JP2021070764A - 光学フィルム及びフレキシブル表示装置 - Google Patents

光学フィルム及びフレキシブル表示装置 Download PDF

Info

Publication number
JP2021070764A
JP2021070764A JP2019199056A JP2019199056A JP2021070764A JP 2021070764 A JP2021070764 A JP 2021070764A JP 2019199056 A JP2019199056 A JP 2019199056A JP 2019199056 A JP2019199056 A JP 2019199056A JP 2021070764 A JP2021070764 A JP 2021070764A
Authority
JP
Japan
Prior art keywords
film
optical film
formula
group
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019199056A
Other languages
English (en)
Inventor
一喜 大松
Kazuyoshi Omatsu
一喜 大松
崇 中小路
Takashi Nakakoji
崇 中小路
宏司 西岡
Koji Nishioka
宏司 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2019199056A priority Critical patent/JP2021070764A/ja
Priority to TW109134719A priority patent/TW202122471A/zh
Priority to CN202011170851.2A priority patent/CN112817069A/zh
Priority to KR1020200141963A priority patent/KR20210052325A/ko
Publication of JP2021070764A publication Critical patent/JP2021070764A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】ポリアミド系樹脂を含む、耐屈曲性に優れ、高い弾性率を有する光学フィルムを提供する。【解決手段】ポリアミド系樹脂を含む光学フィルムであって、該光学フィルムの厚さをAμmとし、該光学フィルムの一方の表面上の任意の位置をD0とし、D0から厚さ方向にA×1/4μmの位置をD1とし、D0から厚さ方向にA×1/2μmの位置をD2とし、D0から厚さ方向にA×3/4μmの位置をD3とし、D1〜D3の各位置におけるラマン分光法により測定される1,550〜1,650cm−1の範囲の最大ピークの強度をそれぞれI1〜I3とすると、該光学フィルムは式(1)及び式(2):I1/I2≦0.97 (1)I3/I2≦0.97 (2)の少なくとも一方を満足する、光学フィルム。【選択図】なし

