JP2021047306A - 制御装置、制御方法、リソグラフィ装置、および物品の製造方法 - Google Patents

制御装置、制御方法、リソグラフィ装置、および物品の製造方法 Download PDF

Info

Publication number
JP2021047306A
JP2021047306A JP2019170166A JP2019170166A JP2021047306A JP 2021047306 A JP2021047306 A JP 2021047306A JP 2019170166 A JP2019170166 A JP 2019170166A JP 2019170166 A JP2019170166 A JP 2019170166A JP 2021047306 A JP2021047306 A JP 2021047306A
Authority
JP
Japan
Prior art keywords
operation amount
control
control device
feedforward operation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019170166A
Other languages
English (en)
Other versions
JP7301695B2 (ja
Inventor
光英 西村
Mitsuhide Nishimura
光英 西村
順一 本島
Junichi Motojima
順一 本島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019170166A priority Critical patent/JP7301695B2/ja
Priority to TW109129707A priority patent/TWI789623B/zh
Priority to KR1020200110823A priority patent/KR20210033895A/ko
Priority to US17/011,202 priority patent/US11112701B2/en
Priority to SG10202009135VA priority patent/SG10202009135VA/en
Priority to CN202010984147.4A priority patent/CN112526828B/zh
Publication of JP2021047306A publication Critical patent/JP2021047306A/ja
Application granted granted Critical
Publication of JP7301695B2 publication Critical patent/JP7301695B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Feedback Control In General (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】フィードフォワード操作量を与えて位置制御をする場合に、制御の継続目標時間が上限を超えた場合でも制御偏差を抑制する。【解決手段】制御対象にフィードフォワード操作量を与えることにより、前記制御対象の位置制御を行う制御装置であって、前記フィードフォワード操作量を用いた制御を継続する目標時間が所定の時間を超えているか否かを判断する判断手段と、前記判断手段によって前記目標時間が前記所定の時間を超えていると判断された場合に、前記フィードフォワード操作量が前記目標時間の終端に向かって減衰するように補正する補正手段と、を有することを特徴とする。【選択図】図6

