JP2021045731A - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
JP2021045731A
JP2021045731A JP2019171684A JP2019171684A JP2021045731A JP 2021045731 A JP2021045731 A JP 2021045731A JP 2019171684 A JP2019171684 A JP 2019171684A JP 2019171684 A JP2019171684 A JP 2019171684A JP 2021045731 A JP2021045731 A JP 2021045731A
Authority
JP
Japan
Prior art keywords
flow rate
water
differential pressure
line
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019171684A
Other languages
English (en)
Other versions
JP7285748B2 (ja
Inventor
昌也 杉本
Masaya Sugimoto
昌也 杉本
圭悟 佐藤
Keigo Sato
圭悟 佐藤
直幸 田島
Naoyuki Tajima
直幸 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019171684A priority Critical patent/JP7285748B2/ja
Publication of JP2021045731A publication Critical patent/JP2021045731A/ja
Application granted granted Critical
Publication of JP7285748B2 publication Critical patent/JP7285748B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

【課題】除濁手段の閉塞状態を定量的に把握する。【解決手段】水処理装置10は、被処理水に含まれる懸濁物質を除去する除濁膜を有する除濁手段11と、除濁手段11の膜間差圧を測定する差圧測定手段17と、除濁手段11の通水流量を取得し、取得した通水流量と、通水流量を取得したときに差圧測定手段17により測定された膜間差圧とに基づいて、除濁手段11の閉塞状態を表す指標として、膜間差圧が予め設定された上限値を超えない範囲で最大になるときの除濁手段11の通水流量である最大通水流量を算出する算出手段40と、を有している。【選択図】図1

Description

本発明は、被処理水に含まれる懸濁物質を除去する除濁手段を有する水処理装置に関する。
被処理水に含まれる不純物を除去する水処理装置として、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有するものが知られている。この装置では、所定の供給圧力でRO膜またはNF膜に供給された被処理水(原水)が、RO膜またはNF膜により透過水と濃縮水とに分離される。これにより、不純物が除去された処理水(透過水)を得ることができる。
RO膜またはNF膜を有する水処理装置では、多くの場合、水の有効利用(節水)の観点から、不純物を含む濃縮水の一部を濃縮排水として外部に排出し、残りを濃縮還流水としてRO膜またはNF膜の上流側に還流させる構成が採用されている。これにより、すべての濃縮水を濃縮排水として排出する場合に比べて、回収率(透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合)を向上させることができ、節水を実現することができる。これと同時に、このような水処理装置では、水温の変化(すなわち、水の粘性の変化)による透過水の流量変化に対応するために、加圧ポンプの回転数を制御することでRO膜またはNF膜への原水の供給圧力を調整して、透過水の流量を一定に維持する流量制御が行われている。
また、RO膜またはNF膜を有する水処理装置では、RO膜またはNF膜の上流側に、例えば精密ろ過膜(MF膜)などの除濁膜が設けられていることがある。除濁膜は、原水に含まれる懸濁物質を捕捉して除去し、そのような懸濁物質によるRO膜またはNF膜の閉塞を抑制することができる。除濁膜は、一定量以上の懸濁物質を捕捉すると、表面または内部の細孔が懸濁物質で閉塞して膜間差圧が上昇し、場合によっては交換が必要になる。したがって、このような水処理装置では、除濁膜の閉塞状態をできるだけ正確に把握し、それに基づいて、除濁膜の交換が必要か否かを適切に判断することが求められる。