Description

本発明は、ポリアミド系樹脂を含む光学フィルム、及び該光学フィルムを備えるフレキシブル表示装置に関する。
液晶表示装置や有機EL表示装置等の画像表示装置は、携帯電話やスマートウォッチといった種々の用途に広く活用されている。このような画像表示装置の前面板として、ガラスが用いられてきたが、ガラスは非常に剛直であり、割れやすいため、例えばフレキシブルディスプレイ等の前面板材料としての利用は難しい。ガラスに代わる光学フィルムとして、例えばポリアミドイミド樹脂を含むプラスチックフィルムが検討されている(例えば特許文献1)。
特開2018−119132号公報
ポリアミド系樹脂を用いる種々の光学フィルムが知られているが、耐屈曲性のさらなる向上に対する要求はなお存在する。また、光学フィルムの傷つき等を防止する観点で、弾性率の向上に対する要求もなお存在する。したがって、本発明は、ポリアミド系樹脂を含む、耐屈曲性に優れる光学フィルムを提供することを課題とする。
本発明者は、上記課題を解決するために鋭意検討を行った結果、光学フィルムを製造する際の製造条件が光学フィルムの耐屈曲性及び弾性率に影響し得ることを見出し、さらなる検討を行った。その結果、光学フィルムにおいて、ラマン分光法により測定されるピーク強度が所定の式を満足する場合、光学フィルムの耐屈曲性及び弾性率をより高めることができることを見出し、本発明を完成するに至った。すなわち、本発明には、以下の態様が含まれる。
〔1〕ポリアミド系樹脂を含む光学フィルムであって、該光学フィルムの厚さをAμmとし、該光学フィルムの一方の表面上の任意の位置をDとし、Dから厚さ方向にA×1/4μmの位置をDとし、Dから厚さ方向にA×1/2μmの位置をDとし、Dから厚さ方向にA×3/4μmの位置をDとし、D〜Dの各位置におけるラマン分光法により測定される1,550〜1,650cm−1の範囲の最大ピークの強度をそれぞれI〜Iとすると、該光学フィルムは式(1)及び式(2):
Figure 2021070764
の少なくとも一方を満足する、光学フィルム。
〔2〕上記の式(1)を満たすI/I又は上記の式(2)を満たすI/Iは0.3以上である、前記〔1〕に記載の光学フィルム。
〔3〕光学フィルムの弾性率は5.5GPa以上である、前記〔1〕又は〔2〕に記載の光学フィルム。
〔4〕光学フィルムの全光線透過率は80%以上である、前記〔1〕〜〔3〕のいずれかに記載の光学フィルム。
〔5〕ポリアミド系樹脂の重量平均分子量は250,000以上である、前記〔1〕〜〔4〕のいずれかに記載の光学フィルム。
〔6〕ポリアミド系樹脂はポリアミドイミド樹脂である、前記〔1〕〜〔5〕のいずれかに記載の光学フィルム。
〔7〕フレキシブル表示装置の前面板用のフィルムである、前記〔1〕〜〔6〕のいずれかに記載の光学フィルム。
〔8〕前記〔1〕〜〔7〕のいずれかに記載の光学フィルムを備えるフレキシブル表示装置。
〔9〕タッチセンサをさらに備える、前記〔8〕に記載のフレキシブル表示装置。
〔10〕偏光板をさらに備える、前記〔8〕又は〔9〕に記載のフレキシブル表示装置。
本発明によれば、耐屈曲性に優れ、高い弾性率を有する光学フィルムを提供することができる。
本発明の光学フィルムの製造方法の好適な実施形態を模式的に示す工程断面図である。 本発明の光学フィルムの製造方法における加熱工程の好適な実施形態を模式的に示す工程断面図である。 本発明の光学フィルムの製造方法におけるテンター炉内の好適な実施形態を模式的に示す工程断面図である。
以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。
<光学フィルム>
本発明の光学フィルムは、ポリアミド系樹脂を含む光学フィルムであって、該光学フィルムの厚さをAμmとし、該光学フィルムの一方の表面上の任意の位置をDとし、Dから厚さ方向にA×1/4μmの位置をDとし、Dから厚さ方向にA×1/2μmの位置をDとし、Dから厚さ方向にA×3/4μmの位置をDとし、D〜Dの各位置におけるラマン分光法により測定される1,550〜1,650cm−1の範囲の最大ピークの強度をそれぞれI〜Iとすると、該光学フィルムは式(1)及び式(2):
Figure 2021070764
の少なくとも一方を満足する。上記を言い換えると、I/I及びI/Iのいずれか一方が0.97以下であり、他方が0.97を超えてもよく、I/I及びI/Iの両方が0.97以下であってもよい。
ラマン分光法により測定される1,550〜1,650cm−1の範囲の最大ピークは、光学フィルムに含まれるポリアミド系樹脂に含まれるアミド結合に帰属されるピークであると考えられる。そして、D〜Dの各位置におけるラマン分光法により測定される1,550〜1,650cm−1の範囲の最大ピークの強度は、光学フィルムのD〜Dの各位置におけるポリアミド系樹脂の量を相対的に表していると考えられる。したがって、例えば上記の式(1)におけるI/I≦0.97とは、Iの強度がIの強度よりも所定の割合で小さいことを表し、これは、Iの強度を示す位置Dにおけるポリアミド系樹脂の量が、Iの強度を示す位置Dにおけるポリアミド系樹脂の量よりも所定の割合で少ないことを意味している。同様に、上記の式(2)におけるI/I≦0.97とは、Iの強度を示す位置Dにおけるポリアミド系樹脂の量が、Iの強度を示す位置Dにおけるポリアミド系樹脂の量よりも所定の割合で少ないことを意味している。ここで、位置D〜Dの各位置は上記の通り、光学フィルムの一方の表面上の任意の位置がDであり、光学フィルムの厚さをAμmとすると、Dから厚さ方向にA×1/4μmの位置がDであり、Dから厚さ方向にA×1/2μmの位置がDであり、Dから厚さ方向にA×3/4μmの位置がDである。よって、光学フィルムが上記の式(1)及び式(2)の少なくとも一方を満足するとは、表面上の位置Dから厚さ方向にA×1/4μm及び/又はA×3/4μmの位置(D及び/又はD)に、表面上の位置Dから厚さ方向にA×1/2μmの位置であるDにおけるポリアミド系樹脂の量と比較して、ポリアミド系樹脂の量が所定の割合で少なくなる部分が存在することを表している。
ポリアミド系樹脂を含む光学フィルムが上記の式(1)及び式(2)の少なくとも一方を満足する場合に、光学フィルムの耐屈曲性及び弾性率が向上する理由は明らかではないが、上記の位置D及び/又はDにポリアミド系樹脂の量が少ない部分が存在する場合、当該部分にはポリアミド系樹脂以外の他の成分、例えば溶媒等が存在していると考えられる。そのため、位置D及び/又はDは、例えば位置Dと比較して、樹脂の量が少なく、例えば溶媒等の樹脂以外の成分がさらに存在していると考えられ、その結果、より柔軟性を有していると考えられる。光学フィルムが一部の厚さ領域において柔軟性を有する層を有する結果、光学フィルムの物理的な強度を維持しつつ、耐屈曲性を向上させることができると考えられる。また、柔軟性を有する層が一部にのみ存在することにより、光学フィルム全体として、高い耐屈曲性と高い弾性率とを両立させることができると考えられる。
〜Dの各位置におけるラマン分光法による1,550〜1,650cm−1の範囲の最大ピークの強度を測定する方法としては、共焦点ラマン顕微鏡を用いる方法が挙げられる。具体的には、本発明の光学フィルムの表面で共焦点ラマン顕微鏡の焦点を合わせた後、厚さ方向に一定の間隔毎に、他方の表面に達するまで測定を行う。そして、得られた結果から、光学フィルムの厚さ(Aμm)を得ると共に、厚さがA×1/4μm、A×2/4μm、A×3/4μmに相当する位置における測定結果から、1,550〜1,650cm−1の範囲の最大ピークの強度を読み取る。ラマン分光法の測定条件としては、例えば実施例に記載の条件を使用してよい。
上記のようにして測定したI/I及びI/Iの少なくとも一方が、0.97以下である。I/I及びI/Iのいずれもが0.97を超える場合、十分な耐屈曲性及び弾性率が得られない。なお、I/I及びI/Iのいずれもが0.97以下であってもよいが、光学フィルムの強度をより高めやすい観点では、I/I及びI/Iのいずれか一方が、0.97以下であることが好ましい。I/I及びI/Iの少なくとも一方は、好ましくは0.95以下、より好ましくは0.93以下、さらに好ましくは0.92以下、さらにより好ましくは0.8以下、とりわけ好ましくは0.6以下、とりわけより好ましくは0.5以下である。また、上記のようにして測定したI/I及びI/Iの下限は特に限定されないが、光学フィルムの強度を十分に高めやすい観点からは、上記の式(1)を満たすI/I及び/又は上記の式(2)を満たすI/Iは、好ましくは0.3以上、より好ましくは0.35以上、さらに好ましくは0.40以上、さらにより好ましくは0.45以上である。
光学フィルムにおいて、I/I又はI/Iを上記の範囲に調整する方法は、上記の特徴を有するフィルムが得られる限り特に限定されないが、例えば光学フィルムを製造時に使用するワニスに使用する溶媒の種類及び量、光学フィルムを製造する際の乾燥条件、テンター条件等の、光学フィルムの製造条件を調整する方法が挙げられる。具体的には、光学フィルムを製造する際、ポリアミド系樹脂を溶媒に溶解させた樹脂溶液(ワニス)を基材に塗工し、乾燥させ、乾燥後のフィルムを基材から剥離させる工程が行われるが、樹脂溶液を基材に塗工して乾燥させる場合、塗膜の基材側の面とは反対側の空気と接する表面からワニスに含まれていた溶媒が揮発していく。そのため、塗膜の表面側の面は溶媒が揮発しやすい環境にあるといえる。一方、塗膜の基材側の面からは溶媒が揮発しにくい。次いで基材を剥離すると、基材側の面からも溶媒の揮発が生じる。そして、光学フィルムの製造条件によっては、光学フィルムの厚さを1としたときに、得られる光学フィルムの基材と接していた面から厚さ方向に1/4の位置に、最も乾燥しにくく、溶媒が揮発せずに残存する部分ができると考えられる。上記のような方法により、光学フィルムの基材と接していた面から厚さ方向に1/4の位置に溶媒が揮発せずに残存する部分が生じ、上記の式(1)及び式(2)の少なくとも一方を満足する光学フィルムが得られる。上記のような層が形成されるように、光学フィルムの製造条件、特に乾燥条件を調整することにより、I/I及び/又はI/Iを上記の範囲に調整することができる。
光学フィルムの製造に使用した基材は、通常は光学フィルムから剥離される。そのため、光学フィルムのどちらの面が基材と接していた面であるかは不明である場合もあるが、上記のメカニズムを考慮すると、Dが光学フィルムの基材と接していた面上の位置であり、かつ、光学フィルムが式(1)を満たすことが好ましい。光学フィルムのどちらの面が基材と接していたかの判断方法としては、例えば、表面粗さが挙げられ、例えば光学フィルムの両面について干渉顕微鏡にて表面粗さを測定し、その値が低い方の面を基材と接していた面とすることができる。また、式(1)及び式(2)のいずれか一方を満たす光学フィルムについては、式(1)を満たす場合にはDに近い方の表面(Dを有する面)が、式(2)を満たす場合にはDに近い方の表面(Dを有する面と反対側の面)が、基材と接していた表面であると判断することができる。
本発明の一実施形態において、光学フィルムの全光線透過率は、好ましくは80%以上、より好ましくは83%以上、さらに好ましくは85%以上、さらにより好ましくは88%以上、とりわけ好ましくは89%以上、とりわけより好ましくは90%以上である。全光線透過率が上記の下限以上であると、光学フィルムを、特に前面板として、画像表示装置に組み込んだ際に視認性を高めやすい。本発明の光学フィルムは通常、高い全光線透過率を示すので、例えば、透過率の低いフィルムを用いた場合と比べて、一定の明るさを得るために必要な表示素子等の発光強度を抑えることが可能となる。このため、消費電力を削減することができる。例えば、本発明の光学フィルムを画像表示装置に組みこむ場合、バックライトの光量を減らしても明るい表示を得られる傾向があり、エネルギーの節約に貢献できる。全光線透過率の上限は、通常100%以下である。なお、全光線透過率は、例えばJIS K 7105:1981又はJIS K 7361−1:1997に準拠してヘーズコンピュータを用いて測定できる。また、全光線透過率は、後述する光学フィルムの厚さの範囲における全光線透過率であってよい。
本発明の一実施形態において、光学フィルムのヘーズは、好ましくは3%以下、より好ましくは2.5%以下、さらに好ましくは1.5%以下、さらにより好ましくは1.0%以下、とりわけ好ましくは0.5%以下、とりわけより好ましくは0.2%以下である。光学フィルムのヘーズが上記の上限以下であると、光学フィルムを、特に前面板として、画像表示装置に組み込んだ際に、視認性を高めやすい。また、ヘーズの下限は通常0.01%以上である。なお、ヘーズは、JIS K 7105:1981又はJIS K 7136:2000に準拠してヘーズコンピュータを用いて測定できる。
本発明の一実施形態において、光学フィルムの黄色度(YI値)は、好ましくは3.0以下、より好ましくは2.5以下、さらに好ましくは2.2以下である。光学フィルムの黄色度が上記の上限以下であると、透明性が良好となり、画像表示装置の前面板に使用した場合に、高い視認性に寄与することができる。また黄色度は、好ましくは−5以上、より好ましくは−2以上である。なお、黄色度(YI値)は紫外可視近赤外分光光度計を用いて300〜800nmの光に対する透過率測定を行い、3刺激値(X、Y、Z)を求め、YI=100×(1.2769X−1.0592Z)/Yの式に基づいて算出できる。
本発明の一実施形態において、光学フィルムの弾性率は、好ましくは5.3GPa以上、より好ましくは5.5GPa以上、さらに好ましくは5.7GPa以上、さらにより好ましくは5.9GPa以上、とりわけ好ましくは6.0GPa以上であり、通常100GPa以下である。弾性率は、引張試験機(例えば、チャック間距離50mm、引張速度10mm/分の条件)を用いて測定でき、例えば実施例に記載の方法により測定できる。
本発明の光学フィルムの明度L値は、光学フィルムの透明性、視認性を高めやすい観点から、好ましくは90以上、より好ましくは93以上、さらに好ましくは95以上であり、通常100以下である。上記の明度L値は、分光光度計を用いて測定することができる。具体的には、分光光度計を用い、サンプルがない状態でバックグランド測定を行った後、光学フィルムをサンプルホルダーにセットして、波長300〜800nmの光に対する透過率測定を行い測定することができる。
本発明の光学フィルムの厚さは、好ましくは10μm以上、より好ましくは20μm以上、さらに好ましくは25μm以上、さらにより好ましくは30μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは60μm以下であり、これらの上限と下限の組合せであってよい。光学フィルムの厚さが上記範囲内であると、光学フィルムの耐衝撃性をより高めやすい。なお、光学フィルムの厚さは、マイクロメーターを用いて測定でき、例えば実施例に記載の方法により測定できる。
本発明の光学フィルムにおける、耐屈曲性試験における屈曲回数(屈曲半径R=1mm)は、好ましくは20,000回以上、より好ましくは22,000回以上、さらに好ましくは24,000回以上である。屈曲回数が上記の下限以上であると、フレキシブル表示装置等の前面板材料として十分な耐屈曲性を有する。なお、本発明の耐屈曲性試験における屈曲回数は、折り曲げ試験機を用いて、屈曲半径(曲率半径)Rが1mmの条件で、光学フィルムの繰り返し折り曲げ(裏表両方向)を行い、該フィルムに割れが生じる時点までの往復の折り曲げ回数(1往復を1回とする)を示し、例えば実施例に記載の方法により測定できる。
<ポリアミド系樹脂>
本発明の光学フィルムはポリアミド系樹脂を含む。光学フィルムに含まれるポリアミド系樹脂は、アミド基を含む繰返し構造単位を少なくとも含有する限り特に限定されず、例えば、アミド基を含む繰返し構造単位を含有する重合体(以下において、ポリアミド樹脂とも称する)、及び、アミド基を含む繰返し構造単位及びイミド基を含む繰返し構造単位の両方を含有する重合体(以下において、ポリアミドイミド樹脂とも称する)からなる群から選択される少なくとも1種の重合体であってよい。光学フィルムは、1種類のポリアミド系樹脂を含有してもよいし、2種以上のポリアミド系樹脂を含有してもよい。基材層に含まれるポリアミド系樹脂は、成膜性の観点からは、好ましくはポリアミドイミド樹脂である。
本発明の一実施形態において、ポリアミド系樹脂は、式(2):
Figure 2021070764
[式(2)中、Z及びXは、互いに独立に、2価の有機基を表し、*は結合手を表す]
で表される構成単位を有するポリアミド樹脂であるか、又は、式(1):
Figure 2021070764
[式(1)中、Yは4価の有機基を表し、Xは2価の有機基を表し、*は結合手を表す]
で表される構成単位及び上記式(2)で表される構成単位を有するポリアミドイミド樹脂である。ポリアミド系樹脂は、成膜性、透明性及び耐屈曲性の観点から、式(1)で表される構成単位及び式(2)で表される構成単位を有するポリアミドイミド樹脂であることが好ましい。以下において式(1)及び式(2)について説明するが、式(2)についての説明は、ポリアミド樹脂及びポリアミドイミド樹脂の両方(ポリアミド系樹脂)に関し、式(1)についての説明はポリアミドイミド樹脂に関する。
式(2)で表される構成単位は、ジカルボン酸化合物とジアミン化合物とが反応して形成される構成単位であり、式(1)で表される構成単位は、テトラカルボン酸化合物とジアミン化合物とが反応して形成される構成単位である。
式(2)において、Zは、2価の有機基を表し、好ましくは、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数6〜12のアリール基(これらの基における水素原子はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい)で置換されていてもよい、炭素数4〜40の2価の有機基を表し、より好ましくは、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数6〜12のアリール基(これらの基における水素原子はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい)で置換されていてもよい、環状構造を有する炭素数4〜40の2価の有機基を表す。なお、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数6〜12のアリール基の例としては、後述する式(3)中のR3a及びR3bに関する例示が同様にあてはまる。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。Zの有機基として、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29):
Figure 2021070764
[式(20)〜式(29)中、Wは、単結合、−O−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−、−C(CF−、−Ar−、−SO−、−CO−、−O−Ar−O−、−Ar−O−Ar−、−Ar−CH−Ar−、−Ar−C(CH−Ar−又は−Ar−SO−Ar−を表し、ここで、Arは、互いに独立に、水素原子がフッ素原子で置換されていてもよい炭素数6〜20のアリーレン基(例えばフェニレン基)を表し、*は結合手を表す]
で表される基の結合手のうち、隣接しない2つが水素原子に置き換わった基及び炭素数6以下の2価の鎖式炭化水素基が挙げられ、Zのヘテロ環構造としてはチオフェン環骨格を有する基が挙げられる。光学積層体の黄色度を抑制(YI値を低減)しやすい観点から、式(20)〜式(29)で表される基、及び、チオフェン環骨格を有する基が好ましく、式(26)、式(28)及び式(29)で表される基がより好ましい。
Zの有機基としては、式(20’)、式(21’)、式(22’)、式(23’)、式(24’)、式(25’)、式(26’)、式(27’)、式(28’)及び式(29’):
Figure 2021070764
[式(20’)〜式(29’)中、W及び*は、式(20)〜式(29)において定義した通りである]
で表される2価の有機基がより好ましい。なお、式(20)〜式(29)及び式(20’)〜式(29’)における環上の水素原子は、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数6〜12のアリール基(これらの基における水素原子はハロゲン原子(好ましくはフッ素原子)で置換されていてもよい)で置換されていてもよい。
ポリアミド系樹脂が、式(2)中のZが上記の式(20’)〜式(29’)のいずれかで表される構成単位を有する場合、特に式(2)中のZが後述する式(3’)で表される構成単位を有する場合、ポリアミド系樹脂は、該構成単位に加えて、次の式(d1):
Figure 2021070764
[式(d1)中、R24は後述する式(3)中のR3aについて定義する基又は水素原子であり、R25は、R24又は−C(=O)−*を表し、*は結合手を表す]
で表されるカルボン酸由来の構成単位をさらに有することが、ワニスの成膜性を高めやすく、光学フィルムの均一性を高めやすい観点から好ましい。構成単位(d1)としては、具体的には、R24及びR25がいずれも水素原子である構成単位(ジカルボン酸化合物に由来する構成単位)、R24がいずれも水素原子であり、R25が−C(=O)−*を表す構成単位(トリカルボン酸化合物に由来する構成単位)等が挙げられる。
ポリアミド系樹脂は、式(2)中のZとして複数種のZを含んでよく、複数種のZは、互いに同一であっても異なっていてもよい。特に、本発明の光学フィルムの耐屈曲性、耐衝撃性を高めやすく、かつ、光学特性を高めやすい観点から、式(2)中のZが好ましくは式(3):
Figure 2021070764
[式(3)中、R3a及びR3bは、互いに独立に、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数6〜12のアリール基を表し、R3a及びR3bに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Wは、互いに独立に、単結合、−O−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−、−C(CF−、−SO−、−S−、−CO−又は−N(R)−を表し、Rは水素原子、ハロゲン原子で置換されていてもよい炭素数1〜12の1価の炭化水素基を表し、sは0〜4の整数であり、tは0〜4の整数であり、uは0〜4の整数であり、*は結合手を表す]
、より好ましくは式(3’):
Figure 2021070764
[式(3’)中、R3a、R3b、s、t、u、W及び*は、式(3)において定義した通りである]
で表される構成単位を少なくとも有することが好ましい。なお、本明細書において、ポリアミド系樹脂が式(2)中のZが式(3)で表される構成単位を有することと、ポリアミド系樹脂が式(2)中のZとして式(3)で表される構造を有することとは、同様の意味を有し、ポリアミド系樹脂に含まれる複数の式(2)で表される構成単位のうち、少なくとも一部の構成単位におけるZが式(3)で表されることを意味する。当該記載は、他の同様の記載にもあてはまる。
式(3)及び式(3’)において、Wは、互いに独立に、単結合、−O−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−、−C(CF−、−SO−、−S−、−CO−又は−N(R)−を表し、光学積層体の耐屈曲性の観点から、好ましくは−O−又は−S−を表し、より好ましくは−O−を表す。
3a及びR3bは、互いに独立に、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数6〜12のアリール基を表す。炭素数1〜6のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、2−メチル−ブチル基、3−メチルブチル基、2−エチル−プロピル基、n−ヘキシル基等が挙げられる。炭素数1〜6のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等が挙げられる。炭素数6〜12のアリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等が挙げられる。光学積層体の表面硬度及び柔軟性の観点から、R3a及びR3bは、互いに独立に、好ましくは炭素数1〜6のアルキル基を表し、より好ましくは炭素数1〜3のアルキル基を表す。ここで、R3a及びR3bに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。
は水素原子、ハロゲン原子で置換されていてもよい炭素数1〜12の1価の炭化水素基を表す。炭素数1〜12の1価の炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、2−メチル−ブチル基、3−メチルブチル基、2−エチル−プロピル基、n−ヘキシル、n−ヘプチル基、n−オクチル基、tert−オクチル基、n−ノニル基、n−デシル基等が挙げられ、これらはハロゲン原子で置換されていてもよい。前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
式(3)及び式(3’)中のt及びuは、互いに独立に、0〜4の整数であり、好ましくは0〜2の整数、より好ましくは0又は1、さらにより好ましくは0である。
式(3)及び式(3’)中のsは0〜4の範囲の整数であり、sがこの範囲内であると、光学フィルムの耐衝撃性、弾性率及び耐屈曲性を向上しやすい。式(3)及び式(3’)中のsは、光学フィルムの耐衝撃性、弾性率及び耐屈曲性をより向上しやすい観点から、好ましくは0〜3の範囲の整数、より好ましくは0〜2の範囲の整数、さらに好ましくは0又は1、さらにより好ましくは0である。式(2)中のZとしてsが0である式(3)又は式(3’)で表される構造を含む構成単位は、例えばテレフタル酸又はイソフタル酸に由来する構成単位であり、該構成単位は特に、式(3)又は式(3’)中のsが0及びuが0である構造を含む構成単位であることが好ましい。光学フィルムの耐衝撃性、弾性率及び耐屈曲性を向上しやすい観点から、ポリアミド系樹脂はテレフタル酸に由来する構成単位を含むことが好ましい。ポリアミド系樹脂はZが式(3)又は式(3’)で表される構成単位を1種又は2種類以上含んでいてもよい。光学フィルムの耐衝撃性、弾性率及び耐屈曲性の向上、黄色度(YI値)低減の観点からは、ポリアミド系樹脂は式(2)中のZとして、式(3)中又は式(3’)中のsの値が異なる2種類以上の構造を含むことが好ましく、式(3)又は式(3’)中のsの値が異なる2種類又は3種類の構造を含むことがより好ましい。この場合、光学フィルムの耐衝撃性、弾性率及び耐屈曲性を高めやすい観点、並びに、光学フィルムの黄色度(YI値)を低減しやすい観点から、ポリアミド系樹脂が式(2)で表される構成単位におけるZとして、sが0である式(3)で表される構造を含有し、該構造を含む構成単位に加えてsが1である式(3)で表される構造を含む構成単位をさらに含有することがさらに好ましい。また、sが0である式(3)で表されるZを有する式(2)で表される構成単位に加えて、上記の式(d1)で表される構成単位をさらに有することも好ましい。
本発明の好ましい一実施形態において、ポリアミド系樹脂は、式(3)又は式(3’)で表される構造(2価の基)として、s=0であり、かつu=0である構造を有する。本発明のより好ましい一実施形態において、ポリアミド系樹脂は、式(3)又は式(3’)で表される構造として、s=0であり、かつu=0である構造と、式(3’’):
Figure 2021070764
で表される構造を有する。この場合、光学フィルムの耐衝撃性、弾性率及び耐屈曲性を向上させやすいと共に、黄色度を低減しやすい。
ポリアミド系樹脂が、式(2)中のZが式(3)又は式(3’)で表される構成単位を有する場合、その割合は、ポリアミド系樹脂の式(1)で表される構成単位及び式(2)で表される構成単位の合計を100モル%としたときに、好ましくは20モル%以上、より好ましくは30モル%以上、さらに好ましくは40モル%以上、さらにより好ましくは50モル%以上、とりわけ好ましくは60モル%以上であり、好ましくは90モル%以下、より好ましくは85モル%以下、さらに好ましくは80モル%以下である。式(2)中のZが式(3)又は式(3’)で表される構成単位の割合が上記の下限以上であると、光学フィルムの耐衝撃性、弾性率及び耐屈曲性を高めやすい。式(2)中のZが式(3)又は式(3’)で表される構成単位の割合が上記の上限以下であると、式(3)由来のアミド結合間水素結合による樹脂含有ワニスの粘度上昇を抑制し、フィルムの加工性を向上しやすい。
また、ポリアミド系樹脂が、式(2)中のZとしてs=1〜4である式(3)又は式(3’)で表される構造を有する場合、sが1〜4である式(3)又は式(3’)で表されるZを有する式(2)で表される構成単位の割合は、ポリアミド系樹脂の式(1)で表される構成単位及び式(2)で表される構成単位の合計を100モル%としたときに、好ましくは3モル%以上、より好ましくは5モル%以上、さらに好ましくは7モル%以上、さらにより好ましくは9モル%以上であり、好ましくは90モル%以下、より好ましくは70モル%以下、さらに好ましくは50モル%以下、さらにより好ましくは30モル%以下である。sが1〜4である式(3)又は式(3’)で表されるZを有する式(2)で表される構成単位の割合が上記の下限以上であると、光学フィルムの化学的安定性、耐衝撃性、弾性率及び耐屈曲性を高めやすい。sが1〜4である式(3)で表されるZを有する式(2)で表される構成単位の割合が上記の上限以下であると、式(3)又は式(3’)で表される構造由来のアミド結合間水素結合による樹脂含有ワニスの粘度上昇を抑制し、フィルムの加工性を向上しやすい。なお、式(1)、式(2)、式(2)中のZが式(3)又は式(3’)で表される構成単位の割合は、例えばH−NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
本発明の好ましい一実施形態において、ポリアミド系樹脂中のZの、好ましくは30モル%以上、より好ましくは40モル%以上、さらに好ましくは45モル%以上、さらにより好ましくは50モル%以上が、sが0〜4である式(3)又は式(3’)で表される。Zの上記の下限以上が、sが0〜4である式(3)又は式(3’)で表されると、光学フィルムの耐衝撃性、弾性率及び耐屈曲性を高めやすい。また、ポリアミド系樹脂中のZの100モル%以下が、sが0〜4である式(3)又は式(3’)で表されればよい。なお、樹脂中の、sが0〜4である式(3)又は式(3’)で表されるZを有する式(2)で表される構成単位の割合は、例えばH−NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
本発明の好ましい一実施形態において、ポリアミド系樹脂中のZの、好ましくは5モル%以上、より好ましくは8モル%以上、さらに好ましくは10モル%以上、さらにより好ましくは12モル%以上が、sが1〜4である式(3)又は式(3’)で表される。ポリアミド系樹脂のZの上記の下限以上が、sが1〜4である式(3)又は式(3’)で表される場合、光学フィルムの耐衝撃性、弾性率及び耐屈曲性を高めやすい。また、Zの、好ましくは90モル%以下、より好ましくは70モル%以下、さらに好ましくは50モル%以下、さらにより好ましくは30モル%以下が、sが1〜4である式(3)又は式(3’)で表される。Zの上記の上限以下が、sが1〜4である式(3)又は式(3’)で表される場合、sが1〜4である式(3)又は式(3’)で表される構造由来のアミド結合間水素結合による樹脂含有ワニスの粘度上昇を抑制し、フィルムの加工性を向上しやすい。なお樹脂中のsが1〜4である式(3)又は式(3’)で表されるZを有する式(2)で表される構成単位の割合は、例えばH−NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
式(1)及び式(2)において、Xは、互いに独立に、2価の有機基、好ましくは炭素数4〜40の2価の有機基、より好ましくは環状構造を有する炭素数4〜40の2価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよく、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1〜8である。本発明の一実施形態において、本発明のポリアミド系樹脂は、複数種のXを含み得、複数種のXは、互いに同一であっても異なっていてもよい。Xとしては、式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;該式(10)〜式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が挙げられる。
Figure 2021070764
式(10)〜式(18)中、*は結合手を表し、
、V及びVは、互いに独立に、単結合、−O−、−S−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−、−C(CF−、−SO−、−CO−又は−N(Q)−を表す。ここで、Qはハロゲン原子で置換されていてもよい炭素数1〜12の1価の炭化水素基を表す。炭素数1〜12の1価の炭化水素基としては、Rについて上記に述べた基が挙げられる。
1つの例は、V及びVが単結合、−O−又は−S−であり、かつ、Vが−CH−、−C(CH−、−C(CF−又は−SO−である。VとVとの各環に対する結合位置、及び、VとVとの各環に対する結合位置は、互いに独立に、各環に対して、好ましくはメタ位又はパラ位、より好ましくはパラ位である。
式(10)〜式(18)で表される基の中でも、光学フィルムの化学的安定性、耐衝撃性、弾性率及び耐屈曲性を高めやすい観点から、式(13)、式(14)、式(15)、式(16)及び式(17)で表される基が好ましく、式(14)、式(15)及び式(16)で表される基がより好ましい。また、V、V及びVは、光学フィルムの耐衝撃性、弾性率及び柔軟性を高めやすい観点から、互いに独立に、好ましくは単結合、−O−又は−S−、より好ましくは単結合又は−O−である。
本発明の好ましい一実施形態において、ポリアミド系樹脂は、式(1)中のX又は式(2)中のXとして、式(4):
Figure 2021070764
[式(4)中、R10〜R17は、互いに独立に、水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基を表し、R10〜R17に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す]
で表される構造を含む。式(1)及び式(2)で表される複数の構成単位中のXの少なくとも一部が式(4)で表される構造であると、光学フィルムの化学的安定性、耐衝撃性、弾性率及び透明性を高めやすい。
式(4)において、R10、R11、R12、R13、R14、R15、R16及びR17は、互いに独立に、水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数6〜12のアリール基を表す。炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基としては、式(3)における炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基として例示した基が挙げられる。R10〜R17は、互いに独立に、好ましくは水素原子又は炭素数1〜6のアルキル基、より好ましくは水素原子又は炭素数1〜3のアルキル基を表し、ここで、R10〜R17に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。R10〜R17は、互いに独立に、光学フィルムの耐衝撃性、弾性率、透明性及び耐屈曲性の観点から、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基を表し、さらにより好ましくはR10、R12、R13、R14、R15及びR16が水素原子、R11及びR17が水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基を表し、とりわけ好ましくはR11及びR17がメチル基又はトリフルオロメチル基を表す。
本発明の好ましい一実施形態において、式(4)で表される構成単位は式(4’):
Figure 2021070764
で表される構成単位であり、すなわち、式(1)及び式(2)で表される複数の構成単位中のXの少なくとも一部は、式(4’)で表される構成単位である。この場合、フッ素元素を含有する骨格によりポリアミド系樹脂の溶媒への溶解性を高め、該樹脂を含有するワニスの保管安定性を向上しやすいと共に、該ワニスの粘度を低減しやすく、光学フィルムの加工性を向上しやすい。また、フッ素元素を含有する骨格により、光学フィルムの光学特性を向上しやすい。
