WO2022059234A1 - 放射線検出器およびその製造方法 - Google Patents

放射線検出器およびその製造方法 Download PDF

Info

Publication number
WO2022059234A1
WO2022059234A1 PCT/JP2021/011171 JP2021011171W WO2022059234A1 WO 2022059234 A1 WO2022059234 A1 WO 2022059234A1 JP 2021011171 W JP2021011171 W JP 2021011171W WO 2022059234 A1 WO2022059234 A1 WO 2022059234A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
detection element
radiation detection
shielding member
semiconductor element
Prior art date
Application number
PCT/JP2021/011171
Other languages
English (en)
French (fr)
Inventor
修一郎 山本
雅志 山▲さき▼
Original Assignee
株式会社ジョブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジョブ filed Critical 株式会社ジョブ
Priority to US18/026,412 priority Critical patent/US20230384468A1/en
Priority to JP2022550336A priority patent/JP7394496B2/ja
Publication of WO2022059234A1 publication Critical patent/WO2022059234A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like

Definitions

  • the present invention relates to a radiation detector that detects radiation and a method for manufacturing the same, and more particularly to a radiation detector that enables miniaturization and a method for manufacturing the same.
  • Patent Document 1 discloses a configuration of a radiation detector in which a shielding member having an opening is arranged above a radiation detection element.
  • the radiation detection element Since a part of the radiation detection element is covered with a shielding member, it is difficult for radiation to reach the peripheral portion of the radiation detection element in a plan view. The peripheral edge of the radiation detection element could not be effectively used for radiation detection.
  • the size of the radiation detection element was determined in anticipation of a range that could not be effectively used. Therefore, it was difficult to miniaturize the radiation detector in plan view.
  • the shielding member was arranged at a predetermined distance from the radiation detection element in the vertical direction. Therefore, it was difficult to miniaturize the radiation detector in the vertical direction.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a radiation detector capable of realizing miniaturization and a method for manufacturing the same.
  • the radiation detector for achieving the above object is formed by a radiation detection element that detects radiation incident from the upper surface, and is formed larger than the radiation detection element in a plan view and is connected to the lower surface of the radiation detection element.
  • a radiation detector including a semiconductor element that processes a signal obtained from the radiation detection element and outputs an electric signal to the outside includes a shielding member that shields radiation, and the shielding member is a side surface of the radiation detection element. It is characterized by having a configuration in which the upper surface of the shielding member is arranged so as to be in contact with the upper surface of the semiconductor element and not in contact with other members.
  • a method for manufacturing a radiation detector for achieving the above object is a method of manufacturing a radiation detector, which is formed to be larger than the radiation detection element in a plan view and connected to a radiation detection element that detects radiation incident from the upper surface and is connected to the lower surface of the radiation detection element.
  • a method for manufacturing a radiation detector including a semiconductor element that processes a signal obtained from the radiation detection element and outputs an electric signal to the outside, after the radiation detection element is arranged on the upper surface of the semiconductor element.
  • the shielding member for shielding radiation is arranged in a state of being in contact with the side surface of the radiation detecting element and the upper surface of the semiconductor element, and the upper surface of the shielding member is arranged in a state of not in contact with other members. ..
  • the shielding member is arranged in contact with the side surface of the radiation detection element, the entire upper surface of the radiation detection element can be effectively used as the detection region. Since the detection range of the radiation detection element can be increased, it is advantageous to realize the miniaturization of the radiation detector.
  • FIG. 1 is an explanatory diagram illustrating a radiation detector in a perspective view.
  • FIG. 2 is an explanatory diagram illustrating the radiation detector of FIG. 1 with an arrow of arrow AA.
  • FIG. 3 is an explanatory diagram illustrating the radiation detector of FIG. 1 in a plan view.
  • FIG. 4 is an explanatory diagram illustrating the semiconductor element of FIG. 1 in a plan view.
  • FIG. 5 is an explanatory diagram illustrating a reference example of the radiation detector.
  • FIG. 6 is an explanatory diagram illustrating the radiation detector of FIG. 5 in a plan view.
  • FIG. 7 is an explanatory diagram illustrating a modified example of the radiation detector of FIG.
  • FIG. 8 is an explanatory diagram illustrating a modified example of the radiation detector of FIG.
  • the radiation detector and its manufacturing method will be described based on the embodiment shown in the figure.
  • the width direction of the radiation detector is indicated by an arrow x
  • the vertical direction crossing the width direction x at a right angle is indicated by an arrow y
  • the vertical direction is indicated by an arrow z.
  • the radiation detector 1 is obtained from a radiation detection element 2 that detects radiation incident from the upper surface and a radiation detection element 2 that is connected to the lower surface of the radiation detection element 2. It is provided with a semiconductor element 3 that processes a signal to be generated and outputs an electric signal to an external mechanism.
  • the external mechanism from which the semiconductor element 3 outputs an electric signal is composed of, for example, a circuit board 4 arranged below the semiconductor element 3.
  • the radiation detection element 2 has a function of converting radiation into an electric signal when radiation is incident from the upper surface, and is composed of a direct conversion type semiconductor such as a CdTe (cadmium telluride) semiconductor.
  • This direct conversion type semiconductor has a configuration in which incident radiation is regarded as a photon and an electric signal proportional to the energy of the photon is output.
  • the radiation detection element 2 may have a configuration for converting radiation into an electric signal.
  • the radiation detection element 2 is formed in a rectangular parallelepiped shape.
  • the radiation detection element 2 is formed in a flat plate shape in which the lengths in the width direction x and the lengths in the vertical direction y are longer than the length in the vertical direction z.
  • the radiation detection element 2 has a plurality of pixels arranged side by side in the width direction x and the vertical direction y, and can detect radiation for each pixel.
  • the radiation detection element 2 is configured to have a size of, for example, 50 mm in the width direction x, 50 mm in the vertical direction y, and 5 mm in the vertical direction z.
  • the size of the radiation detection element 2 is not limited to the above, and for example, the size of the radiation detector 1 is 4.0 mm in the width direction x, 16.0 mm in the vertical direction y, and 1.5 mm in the vertical direction z. It can be changed as appropriate according to.
  • the semiconductor element 3 is electrically connected to the radiation detection element 2 via a plurality of bumps 5.