特許文献1には、プレフィルタの交換の必要性を判断するために、プレフィルタの異なる位置に複数の流量センサを設置し、それら流量センサによる検出値に基づいて、プレフィルタの閉塞状態を推定する技術が記載されている。この技術によれば、プレフィルタ内での位置による流量の違いを経時的に観察することで、プレフィルタの閉塞状態を推定し、プレフィルタの交換の必要性が判断されている。
特許第5457534号公報
特許文献1に記載の技術は、プレフィルタの交換が必要か否かを判断するために利用されるものの、プレフィルタの閉塞状態を定量的に表すものではない。そのため、交換が必要なほどにプレフィルタが閉塞していない場合などに、その閉塞状態に応じて流量調整を行うような運転制御は想定されていない。これに対し、膜の閉塞による膜間差圧の上昇分を測定することで、膜の閉塞状態を定量的に把握することはできる。しかしながら、このような方法は、一定流量での通水が前提であり、流量そのものが変化する場合にそのまま適用することはできない。例えば、RO膜またはNF膜を有する水処理装置において上述した透過水の流量制御が行われる場合、水温の変化に応じてRO膜またはNF膜への供給水の供給圧力が調整されるが、それに応じて、その上流側に設けられた除濁膜における原水の通水流量も変化する。このような除濁膜では、膜間差圧の経時変化を単に観察しても、その閉塞状態を定量的に把握することは困難であり、その交換が必要か否かを適切に判断することも困難である。
そこで、本発明の目的は、除濁手段の閉塞状態を定量的に把握可能な水処理装置を提供することである。
上述した目的を達成するために、本発明の水処理装置は、被処理水に含まれる懸濁物質を除去する除濁膜を有する除濁手段と、除濁手段の膜間差圧を測定する差圧測定手段と、除濁手段の通水流量を取得し、取得した通水流量と、通水流量を取得したときに差圧測定手段により測定された膜間差圧とに基づいて、除濁手段の閉塞状態を表す指標として、膜間差圧が予め設定された上限値を超えない範囲で最大になるときの除濁手段の通水流量である最大通水流量を算出する算出手段と、を有している。
このような水処理装置によれば、除濁手段の通水流量と膜間差圧の1組のデータを用いるだけで、除濁手段の閉塞状態を表す指標を得ることができる。そのため、除濁手段を通過する被処理水の流量が時間的に変化する状況であっても、その時点での除濁手段の閉塞状態を定量的に把握することができる。その結果、除濁膜の交換が必要か否かを適切に判断することも可能になり、除濁膜の閉塞による水処理装置の緊急停止といった不具合が生じることなく適切な運転管理を行うことも可能になる。
以上、本発明によれば、除濁手段の閉塞状態を定量的に把握することができる。
本発明の一実施形態に係る水処理装置の構成を示す概略図である。 5つの異なる閉塞状態のそれぞれにおいて測定された、除濁手段の通水流量と膜間差圧との関係をプロットしたグラフである。 基準流量を0.8m/hとしたときの基準差圧ΔPに対して、表1に示す係数αをプロットしたグラフである。 基準流量を0.8m/hとしたときの基準差圧ΔPに対して、表1に示す係数βをプロットしたグラフである。 図2に示す測定結果を用いて、除濁手段の膜間差圧と、除濁手段がその膜間差圧を測定したときと同じ閉塞状態にあるときの基準差圧との関係をプロットしたグラフである。 表2に示す除濁手段の通水流量と係数γとの関係をプロットしたグラフである。
以下、図面を参照して、本発明の実施の形態について説明する。
図1は、本発明の一実施形態に係る水処理装置の構成を示す概略図である。
本実施形態の水処理装置10は、原水(被処理水)に含まれる不純物を除去して処理水を生成する装置であり、除濁手段11とろ過手段12とを有している。除濁手段11は、原水に含まれる懸濁物質を捕捉して除去する除濁膜を有している。除濁膜としては、懸濁物質を除去できるものであれば特に制限はなく、例えば、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、円筒状に成形した粒状または繊維状の活性炭の周囲に不織布フィルターを巻きつけた構造の活性炭フィルターなどを用いることができる。ろ過手段12は、除濁手段11の下流側に設けられ、除濁手段11で懸濁物質が除去された除濁水を、不純物を含む濃縮水と、不純物が除去された透過水とに分離するものであり、逆浸透膜(RO膜)またはナノろ過膜(NF膜)を有している。
