で図2に例示する実施形態のように放射線検出素子2と半導体素子3との隙間に接着剤を配置しない構成としてもよい。放射線検出素子2と半導体素子3との間は均質な空気の層が形成されることになる。放射線検出素子2から半導体素子3に伝達される電気的または光学的な信号に悪影響が発生する不具合を回避できる。隙間に接着剤を配置する際に気泡等の異物が混入すると、放射線検出素子2から半導体素子3に伝達される電気的または光学的な信号に悪影響が発生する。この影響は放射線検出器1の検出結果に影響がでるので望ましくない。
隙間に接着剤を配置しない構成とすることで、放射線検出器1の製造工程が簡易になり且つ検出精度への影響を排除できる。図2に例示する実施形態のように遮蔽部材7が接着剤と放射線を遮蔽する粒子との混合物で構成される場合も、隙間に遮蔽部材7が流れ込まない構成とすることが望ましい。遮蔽部材7が接着剤等で構成される場合は、その粘度を調整することで、隙間への遮蔽部材7の流れ込みを抑制できる。
例えば遮蔽部材7をエポキシ系樹脂接着剤と粉末状の酸化ビスマスの混合物で構成する場合、エポキシ系樹脂接着剤に対して体積比で二倍となる量の酸化ビスマスを混合することができる。この構成により塗布する際に放射線検出素子2と半導体素子3との隙間に遮蔽部材7が流れ込むことを防止できる。図3に例示するように平面視において放射線検出素子2の側面2aより内側に遮蔽部材7が配置されない状態となる。つまり半導体素子3の処理領域3bの上面に遮蔽部材7が接触しない。放射線検出素子2から半導体素子3に伝達される電気的または光学的な信号への影響を抑制するには有利である。
図8に例示するように放射線検出器1が、放射線検出素子2の上方に配置されるカバー8を備える構成にしてもよい。このカバー8は放射線を遮蔽する部材で構成されている。放射線検出素子2の近傍には側面2aに接触する状態で遮蔽部材7が配置されている。そのためカバー8は放射線検出素子2の周縁部の上面を覆う位置に配置する必要がない。例えば幅方向xにおいて、放射線検出素子2の側面2aの近傍となる領域は遮蔽部材7により放射線が遮蔽されて、側面2aから離れている領域はカバー8により放射線が遮蔽される。カバー8の設置により放射線の遮蔽効果を向上することができる。
放射線検出素子2の周縁部はカバー8で覆われないため、放射線検出素子2は上面の全域で効率よく放射線を検出できる。放射線検出器1の平面視における大きさを小型化するには有利である。放射線検出器1の上下方向zにおける大きさに対する制限が比較的緩く一方で遮蔽効果の向上が望まれる場合は、カバー8を設置する構成を採用することが望ましい。遮蔽部材7と接触する高さまでカバー8を下げて配置する構成としてもよい。例えば放射線検出素子2の上面とカバー8の上面の高さが同一となる状態で放射線検出器1が構成されてもよい。
導電性ワイヤ6と半導体素子3との接続部分に樹脂モールド9を配置する構成にしてもよい。複数配置されている導電性ワイヤ6どうしの絶縁性の向上および低容量性の確保に有利である。導電性ワイヤ6の間での信号干渉を抑制するには有利である。また半導体素子3に対する導電性ワイヤ6の固定を強固にするには有利である。
図8に例示する実施形態では樹脂モールド9の上方にカバー8が配置される構成となっている。樹脂モールド9を通過して半導体素子3に到達する放射線は、カバー8により遮蔽される。他方で樹脂モールド9を巻き込む状態で遮蔽部材7が配置される構成としてもよい。この場合は樹脂モールド9の上方に遮蔽部材7が配置される構成となる。
1 放射線検出器
2 放射線検出素子
2a 側面
3 半導体素子
3a 上面
3b 処理領域
3c 補助領域
4 回路基板
5 バンプ
6 導電性ワイヤ
7 遮蔽部材
8 カバー
9 樹脂モールド
x 幅方向
y 縦方向
z 上下方向
d (重なる)長さ
h (上下方向zの)間隔
上記の目的を達成するための放射線検出器は、上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器において、放射線を遮蔽する遮蔽部材を備えていて、前記遮蔽部材が前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態であり且つ前記遮蔽部材の上面が他の部材と接触しない状態で配置される構成を有するとともに、前記遮蔽部材が接着剤と放射線を遮蔽する粒子との混合物で構成されていて硬化することで前記半導体素子に前記放射線検出素子を固定する構成を有することを特徴とする。
上記の目的を達成するための放射線検出器の製造方法は、上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器の製造方法において、前記半導体素子の上面に前記放射線検出素子が配置された後に、接着剤と放射線を遮蔽する粒子との混合物で構成されていて放射線を遮蔽する遮蔽部材が前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態であり且つ前記遮蔽部材の上面が他の部材と接触しない状態で配置された後に、前記遮蔽部材が硬化して前記半導体素子に前記放射線検出素子を固定することを特徴とする。