Description

本発明は、制御装置、制御方法、リソグラフィ装置、および物品の製造方法に関する。
例えば半導体デバイスなどの製造に用いられる露光装置では、原版や基板を保持するステージなどの制御対象を目標位置に移動させたときに発生する制御偏差を迅速に低減することがスループット面で有利になりうる。
特許文献1では、インパルス信号等の所定の操作量を基板ステージ(制御対象)に与えた時の基板ステージの応答を計測している。そして、その計測結果に基づいて、制御偏差を低減するように基板ステージに与えるためのフィードフォワード(FF)操作量を生成することが提案されている。
このように生成されたフィードフォワード(FF)操作量を基板ステージに与えて基板ステージの位置制御を行うことにより、目標位置に移動させた基板ステージの制御偏差を迅速に低減し、整定時間を短縮させることができる。
特開2013−218496号公報
例えば露光装置では、基板ステージ移動終了後の処理時間が長い場合(200msec以上)が存在する。前記処理時間は、露光装置の運用方法によって決定されるものであり、処理時間は長い場合、短い場合が混在する。例をあげると、露光量設定、アライメント設定などがそれに該当する。
一方、前記処理時間が長い場合においても、FF制御された高い制御偏差抑制状態を継続することが望ましい。即ち、FF操作量を保存する場合、例えば露光時であれば、露光領域数×処理時間分、アライメント計測時であれば、アライメントショット数×処理時間分、FF操作量を保存することが必要となる。露光装置では、1つの基板が100以上のショット領域を含むため、100以上の異なる基板ステージの座標において、基板ステージを移動(走査)しながらマスクのパターンを転写する必要がある。従って、基板ステージに与えるFF操作量が基板ステージの座標ごとに異なる場合には、100種類以上のFF操作量を記憶するメモリを露光装置が有していなければならない。
更に、露光装置のコンピュータ構造は、何層もの階層に分かれており、階層を考慮しなければ、前記処理時間が長い場合に合わせた、FF操作量を保存するための大容量のメモリを確保する事は困難ではない。しかし階層を考慮すると大容量のメモリを確保することは困難である。
即ち、前記処理時間が短い場合、基板ステージの座標間の移動時間(移動後の処理時間も含める)は極めて短く(100msec以下)、その間に、次の目標位置に対するFF操作量を上位階層から転送することは困難である。従って、基板ステージの制御に必要なデータは下位階層のコンピュータ(メモリ)に記憶されており、下位階層のメモリ容量は限られているため、現状では、長い処理時間に合わせた100種類以上のFF操作量を記憶することは困難である。
また、FF操作量の長さに応じて保存する階層を変更しようとすると、処理が複雑になってしまう。
さらに、FF制御が切れた場合、短い時間(5msec〜10msec位)制御偏差が発生してしまう。その場合の制御偏差は、例えばFF制御を行っている状態よりも大きい制御偏差(5nm〜100nm位)になる。
しかし、アライメント計測処理、または、露光処理において制御偏差が発生するのは、精度の低下やスループットの低下につながるので避けなければならない。
そこで、本発明は、フィードフォワード操作量を与えて位置制御をする場合に、制御を継続する目標時間が上限を超えた場合でも制御偏差を抑制することが可能な制御装置ことを目的とする。
制御対象にフィードフォワード操作量を与えることにより、前記制御対象の位置制御を行う制御装置であって、
前記フィードフォワード操作量を用いた制御を継続する目標時間が所定の時間を超えているか否かを判断する判断手段と、
前記判断手段によって前記目標時間が前記所定の時間を超えていると判断された場合に、前記フィードフォワード操作量が前記目標時間の終端に向かって減衰するように補正する補正手段と、を有することを特徴とする。
本発明によれば、フィードフォワード操作量を与えて位置制御をする場合に、制御を継続する目標時間が上限を超えた場合でも制御偏差を抑制することが可能な制御装置を提供する。
実施例の露光装置のブロック図である。 実施例の基板ステージの位置及び制御偏差のそれぞれを時系列で示した図である。 実施例の基板ステージの位置制御のブロック線図である。 実施例のフィードフォワード操作量の決定のためのフローチャートである。 実施例の第1操作量及び基板ステージの出力応答を示した図である。 実施例の第1フィードフォワード操作量に対して、減衰を掛けるかの判断のためのフローチャートである。 実施例の第1フィードフォワード操作量に対しての減衰量の決定方法を示すフローチャートである。 実施例において、減衰の開始点を変化させ、減衰量の時間変化を示した図である。 実施例において、減衰の曲率を変化させ、減衰量の時間変化を示した図である。 実施例の、パラメータの設定画面を示した図である。 実施例において、第1FF操作量に対して、算出した各時間における減衰量に従って減衰を掛けた結果を示した図である。 実施例において、第1FF操作量を元に、制御対象に対してFF制御を行い、FF制御が切れた場合の制御偏差を示した図である。 実施例において、第2FF操作量を元に、制御対象に対してFF制御を行い、FF制御が切れた場合の制御偏差を示した図である。 実施例の、減衰の開始点、曲率を自動決定するフローチャートである。
以下、添付図面を参照して、本発明の好適な実施の形態について実施例を用いて説明する。なお、各図において、同一の部材ないし要素については同一の参照番号を付し、重複する説明は省略ないし簡略化する。以下に算出、記憶すると記載した各値においては、全て記憶装置または、その代替に記憶されるものとする。