本発明の好ましい一実施形態において、上記ポリアミド系樹脂中のXの、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上が式(4)、特に式(4’)で表される。ポリアミド系樹脂における上記範囲内のXが式(4)、特に式(4’)で表される場合、得られる光学フィルムは、フッ素元素を含有する骨格により樹脂の溶媒への溶解性を高め、該樹脂を含有するワニスの保管安定性を向上しやすいと共に、該ワニスの粘度を低減しやすく、光学フィルムの加工性を向上しやすい。また、フッ素元素を含有する骨格により、光学フィルムの光学特性も向上しやすい。なお、好ましくは、上記ポリアミド系樹脂中のXの100モル%以下が式(4)、特に式(4’)で表される。上記樹脂中のXは式(4)、特に式(4’)であってもよい。上記樹脂中のXの式(4)で表される構成単位の割合は、例えばH−NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
式(1)において、Yは、4価の有機基、好ましくは炭素数4〜40の4価の有機基を表し、より好ましくは環状構造を有する炭素数4〜40の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられ、耐衝撃性及び弾性率を高めやすい観点からは、好ましくは芳香環が挙げられる。前記有機基は、有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基であり、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1〜8である。本発明の一実施形態において、ポリアミド系樹脂はポリアミドイミド樹脂であり、該ポリアミドイミド樹脂は、複数種のYを含み得、複数種のYは、互いに同一であっても異なっていてもよい。Yとしては、以下の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基;該式(20)〜式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに4価の炭素数6以下の鎖式炭化水素基が挙げられる。
Figure 2021070764
式(20)〜式(29)中、*は結合手を表し、Wは、単結合、−O−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−、−C(CF−、−Ar−、−SO−、−CO−、−O−Ar−O−、−Ar−O−Ar−、−Ar−CH−Ar−、−Ar−C(CH−Ar−又は−Ar−SO−Ar−を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6〜20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。
式(20)〜式(29)で表される基の中でも、光学フィルムの化学的安定性、耐衝撃性、弾性率及び耐屈曲性を高めやすい観点から、式(26)、式(28)又は式(29)で表される基が好ましく、式(26)で表される基がより好ましい。また、Wは、光学フィルムの化学的安定性、耐衝撃性、弾性率及び耐屈曲性を高めやすいと共に、光学フィルムの黄色度を低減しやすい観点から、互いに独立に、好ましくは単結合、−O−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−又は−C(CF−、より好ましくは単結合、−O−、−CH−、−CH(CH)−、−C(CH−又は−C(CF−、さらに好ましくは単結合、−C(CH−又は−C(CF−、さらにより好ましくは単結合又は−C(CF−である。
本発明の好ましい一実施形態において、ポリアミドイミド樹脂中のYの、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上が、式(26)で表される。ポリアミドイミド樹脂における上記範囲内のYが式(26)、好ましくはWが単結合、−C(CH−又は−C(CF−である式(26)、より好ましくはWが単結合又は−C(CF−である式(26)で表されると、光学フィルムの化学的安定性、耐衝撃性、弾性率及び耐屈曲性を高めやすいと共に、光学フィルムの黄色度を低減しやすい。ポリアミドイミド樹脂中のYが式(26)で表される構成単位の割合は、例えばH−NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
本発明の好ましい一実施形態において、複数の式(1)中のYの少なくとも一部は、式(5):
Figure 2021070764
[式(5)中、R18〜R25は、互いに独立に、水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基を表し、R18〜R25に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す]
及び/又は式(9)
Figure 2021070764
[式(9)中、R35〜R40は、互いに独立に、水素原子、炭素数1〜6のアルキル基又は炭素数6〜12のアリール基を表し、R35〜R40に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、*は結合手を表す]
で表される。複数の式(1)中のYの少なくとも一部が式(5)で表される、及び/又は、式(9)で表されると、光学フィルムの化学的安定性、耐衝撃性、弾性率及び光学特性を向上させやすい。
式(5)において、R18、R19、R20、R21、R22、R23、R24及びR25は、互いに独立に、水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基を表す。炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基としては、式(3)における炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基又は炭素数6〜12のアリール基として上記に例示のものが挙げられる。R18〜R25は、互いに独立に、好ましくは水素原子又は炭素数1〜6のアルキル基、より好ましくは水素原子又は炭素数1〜3のアルキル基を表し、ここで、R18〜R25に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。R18〜R25は、互いに独立に、光学フィルムの耐衝撃性、弾性率及び耐屈曲性を高めやすい観点、並びに、透明性を高めやすいと共に、該透明性を維持しやすい観点から、さらに好ましくは水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基を表し、さらにより好ましくはR18、R19、R20、R23、R24及びR25が水素原子、R21及びR22が水素原子、メチル基、フルオロ基、クロロ基又はトリフルオロメチル基を表し、とりわけ好ましくはR21及びR22がメチル基又はトリフルオロメチル基を表す。
式(9)において、光学フィルムの化学的安定性、耐衝撃性、弾性率及び耐屈曲性を高めやすい観点、並びに、透明性を高めやすいと共に、該透明性を維持しやすい観点から、R35〜R40は、好ましくは水素原子又は炭素数1〜6のアルキル基を表し、より好ましくは水素原子又は炭素数1〜3のアルキル基を表し、さらに好ましくは水素原子を表す。ここで、R35〜R40に含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、該ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。R35〜R40における炭素数1〜6のアルキル基及び炭素数6〜12のアリール基としては、それぞれ上記に例示のものが挙げられる。
本発明の好ましい一実施形態においては、式(5)は式(5’)で表され、式(9)は式(9’):
Figure 2021070764
で表される。すなわち、複数のYの少なくとも一部は、式(5’)及び/又は式(9’)で表される。この場合、光学フィルムの耐衝撃性、弾性率及び耐屈曲性を高めやすい。さらに、式(5)が式(5’)で表される場合、フッ素元素を含有する骨格によりポリアミドイミド樹脂の溶媒への溶解性を高め、該樹脂を含有するワニスの保管安定性を向上しやすいと共に、該ワニスの粘度を低減しやすく、光学フィルムの加工性を向上しやすい。また、フッ素元素を含有する骨格により、光学フィルムの光学特性を向上しやすい。
本発明の好ましい一実施形態において、ポリアミドイミド樹脂中のYの、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上が、式(5)、特に式(5’)で表される。ポリアミドイミド樹脂における上記範囲内のYが式(5)、特に式(5’)で表されると、フッ素元素を含有する骨格によりポリアミドイミド樹脂の溶媒への溶解性を高め、該樹脂を含有するワニスの粘度を低減しやすく、光学フィルムの加工性を向上しやすい。また、フッ素元素を含有する骨格により、光学フィルムの光学特性を向上しやすい。なお、好ましくは、上記ポリアミドイミド樹脂中のYの100モル%以下が式(5)、特に式(5’)で表される。ポリアミドイミド樹脂中のYは式(5)、特に式(5’)であってもよい。ポリアミドイミド樹脂中のYの式(5)で表される構成単位の割合は、例えばH−NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
本発明の好ましい一実施形態において、式(1)で表される複数の構成単位は、Yが式(5)で表される構成単位に加えて、Yが式(9)で表される構成単位をさらに含むことが好ましい。Yが式(9)で表される構成単位をさらに含む場合、光学フィルムの耐衝撃性及び弾性率をさらに向上させやすい。
ポリアミドイミド樹脂は、式(30)で表される構成単位及び/又は式(31)で表される構成単位を含むものであってもよく、また式(1)及び場合により式(2)で表される構成単位の他に、式(30)で表される構成単位及び/又は式(31)で表される構成単位を含むものであってもよい。
Figure 2021070764
式(30)において、Yは4価の有機基を表し、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基、該式(20)〜式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基、並びに4価の炭素数6以下の鎖式炭化水素基が挙げられる。本発明の一実施形態において、ポリアミドイミド樹脂は、複数種のYを含み得、複数種のYは、互いに同一であっても異なっていてもよい。
式(31)において、Yは3価の有機基を表し、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、上記の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が挙げられる。本発明の一実施形態において、ポリアミドイミド樹脂は、複数種のYを含み得、複数種のYは、互いに同一であっても異なっていてもよい。
式(30)及び式(31)において、X及びXは、互いに独立に、2価の有機基を表し、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基を表す。X及びXとしては、上記の式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;該式(10)〜式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が挙げられる。
本発明の一実施形態において、ポリアミド系樹脂は、式(1)及び/又は式(2)で表される構成単位、並びに場合により式(30)及び/又は式(31)で表される構成単位からなる。また、光学フィルムの光学特性、耐衝撃性、弾性率及び耐屈曲性を高めやすい観点から、上記ポリアミド系樹脂において、式(1)及び式(2)で表される構成単位の割合は、式(1)及び式(2)、並びに場合により式(30)及び式(31)で表される全構成単位に基づいて、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。なお、ポリアミド系樹脂において、式(1)及び式(2)で表される構成単位の割合は、式(1)及び式(2)、並びに場合により式(30)及び/又は式(31)で表される全構成単位に基づいて、通常100%以下である。なお、上記割合は、例えば、H−NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
本発明の一実施形態において、光学フィルム中におけるポリアミド系樹脂の含有量は、光学フィルム100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上、さらに好ましくは50質量部以上であり、好ましくは99.5質量部以下、より好ましくは95質量部以下である。ポリアミド系樹脂の含有量が上記範囲内であると、光学フィルムの化学的安定性、光学特性、耐衝撃性及び弾性率を向上させやすい。
ポリアミド系樹脂の重量平均分子量は、光学フィルムの化学的安定性、耐衝撃性、弾性率及び耐屈曲性を高めやすい観点から、標準ポリスチレン換算で、好ましくは200,000以上、より好ましくは230,000以上、さらに好ましくは250,000以上、さらにより好ましくは270,000以上、とりわけ好ましくは280,000以上である。また、ポリアミド系樹脂の重量平均分子量は、該樹脂の溶媒に対する溶解性を向上しやすいと共に、光学フィルムの延伸性及び加工性を向上しやすい観点から、好ましくは1,000,000以下、より好ましくは800,000以下、さらに好ましくは700,000以下、さらにより好ましくは500,000以下である。重量平均分子量は、例えばGPC測定を行い、標準ポリスチレン換算によって求めることができ、例えば実施例に記載の方法により算出してよい。なお、光学フィルムの耐屈曲性を、光学フィルムに含まれるポリアミド系樹脂の重量平均分子量を高めることにより向上させることも可能ではあるが、ポリアミド系樹脂の重量平均分子量が高くなりすぎると、光学フィルムの加工性が損なわれ、例えば光学フィルムの物理的性質及び光学的性質にばらつきが生じやすくなる場合もある。上記の特徴を有する本発明の光学フィルムは、該光学フィルムに含まれるポリアミド系樹脂の重量平均分子量が比較的低い場合であっても、耐屈曲性を向上させやすいため、光学フィルムの物理的性質及び光学的性質の均質性をより向上させやすい。
本発明の好ましい一実施形態において、ポリアミド系樹脂がポリアミドイミド樹脂である場合、該ポリアミドイミド樹脂における式(2)で表される構成単位の含有量は、式(1)で表される構成単位1モルに対して、好ましくは0.1モル以上、より好ましくは0.5モル以上、さらに好ましくは1.0モル以上、さらにより好ましくは1.5モル以上であり、好ましくは6.0モル以下、より好ましくは5.0モル以下、さらに好ましくは4.5モル以下である。式(2)で表される構成単位の含有量が上記の下限以上であると、光学フィルムの耐衝撃性及び弾性率を高めやすい。また、式(2)で表される構成単位の含有量が上記の上限以下であると、式(2)中のアミド結合間の水素結合による増粘を抑制し、光学フィルムの加工性を向上させやすい。
本発明の好ましい一実施形態において、光学フィルムに含まれるポリアミド系樹脂は、例えば上記の含フッ素置換基等によって導入することができる、フッ素原子等のハロゲン原子を含んでよい。ポリアミド系樹脂がハロゲン原子を含む場合、光学フィルムの弾性率を向上させ、かつ黄色度(YI値)を低減させやすい。光学フィルムの弾性率が高いと、傷及びシワ等の発生を抑制しやすい。また、光学フィルムの黄色度が低いと、該フィルムの透明性及び視認性を向上させやすくなる。ハロゲン原子は、好ましくはフッ素原子である。ポリイミド系樹脂にフッ素原子を含有させるために好ましい含フッ素置換基としては、例えばフルオロ基及びトリフルオロメチル基が挙げられる。
ポリアミド系樹脂におけるハロゲン原子の含有量は、それぞれ、ポリアミド系樹脂の質量を基準として、好ましくは1〜40質量%、より好ましくは5〜40質量%、さらに好ましくは5〜30質量%である。ハロゲン原子の含有量が上記の下限以上であると、光学フィルムの弾性率をより向上させ、吸水率を下げ、黄色度をより低減し、透明性及び視認性をより向上させやすい。ハロゲン原子の含有量が上記の上限以下であると、合成がしやすくなる。
ポリアミドイミド樹脂のイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは96%以上である。光学フィルムの光学特性を高めやすい観点から、イミド化率が上記の下限以上であることが好ましい。また、イミド化率の上限は100%以下である。イミド化率は、ポリアミドイミド樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、イミド結合のモル量の割合を示す。なお、ポリアミドイミド樹脂がトリカルボン酸化合物を含む場合には、ポリアミドイミド樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリアミドイミド樹脂中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができる。
(樹脂の製造方法)
ポリアミド樹脂は、例えば、ジアミン化合物及びジカルボン酸化合物を主な原料として製造できる。ポリアミドイミド樹脂及びポリアミドイミド前駆体樹脂は、例えば、テトラカルボン酸化合物、ジカルボン酸化合物及びジアミン化合物を主な原料として製造でき、ここで、ジカルボン酸化合物は少なくとも式(3”)で表される化合物を含むことが好ましい。
Figure 2021070764
[式(3”)中、R〜Rは、互いに独立に、水素原子、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基、又は炭素数6〜12のアリール基を表し、R〜Rに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、
Aは、単結合、−O−、−CH−、−CH−CH−、−CH(CH)−、−C(CH−、−C(CF−、−SO−、−S−、−CO−又は−N(R)−を表し、
は水素原子、ハロゲン原子で置換されていてもよい炭素数1〜12の1価の炭化水素基を表し、
mは0〜4の整数であり、
31及びR32は、互いに独立に、ヒドロキシル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基又は塩素原子を表す。]
本発明の好ましい一実施形態において、ジカルボン酸化合物は、mが0である、式(3”)で表される化合物である。ジカルボン酸化合物として、mが0である式(3”)で表される化合物に加えて、Aが酸素原子である式(3”)で表される化合物を使用することがより好ましい。また、別の好ましい一実施形態においては、ジカルボン酸化合物は、R31及びR32が塩素原子である、式(3”)で表される化合物である。また、ジアミン化合物に代えて、ジイソシアネート化合物を用いてもよい。
樹脂の製造に使用されるジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施形態において「芳香族ジアミン」とは、アミノ基が芳香環に直接結合しているジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が挙げられるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に芳香環やその他の置換基を含んでいてもよい。
脂肪族ジアミンとしては、例えば、ヘキサメチレンジアミン等の非環式脂肪族ジアミン、並びに1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’−ジアミノジシクロヘキシルメタン等の環式脂肪族ジアミン等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。
芳香族ジアミンとしては、例えばp−フェニレンジアミン、m−フェニレンジアミン、2,4−トルエンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノジフェニル(TFMBと記載することがある)、4,4’−ビス(4−アミノフェノキシ)ビフェニル、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−アミノ−3−メチルフェニル)フルオレン、9,9−ビス(4−アミノ−3−クロロフェニル)フルオレン、9,9−ビス(4−アミノ−3−フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独又は2種以上を組合せて使用できる。
芳香族ジアミンとしては、好ましくは4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノジフェニル(TFMB)、4,4’−ビス(4−アミノフェノキシ)ビフェニルが挙げられ、より好ましくは4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、1,4−ビス(4−アミノフェノキシ)ベンゼン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノジフェニル(TFMB)、4,4’−ビス(4−アミノフェノキシ)ビフェニルが挙げられる。これらは単独又は2種以上を組合せて使用できる。
上記ジアミン化合物の中でも、光学フィルムの高弾性率、高透明性、高柔軟性、高屈曲耐性及び低着色性の観点からは、ビフェニル構造を有する芳香族ジアミンからなる群から選ばれる1種以上を用いることが好ましい。2,2’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)ベンジジン、4,4’−ビス(4−アミノフェノキシ)ビフェニル及び4,4’−ジアミノジフェニルエーテルからなる群から選ばれる1種以上を用いることがより好ましく、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノジフェニル(TFMB)を用いることがよりさらに好ましい。
樹脂の製造に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。
芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAと記載することがある)、1,2−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,2−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、4,4’−(p−フェニレンジオキシ)ジフタル酸二無水物、4,4’−(m−フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、例えば1,2,4,5−ベンゼンテトラカルボン酸二無水物が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば2,3,6,7−ナフタレンテトラカルボン酸二無水物が挙げられる。
これらの中でも、好ましくは4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、1,2−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,2−ビス(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、4,4’−(p−フェニレンジオキシ)ジフタル酸二無水物及び4,4’−(m−フェニレンジオキシ)ジフタル酸二無水物が挙げられ、より好ましくは4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、ビス(3,4−ジカルボキシフェニル)メタン二無水物及び4,4’−(p−フェニレンジオキシ)ジフタル酸二無水物が挙げられる。これらは単独又は2種以上を組合せて使用できる。
脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、ジシクロヘキシル−3,3’,4,4’−テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4−ブタンテトラカルボン酸二無水物、及び1,2,3,4−ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。
上記テトラカルボン酸二無水物の中でも、光学フィルムの高耐衝撃性、高弾性率、高表面硬度、高透明性、高柔軟性、高屈曲耐性、及び低着色性の観点から、4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物が好ましく、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物及び4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物がより好ましく、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)がさらに好ましい。
樹脂の製造に用いられるジカルボン酸化合物としては、好ましくはテレフタル酸、イソフタル酸、4,4’−オキシビス安息香酸又はそれらの酸クロリド化合物が用いられる。テレフタル酸、イソフタル酸、4,4’−オキシビス安息香酸又はそれらの酸クロリド化合物に加えて、他のジカルボン酸化合物が用いられてもよい。他のジカルボン酸化合物としては、芳香族ジカルボン酸、脂肪族ジカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、イソフタル酸;ナフタレンジカルボン酸;4,4’−ビフェニルジカルボン酸;3,3’−ビフェニルジカルボン酸;炭素数8以下である鎖式炭化水素、のジカルボン酸化合物及び2つの安息香酸が単結合、−CH−、−C(CH−、−C(CF−、−SO−又はフェニレン基で連結された化合物並びに、それらの酸クロリド化合物が挙げられる。具体例としては、4,4’−オキシビス(ベンゾイルクロリド)、テレフタロイルクロリド又はイソフタロイルクロリドが好ましく、4,4’−オキシビス(ベンゾイルクロリド)とテレフタロイルクロリドとを組合せて用いることがさらに好ましい。
なお、上記ポリアミドイミド樹脂は、光学フィルムの各種物性を損なわない範囲で、上記テトラカルボン酸化合物に加えて、テトラカルボン酸及びトリカルボン酸並びにそれらの無水物及び誘導体をさらに反応させたものであってもよい。
テトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。
トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、1,2,4−ベンゼントリカルボン酸の無水物;1,3,5−ベンゼントリカルボン酸の無水物;2,3,6−ナフタレントリカルボン酸−2,3−無水物;フタル酸無水物と安息香酸とが単結合、−O−、−CH−、−C(CH−、−C(CF−、−SO−又はフェニレン基で連結された化合物が挙げられる。
樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物及び/又はジカルボン酸化合物の使用量は、所望とするポリアミド系樹脂の各構成単位の比率に応じて適宜選択できる。
樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物及びジカルボン酸化合物の反応温度は、特に限定されないが、例えば5〜350℃、好ましくは20〜200℃、より好ましくは25〜100℃である。反応時間も特に限定されないが、例えば30分〜10時間程度である。必要に応じて、不活性雰囲気又は減圧の条件下において反応を行ってよい。好ましい態様では、反応は、常圧及び/又は不活性ガス雰囲気下、撹拌しながら行う。また、反応は、反応に不活性な溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1−メトキシ−2−プロパノール、2−ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ−ブチロラクトン、γ−バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2−ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せ(混合溶媒)などが挙げられる。これらの中でも、溶解性の観点から、アミド系溶媒を好適に使用できる。
ポリアミドイミド樹脂の製造におけるイミド化工程では、イミド化触媒の存在下で、イミド化することができる。イミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N−エチルピペリジン、N−プロピルピペリジン、N−ブチルピロリジン、N−ブチルピペリジン、及びN−プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2−メチルピリジン(2−ピコリン)、3−メチルピリジン(3−ピコリン)、4−メチルピリジン(4−ピコリン)、2−エチルピリジン、3−エチルピリジン、4−エチルピリジン、2,4−ジメチルピリジン、2,4,6−トリメチルピリジン、3,4−シクロペンテノピリジン、5,6,7,8−テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。
ポリアミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により単離(分離精製)してもよく、好ましい態様では、透明ポリアミド系樹脂を含む反応液に、多量のメタノール等のアルコールを加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。
本発明の一実施形態において、光学フィルムは、ポリアミド系樹脂に加えて、少なくとも1種のフィラーを含んでよい。フィラーとしては、例えば有機粒子、無機粒子などが挙げられ、好ましくは無機粒子が挙げられる。無機粒子としては、シリカ、ジルコニア、アルミナ、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子などが挙げられ、これらの中でも、光学フィルムの弾性率及び/又は引裂き強度を高め、耐衝撃性を向上しやすい観点から、好ましくはシリカ粒子、ジルコニア粒子、アルミナ粒子が挙げられ、より好ましくはシリカ粒子が挙げられる。これらのフィラーは単独又は2種以上を組合せて使用できる。
フィラー、好ましくはシリカ粒子の平均一次粒子径は、通常1nm以上、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは15nm以上、とりわけ好ましくは20nm以上であり、好ましくは100nm以下、より好ましくは90nm以下、さらに好ましくは80nm以下、さらにより好ましくは70nm以下、とりわけ好ましくは60nm以下、とりわけより好ましくは50nm以下、とりわけさらに好ましくは40nm以下である。シリカ粒子の平均一次粒子径が上記範囲内であると、シリカ粒子の凝集を抑制し、光学フィルムの光学特性を向上しやすい。フィラーの平均一次粒子径は、BET法により測定できる。なお、透過型電子顕微鏡や走査型電子顕微鏡の画像解析により、平均一次粒子径を測定してもよい。
本発明の一実施形態において、光学フィルムがフィラー、好ましくはシリカ粒子を含有する場合、フィラーの含有量は、光学フィルム100質量部に対して、通常0.1質量部以上、好ましくは1質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上、さらによりに好ましくは20質量部以上、とりわけ好ましくは30質量部以上であり、好ましくは60質量部以下である。フィラーの含有量が上記の下限以上であると、光学フィルムの弾性率を向上させやすい。また、フィラーの含有量が上記の上限以下であると、光学フィルムの光学特性を向上させやすい。また、光学フィルムがシリカ粒子等のフィラーを含む場合、弾性率を向上させやすいが、その機械的強度の増加から、屈曲性が低下するおそれがある。本発明の光学フィルムは、内部にフレキシブル性に優れた層を有するため、光学フィルムがフィラーを含有する場合であっても、高い屈曲性を有することができる。
本発明の一実施形態において、光学フィルムは、紫外線吸収剤をさらに含有してもよい。紫外線吸収剤は、樹脂材料の分野で紫外線吸収剤として通常用いられているものから、適宜選択することができる。紫外線吸収剤は、400nm以下の波長の光を吸収する化合物を含んでいてもよい。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、及びトリアジン系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。紫外線吸収剤は単独又は二種以上を組合せて使用できる。光学フィルムが紫外線吸収剤を含有することにより、樹脂の劣化が抑制されるため、光学フィルムを画像表示装置等に適用した場合に視認性を高めることができる。本明細書において、「系化合物」とは、当該「系化合物」が付される化合物の誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。
光学フィルムが紫外線吸収剤を含有する場合、紫外線吸収剤の含有量は、光学フィルム100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上であり、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは6質量部以下である。好適な含有量は用いる紫外線吸収剤により異なるが、400nmの光線透過率が20〜60%程度になるように紫外線吸収剤の含有量を調節すると、光学フィルムの耐光性が高められるとともに、透明性を高めやすい。
本発明の一実施形態において、光学フィルムは、フィラー、紫外線吸収剤以外の他の添加剤をさらに含有していてもよい。他の添加剤としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。他の添加剤を含有する場合、その含有量は、光学フィルム100質量部に対して、好ましくは0.001〜20質量部、より好ましくは0.01〜15質量部、さらに好ましくは0.1〜10質量部であってよい。
(光学フィルムの製造方法)
本発明の光学フィルムの製造方法は、特に限定されないが、例えば以下の工程:
(a)ポリアミド系樹脂と、溶媒とを少なくとも含む樹脂組成物(以下において、「ワニス」とも称する)を調製する工程(ワニス調製工程)、
(b)ワニスを支持材に塗布して塗膜を形成する工程(塗布工程)、及び
(c)前記塗膜を乾燥させて、光学フィルムを形成する工程(光学フィルム形成工程)
を少なくとも含む製造方法であってよい。
ワニス調製工程において、ポリアミド系樹脂を溶媒に溶解させ、必要に応じて、前記フィラー、紫外線吸収剤等の添加剤を添加して撹拌混合することによりワニスを調製する。なお、フィラーとしてシリカ粒子を用いる場合、シリカ粒子を含むシリカゾルの分散液を、前記樹脂が溶解可能な溶媒、例えば下記のワニスの調製に用いられる溶媒で置換したシリカゾルを樹脂に添加してもよい。
ワニスの調製に用いる溶媒は、前記樹脂を溶解可能であれば特に限定されないが、上記特徴を有する本発明の光学フィルムを製造しやすい観点からは、溶媒として、例えばN,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)等のアミド系溶媒;γ−ブチロラクトン(GBL)、γ−バレロラクトン等のラクトン系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せを用いることが好ましく、アミド系溶媒及びラクトン系溶媒からなる群から選択される溶媒を用いることがより好ましい。これらの溶媒は単独又は二種以上組合せて使用できる。また、ワニスには水、アルコール系溶媒、ケトン系溶媒、非環状エステル系溶媒、エーテル系溶媒などが含まれてもよい。ワニスの固形分濃度は、好ましくは1〜25質量%、より好ましくは5〜20質量%、さらに好ましくは5〜15質量%である。
塗布工程において、公知の塗布方法により、支持材上にワニスを塗布して塗膜を形成する。公知の塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、流涎成形法等が挙げられる。
フィルム形成工程において、塗膜を乾燥し、支持材から剥離することによって、光学フィルムを形成することができる。剥離後にさらに光学フィルムを乾燥する工程を設けてもよい。塗膜の乾燥は、通常50〜350℃の温度にて行うことができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。