また、水処理装置10は、除濁手段11とろ過手段12に接続された複数のラインL0〜L3を有している。すなわち、除濁手段11に接続され、除濁手段11に原水を供給する原水ラインL0と、除濁手段11とろ過手段12とを接続し、除濁手段11を通過した除濁水をろ過手段12に供給する供給ラインL1と、ろ過手段12からの透過水を流通させる透過水ラインL2と、ろ過手段12からの濃縮水を流通させる濃縮水ラインL3とを有している。加えて、水処理装置10は、濃縮水ラインL3から分岐した2つのライン、すなわち、濃縮水ラインL3を流れる濃縮水の一部を外部へ排出する排水ラインL4と、濃縮水の残りを供給ラインL1に還流させる還流水ラインL5とを有している。還流水ラインL5は、濃縮水ラインL3から分岐した後、後述する加圧ポンプ21の上流側で供給ラインL1に接続されている。なお、還流水ラインL5は、供給ラインL1に除濁水を貯留する貯留タンクが設けられている場合、供給ラインL1に直接接続される代わりに、その貯留タンクに接続されていてもよい。
さらに、水処理装置10は、透過水ラインL2を流れる透過水の流量を検出する透過水流量計(第1の流量検出手段)13と、その流量を設定流量に調整する透過水流量制御機構(第1の流量制御手段)20を有している。
透過水流量制御機構20は、供給ラインL1に設けられ、供給ラインL1を流れる除濁水の圧力(ろ過手段12への除濁水の供給圧力)を調整する加圧ポンプ(圧力調整手段)21と、透過水流量計13による透過水の検出流量(検出値)に基づいて、加圧ポンプ21を制御する透過水流量制御部22とを有している。
透過水流量制御部22は、加圧ポンプ21の回転数を制御するインバータ(図示せず)を含み、透過水流量計13による透過水の検出流量が一定になるように、加圧ポンプ21の回転数を制御するものである。例えば、水温が変化すると、水の粘性が変化することで、RO膜またはNF膜で分離される透過水の流量も変化する。この変化に応じて、透過水流量制御部22は、加圧ポンプ21の回転数を制御するようになっている。すなわち、水温が低くなると、水の粘性は高くなり、その結果、RO膜またはNF膜で分離される透過水の流量は減少する。そのため、透過水流量制御部22は、この減少分を補うように、加圧ポンプ21の回転数を上げることで、除濁水の供給圧力を増加させる。また、水温が高くなると、水の粘性は低くなり、その結果、RO膜またはNF膜で分離される透過水の流量は増加する。そのため、透過水流量制御部22は、この増加分を打ち消すように、加圧ポンプ21の回転数を下げることで、除濁水の供給圧力を低下させる。なお、加圧ポンプ21の回転数は、予め設定された上限値を上回ったり、同じく予め設定された下限値を下回ったりしないように、透過水流量制御部22により制御される。そのため、加圧ポンプ21の回転数が下限値になるように制御された場合でも、透過水の流量が設定流量を上回ってしまう可能性があるが、このような場合を考慮して、加圧ポンプ21とろ過手段12との間に、除濁水の供給圧力を調整するための手動弁や比例制御弁が設けられていてもよい。
このように、本実施形態では、加圧ポンプ21の回転数、すなわち除濁水の供給圧力を調整することで、透過水の流量は一定(予め設定された目標流量)に維持されるが、その除濁水の供給圧力の変化に応じて、RO膜またはNF膜で分離される濃縮水の流量も変化することになる。このような濃縮水の流量変化そのものを抑制するために、濃縮水ラインL3には、濃縮水ラインL3を流れる濃縮水の流量を一定に保持する定流量弁14が設けられている。これにより、透過水流量制御部22により加圧ポンプ21の回転数が変化して、ろ過手段12への除濁水の供給圧力が変化した場合にも、濃縮水の流量を一定に保持することができる。
ここで、定流量弁14の規定流量は、一方では、ファウリングやスケーリングによる膜の詰まりが発生しない程度であればよく、他方では、圧力損失の増大によって膜を破損させない程度であればよい。ただし、定流量弁14の規定流量を必要以上に大きくすることは、加圧ポンプ21に要求される流量が必要以上に大きくなり、結果的に加圧ポンプ21のサイズが大きくなるため、エネルギー消費の点で好ましくない。そのため、定流量弁14の規定流量は、ろ過手段12の透過流束とろ過手段12に要求される濃縮水の最低流量も考慮して設定され、例えば、ろ過手段12として直径が約20.32cm(8インチ)のRO膜を用いる場合、1〜15m/hの範囲である。なお、ろ過手段12に要求される濃縮水の最低流量とは、ファウリングやスケーリングによる膜の詰まりが発生しないための濃縮水ラインL3に流すべき濃縮水の最低流量を意味する。
ところで、定流量弁14には、定流量弁14を正常に作動させるための作動差圧範囲(定流量弁の一次側と二次側の圧力差の許容範囲)が規定されている。そのため、例えば、ろ過手段12として中高圧用のRO膜を使用する場合や、水温が極端に低下した場合など、条件によっては、除濁水の供給圧力が著しく上昇して濃縮水の圧力が上昇し、定流量弁14の一次側と二次側の圧力差が作動差圧範囲を超えてしまうことがある。その場合、濃縮水ラインL3を流れる濃縮水の流量が一定に保持されないおそれがある。
