JP2021072734A - 電力制御装置および電力制御方法 - Google Patents

電力制御装置および電力制御方法 Download PDF

Info

Publication number
JP2021072734A
JP2021072734A JP2019199439A JP2019199439A JP2021072734A JP 2021072734 A JP2021072734 A JP 2021072734A JP 2019199439 A JP2019199439 A JP 2019199439A JP 2019199439 A JP2019199439 A JP 2019199439A JP 2021072734 A JP2021072734 A JP 2021072734A
Authority
JP
Japan
Prior art keywords
power
set value
power generation
value
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019199439A
Other languages
English (en)
Other versions
JP7374720B2 (ja
Inventor
篤 松崎
Atsushi Matsuzaki
篤 松崎
清水 佳子
Yoshiko Shimizu
佳子 清水
治男 小口
Haruo Oguchi
治男 小口
谷 明憲
Akinori Tani
明憲 谷
貴久 星野
Takahisa Hoshino
貴久 星野
宏次郎 多田
Kojiro Tada
宏次郎 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019199439A priority Critical patent/JP7374720B2/ja
Publication of JP2021072734A publication Critical patent/JP2021072734A/ja
Application granted granted Critical
Publication of JP7374720B2 publication Critical patent/JP7374720B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】効率的な電力供給を容易に実現可能な電力制御装置等を提供する。【解決手段】実施形態の電力制御装置は、電力を発電するように構成された発電手段と、電力を充電または放電するように構成された蓄電手段とを備える発電所から電力系統へ出力する電力を制御する。電力制御装置は、発電制御手段と蓄電制御手段と協調制御手段とを有する。発電制御手段は、発電設定値に基いて発電手段の出力を制御する。蓄電制御手段は、蓄電設定値に基いて蓄電手段の出力を制御する。協調制御手段は、発電手段および蓄電手段が協調して動作するように、電力系統の電力需要量に基いて、発電制御手段に発電設定値を出力すると共に、蓄電制御手段に蓄電設定値を出力する。【選択図】図2