以下の実施例では、マスク(原版)のパターンを基板に転写する露光装置を例にして本発明を説明するが、本発明は露光装置に限られるものではない。例えば、モールドを用いて基板上にインプリント材のパターンを形成するインプリント装置や、荷電粒子線を基板に照射して当該基板にパターンを形成する描画装置などの他のリソグラフィ装置においても本発明を適用することができる。また、リソグラフィ装置に限らず、制御対象物を位置決めする装置であれば、本発明を適用することができる。さらに、以下の実施例では、基板を保持して移動可能な基板ステージを制御対象として説明するが、マスク(原版)を保持して移動可能なマスクステージなどを制御対象とした場合であっても本発明を適用することができる。
次に本発明の実施例の露光装置について図1を用いて説明する。図1は、実施例の露光装置の構成を示す概略図である。露光装置は、例えばステップ・アンド・リピート方式でマスク(原版)のパターンを基板に転写する静止型露光装置等である。但し、露光装置は、ステップ・アンド・スキャン方式やその他の露光方式を適用したものであっても良い。
露光装置は、光源102からの光でマスク106を照明する照明光学系104と、マスク106を保持するマスクステージ108と、マスク106のパターンを基板に投影する投影光学系110を有する。また、露光装置は、基板112を保持して移動可能な基板ステージ114と、移動ミラー116と、レーザ干渉計118と、制御装置120とを有する。
光源102としては、波長が約365nmのi線光源、波長が約248nmのKrFエキシマレーザ、波長が193nmのArFエキシマレーザなどの光源を用いる。但し、光源の種類および個数は限定されず、例えば、波長が約157nmのF2レーザを光源102として使用してもよい。
照明光学系104は、光源102からの光でマスク106を照明する光学系である。照明光学系104は、光源102からの光の形状を整形するビーム整形光学系や、マスク106を均一な照度分布で照明するための多数の2次光源を形成するオプティカルインテグレータなどを含む。
マスク106は、基板112に転写すべきパターンを有し、マスクステージ108に保持および駆動される。マスク106(のパターン)で回折された光は、投影光学系110を介して、基板112に投影される。マスク106と基板112とは、光学的に共役の関係に配置される。露光装置は、ステップ・アンド・リピート方式の露光装置であるため、基板ステージ114が各転写位置に静止し、マスク106のパターンを基板112に転写する。
マスクステージ108は、マスク106を保持(吸着)するためのマスクチャックを含み、X軸方向、Y軸方向、Z軸方向および各軸の回転方向に移動可能に構成される。
投影光学系110は、マスク106のパターンを基板112に投影する光学系である。投影光学系110は、屈折系、反射屈折系、あるいは、反射系を使用することができる。
基板112は、マスク106のパターンが投影(転写)される基板である。基板112には、レジスト(感光剤)が塗布されている。基板112は、ウエハ、ガラスプレート、その他の基板を含む。
基板ステージ114は、基板112を保持(吸着)するための基板チャックを含み、X軸方向、Y軸方向、Z軸方向および各軸の回転方向に移動させるための不図示の基板ステージ駆動部を含む。基板ステージ114には、移動ミラー116が固定されており、移動ミラー116を利用して、レーザ干渉計118により基板ステージ114の位置および速度が検出される。即ち、レーザ干渉計118は、基板ステージ114の位置および速度を計測する計測部として機能しうる。計測部は、X軸方向、Y軸方向、Z軸方向および各軸の回転方向における基板ステージ114の位置および速度を計測することができるように、複数のレーザ干渉計118を含みうる。
制御装置120は、例えばCPUやメモリ126を含むコンピュータ(情報処理装置)によって構成され、メモリ126に記憶されたコンピュータプログラムに基づき露光装置1の動作(全体)を制御する。例えば、制御装置120は、制御対象としての基板ステージ114の位置制御を行う。また、制御装置120のメモリ126は、基板ステージ114の制御に関連するデータを記憶する記憶部である。本実施例では、メモリ126は、後述するようにフィードフォワード制御器124が基板ステージ114に与えるフィードフォワード操作量なども記憶する。
露光装置では、一般に、基板ステージ114の現在位置と目標位置との偏差を低減するように、基板ステージ114のフィードバック制御のみが行われうる。図2(A)は、フィードバック制御のみを行ったときの基板ステージ114の位置を時系列的に示すグラフであり、図2(B)は、そのときの位置制御偏差(即ち、基板ステージ114の現在位置と目標位置との偏差)を時系列的に示すグラフである。図2(A)では、縦軸を基板ステージ114の位置とし、横軸を時刻としている。また、図2(B)では、縦軸を基板ステージ114の位置制御偏差とし、横軸を時刻としている。なお、以下では、基板ステージ114の位置制御偏差を、単に「制御偏差」と呼ぶことがある。
図2(A)を参照するに、基板ステージ114は、時刻0で移動を開始し、時刻300付近で目標位置に到達していることがわかる。しかしながら、図2(B)に示すように、時刻300付近では、基板ステージ114の制御偏差が大きく残存しており、基板ステージ114が目標位置に完全に到達しているとはいえない状態である。半導体デバイスを製造するための露光装置には、基板ステージの位置合わせにナノメートルオーダーの精度が要求される。したがって、図2の例の場合、露光処理を開始できる時刻は、基板ステージ114の制御偏差が整定される時刻450以降となり、スループットの点で不利になりうる。
そこで、本実施例の制御装置120は、基板ステージ114(の不図示の基板ステージ駆動部、以下基板ステージ114は基板ステージ駆動部を含む。)のフィードバック制御を行うためのフィードバック制御器(FB制御器)122を有する。それに加えて、基板ステージ114のフィードフォワード制御を行うためのフィードフォワード制御器(FF制御器)124を含む。フィードバック制御器122は、基板ステージ114の現在位置(出力応答)と目標位置(目標値)との偏差を低減するように、基板ステージ114をフィードバック制御する。フィードフォワード制御器124は、制御対象としての基板ステージ114にフィードフォワード操作量を与えて基板ステージ114の出力応答が速やかに目標値(目標データ)となるように、基板ステージ114をフィードフォワード制御して位置制御する。