そこで、定流量弁14の上流側の濃縮水ラインL3に、濃縮水ラインL3を流れる濃縮水の圧力を減圧する(すなわち、二次側の圧力を一次側の圧力よりも低くすることができる)減圧弁が設けられていてもよい。これにより、ろ過手段12への除濁水の供給圧力が著しく上昇する場合であっても、定流量弁14の一次側と二次側の圧力差を作動差圧範囲内に収めて定流量弁14を正常に作動させることができ、濃縮水ラインL3を流れる濃縮水の流量を一定に保持することができる。また、減圧弁を設けることで、それよりも下流側の周辺部材(配管など)にそれほどの耐圧性能が要求されなくなる。そのため、減圧弁の設置は、安全面で有利であるだけでなく、耐圧性能がそれほど高くない安価な汎用品が利用可能になることで、コスト面でも有利である。なお、減圧弁の種類は、濃縮水の圧力を定流量弁14の作動差圧範囲内に減圧することができるものであれば特に限定されるものではないが、定流量弁14の規定流量以上の流量が流れるものや、二次側の圧力が排水ラインL4や還流水ラインL5の通水差圧よりも大きくなるものを選定する必要がある。
上述したように、定流量弁14の設置により、透過水の流量制御が濃縮水の流量に影響を及ぼすことがなくなり、その結果、排水ラインL4または還流水ラインL5を流れる濃縮水の流量制御が容易に実行可能になる。そこで、本実施形態の水処理装置10は、排水ラインL4を流れる濃縮水(以下、「濃縮排水」という)の流量を検出する排水流量計(第2の流量検出手段)15と、その流量を設定流量に調整する排水流量制御機構(第2の流量制御手段)30とを有している。この排水流量制御機構30による濃縮排水の流量制御は、透過水流量制御機構20による透過水の流量制御とは独立して行われる。
排水流量制御機構30は、排水ラインL4に設けられた流量調整弁31と、排水流量計15による濃縮排水の検出流量(検出値)に基づいて、流量調整弁31の開度を調整する排水流量制御部32とを有している。
排水流量制御部32は、透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合である回収率を考慮して濃縮排水の設定流量を決定し、排水流量計15による検出値がその設定流量となるように、流量調整弁31の開度を調整するようになっている。このときの回収率は、水の有効利用(節水)の観点から、できるだけ高いことが好ましい。すなわち、濃縮排水の流量はできるだけ少ないことが好ましい。しかしながら、定流量弁14により濃縮水の流量が一定に保持されているため、濃縮排水の流量が少なくなると、当然のことながら、還流水ラインL5から供給ラインL1に還流する濃縮水の流量が増加する。それにより、除濁水の不純物濃度が高まると、ろ過手段12のRO膜またはNF膜の膜面に不純物(特に、シリカまたはカルシウム)が析出するスケーリングが起こりやすくなってしまう。したがって、濃縮排水の流量は、濃縮水の不純物濃度が溶解度以上の濃度にならない範囲で回収率が最大になるように、すなわち、不純物であるシリカまたはカルシウムが析出しない範囲で回収率が最大になるように設定される。
ただし、不純物の溶解度は、水温に応じて変化する。例えば、シリカの場合、その溶解度は温度に比例して増加し、カルシウム(炭酸カルシウム)の場合、温度が上昇するにつれてその溶解度は減少する。そのため、水温が低い場合には、シリカの溶解度が相対的に低く、シリカが析出しやすい(シリカスケールが発生しやすい)が、水温が高くなると、カルシウムの溶解度が相対的に低くなるため、カルシウムが析出しやすく(カルシウムスケールが発生しやすく)なる。そこで、本実施形態では、図示していないが、(ろ過手段12に供給される)除濁水(被処理水)と透過水と濃縮水とのいずれかの水温を検出する温度センサ(水温検出手段)が設けられており、この温度センサで検出された水温に基づいて、濃縮排水の最適な設定流量が算出される。
具体的には、まず、検出された水温でシリカが析出する理論上の回収率(以下、「シリカの析出回収率」という)と、検出された水温でカルシウム(炭酸カルシウム)が析出する理論上の回収率(以下「カルシウムの析出回収率」という)が算出される。なお、シリカの析出回収率とカルシウムの析出回収率のそれぞれの算出方法については後述する。次に、シリカの析出回収率とカルシウムの析出回収率とが比較され、目標回収率として、より小さい方の析出回収率が設定される。そして、この目標回収率と、透過水流量計13による透過水の検出流量とに基づいて、以下の式(1)により、濃縮排水の目標流量が算出されて設定される。
(濃縮排水の目標流量)=