Description

本発明の実施形態は、電力制御装置および電力制御方法に関する。
発電手段と蓄電手段とを備える発電所の電力を制御する電力制御装置が提案されている。ここでは、発電手段および蓄電手段から出力する電力が電力系統の電力需要量に追従するように、蓄電手段の出力を制御することが提案されている(たとえば、特許文献1参照)。
特許6517618号
しかしながら、上記技術では、蓄電手段のみを制御するため、効率的に電力の供給を行うことが困難な場合がある。
したがって、本発明が解決しようとする課題は、効率的な電力供給を容易に実現可能な電力制御装置および電力制御方法を提供することである。
実施形態の電力制御装置は、電力を発電するように構成された発電手段と、電力を充電または放電するように構成された蓄電手段とを備える発電所から電力系統へ出力する電力を制御する。電力制御装置は、発電制御手段と蓄電制御手段と協調制御手段とを有する。発電制御手段は、発電設定値に基いて発電手段の出力を制御する。蓄電制御手段は、蓄電設定値に基いて蓄電手段の出力を制御する。協調制御手段は、発電手段および蓄電手段が協調して動作するように、電力系統の電力需要量に基いて、発電制御手段に発電設定値を出力すると共に、蓄電制御手段に蓄電設定値を出力する。
図1は、第1実施形態に係る発電所の要部を模式的に示す図である。 図2は、第1実施形態に係る発電所において、電力制御装置50の要部を模式的に示す図である。 図3は、第1実施形態に係る電力制御装置50において、協調制御手段500の要部を模式的に示す図である。 図4は、第1実施形態に係る協調制御手段500において、トータル設定値算出部530の要部を模式的に示す図である。 図5は、第1実施形態に係る協調制御手段500において、発電設定値算出部531の要部を模式的に示す図である。 図6は、第1実施形態に係る協調制御手段500において、蓄電設定値算出部532の要部を模式的に示す図である。 図7Aは、第1実施形態に係る協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとを例示する図である。 図7Bは、第1実施形態において、充電電力量Cbを例示する図である。 図8は、第2実施形態に係る電力制御装置において、協調制御手段500の要部を模式的に示す図である。 図9Aは、第2実施形態に係る協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとを例示する図である。 図9Bは、第2実施形態において充電されている充電電力量Cbを例示する図である。 図10は、第3実施形態に係る電力制御装置において、協調制御手段500の要部を模式的に示す図である。 図11Aは、第3実施形態に係る協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとを例示する図である。 図11Bは、第3実施形態において充電されている充電電力量Cbを例示する図である。 図12は、第4実施形態に係る電力制御装置において、協調制御手段500の要部を模式的に示す図である。 図13Aは、第4実施形態に係る協調制御手段500において、出力データを求めるときの流れを示すフロー図である。 図13Bは、第4実施形態に係る協調制御手段500において、出力データを求めるときの流れを示すフロー図である。 図13Cは、第4実施形態に係る協調制御手段500において、出力データを求めるときの流れを示すフロー図である。 図14Aは、第4実施形態に係る協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとを例示する図である。 図14Bは、第4実施形態において充電されている充電電力量Cbを例示する図である。 図15は、第5実施形態に係る電力制御装置において、協調制御手段500の要部を模式的に示す図である。 図16は、第5実施形態に係る協調制御手段500において、トータル設定値算出部530の要部を模式的に示す図である。 図17は、第5実施形態に係るトータル設定値算出部530において、関数器602の関数を模式的に示す図である。 図18は、第5実施形態に係るトータル設定値算出部530において、デマンド補正部601の要部を模式的に示す図である。 図19は、第5実施形態に係る協調制御手段500において、発電設定値算出部531の要部を模式的に示す図である。 図20Aは、第5実施形態に係る関数器602の関数を例示する図である。 図20Bは、第5実施形態に係る協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとを例示する図である。 図20Cは、第5実施形態において、充電電力量Cbを例示する図である。 図21は、第6実施形態における発電設定値Scを示す図である。
<第1実施形態>
[A]全体構成
第1実施形態に係る発電所の要部について、図1を用いて説明する。
図1に示すように、発電所は、発電手段10と蓄電手段20と電力制御装置50とを備えている。
発電手段10は、たとえば、タービン(図示省略)と、タービンによって発電を行う発電機(図示省略)とを備えており、発電を行うように構成されている。
蓄電手段20は、たとえば、蓄電池(図示省略)を備えており、充電または放電を行うように構成されている。
電力制御装置50は、演算器(図示省略)とメモリ装置(図示省略)とを含み、メモリ装置が記憶しているプログラムを用いて演算器が演算処理を行うことによって、各部の制御を行うように構成されている。ここでは、電力制御装置50は、操作指令や検出データなどが入力信号として入力される。そして、電力制御装置50は、その入力された入力信号に基づいて演算処理を行い、制御信号を出力信号として各部に出力することで、各部の動作を制御する。
詳細については後述するが、電力制御装置50は、発電所から電力系統40へ供給する電力Ptを制御するために設けられている。電力制御装置50は、発電手段10が電力Pcを出力する発電動作、および、蓄電手段20が電力Pbを出力する放電動作を制御することによって、電力系統40への電力Ptの供給動作を制御するように構成されている。また、電力制御装置50は、蓄電手段20が電力Pbを蓄える充電動作を制御するように構成されている。
[B]電力制御装置50
電力制御装置50の要部について図2を用いて説明する。
電力制御装置50は、図2に示すように、協調制御手段500と発電制御手段510と蓄電制御手段520とを有する。
協調制御手段500は、発電手段10および蓄電手段20が協調して動作するように、電力系統40の電力需要量Dtに基いて、発電制御手段510に発電設定値Scを出力すると共に、蓄電制御手段520に蓄電設定値Sbを出力するように構成されている。
発電制御手段510は、協調制御手段500が出力した発電設定値Scが入力され、その発電設定値Scに基いて、発電手段10を制御するように構成されている。
蓄電制御手段520は、協調制御手段500が出力した蓄電設定値Sbが入力され、その蓄電設定値Sbに基いて、蓄電手段20を制御するように構成されている。
ここでは、発電手段10が出力した電力量Pcが、協調制御手段500と発電制御手段510とのそれぞれに入力信号として入力される。また、蓄電手段20が出力した電力量Pb、および、蓄電手段20において充電されている充電電力量Cbが、協調制御手段500と蓄電制御手段520とのそれぞれに入力信号として入力される。
協調制御手段500では、発電手段10が出力した電力量Pc、蓄電手段20が出力した電力量Pb、および、蓄電手段20において充電されている充電電力量Cbに応じて、発電設定値Scの出力および蓄電設定値Sbの出力が行われる。
また、発電制御手段510においては、発電手段10が出力した電力量Pcに応じて、発電手段10の制御を行う。たとえば、発電手段10が出力した電力量Pcが、発電設定値Scに応じた電力量と異なる場合には、発電設定値Scに応じた電力量になるように、発電手段10の制御を行う。
そして、蓄電制御手段520においては、蓄電手段20が出力した電力量Pbおよび蓄電手段20において充電されている充電電力量Cbに応じて、蓄電手段20の制御を行う。たとえば、蓄電手段20が出力した電力量Pbが、蓄電設定値Sbに応じた電力量と異なる場合には、蓄電設定値Sbに応じた電力量になるように、蓄電手段20の制御を行う。
[C]協調制御手段500
協調制御手段500の要部について図3を用いて説明する。
協調制御手段500は、図3に示すように、トータル設定値算出部530と発電設定値算出部531と蓄電設定値算出部532とを有する。
図4は、第1実施形態に係る協調制御手段500において、トータル設定値算出部530の要部を模式的に示す図である。図5は、第1実施形態に係る協調制御手段500において、発電設定値算出部531の要部を模式的に示す図である。図6は、第1実施形態に係る協調制御手段500において、蓄電設定値算出部532の要部を模式的に示す図である。
[C−1]トータル設定値算出部530
トータル設定値算出部530について、図3と共に図4を用いて説明する。
トータル設定値算出部530は、図3に示すように、電力系統40の電力需要量Dtが入力信号として入力される。また、発電手段10の増加側出力変化率Rcpと蓄電手段20の増加側出力変化率Rbpとを加算した加算値Rtpが、入力信号としてトータル設定値算出部530に入力される。この他に、発電手段10の減少側出力変化率Rcmと、蓄電手段20の減少側出力変化率Rbmとを加算した加算値Rtmが入力信号としてトータル設定値算出部530に入力される。増加側出力変化率Rcpおよび減少側出力変化率Rcmは、たとえば、発電手段10の状態に応じて外部において設定された後に、上記のように入力が行われる。また、増加側出力変化率Rbpおよび減少側出力変化率Rbmは、たとえば、蓄電手段20の状態に応じて外部において設定された後に、上記のように入力が行われる。
図4に示すように、トータル設定値算出部530は、変化率制限器530aを備えており、電力需要量Dtと加算値Rtpと加算値Rtmとのそれぞれが、変化率制限器530aに入力される。変化率制限器530aでは、入力信号に基いて、発電手段10が出力する電力と蓄電手段20が出力する電力とを合計した電力の設定値であるトータル設定値Stを算出する。
[C−2]発電設定値算出部531
発電設定値算出部531について、図3と共に図5を用いて説明する。
発電設定値算出部531は、図3に示すように、トータル設定値Stが入力信号として入力される。また、増加側出力変化率Rcpと減少側出力変化率Rcmとが入力信号として発電設定値算出部531に入力される。