  • the lower surface of the radiation detection element 2 and the upper surface 3a of the semiconductor element 3 are arranged so as to face each other.
  • the semiconductor element 3 is composed of a photon counting type ASIC (application specific integrated circuit).
  • This photon counting type ASIC has a configuration in which an electric signal obtained from the radiation detection element 2 is amplified and digitized.
  • the radiation detection element 2 may be configured by a scintillator that emits light when radiation is incident.
  • the radiation detection element 2 has a configuration for converting radiation into an optical signal.
  • the semiconductor element 3 is composed of, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor and a photodiode.
  • CMOS image sensor or the like has a configuration in which an optical signal obtained from the radiation detection element 2 is converted into an electric signal.
  • the lower surface of the radiation detection element 2 and the upper surface 3a of the semiconductor element 3 are optically connected.
  • the semiconductor element 3 may be configured by, for example, an integral type ASIC equipped with an integral type processing circuit. Either a scintillator or a direct conversion type semiconductor may be selected as the radiation detection element 2, and either an integral type ASIC or a photon counting type ASIC may be selected as the semiconductor element 3 in combination with the scintillator.
  • the semiconductor element 3 has a processing region 3b for processing a signal obtained from the radiation detection element 2 and an auxiliary region 3c composed of a portion other than the processing region 3b.
  • the processing region 3b is composed of a circuit for outputting a signal received from each pixel of the radiation detection element 2 as an electric signal.
  • the auxiliary region 3c is composed of a data transfer circuit for transferring a signal received from the processing region 3b to the outside, an I / O driver, a constant voltage generation circuit for an internal circuit, and the like.
  • the auxiliary region 3c is composed of, for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) or the like.
  • the semiconductor element 3 has a processing region 3b having the same size as the radiation detection element 2 in a plan view.
  • a circuit corresponding to each pixel of the radiation detection element 2 is formed in the processing region 3b.
  • the auxiliary region 3c is formed in a region that is a peripheral portion of the semiconductor element 3 and is outside the side surface 2a of the radiation detection element 2. In this embodiment, the auxiliary region 3c is not covered by the radiation detection element 2. Therefore, as illustrated in FIGS. 2 and 3, the semiconductor element 3 is formed larger than the radiation detection element 2 in a plan view.
  • the auxiliary region 3c has a data transfer circuit that transfers a signal received from the processing region 3b to the external circuit board 4 via the conductive wire 6.
  • the size of the processing region 3b and the radiation detection element 2 in plan view is not limited to the same.
  • the radiation detection element 2 may be formed larger.
  • the radiation detection element 2 may have a size that covers a part of the auxiliary region 3c. In this case, the portion covering the auxiliary region 3c does not function as the radiation detection element 2.
  • the processing region 3b may be formed larger.
  • the processing region 3b may have a size that partially protrudes from the radiation detection element 2. In this case, the portion not covered by the radiation detection element 2 does not function as the processing region 3b.
  • the upper surface of the circuit board 4 is arranged so as to face the lower surface of the semiconductor element 3.
  • the semiconductor element 3 and the circuit board 4 are electrically connected by a conductive wire 6.
  • the conductive wire 6 is arranged in a state of connecting, for example, the upper surface of the semiconductor element 3 and the upper surface of the circuit board 4.
  • the circuit board 4 is not limited to the configuration arranged below the semiconductor element 3.
  • the circuit board 4 may be arranged on the side of the semiconductor element 3.
  • the arrangement state of the conductive wire 6 is not limited to the above.
  • the conductive wire 6 may have a configuration for connecting the lower surface of the semiconductor element 3 and the circuit board 4.
  • a configuration in which the conductive wire 6 is connected to the upper surface of the semiconductor element 3 is advantageous for reducing the thickness of the radiation detector 1 in the vertical direction z. This configuration is advantageous for reducing the thickness of the radiation detector 1.
  • the shielding member 7 is arranged in contact with the side surface 2a of the radiation detection element 2 and the upper surface 3a of the semiconductor element 3.
  • the shielding member 7 is arranged so that the upper surface of the shielding member 7 does not come into contact with other members.
  • the shielding member 7 is arranged in a region which is a peripheral portion of the semiconductor element 3 and is outside the side surface 2a of the radiation detection element 2. It can be said that the shielding member 7 is arranged so as to cover the auxiliary region 3c of the semiconductor element 3. It is desirable that the shielding member 7 is arranged in a region lower than the upper surface of the radiation detection element 2 in the vertical direction z.
  • the shielding member 7 is shaded for explanation.
  • the shielding member 7 is composed of a substance that shields radiation.
  • a part of the conductive wire 6 which is buried in the shielding member 7 is shown by a broken line for explanation.
  • the shielding member 7 is composed of, for example, a mixture of an adhesive and particles that shield radiation.
  • the mixture of the adhesive and the particles has fluidity and relatively high viscosity when applied, and has a configuration in which the radiation detection element 2 is fixed to the semiconductor element 3 by curing thereafter.
  • the adhesive for example, an epoxy-based resin adhesive, an acrylic-based adhesive, or a urethane-based adhesive can be used.
  • the adhesive may be composed of a photocurable adhesive that is cured by being irradiated with ultraviolet rays.
  • the particles that shield radiation are composed of heavy metal particles such as barium, tantalum, lead, tungsten, and bismuth. Further, the particles may be composed of sulfides and oxides of heavy metals such as barium sulfate, tantalum pentoxide, lead monoxide, and bismuth trioxide.
  • particles that shield the radiation may be formed of an oxide of a light metal such as glass containing silicon dioxide as a main component or aluminum oxide. Further, a mixture of a plurality of types of particles may be used to form particles that shield radiation.
  • the semiconductor element 3 is arranged and fixed on the upper surface of the circuit board 4. After that, the semiconductor element 3 and the circuit board 4 are connected by the conductive wire 6.
  • the radiation detection element 2 is arranged on the upper surface 3a of the semiconductor element 3. At that time, the upper surface 3a of the semiconductor element 3 and the lower surface of the radiation detection element 2 are electrically connected by bumps 5 and the like.
  • the radiation detection element 2 is composed of a scintillator, the upper surface 3a of the semiconductor element 3 and the lower surface of the radiation detection element 2 are optically connected.
  • a paste-like shielding member 7 having fluidity is arranged between the side surface 2a of the radiation detection element 2 and the upper surface 3a of the semiconductor element 3.