(透過水の検出流量/目標回収率)−(透過水の検出流量) (1)
スケーリングの発生を確実に抑制するという観点からは、安全率を加味し、上記式(1)で算出された目標流量を上回る流量を濃縮排水の設定流量として設定することもできるが、節水の観点からは、算出された目標流量を濃縮排水の設定流量として設定することが好ましい。なお、回収率(目標回収率)として、通常は、パーセントで表した値が用いられるが、上記式(1)では、小数で表した値が用いられることは言うまでもない。
ここで、シリカの析出回収率とカルシウムの析出回収率の算出方法についてそれぞれ説明する。
(シリカの析出回収率の算出方法)
シリカの析出回収率Yは、検出された水温でのシリカの溶解度(mg/L)をCとし、予め測定された除濁水のシリカ濃度(mg/L)をFとしたとき、以下の式(2)から算出される。
=(C−F)/C (2)
なお、シリカの溶解度の算出方法としては、ASTM(American Society for Testing and Materials)D4993−89などに規定された方法を用いることができる。
(カルシウムの析出回収率の算出方法)
カルシウムの析出回収率は、濃縮水のランゲリア指数を算出する方法を利用して算出される。ここで、ランゲリア指数(飽和指数)とは、カルシウム(炭酸カルシウム)の析出の可能性を示す指標であり、水の実際のpHと、理論pH(pHs:水中の炭酸カルシウムが溶解も析出もしない平衡状態にあるときのpH)との差(pH−pHs)を意味する。すなわち、ランゲリア指数が正の値で絶対値が大きいほど炭酸カルシウムが析出しやすくなり、負の値では炭酸カルシウムは析出されない。そのため、カルシウムの析出回収率は、濃縮水のランゲリア指数がゼロになるときの回収率として算出される。なお、より安全側の値として設定するために、カルシウムの析出回収率は、濃縮水のランゲリア指数が負の値になるときの回収率であってもよい。
濃縮水のランゲリア指数は、濃縮水のpHと、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、検出された水温とから算出される。ランゲリア指数の算出方法としては、例えば、特開平11−267687号公報(段落[0025]〜[0027])などに記載された方法を用いることができる。また、濃縮水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)は、予め測定された除濁水の不純物濃度(カルシウム濃度、総アルカリ度、および蒸発残留物濃度)と、回収率とから算出される。したがって、カルシウムの析出回収率Yは、濃縮水のランゲリア指数がゼロになるときの濃縮水の不純物濃度(mg/L)をCとし、予め測定された除濁水の不純物濃度(mg/L)をFとしたとき、以下の式(3)の関係で表されることになる。
=(C−F)/C (3)
なお、透過水の流量と濃縮排水の流量との和に対する透過水の流量の割合である回収率は、透過水の流量と濃縮排水の流量との和に対する濃縮水の流量の割合である濃縮倍率で表すことができる。すなわち、回収率Yは、濃縮倍率をNとしたとき、以下の式(4)で表すことができる。
Y=(N−1)/N (4)
したがって、上記式(1)〜(3)は、上記式(4)を用いて、それぞれ以下のように表すことができる。
(濃縮排水の目標流量)=(透過水の検出流量)/(濃縮倍率−1) (1’)
=C/F (2’)
=C/F (3’)
ここで、Nは、カルシウムの析出回収率に対応する許容濃縮倍率であり、Nは、シリカの析出回収率に対応する許容濃縮倍率である。
シリカおよびカルシウムの析出回収率の算出方法や濃縮排水の設定流量の算出方法は、例えば加圧ポンプの容量や除濁水の流量などの装置設計上の制約によって、予め回収率や流量に制約がある場合には、上述した限りではない。また、濃縮排水の設定流量の算出には、予め設定された透過水の目標流量を用いることもできるが、この方法は、透過水の目標流量と実際の流量が一致していない場合に、実際の回収率が目標回収率からずれる可能性があるため好ましくない。すなわち、透過水の実際の流量が目標流量よりも大きい場合には、実際の回収率が目標回収率を上回ることでスケーリングが発生したり、透過水の実際の流量が目標流量よりも小さい場合には、実際の回収率が目標回収率を下回ることで節水を図ることができなくなったりする。
したがって、濃縮排水の設定流量の算出には、上述したように、透過水流量計13による透過水の検出流量を用いることが好ましい。これにより、透過水の流量制御が適切に実施されない事態が発生しても、実際の回収率が目標の回収率からずれることを抑制することができる。なお、実際の算出には、透過水の検出流量のばらつきなどによる影響を最小限に抑えるために、所定検出時間や所定検出回数における平均流量を用いることが好ましい。