図3は、本実施例における基板ステージ114の位置制御のブロック線図である。減算器202は、上述したレーザ干渉計118を含む計測部204で計測された基板ステージ114の現在位置と目標位置rとの偏差eを算出し、該偏差eをFB制御器122に出力する。FB制御器122は、例えばPID(Proportional Integral Differential)補償器を含み、減算器202で算出された偏差を低減するように(例えば零になるように)基板ステージ114を駆動するためのフィードバック操作量を求め、求めたフィードバック操作量を基板ステージ114に与える。
一方、FF制御器124は、基板ステージ114の制御偏差を低減させるためのフィードフォワード操作量iを、加算器206でフィードバック操作量に加算して、基板ステージ114に与える。
次に、FF制御器124によって基板ステージ114に与えられるフィードフォワード操作量の決定方法について、図4を参照しながら説明する。図4は、フィードフォワード操作量の決定方法を示すフローチャートである。図4の各工程(ステップ)は、メモリ126内のコンピュータプログラムに基づき制御装置120によって行われうる。以下では、フィードフォワード操作量を「FF操作量」、フィードバック操作量を「FB操作量」と呼ぶことがある。
S101において、制御装置120は、所定の第1操作量を与えた時の出力応答を計測する。更にS102において、複数の目標位置の各々について、基板ステージ114の出力応答の計測結果を取得したか否かを判断する。目標位置は、例えば、基板上のショット領域にマスク106のパターンを転写するときに配置すべき基板ステージ114の位置に設定されうる。この場合、複数の目標位置は、基板上における複数のショット領域の各々にパターン形成を行うときの基板ステージ114の全ての位置を含むように設定されてもよい。あるいは、複数の目標位置は、基板上における複数のショット領域のうち、幾つかのショット領域(サンプルショット領域)の各々にパターン形成を行うときの基板ステージ114の位置のみを含むように設定されてもよい。S102において、複数の目標位置の各々について出力応答の計測結果を取得したと判断した場合にはS103に進む。一方、出力応答の計測結果を取得していない目標位置がある場合にはS101に戻り、その目標位置に基板ステージ114を配置して出力応答の計測を行う。
S103において、制御装置120は、複数の目標位置の各々で取得した出力応答の計測結果に基づいて、基板ステージ114に第1操作量(例えば図5(A)のインパルス信号)を与えたときの図5(B)に示すような出力応答の代表値を決定する。制御装置120は、後述するS104〜S106の工程において、複数の目標位置で共通に用いるFF操作量を設定する場合と、複数の目標位置の各々についてFF操作量を個別に設定する場合とがある。複数の目標位置で共通に用いるFF操作量を設定する場合には、制御装置120は、複数の目標位置の各々で取得した出力応答の計測結果の平均値(時刻ごとの平均値を示すデータ)を代表値として決定しうる。
なお、制御装置120は、出力応答の計測結果の平均値の代わりに、該計測結果の最大値や最小値、中央値などの統計値を代表値として決定してもよい。また、各目標位置についてFF操作量を個別に設定する場合には、制御装置120は、複数の目標位置の各々で取得した出力応答の計測結果の平均値などを代表値として決定してもよいが、各目標位置について代表値を個別に決定してもよい。例えば、制御装置120は、複数の目標位置の各々で取得した出力応答の計測結果のうち、FF操作量を決定する対象の目標位置で取得された出力応答の計測結果を代表値として決定(選択)してもよい。
S104では、制御装置120は、第1操作量(例えば図5(A)のインパルス信号)とS103で決定した図5(B)に示すような出力応答の代表値との関係に基づいて第2操作量を決定する。第2操作量は、複数の時刻の各々で互いに異なりうる係数を第1操作量に乗じて合成(結合)することによって得られる操作量である。制御装置120は、第1操作量と出力応答の代表値とが線形関係で変化するとの仮定に基づいて、第2操作量を基板ステージ114に与えた場合に得られうる該基板ステージ114の出力応答を予測する。そして、予測した基板ステージ114の出力応答と目標応答との差が許容範囲内に収まるように(好ましくは、当該差が零になるように)、各時刻での係数を調整する近似計算を行うことにより第2操作量を決定する。
目標応答とは、例えば、フィードバック制御のみを行ったときの各時刻に対する基板ステージ114の制御偏差(図2(B)に示すようなグラフ)のことである。目標応答は、目標位置への基板ステージ114の到達時刻(図2(B)の時刻300)から、基板ステージ114の整定時刻(図2(B)の時刻450)までの期間における基板ステージ114の出力応答(制御偏差)を含みうる。また、目標応答は、到達時刻から整定時刻までの期間に限られるものではなく、それ以外の期間における基板ステージ114の出力応答を含んでもよい。
ここで、第1操作量を与えたときの基板ステージ114の出力応答(例えば図5(B)のインパルス応答)に含まれている高周波成分により、第2操作量を決定する際の近似計算において誤差が収束せずに、第2操作量を正常に求めることができない場合がある。この場合には、制御装置120は、基板ステージ114の出力応答に対し、低域通過フィルタ等のフィルタ処理や、窓関数を適用してもよい。