支持材の例としては、金属系であればSUS板、樹脂系であればPETフィルム、PENフィルム、他のポリアミド系樹脂フィルム、ポリイミド系樹脂フィルム、シクロオレフィン系ポリマー(COP)フィルム、アクリル系フィルム等、又はハードコート層を有するそれら樹脂フィルム、ガラス基板等が挙げられる。中でも、光学フィルムのI/I及び/又はI/Iを上記の範囲に調整しやすい観点、並びに光学フィルムの平滑性及び耐熱性に優れる観点から、支持材としては、PETフィルム、COPフィルム、ハードコート層を有する樹脂フィルム、SUS板、ガラス基板等が好ましく、さらにI/I及び/又はI/Iを上記の範囲に調整しやすい観点、コスト、及び生産性の観点から、支持材は、より好ましくはSUS板、ハードコート層を有する樹脂フィルム、さらに好ましくはSUS板、ハードコート層を有するPETフィルムである。
上記I/I及び/又はI/Iを上記の範囲に調整しやすい観点からは、上記のフィルム形成工程における塗膜の乾燥を、所定の溶媒量まで塗膜を乾燥後、支持材(基材)を剥離して、原料フィルムを得る工程、及び、該原料フィルムを、内部が複数の空間に分けられているテンター炉で加熱する加熱工程を含む製造方法により行うことが好ましい。さらに、テンター炉では、少なくとも1つの空間において熱風処理方式で加熱工程が行われ、かつ少なくとも1つの空間において輻射線処理方式で加熱工程が行われることが好ましい。なお、テンター炉とは、フィルム幅方向の両端を固定して加熱する炉を指す。なお、テンター炉を包含する、原料フィルムを加熱するための加熱装置を、本明細書においてオーブンとも称する。
本実施形態の光学フィルムの製造方法について、図を参照しながら説明する。図1は、本発明の一実施形態における光学フィルムの製造方法の好適な実施形態を模式的に示す工程断面図である。図1中、ポリアミド系樹脂を少なくとも含む原料フィルム20は、テンター炉100に搬入され、テンター炉100内の加熱ゾーンにおいて加熱され、その後テンター炉100から搬出される。本明細書では、加熱工程を経る前と、溶媒の量などの経時変化はあるものの加熱工程中又はオーブンの中を搬送されているフィルムを原料フィルムと称し、加熱工程を経てオーブンから搬出されたフィルムを光学フィルムと称する。
原料フィルム20は、原料フィルムが巻き取られたロールから繰り出されてテンター炉100に搬入されてもよいし、その直前の工程から連続的にテンター炉に搬入されてもよい。図2は、本発明の光学フィルムの製造方法における加熱工程の好適な実施形態を模式的に示す工程断面図である。図2に示すように、原料フィルム20は、フィルムの搬送方向(MD方向、長手方向とも言う)に垂直な方向(TD方向、幅方向とも言う)のフィルムの両端が固定された状態でテンター炉内を搬送されることが好ましい。固定は、例えば把持装置18により行ってよい。
両端の固定は、ピンシート、クリップ及びフィルムチャック等の一般にフィルムの製造装置に用いられる把持装置を用いて行うことができる。固定する両端は、用いる把持装置により適宜調整することができるが、フィルム端部から50cm以内の距離で固定されることが好ましい。図2に示すように、原料フィルムは、その両端を複数の把持装置18で把持しながら、搬送させてよい。フィルムの一方端に設置される複数の把持装置18は、その隣接する把持装置間の距離が、フィルムのばたつき又は加熱による寸法変化に起因するワレなどの欠陥を抑制できる距離であることが好ましい。隣接する把持装置間18の距離は、好ましくは1〜50mmであり、より好ましくは3〜25mmであり、さらに好ましくは5〜10mmである。また、把持装置は、フィルム搬送軸に直交する直線をフィルムの一方端の任意の把持装置の把持部中央に合せたとき、該直線とフィルムの他方の端との交点と、該交点に最も近い把持装置の把持部中央との距離が、好ましくは3mm以下、より好ましくは2mm以下、さらに好ましくは1mm以下となるように設置されることが好ましい。これにより、対抗するフィルム両端部のそれぞれに係る応力の差を小さくすることができるため、得られる光学フィルムにおける光学的性質のばらつきの発生を抑制することができる。また、このような条件で把持装置を用いてフィルムを固定しながら乾燥を行うことにより、フィルムの乾燥時のばたつきが抑制され、上記の式を満足する本発明の光学フィルムを製造しやすくなる。
把持装置でフィルムの両端を固定する操作の例としては、テンター炉に搬入される前又はテンター炉に搬入された後の適時に、フィルムの幅方向において、対向するように設けられた複数のフィルムチャックでフィルムの幅方向の両端を固定する方法が挙げられる。これらの操作により、フィルムのばたつきなどが抑制され、厚さムラや傷等の欠陥が十分に抑制された光学フィルムを得ることができる。また、上記の式を満足する本発明の光学フィルムを製造しやすくなる。フィルム両端の固定は、加熱工程が行われた後、適時解除されればよく、テンター炉内で行ってもよいし、テンター炉から搬出された後に行ってもよい。
加熱工程に用いられるテンター炉のフィルム搬送方向の全長は、通常10〜100m、好ましくは15〜80m、より好ましくは15〜60mである。テンター炉は、その内部が1つの空間であってもよいし、複数の空間に分けられていてもよいが、本発明の実施形態では、加熱工程を行うテンター炉内部が、複数の空間に分けられているものを採用する。前記空間は、温度条件や風速条件等制御可能な空間であってよく、仕切り板等の物理的な境界を持たなくてもよい。テンター炉の内部が複数の空間に分けられている場合、フィルムの搬送方向と、垂直又は平行に複数の空間に分けられていてもよい。空間の数は、通常2〜20個、好ましくは3〜18個、より好ましくは4〜15個、さらに好ましくは5〜10個である。テンター炉の内部構造によらず、テンター炉全体が加熱ゾーンとなってもよいし、内部の一部が加熱ゾーンとなっていてもよい。図1を参照し、ゾーン10、12及び14の3つが全て加熱ゾーンとなっていてもよいし、これらのうちの1つ、例えばゾーン14が加熱ソーンとなっていてもよい。
テンター炉は、複数個用いることもできる。この場合のテンター炉の数は、特に限定されないが、例えば2〜12つとすることができる。各テンター炉の内部は、先に述べた構造であることができる。複数のテンター炉は、フィルムが外気に触れることなく搬送されるように連続して設置することができる。テンター炉を複数用いる場合、全てのテンター炉が加熱ゾーンとなってもよいし、一部のテンター炉が加熱ゾーンとなっていてもよい。また、テンター炉に加え、他の機器としてオーブンを併用してもよい。本明細書において、オーブンとは、フィルムを加熱できる機器を意味し、加熱炉及び乾燥炉を含む。加熱炉は、熱風処理又は輻射線処理のどちらでもよく、これらを併用する加熱炉でもよい。オーブンを併用する場合、オーブンの内部構造、使用する数及び加熱を行う条件は、本発明の光学フィルムを得られる範囲内で適宜調整すればよいが、本明細書に記載のテンター炉と同様とすることが好ましい。
テンター炉内部の空気の循環と排気は、テンター炉の内部が複数の空間に分けられている場合は各空間で行われることが好ましく、テンター炉が複数ある場合は各テンター炉で行われることが好ましい。テンター炉内部の温度は、テンター炉毎に調整できることが好ましく、テンター炉の内部が複数の空間に分けられている場合は各空間で独立に温度調整ができることが好ましい。それぞれの空間の温度設定は、同じであっても異なってもよい。ただし、それぞれのテンター炉又は空間の温度は、後述の温度範囲を満たすことが好ましい。
加熱工程が行われるテンター炉100は、少なくとも1つの空間において熱風処理方式で加熱工程が行われ、かつ少なくとも1つの空間において輻射線処理方式で加熱工程が行われる。加熱工程は、この工程が行われる全ての空間が熱風処理方式で行われることが好ましい。輻射線処理方式の加熱工程は、熱風処理方式とは別の空間で行われてもよいが、熱風処理方式と併用されて加熱工程が行われることが好ましい。
熱風処理方式の加熱工程は、熱風を吹き出すノズルをテンター炉内に設置することで行うことができる。輻射線処理方式の加熱工程は、IRヒーターなどをテンター炉内に設置して輻射線をフィルムに当てることで行うことができる。
本発明の実施形態の一例として、ノズルを用いた熱風処理方式、及びIRヒーターを用いた輻射線処理方式について、ノズルを用いた熱風処理方式から順に以下に説明する。
図1を参照し、加熱工程が行われるテンター炉100は、その内部の上面100aに、複数の上側ノズル30が設けられており、その内部の下面100bに、複数の下側ノズル32が設けられている。上側ノズル30と下側ノズル32とは、上下方向に対向するように設けられている。ノズルは、例えば、図1のゾーン14のように4対のノズル(計8本)を設けてもよいし、図1のゾーン12のように10対のノズル(計20本)を設けてもよく、オーブンの構造に応じて適宜設置することができる。隣り合うノズルの間隔は、テンター炉の構造を簡素化しつつ原料フィルムを均一に加熱する観点、及び、光学フィルムのI/I及び/又はI/Iを上記の範囲に調整しやすい観点から、好ましくは0.1〜1m、より好ましくは0.1〜0.5m、さらに好ましくは0.1〜0.3mである。
テンター炉の内部が複数の区間に区分される場合、各空間に設けられる熱風吹き出し用のノズルの本数は、通常5〜30本とすることができる。上記の式を満足する本発明の光学フィルムを製造しやすく、また、光学フィルムの光学的な均一性を高めやすい観点から、ノズルの本数は8〜20本であることが好ましい。ノズル本数が前記の範囲にあるとフローティングしているフィルムの曲率が大きくなりすぎにくい傾向があり、またフィルムがノズルの間で浮き易い、すなわちフローティングし易い傾向がある。
テンター炉100の上面100aに設けられた上側ノズル30は、下部に吹き出し口を有しており、下方向(矢印B方向)に熱風を吹き出すことができる。一方、テンター炉100の下面にそれぞれ設けられた下側ノズル32は、上部に吹き出し口を有しており、上方向(矢印C方向)に熱風を吹き出すことができる。なお、図1には示していないが、上側ノズル30及び下側ノズル32は、原料フィルムを幅方向に均一に加熱することができるように、図1の紙面に垂直方向に所定のサイズの奥行きを有している。
本実施形態の光学フィルムの製造方法では、加熱ゾーンに設けられた全ての上側ノズル30及び全ての下側ノズル32からの吹き出し口における熱風の吹き出し風速は、好ましくは2〜25m/秒である。吹き出し風速は、上記の式を満足する本発明の光学フィルムを製造しやすく、また、光学フィルムの光学的な均一性を高めやすい観点から、より好ましくは2〜23m/秒、さらに好ましくは8〜20m/秒である。また、原料フィルムの幅方向に沿ったノズルの長さ1m当たり、ノズル30又は32の一本当たりの吹き出し口からの吹き出し風量は、同様の観点から、好ましくは0.1〜3m/秒、より好ましくは0.1〜2.5m/秒、さらに好ましくは0.2〜2m/秒である。
ノズルからの吹き出し風速及び風量が前記範囲内であると、原料フィルムの加熱が均一に行われるため、フィルム全面において光学的及び物理的に均一な物性となるフィルムが得られやすいと共に、上記の式を満足する本発明の光学フィルムを製造しやすい傾向にあるため好ましい。具体的に、前記条件で加熱工程を行うと、フィルム幅方向の面内位相差値のばらつきが小さくなり、フィルム全面でより均一な面内位相差値を有する光学フィルムが得られやすい。したがって、表示装置に適用した際に、コントラストのばらつきが抑制され、視認性により優れる前面板となる。
また、前記条件で加熱工程を行うと、上記の式を満足する本発明の光学フィルムを製造しやすいと共に、均一に加熱されるため、フィルム中に残る溶媒量のばらつきが小さくなり、フィルム全面でより均一な弾性率の光学フィルムが得られやすい。したがって、フィルム全面において屈曲性のばらつきが生じにくく、フィルム面における屈曲性の違いに起因する破損が生じるのを抑制できる。
テンター炉内では、原料フィルム20が室温から原料フィルムに含まれる溶媒が蒸発する温度まで加熱されるが、原料フィルムの幅方向の長さがほとんど変わらないように把持装置18で保持されているため、熱膨張により垂れやすくなる傾向にある。吹き出し風速及び吹き出し風量が、前記の範囲であると、原料フィルム20を十分に加熱することができ、且つ原料フィルム20の垂れやばたつきを抑制することができる。
熱風の吹き出し風速は、ノズル30、32の熱風吹き出し口において、市販の熱式風速計を用いて測定することができる。また、吹き出し口からの吹き出し風量は、吹き出し風速と吹き出し口の面積との積により求めることができる。なお、熱風の吹き出し風速は、測定精度の観点から、各ノズルの吹き出し口で10点程度の測定を行い、その平均値とすることが好ましい。
熱風の吹き出し風速及び吹き出し風量は、製造する光学フィルムの物性(光学特性、機械的物性など)によって、適宜調整してもよいが、いずれの形態においても前記の範囲内にあることが好ましい。これによって、位相差が一層十分に均一であって、一層十分に高い軸精度を有する光学フィルムを得ることができる。加熱ゾーンは、全ての加熱ゾーンにおいて、吹き出し風速が25m/秒以下で吹き出し風量が2m/秒以下であることがより好ましい。
本実施形態では、テンター炉100内に原料フィルム20を導入しない状態において、原料フィルム20が保持されるべき位置における熱風の風速は、好ましくは5m/秒以下であり、少なくとも加熱ゾーンにおいてこのような風速であることがより好ましい。このような熱風を用いて原料フィルム20を加熱することによって、上記の式を満足する本発明の光学フィルムを製造しやすく、かつ、光学的な均一性により十分に優れた光学フィルムを得ることができる。
加熱ゾーンにおいて、それぞれのノズル30、32の吹き出し口における熱風の吹き出し風速の幅方向(図1の紙面に垂直な方向)における最大値と最小値との差は、好ましくは4m/秒以下である。このように幅方向に風速のばらつきが少ない熱風を用いることによって、上記の式を満足する本発明の光学フィルムを製造しやすく、かつ、幅方向の光学的な均一性が一層高い光学フィルムを得ることができる。また、このように風速のばらつきが少ない熱風を用いることによって、上記の式を満足する本発明の光学フィルムを製造しやすく、かつ、光学的な均一性がより高い光学フィルムを得ることができる。
本実施形態において、フィルムに吹き付けられる熱風の風速は、オーブンに搬入された直後の風速が、オーブン内の他の搬送経路の風速よりも大きくなっていることが好ましい。オーブンに搬入された直後(以下、搬送経路1、と言う)とは、オーブンの内部が複数に区切られていない場合は、オーブン搬入口からオーブン長さ(オーブンの搬入口から搬出口までの長さ)の1/10未満の距離をいう。搬送経路1は、オーブンの内部が複数の空間に分けられている場合、フィルムが最初に通過する空間をいう。オーブンが複数使用される場合は、最初に使用されるオーブンの内部構造により先の記載と同様であってもよいし、最初に通過するオーブンが2つ目以降のオーブン内の風速よりも大きく設定されていることでもよい。
他の搬送経路とは、オーブンの内部が複数に区切られていない場合は、オーブン搬入口からオーブン長さの1/10以降にある搬送経路部をいう。オーブンの内部が複数の空間に分けられている場合は、フィルムが通過する2つ目以降にある任意の空間をいう。オーブンが複数使用される場合は、最初に使用されるオーブンの内部構造により先の記載と同様であってもよいし、2つ目以降のオーブンで任意のオーブン内の風速が最初に通過するオーブンよりも風速が小さく設定されていることでもよい。
搬送経路1の風速とオーブン内の他の搬送経路の風速との差は、好ましくは0.1〜15m/秒の範囲である。前記風速の差は、より好ましくは0.2m/秒以上であり、また、より好ましくは12m/秒以下、さらに好ましくは8m/秒以下、さらにより好ましくは5m/秒以下、とりわけ好ましくは3m/秒以下である。風速の差が前記範囲となるようにオーブン搬入直後の風速をオーブン内の他の搬送経路の風速よりも大きくすると、より効率よくフィルム中の溶媒を除去することができる傾向にある。風速の差が大きすぎると、風速差に起因するフィルムのばたつきが生じることがあり、上記の式を満足する本発明の光学フィルムが製造しにくい場合がある。また、得られる光学フィルムの表面形状の欠陥又は位相差等の光学特性のばらつきの原因となる可能性がある。
搬送経路1の風速とオーブン内の他の搬送経路の風速との差は、搬送経路1に設置されているノズルからの熱風の吹き出し風速と他の搬送経路に設置されているノズルからの熱風の吹き出し風速との差として求めることができる。フィルムに吹き付けられる熱風の風速とノズルからの熱風の吹き出し風速に2m/秒以上の差がある場合は、搬送経路1及び他の搬送経路のそれぞれにおけるフィルム付近の熱風の風速の差として求めてもよい。
他の搬送経路は、搬送経路1の次に位置する搬送経路(搬送経路2、という)であることが好ましい。搬送経路2は、オーブンの内部が複数に区切られていない場合、オーブン搬入口からオーブン長さの2/10に位置する搬送経路部をいう。搬送経路2は、オーブンの内部が複数の空間に分けられている場合、フィルムが通過する2つ目の空間をいう。オーブンが複数使用される場合は、最初に使用されるオーブンの内部構造により先の記載と同様であってもよいし、2つ目のオーブンの風速が最初に通過するオーブンよりも小さく設定されていることでもよい。
搬送経路1と搬送経路2との風速の差が前記のように設定されている場合、搬送経路2以降の搬送経路の風速は、前記熱風の吹き出し風速の範囲内であればよい。搬送経路2以降の搬送経路の風速は、搬送経路1又は搬送経路2のそれぞれの風速と、0.1〜12m/秒の風速の差であることが好ましく、0.2〜8m/秒の風速の差であることがより好ましい。このような範囲の風速の差であれば、風速差に起因するフィルムのばたつきを抑制でき、上記の式を満足する本発明の光学フィルムを製造しやすく、また、得られる光学フィルムの重量減少率を所望の範囲に調整しやすい傾向にある。
前記風速の差は、オーブンの内部が複数の空間に分かれていない場合はノズルを設ける位置、ノズルの熱風の吹き出し速度及び風量、オーブン内の気流の流れなどを調整することで調整すればよい。オーブンの内部が複数の空間に分かれている場合は、最初の空間とそれ以降の空間で、ノズルを設ける位置、ノズルの熱風の吹き出し速度及び風量、オーブン内の気流の流れなどを調整することで調整すればよい。複数のオーブンを用いる場合は、最初のオーブンの構造によって、先の記載と同様に行ってもよいし、最初のオーブンと2つめ以降のオーブンとで風速が異なるように、ノズルを設ける位置、ノズルの熱風の吹き出し速度及び風量、オーブン内の気流などを設定すればよい。
テンター炉100における加熱ゾーンにおいて、互いに対向する上側ノズル30と下側ノズル32との間隔L(最短距離)は、好ましくは150mm以上、より好ましくは150〜600mm、さらに好ましくは150〜400mmである。このような間隔Lで上側ノズルと下側ノズルを配置することによって、各工程におけるフィルムのばたつきを一層確実に抑制することができ、上記の式を満足する本発明の光学フィルムを製造しやすくなる。
また、加熱ゾーンに設けられたそれぞれのノズル30、32の吹き出し口における熱風の幅方向(図1の紙面に垂直方向)における最高温度と最低温度との差(ΔT)は、好ましくは全て2℃以下、より好ましくは全て1℃以下である。このように幅方向における温度差が十分に小さい熱風を用いてフィルムを加熱することによって、幅方向の配向性のバラつきを一層抑制することができる。なお、熱風の温度は、好ましくは150〜400℃、より好ましくは150〜300℃、さらに好ましくは150〜250℃である。
光学フィルムの製造方法で使用できるノズルとしては、一般にフィルムの製造装置に用いられるノズルを使用することができ、その例として、原料フィルムの幅方向に伸びるスリット状の吹き出し口を有するノズルをジェットノズル(スリットノズルとも言う)、及び開口を原料フィルムの搬送方向及び原料フィルムの幅方向にそれぞれ複数配置した吹き出し口を有するノズルをパンチングノズル(多孔ノズルとも言う)が挙げられる。
ノズルは、テンター炉100内の上面100aに設けられて下向きにフィルムに向けて熱風を吹き出す構造、及びテンター炉100内の下面100bに設けられて、上向きにフィルムに向けて熱風を吹き出す構造となっている。
ジェットノズルは、フィルムの幅方向にのびるスリットを熱風の吹き出し口として有する。スリットのスリット幅は、好ましくは5mm以上、より好ましくは5〜20mmである。スリット幅を5mm以上にすることによって、得られる光学フィルムの光学的な均一性をより向上させることができる。なお、ジェットノズル一本当たりの吹き出し口の面積は、ジェットノズルのノズルの幅方向の長さとスリット幅との積によって求めることができる。このノズル一本当たりの吹き出し口の面積と吹き出し風速との積が、ノズル一本当たりの熱風の吹き出し風量となる。この熱風の吹き出し風量を、フィルムの幅方向に沿ったスリットの長さで割ることによって、フィルムの幅方向に沿ったノズルの長さ1m当たりの熱風の吹き出し風量を求めることができる。
パンチングノズルは、その長手方向に垂直な断面が、長方形の形状を有しているもの又は原料フィルム20に対向する面に向かって末広がり状である台形形状であることができる。パンチングノズルは、フィルムと対向する面である下側の面に複数の開口(例えば円形の開口)を有する。パンチングノズルの熱風の吹き出し口は、吹き出し面に設けられる複数の開口によって構成される。複数の開口は熱風の吹き出し口であり、熱風は開口から所定の風速で吹き出される。開口は、フィルムの長手方向に複数配置されるとともに、幅方向にも複数配置されている。開口は、例えば千鳥状に配置することができる。
パンチングノズルの一本当たりの吹き出し口の面積は、一本のパンチングノズルに設けられる全ての開口の面積の和によって求めることができる。このノズル一本当たりの吹き出し口の面積と吹き出し風速との積が、ノズル一本当たりの熱風の吹き出し風量となる。この熱風の吹き出し風量を、フィルムの幅方向に沿ったスリットの長さで割ることによって、フィルムの幅方向に沿ったノズルの長さ1m当たりの熱風の吹き出し風量を求めることができる。
パンチングノズルを用いる場合の、ノズルの吹き出し口における熱風の幅方向における最大吹き出し風速と最小吹き出し風速との差とは、同一ノズル上に設けられる複数の開口から吹き出される熱風の最大吹き出し速度と最小吹き出し速度との差として求めることができる。ノズルの吹き出し口における熱風の幅方向における最高温度と最低温度との差も同様に求めることができる。
テンター炉100内に設けられるノズルの全てがパンチングノズルであると、テンター炉100全体における熱風吹き出し口の面積の合計を大きくすることができる。このため、フィルムにあたる熱風の風圧を小さくすることができ、フィルムのばたつきを一層小さくすることができる。これにより、上記の式を満足する本発明の光学フィルムを製造しやすく、かつ、得られる光学フィルムの光学的な均一性を一層向上させることができる。テンター炉内又は加熱ゾーンでは、原料フィルム20が室温から原料フィルムに含まれる溶媒が蒸発する温度まで加熱されるが、原料フィルムの幅方向の長さがほとんど変わらないように把持装置18で保持されているため、熱膨張により垂れやすくなる傾向にある。加熱ゾーンにパンチングノズルを用いることにより、原料フィルム20の垂れやばたつきを一層抑制することができ、上記の式を満足する本発明の光学フィルムを製造しやすくなる。
パンチングノズルの面に設けられる開口のそれぞれのサイズ及び数は、各開口における熱風の吹き出し風速が2〜25m/秒となり、且つそれぞれのノズルからの吹き出し風量がフィルムの幅方向に沿ったノズルの長さ1m当たり0.1〜3m/秒となる範囲内で適宜調整することができる。
パンチングノズルの各開口からの吹き出し風速をより均一にする観点から、開口の形状は、円形であることが好ましい。この場合、開口の直径は、好ましくは2〜10mm、より好ましくは3〜8mmである。
パンチングノズルを用いる場合、ノズル一本当たりの面のフィルム搬送方向の長さは、好ましくは50〜300mmである。さらに隣接するパンチングノズルとの間隔は、好ましくは0.3m以下である。また、パンチングノズルのフィルム幅方向の長さに対するパンチングノズルの開口の面積の総和(吹き出し口の面積)の比(パンチングノズルの開口の面積の総和(m)/パンチングノズルのフィルム幅方向の長さ(m))は、好ましくは0.008m以上である。
このようなパンチングノズルを用いることにより、熱風の吹き出し口の面積を大きくすることができる。これにより、熱風の風速を十分に下げ、かつ十分な風量で熱風を吹き出すことが可能となり、フィルムをより均一に加熱することができる。その結果、上記の式を満足する本発明の光学フィルムを製造しやすく、かつ、位相差がより均一で、より高い軸精度を有するフィルムを製造しやすくなる。
加熱工程が行われるテンター炉100は、ノズルと同様に、その内部の上面100a又はその内部の下面100bにIRヒーターが設けられており、上下方向に対向するように設けられていてもよい。また、IRヒーターは、複数設けられてもよい。IRヒーターとしては、一般にフィルムの製造装置に用いられるIRヒーターを用いればよい。
フィルムに当てる輻射線としては、その波長が3〜7μmの熱線であることが好ましい。また、輻射線処理方式では、加熱工程が行われる空間の温度が前記の温度範囲内となれば、空間の温度よりも30℃以上高い温度の輻射線を原料フィルムに当ててもよい。
本発明の実施形態では、加熱工程が行われるテンター炉100において、前記ノズル(熱風処理方式)とIRヒーター(輻射線処理方式)とが併用されることが好ましい。その場合は、隣り合うノズルの間か又はノズルとテンター炉の内部壁(空間を仕切る壁も含む)との間に、IRヒーターを設置すればよい。