図5に示すように、発電設定値算出部531は、変化率制限器531aを備えており、トータル設定値Stと増加側出力変化率Rcpと減少側出力変化率Rcmとのそれぞれが、変化率制限器531aに入力される。変化率制限器531aでは、入力信号に基いて、発電手段10が出力する電力の設定値である発電設定値Scを算出して出力する。
[C−3]蓄電設定値算出部532
蓄電設定値算出部532について、図3と共に図6を用いて説明する。
蓄電設定値算出部532は、図3に示すように、トータル設定値Stと発電設定値Scとが入力信号として入力される。また、増加側出力変化率Rbpと減少側出力変化率Rbmとが入力信号として蓄電設定値算出部532に入力される。
図6に示すように、蓄電設定値算出部532は、変化率制限器532aを備えており、トータル設定値Stと発電設定値Scとの加算値、増加側出力変化率Rbp、および、減少側出力変化率Rbmが、変化率制限器532aに入力される。そして、変化率制限器532aでは、上記の入力信号に基いて、蓄電手段20が出力する電力の設定値である蓄電設定値Sbを算出して出力する。
[D]トータル設定値St、発電設定値Sc、蓄電設定値Sb、充電電力量Cbについて
協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとに関して、図7Aを用いて説明する。また、上記のようにトータル設定値Stと発電設定値Scと蓄電設定値Sbとを算出したときに、蓄電手段20で充電されている充電電力量Cbに関して、図7Bを用いて説明する。
図7Aおよび図7Bにおいては、0分の時点では、3分の時点で電力需要量Dtが上昇することが不明であって、3分の時点(現時点)で電力需要量Dtが上昇することが判った状態を例示している。
トータル設定値Stは、図7Aに示すように、電力系統40の電力需要量Dtが上昇する割合よりも低い割合で上昇する。たとえば、電力需要量Dtは、3分の時点から3.5分の時点の間において50MWから90MWに上昇するのに対して、トータル設定値Stは、3分の時点から5分の時点の間において50MWから90MWに上昇するように設定される。そして、トータル設定値Stは、たとえば、5分の時点以降において、電力系統40の電力需要量Dtと同様に、一定値を保持する。
発電設定値Scは、図7Aに示すように、発電手段10の特性を考慮して、トータル設定値Stが上昇する割合よりも低い割合で上昇するように設定される。たとえば、発電設定値Scは、3分の時点から11分の時点になる間において、電力量が50MWから90MWに上昇するように設定される。そして、たとえば、11分の時点以降には、発電設定値Scは、電力系統40の電力需要量Dtと同様に、一定値を保持する。
蓄電設定値Sbは、図7Aに示すように、それぞれの時点において、発電設定値Scと蓄電設定値Sbとを合計した値がトータル設定値Stと同じになるように設定される。たとえば、3分の時点から5分の時点の間においては、発電設定値Scは、上述したように、トータル設定値Stが上昇する割合よりも低い割合で上昇するので、発電設定値Scだけでは、トータル設定値Stよりも低い状態である。したがって、発電設定値Scと蓄電設定値Sbとを合計した値がトータル設定値Stに一致するように、蓄電設定値Sbを上昇させる。5分以降の時点において、3分の時点から5分の時点の間と同様な割合で蓄電設定値Sbを上昇させた場合には、発電設定値Scと蓄電設定値Sbとを合計した値がトータル設定値Stを超える。このため、5分以降の時点では、蓄電設定値Sbを時間の経過に伴って減少させる。
このとき、蓄電手段20で充電されている充電電力量Cbは、図7Bに示すように、3分の時点以降に、時間の経過に伴って減少する。ここでは、充電電力量Cbは、たとえば、3分の時点で120MWであった状態から、11分の時点では0MWの状態になる。
なお、本実施形態において、トータル設定値Stにおいて電力量が増加する部分の割合は、発電手段10の増加側出力変化率Rcpと蓄電手段20の増加側出力変化率Rbpとを加算した加算値Rtpに相当する。発電設定値Scにおいて電力量が増加する部分の割合は、発電手段10の増加側出力変化率Rcpに相当する。蓄電設定値Sbにおいて電力量が増加する部分の割合は、蓄電手段20の増加側出力変化率Rbpに相当する。
[E]まとめ
以上のように、本実施形態の電力制御装置50において、協調制御手段500は、発電手段10および蓄電手段20が協調して動作するように、電力系統40の電力需要量Dtに基いて、発電制御手段510に発電設定値Scを出力すると共に、蓄電制御手段520に蓄電設定値Sbを出力する。このように本実施形態では、発電制御手段510に発電設定値Scを出力することで、発電手段10を制御すると共に、蓄電制御手段520に蓄電設定値Sbを出力することで蓄電手段20を制御する。つまり、本実施形態では、電力系統40の電力需要量Dtに応じた電力を供給するために、蓄電手段20以外に発電手段10についても制御を行う。したがって、本実施形態においては、効率的な電力供給を容易に実現可能である。
また、本実施形態の協調制御手段500は、増加側出力変化率Rcp、減少側出力変化率Rcm、増加側出力変化率Rbp、および、減少側出力変化率Rbmに基いて、発電設定値Scおよび前記蓄電設定値Sbを出力する。このため、本実施形態においては、発電手段10および蓄電手段20の特性に応じて発電手段10の制御と蓄電手段20の制御とを行っているので、効率的な電力供給を容易に実現可能である。
<第2実施形態>
[A]協調制御手段500
本実施形態の協調制御手段500の要部について図8を用いて説明する。
図8に示すように、本実施形態の協調制御手段500は、第1実施形態の場合(図3参照)と異なり、蓄電手段20で充電されている充電電力量Cbのデータが入力される。この点、および、これに関連する点を除き、本実施形態は、上記した実施形態の場合と同様である。このため、重複する部分に関しては、適宜、説明を省略する。
具体的には、協調制御手段500においては、充電電力量Cbのデータがトータル設定値算出部530に入力信号として更に入力される。トータル設定値算出部530は、電力需要量Dtと加算値Rtpと加算値Rtmとの他に充電電力量Cbに基いてトータル設定値Stを算出する。この他に、トータル設定値算出部530は、上記のように入力された各データに基いて、増加側出力変化率Rbpおよび減少側出力変化率Rbmを補正し、補正後の増加側出力変化率Rbpaおよび補正後の減少側出力変化率Rbmaを蓄電設定値算出部532に出力する。ここでは、たとえば、充電電力量Cbの値と、電力需要量Dtの値と、トータル設定値Stの値が変化するのに伴って、増加側出力変化率Rbpおよび減少側出力変化率Rbmを、補正後の増加側出力変化率Rbmaおよび補正後の減少側出力変化率Rbmaとして出力する。
そして、蓄電設定値算出部532は、トータル設定値Stと発電設定値Scとの他に、補正後の増加側出力変化率Rbpaおよび補正後の減少側出力変化率Rbmaに基いて、蓄電設定値Sbを算出する。
[B]トータル設定値St、発電設定値Sc、蓄電設定値Sb、充電電力量Cbについて
協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとに関して、図9Aを用いて説明する。また、上記のようにトータル設定値Stと発電設定値Scと蓄電設定値Sbとを算出したときに、蓄電手段20で充電されている充電電力量Cbに関して、図9Bを用いて説明する。
図9Aおよび図9Bにおいては、図7Aおよび図7Bの場合と同様に、0分の時点では、3分の時点で電力需要量Dtが上昇することが不明であって、3分の時点(現時点)で電力需要量Dtが上昇することが判った状態を例示している。
本実施形態においては、図9Bに示すように、充電電力量Cbが第1実施形態の場合(図7B)よりも小さい。ここでは、第1実施形態の場合には、最初の充電電力量Cbは、120MWであるのに対して、本実施形態の場合には、最初の充電電力量Cbは、60MWである。このように本実施形態では、最初の充電電力量Cbが第1実施形態の場合よりも小さいので、図9Aに示すように、トータル設定値Stと蓄電設定値Sbとが、この小さい充電電力量Cbに応じて第1実施形態の場合とは異なる状態に設定される。
具体的には、トータル設定値Stは、図9Aに示すように、第1実施形態の場合よりも低い割合で上昇するように設定される。たとえば、トータル設定値Stは、第1実施形態では、3分の時点から5分の時点の間において50MWから90MWに上昇するように設定されているが、本実施形態では、3分の時点から8分の時点までの間において50MWから90MWに上昇するように設定される。そして、たとえば、8分の時点以降において、トータル設定値Stは、電力系統40の電力需要量Dtと同様に、一定値を保持する。
発電設定値Scは、図9Aに示すように、第1実施形態の場合と同様に、たとえば、3分の時点から11分の時点までの間において、電力量が50MWから90MWに上昇するように設定される。そして、たとえば、11分の時点以降において、発電設定値Scは、電力系統40の電力需要量Dtと同様に、一定値を保持する。
蓄電設定値Sbは、図9Aに示すように、それぞれの時間において、発電設定値Scと蓄電設定値Sbとを合計した値がトータル設定値Stと同じになるように設定される。たとえば、3分の時点から8分の時点までの間においては、発電設定値Scは、トータル設定値Stが上昇する割合よりも低い割合で上昇するので、発電設定値Scだけでは、トータル設定値Stよりも低い状態である。したがって、発電設定値Scと蓄電設定値Sbとを合計した値がトータル設定値Stに一致するように、蓄電設定値Sbを上昇させる。8分の時点以降に、3分の時点から8分の時点までの間の場合と同様な割合で蓄電設定値Sbを上昇させた場合には、発電設定値Scと蓄電設定値Sbとを合計した値がトータル設定値Stを超える。このため、8分の時点以降においては、蓄電設定値Sbを時間の経過に伴って減少させる。
このとき、蓄電手段20で充電されている充電電力量Cbは、図9Bに示すように、時間の経過に伴って減少する。たとえば、充電電力量Cbは、3分の時点で60MWであった状態から、11分の時点で0MWになる。
なお、トータル設定値Stにおいて電力量が増加する部分の割合Rtpaは、下記の数式(A)のように求められる。下記式(A)において、dMWは、図9Aを参照して判るように、電力需要量Dtの変化量である。