  • a paste-like mass of the shielding member 7 is arranged in a state where the side surface 2a and the upper surface 3a are in contact with each other at the same time. After that, the shielding member 7 is cured, so that the side surface 2a of the radiation detection element 2 and the upper surface 3a of the semiconductor element 3 are relatively fixed via the shielding member 7.
  • the shielding member 7 is arranged in a state where a part of the conductive wire 6 is caught and taken into the inside. In order to suppress the influence on the signal passing through the conductive wire 6, it is desirable that the shielding member 7 is made of an insulator.
  • the thickness of the shielding member 7 in the vertical direction z is appropriately adjusted according to the intensity of the radiation applied to the radiation detector 1.
  • the shielding member 7 is placed on the upper surface 3a of the semiconductor element 3 in a state where the radiation to be irradiated is sufficiently shielded.
  • the shielding member 7 may be arranged so as to cover at least a part of the upper surface 3a of the semiconductor element 3.
  • the shielding member 7 is arranged so as to cover the entire portion of the upper surface 3a of the semiconductor element 3 that is not covered by the radiation detection element 2.
  • the shielding member 7 may be arranged in a range extending to the side surface of the semiconductor element 3 or the upper surface of the circuit board 4.
  • the shielding member 7 is arranged so as to be in contact with the side surface 2a of the radiation detection element 2 but not with the upper surface of the radiation detection element 2. Desirably, the shielding member 7 is arranged at a position lower than the upper surface of the radiation detection element 2 in the vertical direction z at least at a position where it contacts the side surface 2a. According to this configuration, it is possible to avoid a problem that the radiation that should reach the radiation detection element 2 is shielded by the shielding member 7.
  • the entire upper surface of the radiation detection element 2 can be used for radiation detection. All the pixels constituting the radiation detection element 2 can be effectively used for radiation detection.
  • the radiation detector 1 can detect a wider range of radiation with a smaller radiation detection element 2 in plan view. It is advantageous to realize the miniaturization of the radiation detector 1.
  • the entire shielding member 7 is arranged at a position lower than the upper surface of the radiation detection element 2 in the vertical direction z, it is advantageous to reduce the size of the radiation detector 1 in the vertical direction z. Even if the shielding member 7 is arranged at a position higher than the upper surface of the radiation detection element 2, the shielding member 7 is arranged at a position lower than the upper surface of the radiation detecting element 2 at a position in contact with the side surface 2a. Is desirable. According to this configuration, it is possible to easily and surely prevent the shielding member 7 from adhering to the upper surface of the radiation detection element 2 at the time of manufacturing the radiation detector 1.
  • the conventional radiation detector 1X has a configuration in which the peripheral portion of the radiation detection element 2 is covered with the shielding member 7X. Specifically, the radiation detection element 2 could not use the portion having a length d that overlaps with the shielding member 7X in the width direction x for detecting radiation. The radiation detection element 2 had a plurality of pixels that could not be used for detecting radiation. Therefore, the conventional radiation detector 1X needs to be provided with a radiation detection element 2 having a size larger than the size required for actual detection.
  • the shielding member 7X was in a state of covering a part of the radiation detection element 2 from above. Therefore, in order to avoid contact between the radiation detection element 2 and the shielding member 7X, it is necessary to leave a certain interval h in the vertical direction z. It has been difficult to reduce the thickness of the radiation detector 1X in the vertical direction z.
  • the shielding member 7 is in contact with the side surface 2a of the radiation detection element 2. It is advantageous to realize the thinning of the radiation detector 1.
  • the shielding member 7 can be arranged without a gap in a state of being in contact with the side surface 2a of the radiation detection element 2. It is advantageous to improve the shielding effect of the shielding member 7. It becomes easy to avoid a problem that radiation permeates through a minute gap or the like between the side surface 2a of the radiation detection element 2 and the shielding member 7 and reaches the semiconductor element 3. It is possible to avoid a problem that the characteristics of the semiconductor element 3 gradually change due to the radiation reaching the semiconductor element 3. Since deterioration and characteristic changes of the semiconductor element 3 can be avoided, it is advantageous to maintain the detection accuracy by the radiation detector 1. When the characteristics of the semiconductor element 3 gradually change, the deterioration of the semiconductor element 3 is not noticed, and there is a problem that an erroneous radiographic image or the like is continuously acquired.
  • the end portion of the shielding member 7X covering the peripheral edge portion of the radiation detection element 2 is arranged at an angle in a plan view (see the shielding member 7X on the left side of FIG. 6) or straight. It was not processed and had irregularities (see the shielding member 7X on the right side of FIG. 6). Therefore, the detection conditions for each pixel of the radiation detection element 2 may differ. There is a problem that the manufacturing cost of the radiation detector 1 is significantly increased in order to precisely align the shielding member 7X and the radiation detection element 2 and to process the end portion of the shielding member 7X straight with high accuracy.
  • FIG. 6 for the sake of explanation, a part of the radiation detection element 2 and the like covered with the shielding member 7X is shown by a broken line.
  • the radiation detector 1 of the present invention can detect radiation in all pixels of the radiation detection element 2 without being affected by the shielding member 7. It is advantageous to improve the radiation detection accuracy while significantly suppressing the manufacturing cost of the radiation detector 1.
  • the upper surface of the shielding member 7 is not covered with other members, it is advantageous for visually confirming the state of the shielding member 7.
  • the shielding member 7 is not attached to the upper surface of the radiation detection element 2 and that the shielding member 7 is in close contact with the side surface 2a of the radiation detection element 2 without any gap. .. Further, the state of the shielding member 7 can be confirmed not only at the time of assembling the radiation detector 1 but also at the time of maintenance after the lapse of a predetermined period.
  • the radiation detector 1 can be repaired by filling the portion where the peeling has occurred with the shielding member 7 before curing. It is advantageous to avoid deterioration and characteristic change of the semiconductor element 3.
  • the thickness of the shielding member 7 can be appropriately changed, and the shielding member 7 can be arranged to an appropriate thickness. It is possible to avoid a problem that the thickness of the shielding member 7 is insufficient.