この場合、加熱工程が行われる空間の温度が前記の温度範囲内であればよく、輻射線処理方式では、空間の温度よりも高い温度の輻射線をフィルムに当ててもよい。輻射線の温度は、例えば、空間の温度よりも30℃以上高い温度でもよいし、150℃以上高い温度であってもよい。ここで、輻射線の温度とは、例えばIRヒーターの設定温度のように放射熱を出す機器で設定する温度を指す。輻射線の温度と、フィルムに当たる輻射線の温度との差は、好ましくは5℃以下、より好ましくは3℃以下、さらに好ましくは1℃以下である。
テンター炉100において、ノズル(熱風処理方式)とIRヒーター(輻射線処理方式)とが併用されると、加熱ゾーン又はテンター炉内の温度(雰囲気の温度)より高温の輻射線を原料フィルムに当てるにもかかわらず、加熱ゾーン又はテンター炉内の温度が高くなりすぎるのを抑制しながら加熱工程を行うことができる。これにより、どちらか一方のみの処理方式を採用して加熱工程を行う場合に比べて、得られる光学フィルムの黄色度(YI)を小さい値に保持したまま、より早く重量減少率を所定の範囲に調整することができる。また、加熱ゾーン又はテンター炉内の温度よりも高温の輻射線を原料フィルムに当てることで、原料フィルム中の樹脂が配向又は再配向しやすくなるため、得られる光学フィルムは、中心部とフィルム両端部とで面内位相差値のばらつきが小さくなる傾向にある。したがって、得られる光学フィルムは、前記のとおり、表示装置に適用した際に画像の視認性により優れるものとなる。
熱風処理方式と輻射線処理方式とを併用する加熱工程は、テンター炉内の加熱工程が行われる複数の空間のうち、原料フィルムが最初に通過する空間からテンター炉の全長の中間程度に位置する空間までの間に行われることが好ましい。これにより、加熱工程に要する時間を短縮できるだけでなく、面内位相差の均一性により優れた光学フィルムを製造することができる。
加熱工程は、好ましくは150〜350℃の範囲で行われる。本発明の実施形態において加熱工程がこの温度範囲であると、原料フィルムが後述の重量減少率Mとなるように調整しやすい傾向にある。また、I/I及び/又はI/Iを上記の範囲に調整しやすい傾向にある。この温度範囲は、より好ましくは170℃以上、さらに好ましくは180℃以上であり、より好ましくは300℃以下、さらに好ましくは250℃以下、とりわけ好ましくは230℃以下である。加熱工程の温度が前記の範囲にあると、得られる光学フィルムの黄色度を上記の好ましい範囲内に調整しやすい。また、加熱工程が行われる空間の温度は、より好ましくは170℃以上、さらに好ましくは180℃以上である。加熱工程が行われるテンター炉内の温度は、加熱ゾーンが前記の範囲であればよい。テンター炉が複数ある場合及びテンター炉内が複数の空間に分けられている場合は、適宜調整することができるが、全てのテンター炉又は空間が前記範囲内にあることが好ましい。
テンター炉100内の原料フィルム20の移動速度は、通常0.1〜50m/分の範囲内で適宜調整することができる。前記移動速度の上限は、好ましくは、20m/分、より好ましくは15m/分である。前記移動速度の下限は、好ましくは0.2m/分、より好ましくは0.5m/分、さらに好ましくは0.7m/分、とりわけ好ましくは0.8m/分である。移動速度が速いと、所望の乾燥時間を確保するために、テンター炉長が長くなってしまい、設備が大きくなる傾向になる。本発明の実施形態において、テンター炉100内の原料フィルム20の移動速度が前記範囲であると、原料フィルムが後述の重量減少率Mとなるように調整しやすい傾向にある。また、フィルムのばたつきが抑制され、I/I及び/又はI/Iを上記の範囲に調整しやすくなると共に、フィルム面に傷が生じるのを抑制できる傾向にある。
加熱工程の処理時間は、通常60秒〜2時間、好ましくは10分〜1時間である。処理時間は、前記のテンター炉の温度、移動速度、熱風の風速及び風量などの条件を考慮して、適宜調整すればよい。
本発明の一実施形態において、光学フィルムの製造方法は、加熱工程中にフィルムの幅を変える操作又はフィルム幅を保持して搬送する操作を行ってもよい。フィルムの幅を変える操作の例としては、フィルムを幅方向に延伸させる操作が挙げられる。延伸倍率は、好ましくは0.7〜1.3倍、より好ましくは0.8〜1.2倍、さらに好ましくは0.8〜1.1倍である。フィルム幅を保持して搬送する操作の例としては、フィルムの幅方向の長さがほとんど変わらないように保持する操作が挙げられる。これらの操作を経て得た光学フィルムは、原料フィルムの幅方向の長さに対し、0.7〜1.3倍程度の長さとすることができ、原料フィルムの幅方向の長さから延伸、等倍又は収縮した長さであってもよい。延伸倍率は、把持する部分を除くフィルムの幅に対する、延伸後のフィルムの幅(把持する部分を除く)の比として求められる。
なお、図2には、フィルムの幅方向を延伸させる操作において、延伸倍率が1倍を超える場合を実線で、延伸倍率が等倍であるか又は1倍未満の場合を点線で示している。
加熱工程を経た光学フィルムは、テンター炉から搬出された後、次の工程に連続して供給されてもよいし、ロール状に巻き取られて次の工程に供給されてもよい。光学フィルムをロールに巻き取る場合は、表面保護フィルム及び他の光学フィルム等の他のフィルムを積層して巻き取ってもよい。光学フィルムに積層する表面保護フィルムとしては、後述する原料フィルムに積層する表面保護フィルムと同様のものが使用できる。光学フィルムに積層させる表面保護フィルムの厚さは、通常、10〜100μm、好ましくは10〜80μmである。
<原料フィルム>
上記の加熱工程に供給される原料フィルムは、ポリアミド系樹脂を少なくとも含む。原料フィルムは、後述する原料フィルムの形成に使用されるワニスに含まれる成分と同じ成分を含むことが好ましいが、成分の構造変化や溶媒の一部の蒸発が生じうるため、同一でなくてもよい。原料フィルムは、自立膜であればよく、ゲルフィルムであってもよい。
原料フィルムは、I/I及び/又はI/Iを上記の範囲に調整しやすい観点から、無機材料を含有するか否かにかかわらず熱重量−示差熱測定(以下「TG−DTA測定」ということがある。)によって求められる120℃から250℃にかけての重量減少率Mが、好ましくは1〜40%程度、より好ましくは3〜20%、さらに好ましくは5〜15%、とりわけ好ましくは5〜12%となるように、前記ワニスから溶媒の一部が除去されることが好ましい。原料フィルムの重量減少率Mは、市販のTG−DTAの測定装置を用いて以下の方法で測定することができる。TG−DTAの測定装置としては、日立ハイテクサイエンス社製TG/DTA6300を使用することができる。
まず、原料フィルムから約20mgの試料を取得し、試料を室温から120℃まで10℃/分の昇温速度で昇温し、120℃で5分間保持した後、400℃まで10℃/分の昇温速度で昇温する条件で加熱しながら、試料の重量変化を測定する。次に、TG−DTA測定の結果から、120℃から250℃にかけての重量減少率M(%)を下記式によって算出すればよい。下記式において、Wは120℃で5分間保持した後の試料の重量を示し、Wは250℃における試料の重量を示す。
M(%)=100−(W/W)×100
原料フィルムの重量減少率Mがある程度大きいと、原料フィルムを基材又は表面保護フィルムとの積層体として巻き取ったときに、積層体の折れ曲がり等の変形が抑制され、積層体の巻き取り性が向上する傾向にある。また、I/I及び/又はI/Iを上記の範囲に調整しやすくなる。
原料フィルムの重量減少率Mがある程度小さいと、原料フィルムを基材又は表面保護フィルムとの積層体として巻き取ったときに、原料フィルムが基材又は表面保護フィルムに貼り付き難くなる傾向にある。そのため、原料フィルムの均一な透明性を維持しながら、積層体をロールから容易に巻き出すことができる。また、I/I及び/又はI/Iを上記の範囲に調整しやすくなる。
原料フィルムは上記の塗膜を乾燥し、基材から剥離することによって形成することができる。塗膜の乾燥は、通常50〜350℃の温度にて行うことができる。必要に応じて、不活性雰囲気又は減圧の条件下において塗膜の乾燥を行ってよい。上記のようにして得た原料フィルムを、前記加熱工程に供給し、本発明の光学フィルムを製造することができる。原料フィルムは、連続して搬送されて加熱工程に供給されてもよいし、一旦巻き取られた後に供給されてもよい。
<機能層>
本発明の光学フィルムの少なくとも一方の面には、1以上の機能層が積層されていてもよい。機能層としては、例えば紫外線吸収層、ハードコート層、プライマー層、ガスバリア層、粘着層、色相調整層、屈折率調整層などが挙げられる。機能層は単独又は二種以上を組合せて使用できる。
本発明の光学フィルムの少なくとも一方の面には、ハードコート層が設けられていてもよい。ハードコート層の厚さは特に限定されず、例えば、2〜100μmであってもよい。前記ハードコート層の厚さが前記の範囲にあると、耐衝撃性をより高めることができると共に、耐屈曲性が低下しにくく、硬化収縮によるカール発生の問題が発生し難い傾向がある。ハードコート層は、活性エネルギー線照射、或いは熱エネルギー付与により架橋構造を形成し得る反応性材料を含むハードコート組成物を硬化させて形成することができ、活性エネルギー線照射によるものが好ましい。活性エネルギー線は、活性種を発生する化合物を分解して活性種を発生させることができるエネルギー線と定義され、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線などが挙げられ、好ましくは紫外線が挙げられる。前記ハードコート組成物は、ラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有する。
前記ラジカル重合性化合物は、ラジカル重合性基を有する化合物である。前記ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、炭素‐炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、前記ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であっても異なっていてもよい。前記ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上である。前記ラジカル重合性化合物としては、反応性の高さの点から、好ましくは(メタ)アクリロイル基を有する化合物が挙げられ、具体的には1分子中に2〜6個の(メタ)アクリロイル基を有する多官能アクリレートモノマーと称される化合物やエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートと称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千のオリゴマーが挙げられ、好ましくはエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート及びポリエステル(メタ)アクリレートから選択された1種以上が挙げられる。
前記カチオン重合性化合物は、エポキシ基、オキセタニル基、ビニルエーテル基等のカチオン重合性基を有する化合物である。前記カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度を向上する点から、好ましくは2以上であり、より好ましくは3以上である。
また、前記カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高くなりやすく、低毒性であり、得られたハードコート層のカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。
エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。
前記ハードコート組成物は重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等が挙げられ、適宜選択して用いられる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。
ラジカル重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりラジカル重合を開始させる物質を放出することが可能であればよい。例えば、熱ラジカル重合開始剤としては、過酸化水素、過安息香酸等の有機過酸化物、アゾビスブチロニトリル等のアゾ化合物等があげられる。
活性エネルギー線ラジカル重合開始剤としては、分子の分解でラジカルが生成されるType1型ラジカル重合開始剤と、3級アミンと共存して水素引き抜き型反応でラジカルを生成するType2型ラジカル重合開始剤があり、それらは単独で又は併用して使用される。
カチオン重合開始剤は、活性エネルギー線照射及び加熱の少なくともいずれかによりカチオン重合を開始させる物質を放出することが可能であればよい。カチオン重合開始剤としては、芳香族ヨードニウム塩、芳香族スルホニウム塩、シクロペンタジエニル鉄(II)錯体等が使用できる。これらは、構造の違いによって活性エネルギー線照射又は加熱のいずれかあるいはいずれでもカチオン重合を開始することができる。
前記重合開始剤は、前記ハードコート組成物全体100質量%に対して好ましくは0.1〜10質量%を含むことができる。前記重合開始剤の含量が前記の範囲にあると、硬化を十分に進行させることができ、最終的に得られる塗膜の機械的物性や密着力を良好な範囲とすることができ、また、硬化収縮による接着力不良や割れ現象及びカール現象が発生し難くなる傾向がある。
前記ハードコート組成物は、溶剤及び添加剤からなる群から選択される一つ以上をさらに含むことができる。
前記溶剤は、前記重合性化合物及び重合開始剤を溶解又は分散させることができるもので、本技術分野のハードコート組成物の溶剤として知られている溶剤であれば、本発明の効果を阻害しない範囲で、使用することができる。
前記添加剤は、無機粒子、レベリング剤、安定剤、界面活性剤、帯電防止剤、潤滑剤、防汚剤などをさらに含むことができる。
紫外線吸収層は、紫外線吸収の機能を有する層であり、例えば、紫外線硬化型の透明樹脂、電子線硬化型の透明樹脂、及び熱硬化型の透明樹脂から選ばれる主材と、この主材に分散した紫外線吸収剤とから構成される。
粘着層は、粘着性の機能を有する層であり、光学フィルムを他の部材に接着させる機能を有する。粘着層の形成材料としては、通常知られたものを用いることができる。例えば、熱硬化性樹脂組成物又は光硬化性樹脂組成物を用いることができる。この場合、事後的にエネルギーを供給することで樹脂組成物を高分子化し硬化させることができる。
粘着層は、感圧型接着剤(Pressure Sensitive Adhesive、PSA)と呼ばれる、押圧により対象物に貼着される層であってもよい。感圧型接着剤は、「常温で粘着性を有し、軽い圧力で被着材に接着する物質」(JIS K 6800)である粘着剤であってもよく、「特定成分を保護被膜(マイクロカプセル)に内容し、適当な手段(圧力、熱等)によって被膜を破壊するまでは安定性を保持できる接着剤」(JIS K 6800)であるカプセル型接着剤であってもよい。
色相調整層は、色相調整の機能を有する層であり、光学フィルムを含む積層体を目的の色相に調整することができる層である。色相調整層は、例えば、樹脂及び着色剤を含有する層である。この着色剤としては、例えば、酸化チタン、酸化亜鉛、弁柄、チタニウムオキサイド系焼成顔料、群青、アルミン酸コバルト、及びカーボンブラック等の無機顔料;アゾ系化合物、キナクリドン系化合物、アンスラキノン系化合物、ペリレン系化合物、イソインドリノン系化合物、フタロシアニン系化合物、キノフタロン系化合物、スレン系化合物、及びジケトピロロピロール系化合物等の有機顔料;硫酸バリウム、及び炭酸カルシウム等の体質顔料;並びに塩基性染料、酸性染料、及び媒染染料等の染料を挙げることができる。
屈折率調整層は、屈折率調整の機能を有する層であり、例えば光学フィルムとは異なる屈折率を有し、光学積層体に所定の屈折率を付与することができる層である。屈折率調整層は、例えば、適宜選択された樹脂、及び場合によりさらに顔料を含有する樹脂層であってもよいし、金属の薄膜であってもよい。屈折率を調整する顔料としては、例えば、酸化珪素、酸化アルミニウム、酸化アンチモン、酸化錫、酸化チタン、酸化ジルコニウム及び酸化タンタルが挙げられる。該顔料の平均一次粒子径は、0.1μm以下であってもよい。顔料の平均一次粒子径を0.1μm以下とすることにより、屈折率調整層を透過する光の乱反射を防止し、透明度の低下を防止することができる。屈折率調整層に用いられる金属としては、例えば、酸化チタン、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化ケイ素、酸化インジウム、酸窒化チタン、窒化チタン、酸窒化ケイ素、窒化ケイ素等の金属酸化物又は金属窒化物が挙げられる。
本発明の好ましい一実施形態において、本発明の光学フィルムは、画像表示装置の前面板、中でもフレキシブル表示装置の前面板(ウィンドウフィルム)、中でもローラブルディスプレイやフォルダブルディスプレイの前面板として非常に有用である。フレキシブル表示装置は、例えば、フレキシブル機能層と、フレキシブル機能層に重ねられて前面板として機能する光学フィルムを有する。すなわち、フレキシブル表示装置の前面板は、フレキシブル機能層の上の視認側に配置される。この前面板は、フレキシブル機能層、例えばフレキシブルディスプレイ内の画像表示素子を保護する機能を有する。
画像表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。フレキシブル表示装置としては、フレキシブル特性を有する全ての画像表示装置が挙げられる。
[フレキシブル表示装置]
本発明は、本発明の光学フィルムを備えるフレキシブル表示装置も提供する。本発明の光学フィルムは、好ましくはフレキシブル表示装置において前面板として用いられ、該前面板はウィンドウフィルムと称されることがある。フレキシブル表示装置は、フレキシブル表示装置用積層体と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル表示装置用積層体は、本発明の光学フィルム(ウィンドウフィルム)、円偏光板、タッチセンサを含有していてもよく、それらの積層順は任意であるが、視認側からウィンドウフィルム、円偏光板、タッチセンサ又はウィンドウフィルム、タッチセンサ、円偏光板の順に積層されていることが好ましい。タッチセンサの視認側に円偏光板が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性が良くなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、ウィンドウフィルム、円偏光板、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。
[偏光板]
本発明のフレキシブル表示装置は、偏光板、好ましくは円偏光板をさらに備えていてもよい。円偏光板は、直線偏光板にλ/4位相差板を積層することにより右円偏光成分又は左円偏光成分のみを透過させる機能を有する機能層である。たとえば外光を右円偏光に変換して有機ELパネルで反射されて左円偏光となった外光を遮断し、有機ELの発光成分のみを透過させることで反射光の影響を抑制して画像を見やすくするために用いられる。円偏光機能を達成するためには、直線偏光板の吸収軸とλ/4位相差板の遅相軸は理論上45°である必要があるが、実用的には45±10°である。直線偏光板とλ/4位相差板とは必ずしも隣接して積層される必要はなく、吸収軸と遅相軸の関係が前述の範囲を満足していればよい。全波長において完全な円偏光を達成することが好ましいが実用上は必ずしもその必要はないので本発明における円偏光板は楕円偏光板をも包含する。直線偏光板の視認側にさらにλ/4位相差フィルムを積層して、出射光を円偏光とすることで偏光サングラスをかけた状態での視認性を向上させることも好ましい。
直線偏光板は、透過軸方向に振動している光は通すが、それとは垂直な振動成分の偏光を遮断する機能を有する機能層である。前記直線偏光板は、直線偏光子単独又は直線偏光子及びその少なくとも一面に貼り付けられた保護フィルムを備えた構成であってもよい。前記直線偏光板の厚さは、200μm以下であってもよく、好ましくは0.5〜100μmである。厚さが前記の範囲にあると柔軟性が低下し難い傾向にある。
前記直線偏光子は、ポリビニルアルコール(PVA)系フィルムを染色、延伸することで製造されるフィルム型偏光子であってもよい。延伸によって配向したPVA系フィルムに、ヨウ素等の二色性色素が吸着、又はPVAに吸着した状態で延伸されることで二色性色素が配向し、偏光性能を発揮する。前記フィルム型偏光子の製造においては、他に膨潤、ホウ酸による架橋、水溶液による洗浄、乾燥等の工程を有していてもよい。延伸や染色工程はPVA系フィルム単独で行ってもよいし、ポリエチレンテレフタレートのような他のフィルムと積層された状態で行うこともできる。用いられるPVA系フィルムの厚さは好ましくは10〜100μmであり、延伸倍率は好ましくは2〜10倍である。
さらに前記偏光子の他の一例としては、液晶偏光組成物を塗布して形成する液晶塗布型偏光子であってもよい。前記液晶偏光組成物は、液晶性化合物及び二色性色素化合物を含むことができる。前記液晶性化合物は液晶状態を示す性質を有していればよく、特にスメクチック相等の高次の配向状態を有していると高い偏光性能を発揮することができるため好ましい。また、液晶性化合物は重合性官能基を有していることも好ましい。
前記二色性色素は、前記液晶化合物とともに配向して二色性を示す色素であって、二色性色素自身が液晶性を有していてもよいし、重合性官能基を有していることもできる。液晶偏光組成物の中のいずれかの化合物は重合性官能基を有している。
前記液晶偏光組成物はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。
前記液晶偏光層は、配向膜上に液晶偏光組成物を塗布して液晶偏光層を形成することにより製造される。
液晶偏光層は、フィルム型偏光子に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、好ましくは0.5〜10μm、より好ましくは1〜5μmであってもよい。
前記配向膜は、例えば基材上に配向膜形成組成物を塗布し、ラビング、偏光照射等により配向性を付与することで製造することができる。前記配向膜形成組成物は、配向剤の他に溶剤、架橋剤、開始剤、分散剤、レベリング剤、シランカップリング剤等を含んでいてもよい。前記配向剤としては、例えば、ポリビニルアルコール類、ポリアクリレート類、ポリアミック酸類、ポリイミド類を使用できる。光配向を適用する場合にはシンナメート基を含む配向剤を使用することが好ましい。前記配向剤として使用される高分子の重量平均分子量が10,000〜1,000,000程度であってもよい。前記配向膜の厚さは、配向規制力の観点から、好ましくは5〜10,000nm、より好ましは10〜500nmである。前記液晶偏光層は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウィンドウフィルムの透明基材としての役割を担うことも好ましい。
前記保護フィルムとしては、透明な高分子フィルムであればよく、具体的には、用いられる高分子フィルムとしては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ノルボルネン又はシクロオレフィンを含む単量体の単位を有するシクロオレフィン系誘導体等のポリオレフィン類、ジアセチルセルロース、トリアセチルセルロース、プロピオニルセルロース等の(変性)セルロース類、メチルメタクリレート(共)重合体等のアクリル類、スチレン(共)重合体等のポリスチレン類、アクリロニトリル・ブタジエン・スチレン共重合体類、アクリロニトリル・スチレン共重合体類、エチレン‐酢酸ビニル共重合体類、ポリ塩化ビニル類、ポリ塩化ビニリデン類、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアリレート等のポリエステル類、ナイロン等のポリアミド類、ポリイミド類、ポリアミドイミド類、ポリエーテルイミド類、ポリエーテルスルホン類、ポリスルホン類、ポリビニルアルコール類、ポリビニルアセタール類、ポリウレタン類、エポキシ樹脂類などのフィルムが挙げられ、透明性及び耐熱性に優れる点で、好ましくはポリアミド、ポリアミドイミド、ポリイミド、ポリエステル、オレフィン、アクリル又はセルロース系のフィルムが挙げられる。これらの高分子はそれぞれ単独又は2種以上混合して使用することができる。これらのフィルムは未延伸のまま、あるいは1軸又は2軸延伸したフィルムとして使用される。セルロース系フィルム、オレフィン系フィルム、アクリルフィルム、ポリエステル系フィルムが好ましい。エポキシ樹脂等のカチオン硬化組成物やアクリレート等のラジカル硬化組成物を塗布して硬化して得られるコーティング型の保護フィルムであってもよい。必要により可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記保護フィルムの厚さは、200μm以下であってもよく、好ましくは1〜100μmである。前記保護フィルムの厚さが前記の範囲にあると、保護フィルムの柔軟性が低下し難い。