Rtpa=dMW/(dMW/Rcp−2*Cb/dMW) ・・・(A)
また、発電設定値Scにおいて電力量が増加する部分の割合は、補正後の増加側出力変化率Rcpaに相当する。蓄電設定値Sbにおいて電力量が増加する部分の割合は、補正後の増加側出力変化率Rbpaに相当する。
[C]まとめ
以上のように、本実施形態の電力制御装置50において、協調制御手段500は、蓄電手段20において充電されている充電電力量Cbに基いてトータル設定値Stを求め、トータル設定値Stに応じて発電設定値Scおよび蓄電設定値Sbを出力する。したがって、本実施形態においては、効率的な電力供給を容易に実現可能である。
具体的には、本実施形態のように充電電力量Cbが小さい場合に、上記の第1実施形態の場合と同様な増加側出力変化率Rbpおよび減少側出力変化率Rbmで蓄電手段20が出力を行った場合には、電力需要量Dtにトータル設定値Stが到達する前に、充電電力量Cbがゼロになる可能性がある。しかしながら、本実施形態では、電力需要量Dtにトータル設定値Stが到達する前に充電電力量Cbがゼロにならないように、増加側出力変化率Rbpおよび減少側出力変化率Rbmを補正している。このため、本実施形態では、要求された電力需要量Dtに対して的確に対応することができる。
<第3実施形態>
[A]協調制御手段500
本実施形態の協調制御手段500の要部について図10を用いて説明する。
図10に示すように、本実施形態の協調制御手段500は、第2実施形態の場合(図8参照)と異なり、現時点における電力需要量Dtの他に、将来における電力需要量Dtfのデータが入力される。この点、および、これに関連する点を除き、本実施形態は、上記した実施形態の場合と同様である。このため、重複する部分に関しては、適宜、説明を省略する。
具体的には、協調制御手段500においては、将来における電力需要量Dtfのデータがトータル設定値算出部530に入力信号として更に入力される。将来における電力需要量Dtfは、第1時点における電力需要量Dt(1)、第2時点における電力需要量Dt(2)、・・・、第n時点における電力需要量Dt(n)のように数字列として入力される。そして、トータル設定値算出部530は、将来における電力需要量Dtf等の入力データを用いて、トータル設定値Stを算出する。
そして、発電設定値算出部531は、上記のように算出されたトータル設定値St等に基いて、発電設定値Scを算出して出力する。また、蓄電設定値算出部532は、上記のように算出されたトータル設定値St等に基いて、蓄電設定値Sbを算出して出力する。
[B]トータル設定値St、発電設定値Sc、蓄電設定値Sb、充電電力量Cbについて
協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとに関して、図11Aを用いて説明する。また、上記のようにトータル設定値Stと発電設定値Scと蓄電設定値Sbとを算出したときに、蓄電手段20で充電されている充電電力量Cbに関して、図11Bを用いて説明する。
図11Aおよび図11Bにおいては、図9Aおよび図9Bの場合と異なり、0分の時点(現時点)において、3分の時点で電力需要量Dtが上昇することが判っている状態を例示している。
トータル設定値Stは、図11Aに示すように、電力需要量Dtの上昇時に合わせて、3分の時点から5分の時点の間において50MWから90MWに上昇するように設定される。そして、トータル設定値Stは、たとえば、5分の時点以降において、電力系統40の電力需要量Dtと同様に、一定値を保持する。
しかし、本実施形態では、上述したように、0分の時点(現時点)において、3分の時点で電力需要量Dtが上昇することが判っている。このため、本実施形態では、発電設定値Scは、図11Aに示すように、電力需要量Dtが上昇する前から、上昇するように設定される。具体的には、発電設定値Scは、たとえば、0分の時点(現時点)から電力需要量Dtの上昇時点(3分)を経由して8分の時点までの間において、電力量が50MWから90MWに上昇するように設定される。そして、たとえば、8分の時点以降において、発電設定値Scは、電力系統40の電力需要量Dtと同様に、一定値を保持する。
電力需要量Dtが上昇する前に、発電設定値Scに対応するように発電手段10で発電された電力は、電力系統40に出力する必要がないので、蓄電手段20において充電させる。このため、蓄電設定値Sbは、0分の時点(現時点)から4分の時点までの間、充電を行い、4分の時点以降に放電を行う。
このとき、蓄電手段20で充電されている充電電力量Cbは、図11Bに示すように、充電を行っているときには増加し、放電を行っているときには減少する。たとえば、充電電力量Cbは、0分の時点に60MWであった状態から90MWまで充電され、その状態から60MWになるまで放電が行われる。
[C]まとめ
以上のように、本実施形態の電力制御装置50において、協調制御手段500は、現時点における電力需要量Dtの他に、将来の電力需要量Dtfに基いて、発電設定値Scおよび蓄電設定値Sbを出力する。このため、本実施形態では、上記のように、電力需要量Dtの要求のためにトータル設定値Stを上げる前に、発電設定値Scを上げることができる。その結果、電力需要量Dtの要求のためにトータル設定値Stを上げる前においては、発電手段10において発電した電力を、蓄電手段20に出力し、蓄電手段20において充電させることができる。したがって、本実施形態においては、効率的な電力供給を容易に実現可能である。
<第4実施形態>
[A]協調制御手段500
本実施形態の協調制御手段500の要部について図12を用いて説明する。
図12に示すように、本実施形態の協調制御手段500は、第3実施形態の場合(図10参照)と異なり、蓄電手段20において蓄電させる電力量の上限値Cbmax[MW](正の値)と、蓄電手段20において蓄電させる電力量の下限値Cbmin[MW](ゼロまたは正の値)とのデータが入力される。この点、および、これに関連する点を除き、本実施形態は、上記した実施形態の場合と同様である。このため、重複する部分に関しては、適宜、説明を省略する。
具体的には、協調制御手段500においては、蓄電手段20において蓄電させる電力量の上限値Cbmax[MW](正の値)と、蓄電手段20において蓄電させる電力量の下限値Cbmin[MW](ゼロまたは正の値)とのデータがトータル設定値算出部530に入力信号として更に入力される。そして、トータル設定値算出部530は、各入力データを用いて、トータル設定値Stなどを算出する。
そして、発電設定値算出部531は、上記のように算出されたトータル設定値St等に基いて、発電設定値Scを算出して出力する。また、蓄電設定値算出部532は、上記のように算出されたトータル設定値St等に基いて、蓄電設定値Sbを算出して出力する。
[B]算出方法
本実施形態において、協調制御手段500は、たとえば、下記(式1)に示すような制約条件付き最適化問題を解くことによって、各出力データを出力することができる。ここでは、蓄電手段20で充電されている充電電力量Cbが、上限値Cbmaxと下限値Cbminとの間の範囲になるように、次の時点のトータル設定値St(0)、補正後の増加側出力変化率Rbpa、および、補正後の減少側出力変化率Rbmaを決定することができる。
Figure 2021072734
協調制御手段500において出力データを求めるために最適解を算出するときのフローを、図13A、図13B、および、図13Cを用いて説明する。図13A、図13B、および、図13Cに示すフローは、シンプルな繰り返し計算法によるものである。図13A、図13B、および、図13Cに示すフローの代わりに、一般的によく知られた最適化アルゴリズム、たとえば、最急降下法、ニュートンラプソン法、共役方向法などを用いることにより、最適解を算出可能である。
以下より、上記の(式1)および図13A、図13B、および、図13Cのフローにおいて用いる因子を列挙する(既出の因子を含む)。
(a)時間によらずに変化しない因子(定数)
・Rcp:発電手段10の増加側出力変化率(0または正の値、[MW/分])
・Rcm:発電手段10の減少側出力変化率(0または負の値、[MW/分])
・Rbpmax:蓄電手段20の増加側出力変化率Rbpの最大値(正の値、[MW/分])
・Rbmmin:蓄電手段20の減少側出力変化率Rbmの最小値(負の値、[MW/分])
・Cbmax:蓄電手段20の充電電力量(残存量)の最大値(正の値、[MW分])
・Cbmin:蓄電手段20の充電電力量(残存量)の最小値(0または正の値、[MW分])
・Scmax:発電手段10の出力最大値(正の値、[MW])
・Scmin:発電手段10の出力最小値(正の値、[MW])
・dt:時点kと次ステップの時点k+1との間の時間(ステップ幅、[分])
(b)時間の経過で変化する因子(変数)((k)は、時点kの値を意味し、(0)は現時点の値を意味する。)
・Cb(0):蓄電手段20の充電電力量(残存量)(0または正の値、[MW分])
・Dt(0):電力需要量Dt(トータル出力要求値、正の値、[MW])
・Sc(k):発電手段10の出力設定値(正の値、[MW])
・Sb(k):蓄電手段20の出力設定値(正の値の時は放電を意味し、負の値の時は蓄電(充電)を意味、[MW])
・St(0):発電手段10と蓄電手段20のトータル出力設定値(正の値、[MW])
(c)計算によって得られる因子(変数)
・Rbpa:蓄電手段20の増加側出力変化率(補正後)(0または正の値、[MW/分])
・Rbma:蓄電手段20の減少側出力変化率(補正後)(0または負の値、[MW/分])
(d)中間変数
・Rb:蓄電手段20の変化率(正か0か負、[MW/分])
・Tc:発電手段10の発電設定値Sc(出力設定値)を変化させ始める時刻([分])
(e)最適化のためのパラメータ
・q1,q2,q3,a4:任意の正の値(適切な値を最初に設定)
[B−1]ステップST10
協調制御手段500において出力データを求める際には、図13Aに示すように、まず、一定値を取るパラメータ(Rcp,Rcm,Rbpmax,Rbmmin,Cbmax,Cbmin,Scmax,Scmin)を設定する(ST10)。
[B−2]ステップST20
つぎに、現時点の値(Sc(0),Sb(0),St(0),Cb(0),Dt(0))の入力を行う(ST20)。
[B−3]ステップST21
つぎに、将来の時点における値(Dt(1),Dt(2),・・・,Dt(N))の入力を行う(ST21)。
[B−4]ステップST30