Claims (9)

  1. 上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器において、
    放射線を遮蔽する遮蔽部材を備えていて、前記遮蔽部材が前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態で配置される構成を有することを特徴とする放射線検出器。
  2. 平面視で前記半導体素子の周縁部であり且つ前記放射線検出素子の側面よりも外側となる領域であり、上下方向において前記放射線検出素子の上面よりも低い領域に配置される構成を、前記遮蔽部材が有する請求項1に記載の放射線検出器。
  3. 前記半導体素子が、前記放射線検出素子から得られる信号の処理を行なう処理領域と、この処理領域以外の部分からなる補助領域とを有していて、
    前記遮蔽部材が前記補助領域の上面に接触する状態で配置される構成を有する請求項1または2に記載の放射線検出器。
  4. 前記遮蔽部材が前記補助領域の上面に接触して、前記処理領域の上面に接触しない構成を有する請求項3に記載の放射線検出器。
  5. 前記遮蔽部材が、接着剤と放射線を遮蔽する粒子との混合物で構成されている請求項1〜4のいずれかに記載の放射線検出器。
  6. 前記遮蔽部材が、エポキシ系樹脂接着剤と粉末状の酸化ビスマスとの混合物で構成されている請求項1〜5のいずれかに記載の放射線検出器。
  7. 上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器の製造方法において、
    前記半導体素子の上面に前記放射線検出素子が配置された後に、前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態で放射線を遮蔽する遮蔽部材が配置されることを特徴とする放射線検出器の製造方法。
  8. 平面視で前記半導体素子の周縁部であり且つ前記放射線検出素子の側面よりも外側となる領域であり、上下方向において前記放射線検出素子の上面よりも低い領域に、前記遮蔽部材が配置される請求項7に記載の放射線検出器の製造方法。
  9. 接着剤と放射線を遮蔽する粒子との混合物で前記遮蔽部材を構成して、前記遮蔽部材を前記放射線検出素子の側面と前記半導体素子の上面との間に配置した後に硬化させる請求項7または8に記載の放射線検出器の製造方法。
JP2020155406A 2020-09-16 2020-09-16 放射線検出器およびその製造方法 Pending JP2021107805A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020155406A JP2021107805A (ja) 2020-09-16 2020-09-16 放射線検出器およびその製造方法
US18/026,412 US20230384468A1 (en) 2020-09-16 2021-03-18 Radiation detector and method for producing same
JP2022550336A JP7394496B2 (ja) 2020-09-16 2021-03-18 放射線検出器およびその製造方法
PCT/JP2021/011171 WO2022059234A1 (ja) 2020-09-16 2021-03-18 放射線検出器およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020155406A JP2021107805A (ja) 2020-09-16 2020-09-16 放射線検出器およびその製造方法

Publications (1)

Publication Number Publication Date
JP2021107805A true JP2021107805A (ja) 2021-07-29