  • the shielding member 7 can be additionally arranged to change the thickness even after the shielding member 7 is arranged and cured. For example, when the output of the radiation radiated to the radiation detector 1 is changed in the direction of increasing, the shielding member 7 can be additionally arranged to increase the thickness. It is advantageous to avoid deterioration and characteristic changes of the semiconductor element 3 over a long period of time.
  • the shielding member 7 may be composed of, for example, a film-shaped member formed into a film by dispersing an inorganic substance in a thermoplastic elastomer. Particles that shield radiation may be dispersed in a resin material constituting the film to form a film-like member.
  • the film-shaped shielding member 7 is arranged in a state where one end is in contact with the side surface 2a of the radiation detection element 2 and the other end is in contact with the upper surface 3a of the semiconductor element 3 in the width direction x (shielding on the left side of FIG. 7). See member 7).
  • the shielding member 7 After that, by being heated, the shielding member 7 is deformed into a state of being in close contact with the side surface 2a and the upper surface 3a (see the shielding member 7 on the right side of FIG. 7).
  • the shielding member 7 is arranged without a gap with respect to the radiation detection element 2 and the semiconductor element 3. It is advantageous for suppressing the radiation from reaching the semiconductor element 3.
  • the radiation detection element 2 can be fixed to the semiconductor element 3 by the film-shaped shielding member 7. It is advantageous to firmly fix the radiation detection element 2 to the semiconductor element 3.
  • the adhesive may be arranged in the gap between the lower surface of the radiation detection element 2 and the upper surface of the semiconductor element 3. It is advantageous to fix the radiation detection element 2 and the semiconductor element 3 more firmly. At that time, it is necessary to be careful not to allow substances other than the adhesive such as air bubbles to enter the gap between the radiation detection element 2 and the semiconductor element 3.
  • the adhesive may not be placed in the gap between the radiation detection element 2 and the semiconductor element 3.
  • a homogeneous air layer is formed between the radiation detection element 2 and the semiconductor element 3. It is possible to avoid a problem that an adverse effect is generated on the electric or optical signal transmitted from the radiation detection element 2 to the semiconductor element 3. If foreign matter such as air bubbles is mixed in when the adhesive is placed in the gap, the electrical or optical signal transmitted from the radiation detection element 2 to the semiconductor element 3 is adversely affected. This effect is not desirable because it affects the detection result of the radiation detector 1.
  • the manufacturing process of the radiation detector 1 can be simplified and the influence on the detection accuracy can be eliminated. Even when the shielding member 7 is composed of a mixture of an adhesive and particles that shield radiation as in the embodiment illustrated in FIG. 2, it is desirable that the shielding member 7 does not flow into the gap. When the shielding member 7 is made of an adhesive or the like, the inflow of the shielding member 7 into the gap can be suppressed by adjusting the viscosity thereof.
  • the shielding member 7 when the shielding member 7 is composed of a mixture of an epoxy-based resin adhesive and powdered bismuth oxide, it is possible to mix an amount of bismuth oxide that is twice the volume ratio with the epoxy-based resin adhesive. With this configuration, it is possible to prevent the shielding member 7 from flowing into the gap between the radiation detection element 2 and the semiconductor element 3 during coating. As illustrated in FIG. 3, the shielding member 7 is not arranged inside the side surface 2a of the radiation detection element 2 in a plan view. That is, the shielding member 7 does not come into contact with the upper surface of the processing region 3b of the semiconductor element 3. It is advantageous for suppressing the influence on the electric or optical signal transmitted from the radiation detection element 2 to the semiconductor element 3.
  • the radiation detector 1 may be configured to include a cover 8 arranged above the radiation detection element 2.
  • the cover 8 is made of a member that shields radiation.
  • a shielding member 7 is arranged in the vicinity of the radiation detection element 2 in a state of being in contact with the side surface 2a. Therefore, the cover 8 does not need to be arranged at a position that covers the upper surface of the peripheral edge portion of the radiation detection element 2.
  • the cover 8 is arranged at a position away from the side surface 2a of the radiation detection element 2 in a plan view. For example, in the width direction x, the region near the side surface 2a of the radiation detection element 2 is shielded by the shielding member 7, and the region away from the side surface 2a is shielded by the cover 8.
  • the radiation shielding effect can be improved by installing the cover 8.
  • the radiation detection element 2 can efficiently detect radiation over the entire upper surface. It is advantageous to reduce the size of the radiation detector 1 in a plan view.
  • the cover 8 may be lowered to a height at which it comes into contact with the shielding member 7.
  • the radiation detector 1 may be configured with the heights of the upper surface of the radiation detection element 2 and the upper surface of the cover 8 being the same.
  • the shielding member 7 is arranged in a portion that becomes a gap between the radiation detection element 2 and the cover 8 in a plan view, and the upper surface of the shielding member 7 in this portion is another member. It will be exposed without contacting with. Even when the cover 8 is arranged in contact with the shielding member 7, the shielding member 7 at the portion where the radiation detection element 2 and the cover 8 are in contact with each other in a plan view has another member in contact with the upper surface thereof. It will be in a state where it does not. It is possible to visually confirm the contact state between the side surface 2a of the radiation detection element 2 and the shielding member 7.
  • the thickness of the shielding member 7 can be changed in the portion where the radiation detection element 2 and the cover 8 are in a gap. Since the radiation is shielded by the cover 8 in the portion of the shielding member 7 whose upper surface is covered with the cover 8, there is no problem even if the state of the shielding member 7 cannot be confirmed. It suffices if the state of the shielding member 7 can be confirmed at least in the portion where the upper surface is not covered by the cover 8.
  • the resin mold 9 may be arranged at the connection portion between the conductive wire 6 and the semiconductor element 3. It is advantageous for improving the insulation between the plurality of conductive wires 6 arranged and ensuring low capacitance. It is advantageous for suppressing signal interference between the conductive wires 6. Further, it is advantageous to firmly fix the conductive wire 6 to the semiconductor element 3.
  • the cover 8 is arranged above the resin mold 9. Radiation that passes through the resin mold 9 and reaches the semiconductor element 3 is shielded by the cover 8.
  • the shielding member 7 may be arranged in a state where the resin mold 9 is involved. In this case, the shielding member 7 is arranged above the resin mold 9.
  • Radiation detector Radiation detection element 2a Side surface 3 Semiconductor element 3a Top surface 3b Processing area 3c Auxiliary area 4 Circuit board 5 Bump 6 Conductive wire 7 Shielding member 8 Cover 9 Resin mold x Width direction y Vertical direction z Vertical direction d (Overlapping) ) Length h (vertical direction z) spacing