つぎに、将来において電力需要量Dt(トータル出力要求値)が増減するのか、維持されるのかの判断を行う(ST30)。ここでは、現時点での電力需要量Dt(0)と将来の時点での電力需要量Dt(N)とを比較する。
[B−5]ステップST40
現時点での電力需要量Dt(0)と将来の時点での電力需要量Dt(N)とが同じである場合には、現在の状態を維持する処理を行う。ここでは、1ステップ後の時点でのトータル設定値St(1)を現時点でのトータル設定値St(0)と同じ値に設定する(St(1)=St(0))。そして、補正後の増加側出力変化率Rbpaおよび補正後の減少側出力変化率Rbmaに関しては、ゼロの値に設定する。
[B−6]ステップST41
将来の時点での電力需要量Dt(N)が現時点での電力需要量Dt(0)よりも大きい場合には、要求値増加時の処理を行う(ST41)。要求値増加時の処理については、後述する。
[B−7]ステップST42
将来の時点での電力需要量Dt(N)が現時点での電力需要量Dt(0)よりも小さい場合には、要求値増加時の処理を行う(ST42)。要求値減少時の処理については、後述する。
[B−8]要求値増加時の処理
上記した要求値増加時の処理(ST41,図13A参照)について、図13Bを用いて説明する。
[B−8−1]ステップST411
要求値増加時の処理を行う際には、図13Bに示すように、まず、ステップST411において、蓄電手段20の出力変化率Rbの初期値を設定する。ここでは、蓄電手段20の出力変化率Rbを最大値Rbpmaxに設定する(Rb=Rbpmax)。
[B−8−2]ステップST412
つぎに、ステップST412において、各時点での発電設定値Sc(1),Sc(2),・・・,Sc(N)が変化し始める時点Tcの初期値を設定する。ここでは、時点Tcについて、現時点(0)を設定する(Tc=0)。
[B−8−3]ステップST413
つぎに、ステップST413において、将来の発電設定値Sc(k)と、将来の蓄電設定値Sb(k)と、将来の充電電力量Cb(k)とに関して予測するための計算を行う。
[B−8−4]ステップST414
つぎに、ステップST414において、蓄電手段20の充電電力量Cb(残存量)の将来値Cb(k)の最大値が、蓄電手段20において蓄電させる電力量の上限値Cbmaxよりも大きいか、判定する(ST414)。
[B−8−5]ステップST415
ステップST414での判定がYESである場合(Cb(k)の最大値>Cbmax)には、ステップST415において、時点Tcについて更新する(ST415)。ここでは、現在の時点Tcに所定値q1を加算した値を、更新後の時点Tcにする。更新後の時点Tcは、ステップST413において用いられる。
[B−8−6]ステップST416
ステップST414での判定がNoである場合(Cb(k)の最大値≦Cbmax)には、ステップST416において、蓄電手段20の充電電力量Cb(残存量)の将来値Cb(k)の最小値が、蓄電手段20において蓄電させる電力量の下限値Cbminよりも小さいか、判定する。
[B−8−7]ステップST417
ステップST416での判定がYesである場合(Cb(k)の最小値<Cbmin)には、ステップST417において、出力変化率Rbを更新する。ここでは、現在の出力変化率Rbに所定値q2を加算した値を、更新後の出力変化率Rbにする。更新後の出力変化率Rbは、ステップST413において用いられる。
[B−8−8]ステップST418
ステップST416での判定がNoである場合(Cb(k)の最小値≧Cbmin)には、ステップST418において、現時点の次のステップのトータル設定値St(1)と補正後の増加側出力変化率Rbpaとを決定する。ここでは、下記(式2−1)に示すように、既に設定されている出力変化率Rbを補正後の増加側出力変化率Rbpaとする。また、現時点の次のステップのトータル設定値St(1)については、下記(式3−1)に基いて決定する。
Rbpa=Rb ・・・(式2−1)
St(1)=St(0)+(Rbpa+Rcp)*dt ・・・(式3−2)
[B−9]要求値減少時の処理
要求値減少時の処理(ST42,図13A参照)について、図13Cを用いて説明する。
[B−9−1]ステップST421
要求値減少時の処理を行う際には、図13Cに示すように、まず、ステップST421において、蓄電手段20の出力変化率Rbの初期値を設定する。ここでは、蓄電手段20の出力変化率Rbを最小値Rbmminに設定する(Rb=Rbmmin)。
[B−9−2]ステップST422
つぎに、ステップST422において、各時点での発電設定値Sc(1),Sc(2),・・・,Sc(N)が変化し始める時点Tcの初期値を設定する。ここでは、時点Tcについて、現時点(0)を設定する(Tc=0)。
[B−9−3]ステップST423
つぎに、ステップST423において、将来の発電設定値Sc(k)と、将来の蓄電設定値Sb(k)と、将来の充電電力量Cb(k)とに関して予測するための計算を行う。
[B−9−4]ステップST424
つぎに、ステップST424において、蓄電手段20の充電電力量Cb(残存量)の将来値Cb(k)の最小値が、蓄電手段20において蓄電させる電力量の下限値Cbminよりも小さいか、判定する。
[B−9−5]ステップST425
ステップST424での判定がYesである場合(Cb(k)の最小値<Cbmin)には、時点Tcについて更新する(ST425)。ここでは、現在の時点Tcに所定値q3を加算した値を、更新後の時点Tcにする。更新後の時点Tcは、ステップST423において用いられる。
[B−9−6]ステップST426
ステップST424での判定がNoである場合(Cb(k)の最小値≧Cbmin)には、ステップST426において、蓄電手段20の充電電力量Cb(残存量)の将来値Cb(k)の最大値が、蓄電手段20において蓄電させる電力量の上限値Cbmaxよりも大きいか、判定する。
[B−9−7]ステップST427
ステップST426での判定がYesである場合(Cb(k)の最大値>Cbmax)には、ステップST427において、出力変化率Rbを更新する。ここでは、現在の出力変化率Rbに所定値q4を加算した値を、更新後の出力変化率Rbにする。更新後の出力変化率Rbは、ステップST423において用いられる。
[B−9−8]ステップST428
ステップST426での判定がNoである場合(Cb(k)の最大値≦Cbmax)には、ステップST428において、現時点の次のステップのトータル設定値St(1)と補正後の減少側出力変化率Rbmaとを決定する。ここでは、下記(式2−2)に示すように、既に設定されている出力変化率Rbを補正後の増加側出力変化率Rbpaとする。また、現時点の次のステップのトータル設定値St(1)については、下記(式3−2)に基いて決定する。
Rbma=Rb ・・・(式2−2)
St(1)=St(0)+(Rbma+Rcm)*dt ・・・(式3−2)
[C]トータル設定値St、発電設定値Sc、蓄電設定値Sb、充電電力量Cbについて
協調制御手段500において算出される、トータル設定値Stと発電設定値Scと蓄電設定値Sbとに関して、図14Aを用いて説明する。また、上記のようにトータル設定値Stと発電設定値Scと蓄電設定値Sbとを算出したときに、蓄電手段20で充電されている充電電力量Cbに関して、図14Bを用いて説明する。
図14Aおよび図14Bにおいては、図11Aおよび図11Bの場合と異なり、0分の時点(現時点)において、3分の時点で電力需要量Dtが上昇することが判っている状態を例示している。
トータル設定値Stは、図14Aに示すように、電力需要量Dtの上昇時に合わせて、3分の時点から上昇が開始し、約6.5分の時点までに、50MWから90MWに上昇するように設定される。そして、トータル設定値Stは、たとえば、約6.5分の時点以降において、電力系統40の電力需要量Dtと同様に、一定値を保持する。
しかし、本実施形態では、第3実施形態の場合と同様に、0分の時点(現時点)において、3分の時点で電力需要量Dtが上昇することが判っている。このため、本実施形態では、発電設定値Scは、図14Aに示すように、電力需要量Dtが上昇する前から、上昇するように設定される。具体的には、発電設定値Scは、たとえば、2分の時点から電力需要量Dtの上昇時点(3分)を経由して10分の時点までの間において、電力量が50MWから90MWに上昇するように設定される。そして、たとえば、10分の時点以降において、発電設定値Scは、電力系統40の電力需要量Dtと同様に、一定値を保持する。
電力需要量Dtが上昇する前に、発電設定値Scに対応するように発電手段10で発電された電力は、電力系統40に出力する必要がないので、蓄電手段20において充電させる。このため、蓄電設定値Sbは、2分の時点から約4分の時点までの間、充電を行い、約4分の時点以降に放電を行う。
このとき、蓄電手段20で充電されている充電電力量Cbは、図11Bに示すように、充電を行っているときには増加し、放電を行っているときには減少する。たとえば、充電電力量Cbは、0分の時点に60MWであった状態から充電電力量Cbの上限値Cbmaxである65MWまで充電され、その状態から、充電電力量Cbの下限値Cbminである10MWになるまで放電が行われる。
[D]まとめ
以上のように、本実施形態の電力制御装置50において、協調制御手段500は、蓄電手段20において充電される充電電力量Cbが、予め設定された範囲(上限値Cbmaxと下限値Cbminとの間の範囲)になるように、発電設定値Scおよび蓄電設定値Sbを出力する。このため、本実施形態では、蓄電手段20の容量を任意に設定可能である。したがって、本実施形態においては、効率的な電力供給を容易に実現可能である。
<第5実施形態>
[A]協調制御手段500
本実施形態の協調制御手段500の要部について図15を用いて説明する。
図15に示すように、本実施形態の協調制御手段500は、第4実施形態の場合(図12参照)と異なり、発電手段10が出力する電力Pcのデータ(発電出力値)が入力される。この点、および、これに関連する点を除き、本実施形態は、上記した実施形態の場合と同様である。このため、重複する部分に関しては、適宜、説明を省略する。
具体的には、協調制御手段500においては、発電手段10が出力する電力Pcのデータがトータル設定値算出部530に入力信号として入力される。そして、トータル設定値算出部530は、更に、発電手段10が出力する電力Pcの実測データ等を用いて、トータル設定値Stを算出すると共に、発電設定補正値Scrを算出する。