S105において、制御装置120は、S104で決定した第2操作量に基づいて第1FF操作量を決定する。例えば、制御装置120は、S104で決定した第2操作量における操作方向(即ち、基板ステージ114を駆動させるべき方向)を逆転させることによって得られた操作量を、第1FF操作量として決定する。このようにして決定された第1FF操作量をフィードバック操作量とともに基板ステージ114に与えることにより、基板ステージ114の制御偏差を低減(相殺)させることができるため、基板ステージ114の整定時間を短縮することができる。
なお、S104における第2操作量の決定、およびS105における第1FF操作量の設定についての具体的な方法は、特開2013−218496号公報に記載されているが、以下詳細に説明する。
まず、基板ステージ114にFF操作量を与えていない状態で基板ステージ114の制御偏差e(t)を計測した結果(実測値)を取得する。そして、露光処理を行う時間区間(例えば、時刻331〜時刻420)を決定し、制御偏差e(t)から、露光処理の時間区間の制御偏差データを抽出する。この際、サンプリング時間を1とすれば、抽出される制御偏差データe0は90サンプルであり、以下の数1のようになる。
Figure 2021047306
次に、図5(A)及び図5(B)に示したように、ある時刻に基板ステージ114にΔf(t)のFF操作量を与え、その応答Δy(t)を計測した結果(実測値)を取得する。そして、基板ステージ114の応答Δy(t)から、露光処理の時間区間の応答データを抽出する。このようにして抽出される応答データy0は、以下の数2のようになる
Figure 2021047306
ここまでのデータは実測値であるが、ここからは仮想的なデータを生成する。Δf(t)のFF操作量を与えた1サンプル後に同様なFF操作量を基板ステージ114に与えると同様な応答が得られると仮定し、その応答をy1とする。同様にして、2サンプル後の応答、3サンプル後の応答、・・・、nサンプル後の応答をy2、y3、・・・、ynとすると、以下の数3のようになる。
Figure 2021047306
基板ステージ114に与える操作量と基板ステージ114の応答との間に線形関係があれば、FF操作量gΔf(t)に対する応答はgΔy(t)となる。従って、nサンプル後のFF操作量のゲインをgnとすれば、以下の数4が成り立つ。
Figure 2021047306
次に、基板ステージ114にnサンプル後のFF操作量の全てを与えた場合の基板ステージ114の応答を推測する。かかる応答から抽出される露光処理の時間区間の応答データをYとすると、Yはn個の応答の和となるため、以下の数5が成り立つ。
Figure 2021047306
基板ステージ114にFF操作量を与えることによって露光処理の時間区間の制御偏差(制御偏差データe0)をなくすためには、応答データYが制御偏差データe0と等しくなればよい。従って、以下の数6のような擬似逆行列を用いて、FF操作量のゲインgnを求める(決定する)ことができる。
Figure 2021047306
このようにして求めたゲインに従って決まるFF操作量(即ち、決定したゲインgnをFF操作量Δf(t+tn)に乗算したFF操作量gnΔf(t+tn)を基板ステージ114に与える。ここでFF操作量gnΔf(t+tn)が第2操作量に相当する。そして、この第2操作量に基づき、基板ステージ114に対して偏差を打ち消すように第1FF操作量(第1フィードフォワード操作量)を決定する。
本実施例では、S105で求めた第1FF操作量に対してさらに、終端に向かい減衰を掛ける事によってFF制御が切れた場合の制御偏差を低減させるようにした点に特徴がある。
即ち、S106で、第1FF操作量に対して減衰を掛けるか否かを判断し、第2FF操作量を決定する。第2FF操作量決定方法の詳細については、図6、図7のフローチャートを用いて説明する。
図6は、第2FF操作量の算出方法を説明するためのフローチャートである。
S201で、FF制御を継続して実行するための目標時間を取得する。目標時間は、露光処理やアライメント計測処理などの処理時間に応じて決定され、処理条件を定める露光量、アライメント設定等の複数のパラメータのうちの少なくとも1つにより決定される。
S202で、制御装置のFF制御を継続して実行できる上限時間を取得する。上限時間が長くなるほどFF操作量のデータ量が増加するため、上限時間は、前記下位階層のメモリ容量に応じて予め定められている。
S203で、S201、S202で取得した目標時間と上限時間(所定の時間)を比較する。
比較した結果、上限時間を目標時間が超えていなかった場合、第1FF操作量を第2FF操作量とする。
比較した結果、上限時間を目標時間が超えていた場合、S204で第1FF操作量に掛ける減衰量を決定する。S204の詳細は図7にて説明を行う。
図7は、第1FF操作量に掛ける減衰量の決定方法を説明するためのフローチャートである。
S301で第1FF操作量の長さを取得する。S302で減衰開始点Sを決定する。S303で減衰率を決定する。S304で各時刻における減衰量を算出する。各時間における減衰量の決定方法については、目標時間の終端に向かって減衰するという特徴を有していれば何を使用して算出しても良い。このような減衰量を第1FF操作量に掛けることによって補正して第2FF操作量を求める。なお、フィードフォワード操作量の長さに応じて前記フィードフォワード操作量を減衰するように補正する。
減衰量の算出方法について、減衰関数として窓関数を応用した例を数7として以下に示す。
なお、以下の例では、第1FF操作量の長さを200msecと仮定している。
Figure 2021047306
t:時間変化
L:FF操作量の長さ
R:減衰比率(1−(S/L))
S:減衰開始点
C:曲率係数
(ただし、t≠0,L≠0,S≠0,R≠0,C≠0)
なお、t=1、2、3、・・・nとし、
f(n)<f(n+1)の場合、f(n)以降は0とする。