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

小型化を実現可能とする放射線検出器およびその製造方法を提供する。上面から入射する放射線を検出する放射線検出素子(2)と、平面視で放射線検出素子(2)よりも大きく形成され且つ放射線検出素子(2)の下面に接続されていて放射線検出素子(2)から得られる信号を処理して外部に電気信号を出力する半導体素子(3)とを備える放射線検出器(1)の製造方法において、半導体素子(3)の上面に放射線検出素子(2)が配置された後に、放射線を遮蔽する遮蔽部材(7)が放射線検出素子(2)の側面(2a)と半導体素子(3)の上面(3a)とに接触する状態であり且つ遮蔽部材(7)の上面が他の部材と接触しない状態で配置される。

Description

放射線検出器およびその製造方法
 本発明は、放射線を検出する放射線検出器およびその製造方法に関するものであり、詳しくは小型化を実現可能とする放射線検出器およびその製造方法に関するものである。
 放射線検出器が種々提案されている(例えば特許文献1参照)。特許文献1には、開口部を有する遮蔽部材が放射線検出素子の上方に配置された放射線検出器の構成が開示されている。
 放射線検出素子の一部が遮蔽部材で覆われるため、平面視において放射線検出素子の周縁部には放射線が到達し難い状態となっていた。放射線検出素子の周縁部は放射線の検出に有効利用できなかった。放射線検出器を製造する際には、有効利用できない範囲を見込んで放射線検出素子の大きさが決定されていた。そのため平面視において放射線検出器を小型化することは困難であった。
 上下方向において放射線検出素子から所定の間隔をあけて遮蔽部材が配置されていた。そのため上下方向において放射線検出器を小型化することは困難であった。
日本国特開2006-322745号公報
 本発明は上記の問題を鑑みてなされたものであり、その目的は小型化を実現可能とする放射線検出器およびその製造方法を提供することである。
 上記の目的を達成するための放射線検出器は、上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器において、放射線を遮蔽する遮蔽部材を備えていて、前記遮蔽部材が前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態であり且つ前記遮蔽部材の上面が他の部材と接触しない状態で配置される構成を有することを特徴とする。
 上記の目的を達成するための放射線検出器の製造方法は、上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器の製造方法において、前記半導体素子の上面に前記放射線検出素子が配置された後に、放射線を遮蔽する遮蔽部材が前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態であり且つ前記遮蔽部材の上面が他の部材と接触しない状態で配置されることを特徴とする。
 本発明によれば、放射線検出素子の側面に接触する状態で遮蔽部材が配置されるので、放射線検出素子の上面の全域を検出領域として有効利用できる。放射線検出素子による検出範囲を大きくできるので、放射線検出器の小型化を実現するには有利である。
図1は、放射線検出器を斜視で例示する説明図である。 図2は、図1の放射線検出器をAA矢視で例示する説明図である。 図3は、図1の放射線検出器を平面視で例示する説明図である。 図4は、図1の半導体素子を平面視で例示する説明図である。 図5は、放射線検出器の参考例を例示する説明図である。 図6は、図5の放射線検出器を平面視で例示する説明図である。 図7は、図2の放射線検出器の変形例を例示する説明図である。 図8は、図2の放射線検出器の変形例を例示する説明図である。
 以下、放射線検出器およびその製造方法を図に示した実施形態に基づいて説明する。図中では放射線検出器の幅方向を矢印x、この幅方向xを直角に横断する縦方向を矢印y、上下方向を矢印zで示している。
 図1および図2および図3に例示するように放射線検出器1は、上面から入射する放射線を検出する放射線検出素子2と、放射線検出素子2の下面に接続されていて放射線検出素子2から得られる信号を処理して外部の機構に電気信号を出力する半導体素子3を備えている。半導体素子3が電気信号を出力する外部の機構は、例えば半導体素子3の下方に配置される回路基板4で構成される。
 放射線検出素子2は、上面から放射線が入射するとこれを電気信号に変換する機能を有していて、例えばCdTe(テルル化カドミウム)系半導体などの直接変換型半導体で構成される。この直接変換型半導体は、入射した放射線を光子とみなしてこの光子のエネルギに比例した電気信号を出力する構成を有している。放射線検出素子2は放射線を電気信号に変換する構成を有していればよい。この実施形態では放射線検出素子2は、直方体形状に形成されている。上下方向zの長さに対して幅方向xおよび縦方向yの長さが長い平板形状に放射線検出素子2は形成されている。放射線検出素子2は幅方向xおよび縦方向yに並べて配置される複数のピクセルを有していて、ピクセル毎に放射線の検出を可能としている。放射線検出素子2は例えば幅方向xに50mm、縦方向yに50mm、上下方向zに5mmの大きさに構成される。放射線検出素子2の大きさは上記に限らず、例えば幅方向xに4.0mm、縦方向yに16.0mm、上下方向zに1.5mmの大きさなど、放射線検出器1の使用目的等に応じて適宜変更できる。
 図2に例示するように半導体素子3は、複数のバンプ5を介して放射線検出素子2と電気的に接続されている。放射線検出素子2の下面と半導体素子3の上面3aとが対向する状態で配置されている。半導体素子3は、具体的には光子計数型ASIC(application specific integrated circuit)で構成される。この光子計数型ASICは放射線検出素子2から得られる電気信号を増幅してデジタル化する構成を有している。
 放射線検出素子2と半導体素子3の組み合わせは上記に限定されない。例えば放射線が入射すると発光するシンチレータで放射線検出素子2が構成されてもよい。この放射線検出素子2は放射線を光信号に変換する構成を有している。このとき半導体素子3は例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサや、フォトダイオードで構成される。CMOSイメージセンサ等は放射線検出素子2から得られる光信号を電気信号に変換する構成を有している。放射線検出素子2の下面と半導体素子3の上面3aとは光学的に接続される。また半導体素子3は例えば積分型の処理回路を搭載した積分型ASICで構成されてもよい。放射線検出素子2としてシンチレータまたは直接変換型半導体のいずれかが選択されて、これと組み合わせる状態で半導体素子3として積分型ASICまたは光子計数型ASICのいずれかが選択されてもよい。
 図4に例示するように半導体素子3は、放射線検出素子2から得られる信号の処理を行なう処理領域3bと、この処理領域3b以外の部分からなる補助領域3cとを有している。図4では説明のため処理領域3bと補助領域3cとの境界を破線で示している。処理領域3bは放射線検出素子2の各ピクセルから受けた信号を電気信号として出力するための回路で構成されている。補助領域3cは、具体的には処理領域3bから受ける信号を外部に転送するデータ転送用回路やI/Oドライバや内部回路用定電圧発生回路等で構成されている。補助領域3cは例えばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等で構成されている。
 この実施形態では平面視において放射線検出素子2と同一となる大きさの処理領域3bを半導体素子3は有している。放射線検出素子2の各ピクセルに対応する回路が処理領域3bには形成されている。補助領域3cは半導体素子3の周縁部であり且つ放射線検出素子2の側面2aよりも外側となる領域に形成されている。この実施形態では補助領域3cは放射線検出素子2に覆われない状態となる。そのため図2および図3に例示するように、平面視において半導体素子3の方が放射線検出素子2よりも大きく形成されている。補助領域3cは処理領域3bから受ける信号を、導電性ワイヤ6を介して外部である回路基板4に転送するデータ転送用回路を有している。