[A−1]トータル設定値算出部530
本実施形態のトータル設定値算出部530の要部について図16を用いて説明する。
図16に示すように、トータル設定値算出部530は、変化率制限器530aの他に、デマンド補正部601と関数器602とを更に備えている。
デマンド補正部601は、発電手段10が出力する電力Pc、蓄電手段20において充電されている充電電力量Cb、および、関数器602において求められた充電電力量Cbの目標値Cbrに関する各データが入力信号として入力される。そして、デマンド補正部601は、各入力信号に基いて、発電設定値Scの補正値Scrを算出して出力する。
関数器602は、電力系統40の電力需要量Dtが入力信号として入力され、充電電力量Cbの目標値Cbrを出力信号として出力するように構成されている。
関数器602の関数の一例に関して、図17を用いて説明する。
図17に示すように、関数器602は、電力系統40の電力需要量Dtが増加するに伴って、充電電力量Cbの目標値Cbrが低下するように構成されている。
デマンド補正部601の要部について、図18を用いて説明する。図18において、実線はアナログ信号を示し、破線は論理信号を示している。
デマンド補正部601は、図18に示すように、シフトレジスタ611と減算器612と絶対値算出器613と高値検出器614と減算器621と絶対値算出器622と低値検出器623とセット・リセット・フリップ・フロップ631とゼロ信号発生器640と信号切替器641とゲイン651とを有する。
シフトレジスタ611は、発電手段10が出力する電力Pcのデータがステップごとに入力される。そして、シフトレジスタ611は、1ステップ前において保持した電力Pcのデータを出力する。
減算器612は、発電手段10が出力する電力Pcのデータが入力されると共に、シフトレジスタ611から出力された1ステップ前の電力Pcのデータが入力される。そして、減算器612は、入力された両方のデータの差分値を算出して出力する。
絶対値算出器613は、減算器612から出力された差分値について絶対値を求めて出力するように構成されている。
高値検出器614は、絶対値算出器613から出力された絶対値が、予め定めた閾値よりも大きいときに、Trueの論理値を出力し、小さいときには、Falseの論理値を出力する。
減算器621は、蓄電手段20において充電されている充電電力量Cb、および、関数器602(図16参照)において求められた充電電力量Cbの目標値Cbrが入力信号として入力される。そして、減算器621は、入力された両方のデータの差分値を算出して出力する。
絶対値算出器622は、減算器621から出力された差分値について絶対値を求めて出力するように構成されている。
低値検出器623は、絶対値算出器613から出力された絶対値が、予め定めた閾値よりも大きいときに、Falseの論理値を出力し、小さいときには、Trueの論理値を出力する。
セット・リセット・フリップ・フロップ631は、高値検出器614から論理値が入力されると共に、低値検出器623から論理値が入力される。そして、セット・リセット・フリップ・フロップ631は、低値検出器623から入力された論理値がTrueである場合には、高値検出器614から入力された論理値が何であっても、Falseを出力する。また、セット・リセット・フリップ・フロップ631は、低値検出器623から入力された論理値がFalseである場合には、高値検出器614から入力された論理値がTrueであれば、Trueを出力する。このとき、低値検出器623から入力された論理値がFalseからTrueに変わるまで、セット・リセット・フリップ・フロップ631は、Trueの出力を継続する。また、セット・リセット・フリップ・フロップ631は、低値検出器623から入力された論理値がFalseである場合に、高値検出器614から入力された論理値がFalseであれば、Falseを出力する。
ゼロ信号発生器640は、値がゼロである信号を出力する。
信号切替器641は、減算器621から出力された差分値が入力されると共に、セット・リセット・フリップ・フロップ631から論理値が入力される。そして、信号切替器641は、セット・リセット・フリップ・フロップ631から入力される論理値がTrueであるときに、ゼロ信号発生器640から入力されるゼロ値を出力する。これに対して、信号切替器641は、セット・リセット・フリップ・フロップ631から入力される論理値がFalseであるときに、減算器621から入力される差分値を出力する。
すなわち、減算器621から出力された差分値が小さい場合、または、発電手段10が出力する電力Pcの変化が大きい場合には、信号切替器641は、ゼロ値を出力する。これに対して、減算器621から出力された差分値が大きく、かつ、発電手段10が出力する電力Pcの変化が小さい場合には、信号切替器641は、減算器621から出力された差分値を出力する。
ゲイン処理器651は、信号切替器641から入力された信号についてゲイン処理を施して出力する(ゲインkは、正の値)。
[A−2]発電設定値算出部531
発電設定値算出部531について図19を用いて説明する。
図19に示すように、発電設定値算出部531においては、トータル設定値Stと発電設定補正値Scrとの加算値が変化率制限器531aに入力されると共に、増加側出力変化率Rcpおよび減少側出力変化率Rcmが変化率制限器531aに入力される。そして、変化率制限器531aでは、各入力信号に基いて、発電手段10が出力する電力の設定値である発電設定値Scを算出して出力する。
[B]充電電力量Cbの目標値Cbr、トータル設定値St、発電設定値Sc、蓄電設定値Sb、充電電力量Cbについて
まず、本実施形態における関数器602の関数の一例に関して図20Aを用いて説明する。
図20Aに示すように、関数器602の関数は、電力系統40の電力需要量Dtが増加するに伴って、充電電力量Cbの目標値Cbrが低下するように構成されている。たとえば、電力需要量Dtが50MWである場合には、目標値Cbrは、180MWである。たとえば、電力需要量Dtが70MWである場合には、目標値Cbrは、112MWである。たとえば、電力需要量Dtが90MWである場合には、目標値Cbrは、44MWである。
つぎに、トータル設定値Stと発電設定値Scと蓄電設定値Sbとに関して、図20Bを用いて説明し、充電電力量Cbに関して図20Cを用いて説明する。
図20Bおよび図20Cにおいては、電力需要量Dtが70MWから90MWに上昇した後に、90MWから50MWに減少する場合に関して例示している。
この場合において、0分の時点では、充電電力量Cbは、図20Aから判るように、112MWである。充電電力量Cbが十分に大きいため、電力需要量Dtが70MWから90MWに上昇するとき、発電設定値Scはスムーズに変化する。ここでは、7分の時点で発電設定値Scが90MWに到達し、ここからわずかに遅延した時点で、発電手段10が出力する電力Pcが90MWに到達する。発電手段10が出力する電力Pcは、発電設定値Scとほぼ同じであるので、図示を省略している。
7分の時点では、充電電力量Cbは、82MWであるので、電力需要量Dtが90MWである場合の目標値Cbrである44MWよりも大きい。発電手段10が出力する電力Pcが90MWで一定値を保持した状態では、充電電力量Cbが目標値Cbrに近付けるように発電設定補正値Scr(図示書略)が変化するので、発電設定値Scが変化する。ここでは、電力需要量Dtとトータル設定値Stとが一致している。
15分の時点では、充電電力量Cbが目標値Cbrに一致するので、発電設定補正値Scr(図示書略)がゼロになる。
そして、20分の時点以降においては、電力需要量Dtが90MWから50MWに減少する。このとき、蓄電手段20において電力が充電されている充電電力量Cbは、少ない。このため、蓄電手段20では、発電手段10が出力する電力Pcを十分に充電可能である。その結果、本実施形態では、電力需要量Dtに対してトータル設定値Stがスムーズに追従する。
[C]まとめ
以上のように、本実施形態の協調制御手段500は、電力需要量Dtに基いて充電電力設定値Cbrを設定する。そして、電力需要量Dtにおいて充電電力量Cbが充電電力設定値Cbrになるように、発電設定値Scおよび蓄電設定値Sbを出力する。したがって、本実施形態では、上記のように、発電手段10が出力する電力Pcについて蓄電手段20が充電する必要があるときに、蓄電手段20が充電可能な容量を確保可能であるので、要求された電力需要量Dtに対して的確に対応することができる。
<第6実施形態>
図示を省略しているが、本実施形態において、発電手段10(図1参照)は、コンバインドサイクル発電システムであって、ガスタービンを用いて発電すると共に、蒸気タービンを用いて発電するように構成されている。そして、発電制御手段510は、ガスタービンの出力と蒸気タービンの出力とを制御するように構成されている。
本実施形態の発電設定値Scに関して、図21を用いて説明する。図21においては、ガスタービンの出力設定値Sc_gおよび蒸気タービンの出力設定値Sc_sを併記しており、ガスタービンの出力設定値Sc_gと蒸気タービンの出力設定値Sc_sとの合計が発電設定値Scに相当する。
ガスタービンの出力設定値Sc_gは、たとえば、5%MW/分で出力が増加するように設定される。これに対して、蒸気タービンの出力設定値Sc_sは、蒸気タービンの特性に対応するように、ガスタービンの出力設定値Sc_gよりも遅れて、出力が増加するように設定される。
以上のように、発電手段10が、ガスタービンを用いて発電すると共に蒸気タービンを用いて発電するコンバインドサイクル発電システムである場合には、上記のような出力特性を考慮して、上記した各実施形態と同様に出力制御を行うことができる。
<その他>
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10:発電手段、20:蓄電手段、40:電力系統、50:電力制御装置、500:協調制御手段、510:発電制御手段、520:蓄電制御手段、530:トータル設定値算出部、530a:変化率制限器、531:発電設定値算出部、531a:変化率制限器、532:蓄電設定値算出部、532a:変化率制限器、601:デマンド補正部、602:関数器、611:シフトレジスタ、612:減算器、613:絶対値算出器、614:高値検出器、621:減算器、622:絶対値算出器、623:低値検出器、631:セット・リセット・フリップ・フロップ、640:ゼロ信号発生器、641:信号切替器、651:ゲイン処理器