図8では、曲率係数Cを1.0とし、減衰開始点Sを180、100、20msecと変化させた時の前記減衰量の時間変化を算出した結果を示す。
図9では、減衰開始点Sを100msecとし、曲率係数Cを1.00,1.50,3.00と変化させた時の前記減衰量の時間変化を算出した結果を示す。
図10では、パラメータ設定画面の例を示す。図10において、S401は、減衰方法を算出するアルゴリズムを設定するパラメータを示しており、ユーザーにより選択可能となっている。
S402は、減衰開始点を設定するパラメータを示しており、これもユーザーにより選択可能となっている。
S403は、曲率係数を設定するパラメータを示しており、これもユーザーにより選択可能としても良いし、例えばS401とS402などのパラメータに基づき自動的に計算するようにしても良い。
図6に戻り、S204で決定した減衰量を、S206で第1FF操作量に掛けて補正することによって第2FF操作量を算出する。即ち、S206のステップを実行することによって制御装置120は補正手段として機能している。また、前述のように、補正手段は、前記フィードフォワード操作量の減衰開始点、減衰率、減衰量の少なくとも1つを変更可能になっている。減衰量、各操作量に関して図11に示す。
図11(A)には、前記例に従って、曲率1.00、減衰開始点S100msecとし、求めた減衰量を示す。図11(B)には、第1FF操作量を示す。図11(C)には、図11(A)と図11(B)を時間毎に掛けあわせて算出した、第2FF操作量を示す。
図12では、第1FF操作量を用いて、基板ステージをFF制御し、FF制御が切れた場合の制御偏差を示す。
図12(A)は制御偏差を示し、図12(B)には、第1FF操作量を示す。
第1FF操作量を用いてFF制御を行い、FF制御が切れてしまった場合、僅かながら、FF制御状態よりも大きい制御偏差が発生してしまっている事がわかる。(図12の破線の丸枠部分)
一方、図13では、第2FF操作量を用いて、基板ステージをFF制御し、FF制御が切れた場合の制御偏差を示す。
図13(A)には制御偏差を示し、図13(B)には、第2FF操作量を示す。
第2FF操作量を用いてFF制御を行うと、FF制御が切れてしまった場合でもFF制御を行っている場合と同等な制御偏差を示していることがわかる。(図13の破線の丸枠部分)
次に、図14では、図10の減衰に関するパラメータの自動決定方法を示す。
S401で、予め設定された減衰に関するパラメータの初期値を用いて第2FF操作量を算出する。S402において、S401で求めた第2FF操作量を用いて制御を実施する。
S403において、S402で制御を実施した場合の制御対象の一定区間(第1の区間)の制御偏差を取得する。一例をあげると、図13(A)の減衰開始前10msec分の制御偏差を取得する。(例えば区間:981〜991msec)
S404において、S402で制御を実施した際に、上限時間を超えた場合の一定区間(第2の区間)の制御偏差を取得する。一例をあげると、図13(A)の上限時間から10msec分の制御偏差を取得する。(例えば区間:1071〜1081msec)
S405において、S403で取得した第1の区間の制御偏差の最大値から最小値を減算し、偏差レンジ(振れ幅)を求める。また、S404で取得した第2の区間の制御偏差の最大値から最小値を減算し、偏差レンジ(振れ幅)を求める。
S406においてS405で求めた2つの制御偏差レンジを比較し、同等であるかを確認する。同等かの判断方法の一例を挙げると、2つの偏差レンジの差が閾値以下であることを確認する。
同等であった場合、減衰に関するパラメータの自動決定フローは終了となり、現在のパラメータの設定を維持する。
同等でなかった場合、S407で減衰開始点を早める。一例をあげると、図8の減衰開始点Sを180から100へ変更する。更にS408で曲率(減衰率)を緩める。一例をあげると図9の曲率(曲率係数)Cを1.5から1.0へ変更する。S408が終了した後で、S401に戻りS401からS408を繰り返し行い、S406で偏差レンジが同等となるまで繰り返す。
なお図14のフローにおいては、フィードフォワード操作量に対して所定の補正を行った後の第2FF操作量を用いて、制御偏差が所定のレンジに入るように前記減衰開始点、や減衰率を変更している。しかし、例えば減衰開始点、減衰率、減衰量の少なくとも1つを変更するようにしても良い。
(物品製造方法)
次に、物品(半導体IC素子、液晶表示素子、MEMS等)の製造方法を説明する。本実施形態の物品の製造方法は、前述のリソグラフィ装置(露光装置)を使用して、基板(ウェハ、ガラス基板等)上にパターンを形成する工程と、かかる工程でパターンが形成された基板を加工する工程とを含む。さらに、かかる製造方法には、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)が含まれる。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能、品質、生産性、生産コストのすくなくとも1つにおいて有利である。
以上、本発明をその好適な実施例に基づいて詳述してきたが、本発明は上記実施例に限定されるものではなく、本発明の主旨に基づき種々の変形が可能であり、それらを本発明の範囲から除外するものではない。
なお、本実施例における制御の一部または全部を上述した実施例の機能を実現するコンピュータプログラムをネットワーク又は各種記憶媒体を介して露光装置に供給するようにしてもよい。そしてその露光装置におけるコンピュータ(又はCPUやMPU等)がプログラムを読み出して実行するようにしてもよい。その場合、そのプログラム、及び該プログラムを記憶した記憶媒体は本発明を構成することとなる。
1:露光装置、
106:マスク
108:マスクステージ
112:基板
114:基板ステージ
118:レーザ干渉計
120:制御装置
122:フィードバック制御器
124:フィードフォワード制御器
204:計測部