前記λ/4位相差板は、入射光の進行方向に直交する方向(フィルムの面内方向)にλ/4の位相差を与えるフィルムである。前記λ/4位相差板は、セルロース系フィルム、オレフィン系フィルム、ポリカーボネート系フィルム等の高分子フィルムを延伸することで製造される延伸型位相差板であってもよい。必要により位相差調整剤、可塑剤、紫外線吸収剤、赤外線吸収剤、顔料や染料のような着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、帯電防止剤、酸化防止剤、滑剤、溶剤等を含んでいてもよい。前記延伸型位相差板の厚さは、200μm以下であってもよく、好ましくは1〜100μmである。厚さが前記の範囲にあるとフィルムの柔軟性が低下し難い傾向にある。
さらに前記λ/4位相差板の他の一例としては、液晶組成物を塗布して形成する液晶塗布型位相差板であってもよい。前記液晶組成物は、ネマチック、コレステリック、スメクチック等の液晶状態を示す性質を有する液晶性化合物を含む。液晶組成物の中の液晶性化合物を含むいずれかの化合物は重合性官能基を有している。前記液晶塗布型位相差板はさらに開始剤、溶剤、分散剤、レベリング剤、安定剤、界面活性剤、架橋剤、シランカップリング剤などを含むことができる。前記液晶塗布型位相差板は、前記液晶偏光層での記載と同様に配向膜上に液晶組成物を塗布硬化して液晶位相差層を形成することで製造することができる。液晶塗布型位相差板は、延伸型位相差板に比べて厚さを薄く形成することができる。前記液晶偏光層の厚さは、通常0.5〜10μm、好ましくは1〜5μmであってもよい。前記液晶塗布型位相差板は基材から剥離して転写して積層することもできるし、前記基材をそのまま積層することもできる。前記基材が、保護フィルムや位相差板、ウィンドウフィルムの透明基材としての役割を担うことも好ましい。
一般的には、短波長ほど複屈折が大きく、長波長ほど小さな複屈折を示す材料が多い。この場合には全可視光領域でλ/4の位相差を達成することはできないので、視感度の高い560nm付近に対してλ/4となるような面内位相差、すなわち100〜180nm、好ましくは130〜150nmとなるように設計されることが多い。通常とは逆の複屈折率波長分散特性を有する材料を用いた逆分散λ/4位相差板を用いることは視認性をよくすることができるので好ましい。このような材料としては延伸型位相差板の場合は特開2007−232873号公報等、液晶塗布型位相差板の場合には特開2010−30979号公報に記載されているものを用いることも好ましい。
また、他の方法としてはλ/2位相差板と組合せることで広帯域λ/4位相差板を得る技術も知られている(特開平10−90521号公報)。λ/2位相差板もλ/4位相差板と同様の材料及び方法で製造される。延伸型位相差板と液晶塗布型位相差板との組合せは任意であるが、どちらも液晶塗布型位相差板を用いることは厚さを薄くすることができるので好ましい。
前記円偏光板には斜め方向の視認性を高めるために、正のCプレートを積層する方法も知られている(特開2014−224837号公報)。正のCプレートも液晶塗布型位相差板であっても延伸型位相差板であってもよい。厚さ方向の位相差は、通常−200〜−20nm、好ましくは−140〜−40nmである。
[タッチセンサ]
本発明のフレキシブル表示装置は、タッチセンサをさらに備えていてもよい。タッチセンサは入力手段として用いられる。タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等様々な様式が提案されており、いずれの方式でも構わない。中でも静電容量方式が好ましい。静電容量方式タッチセンサは活性領域及び前記活性領域の外郭部に位置する非活性領域に区分される。活性領域は表示パネルで画面が表示される領域(表示部)に対応する領域であって、使用者のタッチが感知される領域であり、非活性領域は表示装置で画面が表示されない領域(非表示部)に対応する領域である。タッチセンサはフレキシブルな特性を有する基板と;前記基板の活性領域に形成された感知パターンと;前記基板の非活性領域に形成され、前記感知パターンとパッド部を介して外部の駆動回路と接続するための各センシングラインを含むことができる。フレキシブルな特性を有する基板としては、前記高分子フィルムと同様の材料が使用できる。タッチセンサの基板は、その靱性が2,000MPa%以上であるものがタッチセンサのクラック抑制の面から好ましい。より好ましくは靱性が2,000〜30,000MPa%であってもよい。ここで、靭性は、高分子材料の引張実験を通じて得られる応力(MPa)−歪み(%)曲線(Stress-strain curve)で破壊点までの曲線の下部面積として定義される。
前記感知パターンは、第1方向に形成された第1パターン及び第2方向に形成された第2パターンを備えることができる。第1パターンと第2パターンは互いに異なる方向に配置される。第1パターン及び第2パターンは、同一層に形成され、タッチされる地点を感知するためには、それぞれのパターンが電気的に接続されなければならない。第1パターンは各単位パターンが継ぎ手を介して互いに接続された形態であるが、第2パターンは各単位パターンがアイランド形態に互いに分離された構造になっているので、第2パターンを電気的に接続するためには別途のブリッジ電極が必要である。感知パターンは周知の透明電極素材を適用することができる。例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、インジウムガリウム亜鉛酸化物(IGZO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4−ethylenedioxythiophene))、炭素ナノチューブ(CNT)、グラフェン、金属ワイヤなどを挙げることができ、これらは単独又は2種以上混合して使用することができる。好ましくはITOを使用することができる。金属ワイヤに使用される金属は特に限定されず、例えば、銀、金、アルミニウム、銅、鉄、ニッケル、チタン、セレニウム、クロムなどを挙げることができる。これらは単独又は2種以上混合して使用することができる。
ブリッジ電極は感知パターン上部に絶縁層を介して前記絶縁層上部に形成することができ、基板上にブリッジ電極が形成されており、その上に絶縁層及び感知パターンを形成することができる。前記ブリッジ電極は感知パターンと同じ素材で形成することもでき、モリブデン、銀、アルミニウム、銅、パラジウム、金、白金、亜鉛、スズ、チタン又はこれらのうちの2種以上の合金などの金属で形成することもできる。第1パターンと第2パターンは電気的に絶縁されなければならないので、感知パターンとブリッジ電極の間には絶縁層が形成される。絶縁層は第1パターンの継ぎ手とブリッジ電極の間にのみ形成することもでき、感知パターンを覆う層の構造に形成することもできる。後者の場合は、ブリッジ電極は絶縁層に形成されたコンタクトホールを介して第2パターンを接続することができる。前記タッチセンサはパターンが形成されたパターン領域と 、パターンが形成されていない非パターン領域間の透過率の差、具体的には、これらの領域における屈折率の差によって誘発される光透過率の差を適切に補償するための手段として基板と電極の間に光学調節層をさらに含むことができ、前記光学調節層は無機絶縁物質又は有機絶縁物質を含むことができる。光学調節層は光硬化性有機バインダー及び溶剤を含む光硬化組成物を基板上にコーティングして形成することができる。前記光硬化組成物は無機粒子をさらに含むことができる。前記無機粒子によって光学調節層の屈折率を上昇させることができる。
前記光硬化性有機バインダーは、例えば、アクリレート系単量体、スチレン系単量体、カルボン酸系単量体などの各単量体の共重合体を含むことができる。前記光硬化性有機バインダーは、例えば、エポキシ基含有繰り返し単位、アクリレート繰り返し単位、カルボン酸繰り返し単位などの互いに異なる各繰り返し単位を含む共重合体であってもよい。
前記無機粒子は、例えば、ジルコニア粒子、チタニア粒子、アルミナ粒子などを含むことができる。前記光硬化組成物は、光重合開始剤、重合性モノマー、硬化補助剤などの各添加剤をさらに含むこともできる。
[接着層]
前記フレキシブル表示装置用積層体を形成する各層(ウィンドウフィルム、偏光板、タッチセンサ)並びに各層を構成するフィルム部材(直線偏光板、λ/4位相差板等)は接着剤によって接着することができる。接着剤としては、水系接着剤、有機溶剤系接着剤、無溶剤系接着剤、固体接着剤、溶剤揮散型接着剤、湿気硬化型接着剤、加熱硬化型接着剤、嫌気硬化型接着剤、水系溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、硬化剤混合型接着剤、熱溶融型接着剤、感圧型接着剤(粘着剤)、再湿型接着剤等、汎用に使用されているものが使用できる。中でも水系溶剤揮散型接着剤、活性エネルギー線硬化型接着剤、粘着剤がよく用いられる。接着層の厚さは、求められる接着力等に応じて適宜調節することができ、例えば0.01〜500μm、好ましくは0.1〜300μmである。接着層は、前記フレキシブル画像表示装置用積層体には複数存在してよいが、それぞれの厚さ及び用いられる接着剤の種類は同一であっても異なっていてもよい。
前記水系溶剤揮散型接着剤としてはポリビニルアルコール系ポリマー、でんぷん等の水溶性ポリマー、エチレン−酢酸ビニル系エマルジョン、スチレン−ブタジエン系エマルジョン等水分散状態のポリマーを主剤ポリマーとして使用することができる。水、前記主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、染料、顔料、無機フィラー、有機溶剤等を配合してもよい。前記水系溶剤揮散型接着剤によって接着する場合、前記水系溶剤揮散型接着剤を被接着層間に注入して被着層を貼合した後、乾燥させることで接着性を付与することができる。前記水系溶剤揮散型接着剤を用いる場合の接着層の厚さは0.01〜10μm、好ましくは0.1〜1μmであってもよい。前記水系溶剤揮散型接着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び前記接着剤の種類は同一であっても異なっていてもよい。
前記活性エネルギー線硬化型接着剤は、活性エネルギー線を照射して接着剤層を形成する反応性材料を含む活性エネルギー線硬化組成物の硬化により形成することができる。前記活性エネルギー線硬化組成物は、ハードコート組成物と同様のラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種の重合物を含有することができる。前記ラジカル重合性化合物とは、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。接着層に用いられるラジカル重合性化合物としてはアクリロイル基を有する化合物が好ましい。接着剤組成物としての粘度を下げるために単官能の化合物を含むことも好ましい。
前記カチオン重合性化合物は、ハードコート組成物と同様であり、ハードコート組成物と同様の種類のものが使用できる。活性エネルギー線硬化組成物に用いられるカチオン重合性化合物としては、エポキシ化合物がより好ましい。接着剤組成物の粘度を下げるために単官能の化合物を反応性希釈剤として含むことも好ましい。
活性エネルギー線組成物には重合開始剤をさらに含むことができる。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等であり、適宜選択して用いることができる。これらの重合開始剤は、活性エネルギー線照射及び加熱の少なくとも一種により分解されて、ラジカル又はカチオンを発生してラジカル重合とカチオン重合を進行させるものである。ハードコート組成物の記載の中で活性エネルギー線照射によりラジカル重合又はカチオン重合の内の少なくともいずれか開始することができる開始剤を使用することができる。
前記活性エネルギー線硬化組成物はさらに、イオン捕捉剤、酸化防止剤、連鎖移動剤、密着付与剤、熱可塑性樹脂、充填剤、流動粘度調整剤、可塑剤、消泡剤溶剤、添加剤、溶剤を含むことができる。前記活性エネルギー線硬化型接着剤によって接着する場合、前記活性エネルギー線硬化組成物を被接着層のいずれか又は両方に塗布後貼合し、いずれかの被着層又は両方の被着層を通して活性エネルギー線を照射して硬化させることで接着することができる。前記活性エネルギー線硬化型接着剤を用いる場合の接着層の厚さは、通常0.01〜20μm、好ましくは0.1〜10μmであってもよい。前記活性エネルギー線硬化型接着剤を複数層の形成に用いる場合には、それぞれの層の厚さ及び用いられる接着剤の種類は同一であっても異なっていてもよい。
前記粘着剤としては、主剤ポリマーに応じて、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等に分類され何れを使用することもできる。粘着剤には主剤ポリマーに加えて、架橋剤、シラン系化合物、イオン性化合物、架橋触媒、酸化防止剤、粘着付与剤、可塑剤、染料、顔料、無機フィラー等を配合してもよい。前記粘着剤を構成する各成分を溶剤に溶解・分散させて粘着剤組成物を得て、該粘着剤組成物を基材上に塗布した後に乾燥させることで、粘着層(接着層)が形成される。粘着層は直接形成されてもよいし、別途基材に形成したものを転写することもできる。接着前の粘着面をカバーするためには離型フィルムを使用することも好ましい。前記粘着剤を用いる場合の接着層の厚さは、通常1〜500μm、好ましくは2〜300μmであってもよい。前記粘着剤を複数層の形成に用いる場合、それぞれの層の厚さ及び用いられる粘着剤の種類は同一であっても異なっていてもよい。
[遮光パターン]
前記遮光パターンは前記フレキシブル画像表示装置のベゼル又はハウジングの少なくとも一部として適用することができる。遮光パターンによって前記フレキシブル画像表示装置の辺縁部に配置される配線が隠されて視認されにくくすることで、画像の視認性が向上する。前記遮光パターンは単層又は複層の形態であってもよい。遮光パターンのカラーは特に制限されることはなく、黒色、白色、金属色などの多様なカラーを有することができる。遮光パターンはカラーを具現するための顔料と、アクリル系樹脂、エステル系樹脂、エポキシ系樹脂、ポリウレタン、シリコーンなどの高分子で形成することができる。これらの単独又は2種類以上の混合物で使用することもできる。前記遮光パターンは、印刷、リソグラフィ、インクジェットなど各種の方法にて形成することができる。遮光パターンの厚さは、通常1〜100μm、好ましくは2〜50μmである。また、遮光パターンの厚さ方向に傾斜等の形状を付与することも好ましい。
以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記しない限り、それぞれ質量%及び質量部を意味する。まず始めに物性値の測定方法を説明する。
<重量平均分子量>
樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)を用いて測定した。測定試料の調製方法及び測定条件は次の通りである。
(1)試料調製方法
樹脂を20mg秤りとり、10mLのDMF(10mmol/L臭化リチウム)を加え、完全に溶解させた。この溶液をクロマトディスク(孔径0.45μm)にてろ過し、試料溶液とした。
(2)測定条件
装置:HLC−8020GPC
カラム:ガードカラム+TSKgelα−M(300mm×7.8mm径)×2本+α−2500(300mm×7.8mm径)×1本
溶離液:DMF(10mmol/Lの臭化リチウム添加)
流量:1.0mL/分
検出器:RI検出器
カラム温度:40℃
注入量:100μL
分子量標準:標準ポリスチレン
<厚さ>
実施例及び比較例で得られた光学フィルムについて、ABSデジマチックインジケーター((株)ミツトヨ製、「ID−C112BS」)を用いて、光学フィルムの厚さを測定した。
<弾性率>
実施例及び比較例で得られた光学フィルムを、ダンベルカッターを用いて10mm×100mmの短冊状にカットし、試験サンプルを得た。この試験サンプルの弾性率を(株)島津製作所製オートグラフAG−ISを用い、チャック間距離50mm、引張速度10mm/分の条件で応力−歪曲線(S−S曲線)を測定し、応力の5〜20MPaにおける傾きから光学フィルムの弾性率(GPa)を算出した。
<屈曲試験>
実施例及び比較例で得られたフィルムを、ダンベルカッターを用いて10mm×100mmの大きさにカットした。このとき、実施例1、2については、TD方向が長辺側となるようにフィルムをカットした。比較例については、フィルムの長手方向が長辺側となるようにフィルムをカットした。カットしたフィルムをMIT耐折疲労試験機((株)東洋精機製作所製「MIT−DA」 形式:0530)本体にセットして、試験速度175cpm、折り曲げ角度135°、加重750g、折り曲げクランプのR 1.0mmの条件で、裏表両方向への折り曲げ試験を実施し、各フィルムの耐屈曲回数(破断せずに折り曲げ可能な回数)を測定した。なお、本実施例においては、MD方向への折り曲げを評価した。
<ラマン分光測定>
(測定試料の作製)
実施例及び比較例で得られたフィルムを、カッターを用いて2mm×5mmの大きさにカットした。このとき、実施例1、2については、TD方向が長辺側となるようにフィルムをカットした。比較例については、フィルムの長手方向が長辺側となるようにフィルムをカットした。カットした断面が表面に配置されるようにし、エポキシ系常温硬化樹脂53型(アキュラ製)で包埋処理を行った。光学積層体の断面側をウルトラミクロトームEM UC7(ライカ製)で処理し、断面作製を行った。
(ラマン分光による測定)
カットしたフィルムを日本分光(株)製のNRS−5100を用い、以下に示す条件にて、フィルムの厚さ方向中央部、1/4地点、1/2地点、3/4地点でラマン分光測定を実施した。なお、フィルムの表面で焦点を合せた後、レーザーを2分間以上照射し、ベースラインが安定したところで測定を開始した。また、PET基材と接していた方の表面上の点をDとした。得られた結果から、1,550〜1,650cm−1の範囲の最大ピークの強度を読み取った。
(測定条件)
露光時間:10秒
積算回数:2回
励起波長:532.23nm
分光器:シングル
スリット幅:100×1000μm
分解13.80cm−1、3.64cm−1/ピクセル
対物レンズ:MPLFLN 100×
レーザー強度:2.6mW
減光器:50%(OD0.3)
<シリカゾルの調製>
1,000mLのフラスコにメタノール分散シリカゾル(平均一次粒子径27nm、シリカ粒子固形分30.5%)442.6g及びGBL 301.6gを入れ、真空エバポレータで45℃の湯浴下、400hPaで1時間、250hPaで1時間メタノールを蒸発させた。さらに250hPa下で70℃まで昇温して30分間加熱し、GBL分散シリカゾル1を得た。得られたGBL分散シリカゾル1の固形分濃度は29.1%であった。
<合成例1:ポリアミドイミド樹脂(1)の調製>
十分に乾燥させた撹拌機と温度計を備える反応容器に、窒素を導通させ、容器内を窒素で置換した。該反応容器に、ジメチルアセトアミド(DMAc) 1907.2質量部を入れ、2,2’−ビス(トリフルオロメチル)ベンジジン(TFMB) 111.94質量部と4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA) 46.84質量部を加えて反応させた。
次いで、4,4’−オキシビス(ベンゾイルクロリド)(OBBC) 10.37質量部とテレフタロイルクロリド(TPC) 42.79質量部を加えて反応させた。 次いで、無水酢酸 37.66質量部を加え、15分間撹拌した後、4−ピコリン 11.45質量部を加え、反応容器を70℃に昇温し、さらに3時間撹拌し、反応液を得た。
反応液を冷却し、メタノール 3794.5質量部を加え、次いでイオン交換水 1419.4質量部を滴下し、白色固体を析出させた。析出した白色固体を遠心ろ過により捕集し、メタノールで洗浄することにより、ポリアミドイミド樹脂を含むウェットケーキを得た。得られたウェットケーキを減圧下、78℃で乾燥させることによりポリアミドイミド樹脂の粉体を得た。得られたポリアミドイミド樹脂(1)の重量平均分子量は466,000であった。
<実施例1>
(樹脂組成物1の製造)
室温にてGBL溶媒にGBL分散表面修飾シリカゾル1を加えて十分に撹拌、混合し、そこに、Sumisorb(登録商標) 340[2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾール、住化ケムテックス(株)製]及びSumiplast(登録商標) Violet B(ブルーイング剤、住化ケムテックス(株)製)を、樹脂とシリカ粒子の合計量100質量部に対して、それぞれ5.7質量部及び35ppmとなるように添加し、混合した。その後、樹脂とシリカ粒子との組成比が60:40となるようにポリアミドイミド樹脂(1)を加えて混合し、均一になるまで撹拌し、固形分10質量%である樹脂組成物1(以下、樹脂ワニス1ということがある)を得た。
(光学フィルム1の製造)
得られた樹脂ワニス1を、PET(ポリエチレンテレフタラート)フィルム(東洋紡(株)製「コスモシャイン(登録商標)A4100」、厚さ188μm、厚さ分布±2μm)上において流涎成形により塗膜を成形した。この時、線速は0.3m/分であった。また、80℃で10分加熱した後、100℃で10分加熱し、次いで90℃で10分加熱し、最後に80℃で10分加熱するという条件で塗膜を乾燥した。その後、PETフィルムから塗膜を剥離し、厚さ58μm、幅700mmの原料フィルム1を得た。
得られた原料フィルム1を、把持具としてクリップを備えたテンター式乾燥機(1〜6室構成)を用い加熱し、溶媒を除去して、厚さ49.5μmの樹脂フィルム1を得た。この時、乾燥炉内の条件は、乾燥炉内の温度が200℃、クリップの把持幅が25mm、フィルムの搬送速度が0.9m/分、乾燥炉入り口のフィルム幅(クリップ間距離)に対する乾燥炉出口のフィルム幅との比が0.98となるように調整し、テンター式乾燥機の各室における風速を、1室では13.5m/秒、2室では13m/秒、3〜6室では11m/秒となるように調整した。熱風はフィルムの上及び下から当てた。得られた樹脂フィルム1の断面でのラマン分光測定、弾性率、耐屈曲性を評価した。
<実施例2>
(樹脂組成物2の製造)
室温にてGBL溶媒にポリアミドイミド樹脂(1)を加えて十分に撹拌、混合し、そこに、Sumisorb 340[2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾール、住化ケムテックス(株)製]及びSumiplast Violet B(ブルーイング剤、住化ケムテックス(株)製)を、樹脂の合計量100質量部に対して、それぞれ5.7質量部及び35ppmとなるように添加し、混合した。均一になるまで撹拌し、固形分15質量%である樹脂組成物2(以下、樹脂ワニス2ということがある)を得た。
(光学フィルム2の製造)
樹脂ワニスとして、樹脂ワニス2を、基材に厚さ198μmの両面にハードコート(HC)層を有するポリエチレンテレフタレート(PET)フィルム(両面易接着層を有する、厚さ188μmのPET+両面に厚さ5μmのハードコート層、キャスト製膜面側及び反対面(すなわち、ハードコート層面側)のマルテンス硬度410N/mm)を用いた以外は、実施例1と同様の方法にて、厚さ49.5μmの樹脂フィルム2を得た。得られた樹脂フィルム2の断面でのラマン分光測定、弾性率、耐屈曲性を評価した。
<比較例1>
(樹脂組成物3の製造)
室温にてGBL溶媒にGBL分散表面修飾シリカゾル1を加えて十分に撹拌、混合し、その後、樹脂とシリカ粒子との組成比が60:40となるようにポリアミドイミド樹脂(1)を加えて混合した。均一になるまで撹拌し、固形分8.6質量%である樹脂組成物3(以下、樹脂ワニス3ということがある)を得た。
(光学フィルム3の製造)
得られた樹脂ワニス3を、PET(ポリエチレンテレフタラート)フィルム(東洋紡(株)製「コスモシャインA4100」、厚さ188μm、厚さ分布±2μm)の平滑面上に自立膜の厚さが55μmとなるようにアプリケーターを用いて塗布し、50℃で30分間、次いで140℃で15分間乾燥後、得られた塗膜をポリエステル基材から剥離して、自立膜を得た。自立膜を金枠に固定し、乾燥機として全排気オーブン(エスペック(株)製)を用い、さらに大気下、200℃で40分間乾燥し、厚さ50μmの樹脂フィルム3を得た。この時、乾燥炉内の条件は、乾燥炉内の温度が200℃、フィルムが縮まないようにフィルム側面を金枠で固定した(延伸倍率1倍)。熱風はフィルムの横方向(厚さ方向断面に垂直な方向)から当てた。得られた樹脂フィルム3の断面でのラマン分光測定、弾性率、耐屈曲性を評価した。
<比較例2>
(樹脂組成物4の製造)
室温にてGBL溶媒にポリアミドイミド樹脂(1)を加えて十分に撹拌、混合し、固形分9質量%である樹脂組成物4(以下、樹脂ワニス4ということがある)を得た。
(光学フィルム4の製造)
樹脂ワニスとして、樹脂ワニス4を用いた以外は、比較例1と同様の方法にて、厚さ50μmの樹脂フィルム4を得た。得られた樹脂フィルム4の断面でのラマン分光測定、弾性率、耐屈曲性を評価した。
実施例及び比較例で得た光学フィルムについて、上記の項目を測定した結果を表1に示す。なお、表1には記載していないが、実施例及び比較例の光学フィルムにおいては、I/Iは式(2)を満たすものではなかった。
Figure 2021070764
上記の式(1)及び式(2)の少なくとも一方を満足する実施例の光学フィルムは、式(1)及び式(2)のいずれもが0.97を超える比較例1及び2よりも高い屈曲回数を有すると共に、弾性率も高いことが確認された。中でも、シリカを含有する光学フィルムにおいては、通常、屈曲回数の向上が困難であるが、本願発明の光学フィルムによれば、シリカを含有する場合であっても高い耐屈曲性が得られることが確認された。
10 ゾーン
12 ゾーン
14 ゾーン
18 把持装置
20 原料フィルム
22 樹脂フィルム
30 上側ノズル(ノズル)
32 下側ノズル(ノズル)
35 ノズル
37 IRヒーター
100 テンター炉
100a 上面
100b 下面
A フィルムの搬送方向