 平面視における処理領域3bと放射線検出素子2の大きさが同一である構成に限定されない。放射線検出素子2の方が大きく形成されてもよい。例えば補助領域3cの一部を覆う大きさを放射線検出素子2が有していてもよい。この場合、補助領域3cを覆う部分は放射線検出素子2として機能しない。また処理領域3bの方が大きく形成されてもよい。例えば放射線検出素子2から一部がはみ出す大きさを処理領域3bが有していてもよい。この場合、放射線検出素子2に覆われていない部分は処理領域3bとして機能しない。
 回路基板4はその上面が、半導体素子3の下面と対向する状態で配置されている。半導体素子3と回路基板4とは導電性ワイヤ6により電気的に接続されている。図2に例示するように導電性ワイヤ6は、例えば半導体素子3の上面と回路基板4の上面とを接続する状態に配置されている。回路基板4は半導体素子3の下方に配置される構成に限定されない。半導体素子3の側方に回路基板4が配置される構成であってもよい。
 導電性ワイヤ6の配置状態は上記に限定されない。半導体素子3の下面と回路基板4とを接続する構成を導電性ワイヤ6が有していてもよい。ただし半導体素子3の上面に導電性ワイヤ6が接続される構成の方が、放射線検出器1の上下方向zの厚みを小さくするには有利である。この構成は放射線検出器1の薄型化には有利となる。
 図2に例示するように放射線検出素子2の側面2aと半導体素子3の上面3aとに接触する状態で、遮蔽部材7が配置されている。遮蔽部材7の上面は他の部材と接触しない状態で遮蔽部材7は配置されている。この実施形態では半導体素子3の周縁部であり且つ放射線検出素子2の側面2aよりも外側となる領域に遮蔽部材7が配置されている。半導体素子3の補助領域3cを覆う状態で遮蔽部材7が配置されているとも言える。上下方向zにおいて放射線検出素子2の上面よりも低い領域に遮蔽部材7が配置されることが望ましい。図2および図3では説明のため遮蔽部材7に斜線を付している。遮蔽部材7は放射線を遮蔽する物質で構成されている。図2では導電性ワイヤ6の一部であり遮蔽部材7に埋没している部分を説明のため破線で示している。
 遮蔽部材7は例えば接着剤と放射線を遮蔽する粒子との混合物で構成される。接着剤と粒子との混合物は、塗布する際には流動性と比較的高い粘性とを有していて、その後硬化することで半導体素子3に放射線検出素子2を固定する構成を有していればよい。接着剤は、例えばエポキシ系樹脂接着剤、アクリル系接着剤、ウレタン系接着剤を利用できる。また接着剤は、紫外線を照射されることで硬化する光硬化性接着剤で構成されてもよい。
 放射線を遮蔽する粒子は、例えばバリウム、タンタル、鉛、タングステン、ビスマスなどの重金属の粒子で構成される。また硫酸バリウム、五酸化タンタル、一酸化鉛、三酸化ビスマスなどの重金属の硫化物や酸化物で粒子が構成されてもよい。特に20KeV以下など放射線のエネルギが比較的低い場合は、二酸化ケイ素を主成分とするガラスや酸化アルミニウムなどの軽金属の酸化物等で放射線を遮蔽する粒子が構成されてもよい。また複数種の粒子の混合物で放射線を遮蔽する粒子を構成してもよい。
 放射線検出器1の製造方法を以下に説明する。まず回路基板4の上面に半導体素子3が配置されて固定される。その後、半導体素子3と回路基板4とが導電性ワイヤ6で接続される。半導体素子3の上面3aに放射線検出素子2が配置される。その際に半導体素子3の上面3aと放射線検出素子2の下面とがバンプ5等により電気的に接続される。放射線検出素子2がシンチレータで構成される場合は、半導体素子3の上面3aと放射線検出素子2の下面とが光学的に接続される。その後、図2に例示するように放射線検出素子2の側面2aと半導体素子3の上面3aとの間に流動性を有するペースト状の遮蔽部材7が配置される。
 側面2aと上面3aとに同時に接触する状態でペースト状の一塊の遮蔽部材7が配置される。その後遮蔽部材7が硬化することで、放射線検出素子2の側面2aと半導体素子3の上面3aとが遮蔽部材7を介して相対的に固定される。遮蔽部材7は導電性ワイヤ6の一部を巻き込み内部に取り込む状態で配置される。導電性ワイヤ6を通過する信号への影響を抑制するため、遮蔽部材7は絶縁体で構成されることが望ましい。
 上下方向zにおける遮蔽部材7の厚みは、放射線検出器1に照射される放射線の強度に応じて適宜調整される。照射される放射線を十分に遮蔽できる厚みとなる状態で、遮蔽部材7は半導体素子3の上面3aに盛り付けられる。半導体素子3の上面3aの少なくとも一部を覆う状態で遮蔽部材7は配置されていればよい。望ましくは半導体素子3の上面3aのうち、放射線検出素子2で覆われていない部分の全体を覆う状態で遮蔽部材7を配置する。また遮蔽部材7は、半導体素子3の側面や回路基板4の上面に至る範囲に配置されてもよい。
 放射線検出素子2の側面2aと接触する一方で放射線検出素子2の上面とは接触しない状態で遮蔽部材7が配置される。望ましくは少なくとも側面2aと接触する位置では上下方向zにおいて放射線検出素子2の上面よりも、遮蔽部材7は低い位置に配置される。この構成によれば放射線検出素子2に到達すべき放射線が遮蔽部材7により遮蔽される不具合を回避できる。放射線検出素子2の上面の全体を放射線の検出に利用できる。放射線検出素子2を構成する全てのピクセルを放射線の検出に有効利用できる。放射線検出器1は、平面視においてより小さい放射線検出素子2でより広い範囲の放射線を検出することが可能となる。放射線検出器1の小型化を実現するには有利である。
 上下方向zにおいて放射線検出素子2の上面よりも低い位置に遮蔽部材7の全体が配置される場合は、放射線検出器1を上下方向zにおいて小型化するには有利である。放射線検出素子2の上面よりも高い位置に遮蔽部材7が配置される場合であっても、側面2aと接触する位置では放射線検出素子2の上面よりも低い位置に遮蔽部材7が配置されることが望ましい。この構成によれば放射線検出器1の製造時に、放射線検出素子2の上面に遮蔽部材7が付着することを簡易かつ確実に防止できる。
 図5に例示するように従来の放射線検出器1Xは、放射線検出素子2の周縁部が遮蔽部材7Xで覆われる構成であった。具体的には幅方向xに遮蔽部材7Xと重なる長さdの部分を、放射線検出素子2は放射線の検出に利用できなかった。この放射線検出素子2は放射線の検出に利用できないピクセルが複数あった。そのため従来の放射線検出器1Xは、実際の検出に必要となる大きさよりも大きい放射線検出素子2を備えている必要があった。
 図5に例示するように従来は遮蔽部材7Xが放射線検出素子2の一部を上方から覆う状態であった。そのため放射線検出素子2と遮蔽部材7Xとの接触を避けるため、上下方向zに一定の間隔hをあける必要があった。放射線検出器1Xを上下方向zに小さくする薄型化を実現することが困難であった。
 これに対して本発明の放射線検出器1は、放射線検出素子2の側面2aに遮蔽部材7が接触する状態である。放射線検出器1の薄型化を実現するには有利である。
 放射線検出素子2の側面2aに接触する状態で隙間なく遮蔽部材7を配置できる。遮蔽部材7による遮蔽効果を向上するには有利である。放射線検出素子2の側面2aと遮蔽部材7との間の微細な隙間等から放射線が透過して半導体素子3に到達する不具合を回避しやすくなる。半導体素子3に到達する放射線により、半導体素子3の特性が徐々に変化する不具合を回避できる。半導体素子3の劣化や特性変化を回避できるので、放射線検出器1による検出精度を維持するには有利である。半導体素子3の特性が徐々に変化すると半導体素子3の劣化に気が付かず、誤った放射線画像等を取得し続ける不具合がある。
 図6に例示するように従来は放射線検出素子2の周縁部を覆う遮蔽部材7Xの端部が、平面視において傾いて配置される状態(図6左方の遮蔽部材7X参照)や、真っ直ぐに加工されず凹凸を有する状態(図6右方の遮蔽部材7X参照)となっていた。そのため放射線検出素子2のピクセルごとの検出条件が異なることがあった。遮蔽部材7Xと放射線検出素子2との精密な位置合わせや、遮蔽部材7Xの端部を高精度でまっすぐに加工するには、放射線検出器1の製造コストが大幅に増加する不具合があった。図6では説明のため遮蔽部材7Xに覆われている放射線検出素子2等の一部を破線で示している。