ただし、装置起動時や運転再開時など、透過水の流量が安定せず、検出流量のばらつきが非常に大きい場合には、透過水の流量が安定するまでの一定期間、予め設定された透過水の目標流量を用いて、濃縮排水の設定流量を算出するようになっていてもよい。また、透過水の目標流量と実際の流量との差に応じて、濃縮排水の設定流量の算出に用いる透過水の流量を切り替えるようになっていてもよい。すなわち、その差が所定範囲内にある場合には、目標流量を用いて算出し、その差が所定範囲を外れた場合には、実際の流量を用いて算出するようになっていてもよい。
上述のように回収率制御を行う場合、流量調整弁31としては、電動比例制御弁を用いることが好ましい。これにより、電動比例制御弁の分解能に応じて開度調整を細かく行うことができ、電磁弁の組み合わせなどによる段階式での開度調整に比べて、回収率を滑らかに調整することができる。例えば、50〜70%の範囲の回収率を5段階(50%、55%、60%、65%、70%)にしか制御できない段階式では、目標回収率が64%に設定された場合、回収率を60%にしか調整することができず、無駄な濃縮排水が発生してしまう。したがって、流量調整弁31として電動比例制御弁を用いることは、このような濃縮排水の無駄も削減することができるため、節水の観点からも有利である。
ただし、流量調整弁31として電動比例制御弁を用いる場合には、その開閉速度と、排水流量制御部32による濃縮排水の設定流量の算出速度(演算速度)との関係に注意が必要である。例えば、2つの速度が大きく異なっている場合、電動比例制御弁の開閉が完了して濃縮排水の流量が安定する前に濃縮排水の設定流量が変更されると、ハンチングが発生する可能性がある。また、透過水流量計13による透過水の検出流量に基づいて濃縮排水の設定流量が決定されるため、濃縮排水の流量制御は、加圧ポンプ21の回転数を制御するインバータの応答速度にも影響を受ける可能性がある。したがって、排水流量制御部32による濃縮排水の設定流量の演算速度を決定する際には、電動比例制御弁の開閉速度とインバータの応答速度とを考慮することが好ましい。すなわち、電動比例制御弁の開閉速度が遅い場合は、インバータの応答速度を遅くし、電動比例制御弁の開閉速度が速い場合は、インバータの応答速度を速くすることが好ましい。なお、本実施形態では、上述したように、定流量弁14の設置により透過水の流量制御と濃縮水の流量制御とが独立して行われるため、互いの流量制御が干渉することを抑制することができる。その結果、上述のようなハンチングの発生を極力抑制することができ、実際の回収率が目標の回収率からずれることを抑制することができる。この点からも、濃縮水ラインL3に定流量弁14が設けられていることが好ましい。
なお、本実施形態では、回収率の目標値をより高く設定して、さらなる節水を実現するために、上述の析出回収率をより高くすることを目的として、スケール防止剤を除濁水に添加するようになっていてもよい。この場合、定流量弁14の規定流量を小さくすることができ、結果として、より小さい容量の加圧ポンプ21を用いることで省エネルギー化を実現することもできる。スケール防止剤の添加は、薬注ポンプによって行うことができる。
スケール防止剤は、シリカやカルシウムなどのスケール成分の析出を抑制可能な物質であれば、特定のものに限定されるものではない。その種類としては、例えば、1−ヒドロキシエチリデン−1,1−ジホスホン酸、2−ホスホノブタン−1,2,4−トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸などのホスホン酸とその塩類などのホスホン酸系化合物;正リン酸塩、重合リン酸塩などのリン酸系化合物;ポリマレイン酸、マレイン酸共重合物などのマレイン酸系化合物;アクリル酸系ポリマーなどが挙げられ、アクリル酸系ポリマーとしては、ポリ(メタ)アクリル酸、マレイン酸/(メタ)アクリル酸、(メタ)アクリル酸/スルホン酸、(メタ)アクリル酸/ノニオン基含有モノマーなどのコポリマーや、(メタ)アクリル酸/スルホン酸/ノニオン基含有モノマー、(メタ)アクリル酸/アクリルアミド−アルキルスルホン酸/置換(メタ)アクリルアミド、(メタ)アクリル酸/アクリルアミド−アリールスルホン酸/置換(メタ)アクリルアミドのターポリマーなどが挙げられる。ターポリマーを構成する(メタ)アクリル酸としては、例えば、メタアクリル酸およびアクリル酸と、それらのナトリウム塩などの(メタ)アクリル酸塩などが挙げられる。ターポリマーを構成するアクリルアミド−アルキルスルホン酸としては、例えば、2−アクリルアミド−2−メチルプロパンスルホン酸とその塩などが挙げられる。また、ターポリマーを構成する置換(メタ)アクリルアミドとしては、例えば、t−ブチルアクリルアミド、t−オクチルアクリルアミド、ジメチルアクリルアミドなどが挙げられる。