Claims (10)

  1. ポリアミド系樹脂を含む光学フィルムであって、該光学フィルムの厚さをAμmとし、該光学フィルムの一方の表面上の任意の位置をDとし、Dから厚さ方向にA×1/4μmの位置をDとし、Dから厚さ方向にA×1/2μmの位置をDとし、Dから厚さ方向にA×3/4μmの位置をDとし、D〜Dの各位置におけるラマン分光法により測定される1,550〜1,650cm−1の範囲の最大ピークの強度をそれぞれI〜Iとすると、該光学フィルムは式(1)及び式(2):
    Figure 2021070764
    の少なくとも一方を満足する、光学フィルム。
  2. 上記の式(1)を満たすI/I又は上記の式(2)を満たすI/Iは0.3以上である、請求項1に記載の光学フィルム。
  3. 光学フィルムの弾性率は5.5GPa以上である、請求項1又は2に記載の光学フィルム。
  4. 光学フィルムの全光線透過率は80%以上である、請求項1〜3のいずれかに記載の光学フィルム。
  5. ポリアミド系樹脂の重量平均分子量は250,000以上である、請求項1〜4のいずれかに記載の光学フィルム。
  6. ポリアミド系樹脂はポリアミドイミド樹脂である、請求項1〜5のいずれかに記載の光学フィルム。
  7. フレキシブル表示装置の前面板用のフィルムである、請求項1〜6のいずれかに記載の光学フィルム。
  8. 請求項1〜7のいずれかに記載の光学フィルムを備えるフレキシブル表示装置。
  9. タッチセンサをさらに備える、請求項8に記載のフレキシブル表示装置。
  10. 偏光板をさらに備える、請求項8又は9に記載のフレキシブル表示装置。
JP2019199056A 2019-10-31 2019-10-31 光学フィルム及びフレキシブル表示装置 Pending JP2021070764A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019199056A JP2021070764A (ja) 2019-10-31 2019-10-31 光学フィルム及びフレキシブル表示装置
TW109134719A TW202122471A (zh) 2019-10-31 2020-10-07 光學膜及可撓性顯示裝置
CN202011170851.2A CN112817069A (zh) 2019-10-31 2020-10-28 光学膜及柔性显示装置
KR1020200141963A KR20210052325A (ko) 2019-10-31 2020-10-29 광학 필름 및 플렉시블 표시 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199056A JP2021070764A (ja) 2019-10-31 2019-10-31 光学フィルム及びフレキシブル表示装置