Claims (8)

  1. 電力を発電するように構成された発電手段と、電力を充電または放電するように構成された蓄電手段とを備える発電所から電力系統へ出力する電力を制御する電力制御装置であって、
    発電設定値に基いて前記発電手段の出力を制御する発電制御手段と、
    蓄電設定値に基いて前記蓄電手段の出力を制御する蓄電制御手段と、
    前記発電手段および前記蓄電手段が協調して動作するように、前記電力系統の電力需要量に基いて、前記発電制御手段に前記発電設定値を出力すると共に、前記蓄電制御手段に前記蓄電設定値を出力する協調制御手段と
    を有する、
    電力制御装置。
  2. 前記協調制御手段は、更に、前記発電手段の増加側出力変化率および減少側出力変化率と、前記蓄電手段の増加側出力変化率および減少側出力変化率に基いて、前記発電設定値および前記蓄電設定値を出力する、
    請求項1に記載の電力制御装置。
  3. 前記協調制御手段は、更に、前記蓄電手段において充電されている充電電力量に基いて、前記発電設定値および前記蓄電設定値を出力する、
    請求項1または2に記載の電力制御装置。
  4. 前記協調制御手段は、前記電力系統の現時点における電力需要量の他に、将来の電力需要量に基いて、前記発電設定値および前記蓄電設定値を出力する、
    請求項1から3のいずれかに記載の電力制御装置。
  5. 前記協調制御手段は、前記蓄電手段において充電される充電電力量が、予め設定された範囲になるように、前記発電設定値および前記蓄電設定値を出力する、
    請求項1から4のいずれかに記載の電力制御装置。
  6. 前記協調制御手段は、前記電力需要量に基いて充電電力設定値を設定し、前記電力需要量において前記充電電力量が前記充電電力設定値になるように、前記発電設定値および前記蓄電設定値を出力する、
    請求項5に記載の電力制御装置。
  7. 前記発電手段は、ガスタービンを用いて発電すると共に、蒸気タービンを用いて発電するように構成されており、
    前記発電制御手段は、前記ガスタービンの出力と前記蒸気タービンの出力とを制御するように構成されている、
    請求項1から6のいずれかに記載の電力制御装置。
  8. 電力を発電するように構成された発電手段と、電力を充電または放電するように構成された蓄電手段とを備える発電所から電力系統へ出力する電力を制御する電力制御方法であって、
    前記発電手段および前記蓄電手段が協調して動作するように、電力系統の電力需要量に基いて、前記発電手段の出力および前記蓄電手段の出力を制御する、
    電力制御方法。
JP2019199439A 2019-10-31 2019-10-31 電力制御装置および電力制御方法 Active JP7374720B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019199439A JP7374720B2 (ja) 2019-10-31 2019-10-31 電力制御装置および電力制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199439A JP7374720B2 (ja) 2019-10-31 2019-10-31 電力制御装置および電力制御方法