これらの中でも、ホスホン酸系化合物とアクリル酸系ポリマーのうち少なくとも1種類を含むものを用いることが好ましい。また、カルシウムとシリカに由来するスケールを同時に抑制するためには、2−ホスホノブタン−1,2,4−トリカルボン酸と、アクリル酸と(メタ)アクリル酸/2−アクリルアミド−2−メチルプロパンスルホン酸/置換(メタ)アクリルアミドのターポリマーとの混合物とからなるスケール防止剤を用いることが特に好ましい。
なお、RO膜用の市販のスケール防止剤としては、オルガノ株式会社製の「オルパージョン」シリーズ、BWA Water Additives社製の「Flocon(登録商標)」シリーズ、Nalco社製の「PermaTreat(登録商標)」シリーズ、ゼネラル・エレクトリック社製の「Hypersperse(登録商標)」シリーズ、栗田工業株式会社製の「クリバーター(登録商標)」シリーズなどが挙げられる。
上述したように、本実施形態では、定流量弁14により濃縮水の流量が一定に維持されるため、排水ラインL4および還流水ラインL5の一方を流れる濃縮水の流量を規定するだけで、他方を流れる濃縮水の流量も規定することができる。そのため、図示した実施形態では、排水ラインL4に排水流量計15と流量制御手段(流量調整弁31)が設けられ、還流水ラインL5には、排水ラインL4および還流水ラインL5を流れる濃縮水の圧力バランスを調整するための手動弁(圧力調整弁)16が設けられているが、その逆であってもよい。すなわち、還流水ラインL5に、流量計と流量制御手段としての流量調整弁(比例制御弁)とが設けられ、排水ラインL4に、圧力バランス調整のための手動弁が設けられていてもよい。あるいは、排水ラインL4および還流水ラインL5の両方に、流量計と流量制御手段としての流量調整弁(比例制御弁)とを設けることもできる。また、上述した実施形態では、透過水流量制御部と排水流量制御部とが別個に設けられているが、1つの流量制御部により、透過水の流量調整と濃縮排水の流量調整とが行われるようになっていてもよい。また、透過水流量制御部と排水流量制御部は、後述する閉塞判定部と一体のものであってもよい。
また、ろ過手段の数は1つに限定されるものではなく、2つ以上のろ過手段が直列に接続されて設けられていてもよい。その場合にも、定流量弁は、2つ以上のろ過手段のうち最も上流側のろ過手段に接続された濃縮水ラインに設けられ、最も下流側のろ過手段で分離された透過水が設定流量(予め設定された目標流量)に調整されることになる。ただし、最も上流側のろ過手段を除いたすべてのろ過手段において、任意の流量調整手段により透過水と濃縮水の流量分配が適切に設定・調整される必要があることは言うまでもない。さらに、最も上流側のろ過手段からの濃縮排水の設定流量の算出には、最も下流側のろ過手段で分離された透過水ではなく、最も上流側のろ過手段で分離された透過水の流量(検出流量)が用いられることに留意されたい。なお、ここでいう「直列に接続される」とは、被処理水が複数のろ過手段で順次処理されることを意味し、隣接する2つのろ過手段において、上流側のろ過手段で分離された透過水が下流側のろ過手段に供給されることを意味する。また、各ろ過手段は、複数のRO膜またはNF膜から構成されていてもよい。この場合、複数のRO膜またはNF膜は、一次側(除濁水および濃縮水の流通側)が直列に接続されて最終的に濃縮水ラインに接続され、二次側(透過水の流通側)が並列に接続されて最終的に透過水ラインに接続されることになる。
ところで、除濁手段11に用いられる除濁膜は、一定量以上の懸濁物質を捕捉すると、表面または内部の細孔が懸濁物質で閉塞して膜間差圧(膜の一次側と二次側の圧力差)が上昇する。このときの上昇分は、除濁手段11の通水流量(除濁手段11を通過してろ過手段12に供給される除濁水の流量)が一定に維持されている場合には閉塞の度合いに対応する。そのため、この膜間差圧の上昇分を測定することで、膜の閉塞状態を定量的に把握することができ、膜の交換が必要か否かを適切に判断することができる。しかしながら、本実施形態の水処理装置10において上述した回収率制御が行われると、水温の変化に応じて濃縮排水の設定流量が変化するため、透過水の流量と濃縮排水の流量との和に対応する除濁手段11の通水流量も変化する。したがって、除濁手段11の膜間差圧の経時変化を単に観察するだけでは、その閉塞状態を定量的に把握することはできない。その結果、除濁手段11を早めに交換せざるを得なくなって交換頻度が増加したり、実際に通水できなくなるまで閉塞してしまい、無駄なダウンタイムが発生したりすることで、水処理装置10の運転状態を適切に管理することができなくなる。したがって、除濁手段11の交換が必要か否かを適切に判断して水処理装置10の運転管理を適切に行うためには、本実施形態のように除濁手段11の通水流量が時間的に変化する状況であっても、その閉塞状態を定量的に把握することが求められる。