Publications (1)

Publication Number Publication Date
JP2021070764A true JP2021070764A (ja) 2021-05-06

Family

ID=75712469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199056A Pending JP2021070764A (ja) 2019-10-31 2019-10-31 光学フィルム及びフレキシブル表示装置

Country Status (4)

Country Link
JP (1) JP2021070764A (ja)
KR (1) KR20210052325A (ja)
CN (1) CN112817069A (ja)
TW (1) TW202122471A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778339A (zh) * 2022-04-11 2022-07-22 江苏鼎盛检测中心有限公司 一种基于大数据的可降低误差的高低温耐久测试分析方法
EP4137537A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same
EP4137538A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same
EP4194489A1 (en) * 2021-12-10 2023-06-14 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160974A (ja) * 2004-12-10 2006-06-22 Du Pont Toray Co Ltd ポリイミドフィルム
JP2018119132A (ja) * 2017-01-20 2018-08-02 住友化学株式会社 ポリアミドイミド樹脂および該ポリアミドイミド樹脂を含んでなる光学部材
JP2018193546A (ja) * 2017-05-18 2018-12-06 東レ株式会社 含窒素ポリマーフィルムおよび積層フィルム
WO2018225598A1 (ja) * 2017-06-05 2018-12-13 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
US20180370207A1 (en) * 2015-07-22 2018-12-27 Sumitomo Chemical Company, Limited Resin film, laminate, optical member, gas barrier material and touch sensor substrate
JP2019105830A (ja) * 2017-12-08 2019-06-27 住友化学株式会社 光学積層体
JP6541855B1 (ja) * 2018-10-02 2019-07-10 住友化学株式会社 光学フィルム、フレキシブル表示装置及び光学フィルムの製造方法
JP6541856B1 (ja) * 2018-10-02 2019-07-10 住友化学株式会社 光学フィルム、フレキシブル表示装置及び光学フィルムの製造方法
JP6556317B1 (ja) * 2018-11-27 2019-08-07 住友化学株式会社 光学積層体、フレキシブル表示装置及び光学積層体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135433A1 (ja) * 2017-01-20 2018-07-26 住友化学株式会社 光学フィルム及び光学フィルムの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160974A (ja) * 2004-12-10 2006-06-22 Du Pont Toray Co Ltd ポリイミドフィルム
US20180370207A1 (en) * 2015-07-22 2018-12-27 Sumitomo Chemical Company, Limited Resin film, laminate, optical member, gas barrier material and touch sensor substrate
JP2018119132A (ja) * 2017-01-20 2018-08-02 住友化学株式会社 ポリアミドイミド樹脂および該ポリアミドイミド樹脂を含んでなる光学部材
JP2018193546A (ja) * 2017-05-18 2018-12-06 東レ株式会社 含窒素ポリマーフィルムおよび積層フィルム
WO2018225598A1 (ja) * 2017-06-05 2018-12-13 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
JP2018203986A (ja) * 2017-06-05 2018-12-27 住友化学株式会社 フィルム、フィルムの光学的均質性の評価方法及びフィルムの製造方法
JP2019105830A (ja) * 2017-12-08 2019-06-27 住友化学株式会社 光学積層体
JP6541855B1 (ja) * 2018-10-02 2019-07-10 住友化学株式会社 光学フィルム、フレキシブル表示装置及び光学フィルムの製造方法
JP6541856B1 (ja) * 2018-10-02 2019-07-10 住友化学株式会社 光学フィルム、フレキシブル表示装置及び光学フィルムの製造方法
JP6556317B1 (ja) * 2018-11-27 2019-08-07 住友化学株式会社 光学積層体、フレキシブル表示装置及び光学積層体の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137537A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same
EP4137538A1 (en) * 2021-08-20 2023-02-22 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same
EP4194489A1 (en) * 2021-12-10 2023-06-14 SKC Co., Ltd. Polyamide-imide-based film, preparation method thereof, and cover window and display device comprising the same
CN114778339A (zh) * 2022-04-11 2022-07-22 江苏鼎盛检测中心有限公司 一种基于大数据的可降低误差的高低温耐久测试分析方法
CN114778339B (zh) * 2022-04-11 2022-11-25 江苏鼎盛检测中心有限公司 一种基于大数据的可降低误差的高低温耐久测试分析方法

Also Published As

Publication number Publication date
TW202122471A (zh) 2021-06-16
CN112817069A (zh) 2021-05-18
KR20210052325A (ko) 2021-05-10

Similar Documents

Publication Publication Date Title
JP6896787B2 (ja) 光学フィルム、光学積層体及びフレキシブル画像表示装置
JP2021070764A (ja) 光学フィルム及びフレキシブル表示装置
JP2020003781A (ja) 樹脂フィルム及びその製造方法
JP2021107922A (ja) 光学フィルム、光学積層体及びフレキシブル画像表示装置
JP2021006624A (ja) 光学フィルム、フレキシブル表示装置、及び光学フィルムの製造方法
JP7469087B2 (ja) 光学フィルム及びフレキシブル表示装置
TW202022020A (zh) 光學膜
JP6799182B2 (ja) 光学フィルム、フレキシブル表示装置、及び樹脂組成物
JP2021148939A (ja) 光学フィルム及びフレキシブル表示装置
WO2021085404A1 (ja) 光学積層体及びフレキシブル表示装置
JP6595080B1 (ja) 光学フィルム、フレキシブル表示装置、及び樹脂組成物
JP2021075052A (ja) 光学積層体及びフレキシブル表示装置
JP7469088B2 (ja) 光学フィルム及びフレキシブル表示装置
JP2021148938A (ja) 光学フィルム及びフレキシブル表示装置
JP2021148936A (ja) 光学フィルム及びフレキシブル表示装置
JP2021148937A (ja) 光学フィルム及びフレキシブル表示装置
JP2022163714A (ja) 光学積層体及びフレキシブル表示装置
JP2022163622A (ja) 光学積層体及びフレキシブル表示装置
WO2021075395A1 (ja) 光学フィルム
JP2021084941A (ja) 光学フィルム及びフレキシブル表示装置
JP2022163711A (ja) 光学フィルム
WO2021075396A1 (ja) ポリイミド系樹脂
JP2023133097A (ja) ポリイミド系樹脂を含むフィルム、積層体およびフレキシブル表示装置
WO2021085283A1 (ja) ポリアミドイミド樹脂
JP2021075702A (ja) ポリアミドイミド樹脂、光学フィルム及びフレキシブル表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231031