Publications (2)

Publication Number Publication Date
JP2021072734A true JP2021072734A (ja) 2021-05-06
JP7374720B2 JP7374720B2 (ja) 2023-11-07

Family

ID=75714226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199439A Active JP7374720B2 (ja) 2019-10-31 2019-10-31 電力制御装置および電力制御方法

Country Status (1)

Country Link
JP (1) JP7374720B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114900A (ja) * 2009-11-25 2011-06-09 Fuji Electric Systems Co Ltd マイクログリッドの需給制御装置およびマイクログリッドの需給制御方法
JP2016082679A (ja) * 2014-10-15 2016-05-16 三菱重工業株式会社 電力系統の周波数制御装置、それを備えた周波数制御システム、及び周波数制御方法並びに周波数制御プログラム
JP2019027398A (ja) * 2017-08-02 2019-02-21 株式会社日立製作所 コンバインドサイクル発電プラントおよびコンバインドサイクル発電プラントの制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114900A (ja) * 2009-11-25 2011-06-09 Fuji Electric Systems Co Ltd マイクログリッドの需給制御装置およびマイクログリッドの需給制御方法
JP2016082679A (ja) * 2014-10-15 2016-05-16 三菱重工業株式会社 電力系統の周波数制御装置、それを備えた周波数制御システム、及び周波数制御方法並びに周波数制御プログラム
JP2019027398A (ja) * 2017-08-02 2019-02-21 株式会社日立製作所 コンバインドサイクル発電プラントおよびコンバインドサイクル発電プラントの制御方法

Also Published As

Publication number Publication date
JP7374720B2 (ja) 2023-11-07

Similar Documents

Publication Publication Date Title
JP4256833B2 (ja) 電力貯蔵装置及びハイブリッド型分散電源システム
KR101809784B1 (ko) 배터리 에너지 저장 장치의 충방전 제어 방법 및 그를 위한 배터리 에너지 저장 장치
JP5350942B2 (ja) 電力系統の需給制御装置、需給制御プログラム及びその記録媒体
JP2008182859A (ja) 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置
JPH09121462A (ja) 定電流・定電圧充電装置
JP2007228737A (ja) 新エネルギー発電システム出力変動緩和装置
JP2012016077A (ja) 電力系統の周波数制御装置
JP6497385B2 (ja) リチウムイオン二次電池システム及びリチウム二次電池システムの運転方法
JP7050708B2 (ja) 充電制御装置および充電制御方法
JP6247039B2 (ja) 電力貯蔵装置および電力貯蔵装置の充放電方法
JP5125274B2 (ja) 新エネルギー発電システム出力変動緩和装置
JP2016226208A (ja) 蓄電池制御装置
JPWO2016147302A1 (ja) 蓄電池制御装置および蓄電池制御方法
US20180159184A1 (en) Power supply control device, power supply system, power supply control method, and program
JP6338009B1 (ja) 電力貯蔵装置を用いた電力安定化システム及び制御装置
JP2018112501A5 (ja)
JP5475019B2 (ja) 電力供給方法、コンピュータ読み取り可能な記録媒体および発電システム
JP2019115131A (ja) 電力安定化システム及び制御装置
JPWO2015111144A1 (ja) 電力供給システム及びこれに用いるエネルギーマネジメントシステム
US20160226287A1 (en) Performing passive maintenance on an energy storage farm
JP2021072734A (ja) 電力制御装置および電力制御方法
WO2022219817A1 (ja) 電力制御装置および電力制御方法
JP2016059199A (ja) 需要電力の目標値算出方法及び目標値算出装置
JP5946983B1 (ja) 需給制御装置、需給制御方法
CN113366750A (zh) 多个发电电源系统中的指令生成装置以及指令生成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R150 Certificate of patent or registration of utility model

Ref document number: 7374720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150