Claims (14)

  1. 制御対象にフィードフォワード操作量を与えることにより、前記制御対象の位置制御を行う制御装置であって、
    前記フィードフォワード操作量を用いた制御を継続する目標時間が所定の時間を超えているか否かを判断する判断手段と、
    前記判断手段によって前記目標時間が前記所定の時間を超えていると判断された場合に、前記フィードフォワード操作量が前記目標時間の終端に向かって減衰するように補正する補正手段と、を有することを特徴とする制御装置。
  2. 前記補正手段は、前記フィードフォワード操作量の長さに応じて前記フィードフォワード操作量を減衰するように補正することを特徴とする請求項1に記載の制御装置。
  3. 前記所定の時間は前記フィードフォワード操作量を用いた制御を継続できる上限時間に応じて決まるものであることを特徴とする請求項1または2に記載の制御装置。
  4. 前記補正手段は、前記フィードフォワード操作量の減衰開始点、減衰率、減衰量の少なくとも1つを変更可能であることを特徴とする請求項1乃至3のいずれか1項に記載の制御装置。
  5. 前記補正手段は、前記フィードフォワード操作量に対して掛ける減衰関数の曲率係数を変更することによって減衰率を変更することを特徴とする請求項4に記載の制御装置。
  6. 前記補正手段は、前記フィードフォワード操作量に対して所定の補正を行った後のフィードフォワード操作量を用いて、制御偏差が所定のレンジに入るように前記減衰開始点、減衰率、減衰量の少なくとも1つを変更することを特徴とする請求項4に記載の制御装置。
  7. 前記フィードフォワード操作量は、前記制御対象に第1操作量を与えたときの前記制御対象の出力応答の計測結果を取得し、
    前記第1操作量と前記出力応答の計測結果との関係に基づいて、第2操作量を算出することによって求めるものであることを特徴とする請求項1に記載の制御装置。
  8. 前記第2操作量は、第2操作量を前記制御対象に与えた場合に予測される前記出力応答に基づき決定されるものであることを特徴とする請求項7に記載の制御装置。
  9. 前記第2操作量に基づいて、前記フィードフォワード操作量を決定することを特徴とする請求項8に記載の制御装置。
  10. 制御対象にフィードフォワード操作量を与えることにより、前記制御対象の位置制御を行う制御方法であって、
    前記フィードフォワード操作量を用いた制御を継続する目標時間が所定の時間を超えているか否かを判断する判断ステップと、
    前記判断ステップによって前記目標時間が前記所定の時間を超えていると判断された場合に、前記フィードフォワード操作量が前記目標時間の終端に向かって減衰するように補正する補正ステップと、を有することを特徴とする制御方法。
  11. 基板上にパターンを形成するリソグラフィ装置であって、
    請求項1乃至9のいずれか1項に記載の制御装置を用いて前記制御対象としてステージの位置制御をすることを特徴とするリソグラフィ装置。
  12. 前記ステージは基板ステージまたはマスクステージを含むことを特徴とする請求項11に記載のリソグラフィ装置。
  13. 前記目標時間を露光量、アライメント設定の少なくとも1つに基づき決定されることを特徴とする請求項11または12に記載のリソグラフィ装置。
  14. 請求項11乃至13のいずれか1項に記載のリソグラフィ装置を用いて基板上にパターンを形成する工程と、
    前記パターンが形成された前記基板を加工する工程と、を含み
    加工された前記基板から物品を製造することを特徴とする物品の製造方法。
JP2019170166A 2019-09-19 2019-09-19 制御装置、制御方法、リソグラフィ装置、および物品の製造方法 Active JP7301695B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019170166A JP7301695B2 (ja) 2019-09-19 2019-09-19 制御装置、制御方法、リソグラフィ装置、および物品の製造方法
TW109129707A TWI789623B (zh) 2019-09-19 2020-08-31 控制設備、控制方法、光刻裝置、製造物品的方法和儲存媒體
KR1020200110823A KR20210033895A (ko) 2019-09-19 2020-09-01 제어 디바이스, 제어 방법, 리소그래피 장치, 물품의 제조 방법, 및 기억 매체
US17/011,202 US11112701B2 (en) 2019-09-19 2020-09-03 Control device, control method, lithographic apparatus, method of manufacturing article, and storage medium
SG10202009135VA SG10202009135VA (en) 2019-09-19 2020-09-17 Control device, control method, lithographic apparatus, method of manufacturing article, and storage medium
CN202010984147.4A CN112526828B (zh) 2019-09-19 2020-09-18 控制设备和方法、光刻装置、制造物品的方法和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170166A JP7301695B2 (ja) 2019-09-19 2019-09-19 制御装置、制御方法、リソグラフィ装置、および物品の製造方法