Family

ID=76967862

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020155406A Pending JP2021107805A (ja) 2020-09-16 2020-09-16 放射線検出器およびその製造方法
JP2022550336A Active JP7394496B2 (ja) 2020-09-16 2021-03-18 放射線検出器およびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022550336A Active JP7394496B2 (ja) 2020-09-16 2021-03-18 放射線検出器およびその製造方法

Country Status (3)

Country Link
US (1) US20230384468A1 (ja)
JP (2) JP2021107805A (ja)
WO (1) WO2022059234A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330678A (ja) * 2000-05-19 2001-11-30 Hamamatsu Photonics Kk 放射線検出器
JP2007514158A (ja) * 2003-12-09 2007-05-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線検出器のシールド
JP2011191290A (ja) * 2010-02-18 2011-09-29 Canon Inc 放射線検出装置及び放射線検出システム
JP2012159340A (ja) * 2011-01-31 2012-08-23 Sony Corp 放射線撮像装置および放射線撮像表示システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340537B2 (ja) 2001-11-20 2009-10-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 処理回路の為の放射シールドを有するct検出器モジュール
JP4414646B2 (ja) * 2002-11-18 2010-02-10 浜松ホトニクス株式会社 光検出装置
WO2007105288A1 (ja) 2006-03-13 2007-09-20 Hitachi Metals, Ltd. 放射線検出装置とその製造方法
JP6075028B2 (ja) 2012-11-26 2017-02-08 東レ株式会社 シンチレータパネル
US10254421B2 (en) 2015-04-14 2019-04-09 Analogic Corporation Detector array for radiation system
JP7132946B2 (ja) 2017-12-15 2022-09-07 株式会社堀場製作所 放射線検出器及び放射線検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330678A (ja) * 2000-05-19 2001-11-30 Hamamatsu Photonics Kk 放射線検出器
JP2007514158A (ja) * 2003-12-09 2007-05-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線検出器のシールド
JP2011191290A (ja) * 2010-02-18 2011-09-29 Canon Inc 放射線検出装置及び放射線検出システム
JP2012159340A (ja) * 2011-01-31 2012-08-23 Sony Corp 放射線撮像装置および放射線撮像表示システム

Also Published As

Publication number Publication date
US20230384468A1 (en) 2023-11-30
JPWO2022059234A1 (ja) 2022-03-24
WO2022059234A1 (ja) 2022-03-24
JP7394496B2 (ja) 2023-12-08

Similar Documents

Publication Publication Date Title
US7651877B2 (en) Two-dimensional image detecting apparatus and method for manufacturing the same
US20110180714A1 (en) Radiation detector
CN109659300B (zh) 光检测装置
US9268032B2 (en) Electrical radiography imaging system and method thereof
JP2015133408A (ja) 放射線検出器
JP2009087960A (ja) センサパネル及び画像検出装置
KR20240013838A (ko) 엑스레이검출장치
JP2007155564A (ja) 放射線検出器および放射線画像検出装置
WO2014030551A1 (ja) 電流/電圧変換回路及び撮像装置
CN109216391B (zh) 一种探测面板、其制作方法及检测装置
WO2022059234A1 (ja) 放射線検出器およびその製造方法
KR20160032190A (ko) 어레이 기판, 방사선 검출기, 및 배선기판
US9111826B2 (en) Image pickup device, image pickup module, and camera
JP5456211B2 (ja) 放射線検出素子、放射線画像検出パネル、及び放射線画像検出装置
US7138637B2 (en) X-ray imager
JPH08187239A (ja) X線ct装置
US20160315108A1 (en) Radiation image sensor
JP6373624B2 (ja) アレイ基板、放射線検出器、および放射線検出器の製造方法
JP2013076577A (ja) X線検出パネル
CN112137640A (zh) 放射线摄像装置
US20230378229A1 (en) Radiographic device
JP7214870B2 (ja) 撮像素子ユニット及び撮像装置
US20230080398A1 (en) Sensing apparatus
US20210028211A1 (en) Linear image sensor and method for manufacturing same
CN112640110B (zh) 摄像单元及摄像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200916

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119