 本発明の放射線検出器1は、放射線検出素子2の全てのピクセルにおいて遮蔽部材7の影響を受けずに放射線を検出できる。放射線検出器1の製造コストを大幅に抑制しつつ、放射線の検出精度を向上するには有利である。
 遮蔽部材7の上面が他の部材で覆われることがないため、遮蔽部材7の状態を目視等で確認するには有利である。放射線検出器1の製造時に、放射線検出素子2の上面に遮蔽部材7が付着していないことや、放射線検出素子2の側面2aに遮蔽部材7が隙間なく密着していることを容易に確認できる。また遮蔽部材7の状態の確認は、放射線検出器1の組立時のみならず、所定期間経過した後のメンテナンス時にも行うことができる。
 例えば放射線検出素子2の側面2aから遮蔽部材7が部分的に剥離している箇所が存在する場合に、この剥離をメンテナンス時に容易に発見できる。遮蔽部材7の上面は露出状態であるため、目視等で剥離を容易に発見できる。剥離が発生している部分に硬化前の遮蔽部材7を充填することで、放射線検出器1の修理を行うことが可能となる。半導体素子3の劣化や特性変化を回避するには有利である。
 遮蔽部材7の上面が他の部材と接触しない状態であるため、遮蔽部材7の厚みを適宜変更することが可能であり、遮蔽部材7を適切な厚みに盛り付けることができる。遮蔽部材7の厚みが不足するような不具合を回避できる。
 遮蔽部材7の上方に他の部材が配置されていないため、遮蔽部材7が配置されて硬化した後であっても、遮蔽部材7を追加で盛り付けて厚みを変更させることができる。例えば放射線検出器1に照射される放射線の出力が増加する方向に変更される場合に、遮蔽部材7を追加で盛り付けて厚みを増加させることが可能である。長期間にわたり半導体素子3の劣化や特性変化を回避するには有利である。
 図7に例示するように遮蔽部材7は、例えば熱可塑性エラストマーに無機物を分散させてフィルム状に成形したフィルム状部材で構成されてもよい。フィルムを構成する樹脂材料に放射線を遮蔽する粒子を分散させてフィルム状部材を構成してもよい。フィルム状の遮蔽部材7は、幅方向xにおいて一端が放射線検出素子2の側面2aと接触して、他端が半導体素子3の上面3aと接触する状態で配置される(図7左方の遮蔽部材7参照)。その後、加熱されることで遮蔽部材7は変形して側面2aおよび上面3aに密着する状態となる(図7右方の遮蔽部材7参照)。放射線検出素子2および半導体素子3に対して遮蔽部材7は隙間なく配置される。放射線が半導体素子3に到達することを抑制するには有利である。
 またフィルム状の遮蔽部材7により、放射線検出素子2を半導体素子3に固定できる。半導体素子3に放射線検出素子2を強固に固定するには有利である。
 図7に例示するように放射線検出素子2の下面と半導体素子3の上面との隙間に接着剤を配置する構成としてもよい。放射線検出素子2と半導体素子3とをさらに強固に固定するには有利である。その際、放射線検出素子2と半導体素子3との隙間に気泡など接着剤以外の物質が混入しないように注意して製造する必要がある。
 一方で図2に例示する実施形態のように放射線検出素子2と半導体素子3との隙間に接着剤を配置しない構成としてもよい。放射線検出素子2と半導体素子3との間は均質な空気の層が形成されることになる。放射線検出素子2から半導体素子3に伝達される電気的または光学的な信号に悪影響が発生する不具合を回避できる。隙間に接着剤を配置する際に気泡等の異物が混入すると、放射線検出素子2から半導体素子3に伝達される電気的または光学的な信号に悪影響が発生する。この影響は放射線検出器1の検出結果に影響がでるので望ましくない。
 隙間に接着剤を配置しない構成とすることで、放射線検出器1の製造工程が簡易になり且つ検出精度への影響を排除できる。図2に例示する実施形態のように遮蔽部材7が接着剤と放射線を遮蔽する粒子との混合物で構成される場合も、隙間に遮蔽部材7が流れ込まない構成とすることが望ましい。遮蔽部材7が接着剤等で構成される場合は、その粘度を調整することで、隙間への遮蔽部材7の流れ込みを抑制できる。
 例えば遮蔽部材7をエポキシ系樹脂接着剤と粉末状の酸化ビスマスの混合物で構成する場合、エポキシ系樹脂接着剤に対して体積比で二倍となる量の酸化ビスマスを混合することができる。この構成により塗布する際に放射線検出素子2と半導体素子3との隙間に遮蔽部材7が流れ込むことを防止できる。図3に例示するように平面視において放射線検出素子2の側面2aより内側に遮蔽部材7が配置されない状態となる。つまり半導体素子3の処理領域3bの上面に遮蔽部材7が接触しない。放射線検出素子2から半導体素子3に伝達される電気的または光学的な信号への影響を抑制するには有利である。
 図8に例示するように放射線検出器1が、放射線検出素子2の上方に配置されるカバー8を備える構成にしてもよい。このカバー8は放射線を遮蔽する部材で構成されている。放射線検出素子2の近傍には側面2aに接触する状態で遮蔽部材7が配置されている。そのためカバー8は放射線検出素子2の周縁部の上面を覆う位置に配置する必要がない。平面視において放射線検出素子2の側面2aから離間した位置にカバー8が配置される。例えば幅方向xにおいて、放射線検出素子2の側面2aの近傍となる領域は遮蔽部材7により放射線が遮蔽されて、側面2aから離れている領域はカバー8により放射線が遮蔽される。カバー8の設置により放射線の遮蔽効果を向上することができる。
 放射線検出素子2の周縁部はカバー8で覆われないため、放射線検出素子2は上面の全域で効率よく放射線を検出できる。放射線検出器1の平面視における大きさを小型化するには有利である。放射線検出器1の上下方向zにおける大きさに対する制限が比較的緩く一方で遮蔽効果の向上が望まれる場合は、カバー8を設置する構成を採用することが望ましい。遮蔽部材7と接触する高さまでカバー8を下げて配置する構成としてもよい。例えば放射線検出素子2の上面とカバー8の上面の高さが同一となる状態で放射線検出器1が構成されてもよい。
 カバー8が配置される場合であっても平面視において放射線検出素子2とカバー8との隙間となる部分には遮蔽部材7が配置されていて、この部分における遮蔽部材7は上面が他の部材と接触せずに露出している状態となる。カバー8が遮蔽部材7と接触する状態で配置されている場合であっても、平面視において放射線検出素子2とカバー8との隙間となる部分の遮蔽部材7は、上面に他の部材が接触しない状態となる。放射線検出素子2の側面2aと遮蔽部材7との接触状態を目視等で確認することは可能である。また放射線検出素子2とカバー8との隙間となる部分においては、遮蔽部材7の厚みを変更することが可能である。遮蔽部材7において上面をカバー8で覆われている部分については、カバー8により放射線が遮蔽されるため、遮蔽部材7の状態が確認できなくても不具合はない。少なくともカバー8で上面を覆われていない部分において、遮蔽部材7の状態を確認できればよい。
 導電性ワイヤ6と半導体素子3との接続部分に樹脂モールド9を配置する構成にしてもよい。複数配置されている導電性ワイヤ6どうしの絶縁性の向上および低容量性の確保に有利である。導電性ワイヤ6の間での信号干渉を抑制するには有利である。また半導体素子3に対する導電性ワイヤ6の固定を強固にするには有利である。
 図8に例示する実施形態では樹脂モールド9の上方にカバー8が配置される構成となっている。樹脂モールド9を通過して半導体素子3に到達する放射線は、カバー8により遮蔽される。他方で樹脂モールド9を巻き込む状態で遮蔽部材7が配置される構成としてもよい。この場合は樹脂モールド9の上方に遮蔽部材7が配置される構成となる。
1          放射線検出器
2          放射線検出素子
2a      側面
3          半導体素子
3a      上面
3b      処理領域
3c      補助領域
4          回路基板
5          バンプ
6          導電性ワイヤ
7          遮蔽部材
8          カバー
9          樹脂モールド
x          幅方向
y          縦方向
z          上下方向
d          (重なる)長さ
h          (上下方向zの)間隔