Publications (2)

Publication Number Publication Date
JP2021047306A true JP2021047306A (ja) 2021-03-25
JP7301695B2 JP7301695B2 (ja) 2023-07-03

Family

ID=74878364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170166A Active JP7301695B2 (ja) 2019-09-19 2019-09-19 制御装置、制御方法、リソグラフィ装置、および物品の製造方法

Country Status (6)

Country Link
US (1) US11112701B2 (ja)
JP (1) JP7301695B2 (ja)
KR (1) KR20210033895A (ja)
CN (1) CN112526828B (ja)
SG (1) SG10202009135VA (ja)
TW (1) TWI789623B (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201113A (ja) 1982-05-20 1983-11-22 Fujitsu Ltd 可動体位置決めサ−ボシステム
US6538723B2 (en) * 1996-08-05 2003-03-25 Nikon Corporation Scanning exposure in which an object and pulsed light are moved relatively, exposing a substrate by projecting a pattern on a mask onto the substrate with pulsed light from a light source, light sources therefor, and methods of manufacturing
KR20080007383A (ko) * 2005-05-24 2008-01-18 가부시키가이샤 니콘 노광 방법 및 노광 장치, 그리고 디바이스 제조 방법
US7576832B2 (en) 2006-05-04 2009-08-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG182982A1 (en) * 2006-08-31 2012-08-30 Nikon Corp Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
CN103645608B (zh) * 2006-08-31 2016-04-20 株式会社尼康 曝光装置及方法、组件制造方法以及决定方法
JP5515644B2 (ja) 2009-11-04 2014-06-11 富士電機株式会社 位置制御装置
NL2007216A (en) * 2010-09-08 2012-03-12 Asml Netherlands Bv Self-referencing interferometer, alignment system, and lithographic apparatus.
NL2007818A (en) * 2010-12-20 2012-06-21 Asml Netherlands Bv Method of updating calibration data and a device manufacturing method.
JP5968017B2 (ja) 2012-04-06 2016-08-10 キヤノン株式会社 制御装置、リソグラフィー装置、物品の製造方法、及びフィードフォワード操作量データ列を生成する方法
US10078272B2 (en) * 2014-12-02 2018-09-18 Asml Netherlands B.V. Lithographic method and apparatus
US10520829B2 (en) * 2017-09-26 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Optical proximity correction methodology using underlying layer information
JP7148268B2 (ja) * 2018-05-01 2022-10-05 キヤノン株式会社 制御装置、リソグラフィ装置、および物品の製造方法

Also Published As

Publication number Publication date
SG10202009135VA (en) 2021-04-29
CN112526828B (zh) 2023-10-03
JP7301695B2 (ja) 2023-07-03
US11112701B2 (en) 2021-09-07
TWI789623B (zh) 2023-01-11
TW202113509A (zh) 2021-04-01
CN112526828A (zh) 2021-03-19
US20210088914A1 (en) 2021-03-25
KR20210033895A (ko) 2021-03-29

Similar Documents

Publication Publication Date Title
TWI418947B (zh) 包含反覆學習電路的位置控制設備,曝光設備,製造裝置的方法,及用於具有包含學習過濾器之反覆學習電路的位置控制設備中的反覆學習方法
TWI388944B (zh) 微影裝置及元件之製造方法
JP4338694B2 (ja) 運動システム用自己適応フィードフォワード制御調整、およびそのような運動システムを備えるリソグラフィ装置
JP4498346B2 (ja) リソグラフィ装置
JP4754588B2 (ja) リソグラフィ装置およびデバイス製造方法
JP2006157020A (ja) リソグラフィ投影装置及びそのようなリソグラフィ投影装置を使用したデバイス製造方法
JP2005354088A (ja) リソグラフィ運動制御システム及び方法
KR20080009649A (ko) 리소그래피 장치 및 디바이스 제조 방법
JP7371190B2 (ja) 制御装置、露光装置及び物品の製造方法
TW201626112A (zh) 微影方法及裝置
CN110426919B (zh) 控制设备、光刻装置和物品的制造方法
JP7301695B2 (ja) 制御装置、制御方法、リソグラフィ装置、および物品の製造方法
WO2022054724A1 (ja) 制御装置およびその調整方法、リソグラフィー装置、ならびに、物品製造方法
JP5969848B2 (ja) 露光装置、調整対象の調整量を求める方法、プログラム及びデバイスの製造方法
JP2023028993A (ja) 制御装置、リソグラフィ装置、および物品製造方法
JP2005322720A (ja) ステージ制御装置及び方法、露光装置及び方法、並びにデバイス製造方法
JP4251295B2 (ja) 露光装置、露光方法及びデバイス製造方法
KR20190060703A (ko) 처리 장치를 관리하는 관리 방법, 관리 장치, 컴퓨터 프로그램 및 물품 제조 방법
JP2019028402A (ja) 露光方法、露光装置、および物品の製造方法
JP2005303035A (ja) 制御装置、露光装置及び露光方法、並びにデバイス製造方法
KR20230012976A (ko) 처리 장치 및 물품제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230621

R151 Written notification of patent or utility model registration

Ref document number: 7301695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151