Claims (11)

  1.  上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器において、
     放射線を遮蔽する遮蔽部材を備えていて、前記遮蔽部材が前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態であり且つ前記遮蔽部材の上面が他の部材と接触しない状態で配置される構成を有することを特徴とする放射線検出器。
  2.  前記遮蔽部材が接着剤と放射線を遮蔽する粒子との混合物で構成されていて硬化することで前記半導体素子に前記放射線検出素子を固定する構成を有する請求項1に記載の放射線検出器。
  3.  平面視で前記半導体素子の周縁部であり且つ前記放射線検出素子の側面よりも外側となる領域に配置される構成を、前記遮蔽部材が有する請求項1または2に記載の放射線検出器。
  4.  上下方向において前記放射線検出素子と前記半導体素子との間に形成される隙間を備えていて、
     前記遮蔽部材が前記隙間に配置されない構成を有する請求項1~3のいずれかに記載の放射線検出器。
  5.  前記放射線検出素子と前記半導体素子との間に配置されるとともに、前記放射線検出素子と前記半導体素子とを電気的に接続するバンプを有する請求項1~4のいずれかに記載の放射線検出器。
  6.  前記遮蔽部材が、前記半導体素子の側面に至る範囲に配置される構成を有する請求項1~5のいずれかに記載の放射線検出器。
  7.  平面視において前記放射線検出素子の側面から離間した位置に配置されていて放射線を遮蔽するカバーを備えていて、
     平面視において前記放射線検出素子と前記カバーとの間となる領域に入射する放射線を前記遮蔽部材が遮蔽する構成を有する請求項1~6のいずれかに記載の放射線検出器。
  8.  上面から入射する放射線を検出する放射線検出素子と、平面視で前記放射線検出素子よりも大きく形成され且つ前記放射線検出素子の下面に接続されていて前記放射線検出素子から得られる信号を処理して外部に電気信号を出力する半導体素子とを備える放射線検出器の製造方法において、
     前記半導体素子の上面に前記放射線検出素子が配置された後に、放射線を遮蔽する遮蔽部材が前記放射線検出素子の側面と前記半導体素子の上面とに接触する状態であり且つ前記遮蔽部材の上面が他の部材と接触しない状態で配置されることを特徴とする放射線検出器の製造方法。
  9.  前記遮蔽部材が接着剤と放射線を遮蔽する粒子との混合物で構成されていて、前記遮蔽部材が硬化することで前記半導体素子に前記放射線検出素子を固定する請求項8に記載の放射線検出器の製造方法。
  10.  平面視で前記半導体素子の周縁部であり且つ前記放射線検出素子の側面よりも外側となる領域に、前記遮蔽部材が配置される請求項8または9に記載の放射線検出器の製造方法。
  11.  上下方向において前記放射線検出素子と前記半導体素子との間に隙間が形成される状態で前記半導体素子の上面に前記放射線検出素子が配置されて、前記遮蔽部材を配置する際に前記隙間に前記遮蔽部材が配置されない状態とする請求項8~10のいずれかに記載の放射線検出器の製造方法。
PCT/JP2021/011171 2020-09-16 2021-03-18 放射線検出器およびその製造方法 WO2022059234A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/026,412 US20230384468A1 (en) 2020-09-16 2021-03-18 Radiation detector and method for producing same
JP2022550336A JP7394496B2 (ja) 2020-09-16 2021-03-18 放射線検出器およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-155406 2020-09-16
JP2020155406A JP2021107805A (ja) 2020-09-16 2020-09-16 放射線検出器およびその製造方法

Publications (1)

Publication Number Publication Date
WO2022059234A1 true WO2022059234A1 (ja) 2022-03-24

Family

ID=76967862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011171 WO2022059234A1 (ja) 2020-09-16 2021-03-18 放射線検出器およびその製造方法

Country Status (3)

Country Link
US (1) US20230384468A1 (ja)
JP (2) JP2021107805A (ja)
WO (1) WO2022059234A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172228A (ja) * 2002-11-18 2004-06-17 Hamamatsu Photonics Kk 光検出装置
JP2005509891A (ja) * 2001-11-20 2005-04-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 処理回路の為の放射シールドを有するct検出器モジュール
JP2007514158A (ja) * 2003-12-09 2007-05-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線検出器のシールド
WO2007105288A1 (ja) * 2006-03-13 2007-09-20 Hitachi Metals, Ltd. 放射線検出装置とその製造方法
JP2011191290A (ja) * 2010-02-18 2011-09-29 Canon Inc 放射線検出装置及び放射線検出システム
US20180100937A1 (en) * 2015-04-14 2018-04-12 Analogic Corporation Detector array for radiation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4234304B2 (ja) * 2000-05-19 2009-03-04 浜松ホトニクス株式会社 放射線検出器
JP5757096B2 (ja) * 2011-01-31 2015-07-29 ソニー株式会社 放射線撮像装置および放射線撮像表示システム
JP6075028B2 (ja) 2012-11-26 2017-02-08 東レ株式会社 シンチレータパネル
WO2019117276A1 (ja) 2017-12-15 2019-06-20 株式会社堀場製作所 放射線検出器及び放射線検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509891A (ja) * 2001-11-20 2005-04-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 処理回路の為の放射シールドを有するct検出器モジュール
JP2004172228A (ja) * 2002-11-18 2004-06-17 Hamamatsu Photonics Kk 光検出装置
JP2007514158A (ja) * 2003-12-09 2007-05-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線検出器のシールド
WO2007105288A1 (ja) * 2006-03-13 2007-09-20 Hitachi Metals, Ltd. 放射線検出装置とその製造方法
JP2011191290A (ja) * 2010-02-18 2011-09-29 Canon Inc 放射線検出装置及び放射線検出システム
US20180100937A1 (en) * 2015-04-14 2018-04-12 Analogic Corporation Detector array for radiation system

Also Published As

Publication number Publication date
JP2021107805A (ja) 2021-07-29
US20230384468A1 (en) 2023-11-30
JPWO2022059234A1 (ja) 2022-03-24
JP7394496B2 (ja) 2023-12-08

Similar Documents

Publication Publication Date Title
US7651877B2 (en) Two-dimensional image detecting apparatus and method for manufacturing the same
US20110180714A1 (en) Radiation detector
EP1564812A1 (en) Photo detection device
EP1068643A1 (de) Optoelektronische baugruppe
CN102142447A (zh) 共面高填充系数的像素架构
US20050258425A1 (en) Photoelectric conversion device, image scanning apparatus, and manufacturing method of the photoelectric conversion device
US11652120B2 (en) Light detection device
JP2015133408A (ja) 放射線検出器
KR20240013838A (ko) 엑스레이검출장치
JP2007155564A (ja) 放射線検出器および放射線画像検出装置
US20130109115A1 (en) Method and jig for manufacturing semiconductor device
WO2022059234A1 (ja) 放射線検出器およびその製造方法
KR20160032190A (ko) 어레이 기판, 방사선 검출기, 및 배선기판
CN109216391B (zh) 一种探测面板、其制作方法及检测装置
JPH08187239A (ja) X線ct装置
US7138637B2 (en) X-ray imager
US9761631B2 (en) Radiation image sensor
US20030146990A1 (en) Flat panel detection type solid-state imaging device
EP2500942A1 (en) Solid-state image pickup device and method for manufacturing same
CN108645877B (zh) 包括具有重新布线单元的转换器元件的x射线检测器
US7612442B2 (en) Semiconductor device
US20120025190A1 (en) Radiation detector
JPS6340381A (ja) 放射線検出器
CN113811998B (zh) 平板探测器基板及其制作方法、平板探测器
US20230378229A1 (en) Radiographic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022550336

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18026412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868922

Country of ref document: EP

Kind code of ref document: A1