また、除濁手段11の膜間差圧には、予め上限値(上限膜間差圧)が設定されており、それに対応して、除濁手段11の通水流量には、膜間差圧が上限膜間差圧を超えない範囲で最大になるときの通水流量として定義される最大通水流量が存在する。ここで、除濁手段11の上限膜間差圧が、除濁手段11に供給可能な原水の最大圧力に応じて定まる値であるに対し、最大通水流量は、除濁手段11の閉塞状態に応じて変化し、具体的には、除濁手段11の閉塞が進行するにつれて徐々に低下する。そのため、水処理装置10の運転は、除濁手段11の膜間差圧が上限膜間差圧を超えないように行われるが、上述したように、水温の変化に応じて除濁手段11に要求される通水流量が変化すると、その通水流量が最大通水流量を上回ることがあり、その場合、ろ過手段12に必要な流量の除濁水を供給できなくなる。したがって、除濁手段11の交換が必要か否かにかかわらず、水処理装置10の適切な運転制御を行うためにも、除濁手段11の閉塞状態を定量的に把握することが求められる。
このような要求に対し、本実施形態の水処理装置10は、除濁手段11の閉塞状態を定量的に把握するための構成として、差圧測定手段17と閉塞判定部40を有している。差圧測定手段17は、除濁手段11の上流側に設けられた第1の圧力計17aと、除濁手段11の下流側に設けられた第2の圧力計17bとから構成され、除濁手段11の膜間差圧を測定するものである。差圧測定手段17としては、2つの圧力計17a,17bの代わりに、1つの差圧計が設けられていてもよい。閉塞判定部40は、除濁手段11の流量を取得し、取得した通水流量と、通水流量を取得したときに差圧測定手段17により測定された膜間差圧とに基づいて、除濁手段11の閉塞状態を表す指標として、上述した最大通水流量を算出するものである。以下、閉塞判定部40による除濁手段11の最大通水流量の算出方法について説明する。
除濁手段11の閉塞状態が変化すると、除濁手段11の通水流量と膜間差圧との関係は変化し、それに伴い、除濁手段11の最大通水流量も変化する。したがって、除濁手段11の通水流量と膜間差圧との関係が閉塞状態に応じてどのように変化するかを予め調べておくことで、除濁手段11が任意の閉塞状態にあるときの通水流量と膜間差圧との関係を表す関係式を決定することができる。そして、決定した関係式を用いて、除濁手段11の膜間差圧が上限膜間差圧になるときの通水流量である最大通水流量を算出することができる。後述する実験結果によれば、除濁手段11の通水流量Qと膜間差圧ΔPとの関係は、除濁手段11の閉塞状態によらず同じ関数形(べき関数)で表すことができ、具体的には、以下の式(5)に示す関係式で表すことができる。
ΔP=α×Qβ (5)
ここで、係数α,βは共に、除濁手段11の閉塞状態によって決まる値であり、除濁手段11の通水流量と膜間差圧の1組のデータから、予め設定された計算式を用いて決定することができる。この計算式の詳細については後述する。なお、除濁手段11の膜間差圧のデータは、差圧測定手段17により測定されて閉塞判定部40に送信され、通水流量のデータは、透過水流量計13による透過水の検出流量と排水流量計15による濃縮排水の検出流量との和として、閉塞判定部40で取得される。そして、係数α,βが決定されると、その時点での除濁手段11の最大通水流量Qmaxは、上限膜間差圧をΔPmaxとしたとき、決定した係数α,βを含む上記式(5)を用いて、以下のように表すことができる。
max=(ΔPmax/α)1/β (6)
上記式(5)と係数α,βを決定するための後述する計算式は、異なる閉塞状態ごとに除濁手段11の通水流量と膜間差圧を測定する実験を予め行い、その結果に基づいて得られたものである。以下、この実験結果について説明する。
本発明者らは、除濁手段(MF膜)の閉塞状態を変化させたときに通水流量と膜間差圧との関係がどのように変化するのかを調べた。具体的には、懸濁物質を含む原水を除濁手段に通水して除濁手段を閉塞させ、それがある程度進行するごとに、原水の通水を一旦停止し、清澄水を0.8〜2.4m/hの範囲で0.4m/hごとに変化させて通水したときの膜間差圧を測定した。原水として、2NTU程度の懸濁物質を含む一般工業用水を用い、通水は流量1.4m/hで行った。原水の通水停止は、膜間差圧が約0.005MPa上昇するごとに合計5回行い、したがって、膜間差圧の測定は、閉塞の度合いが異なる5つの状態(閉塞状態1〜5)について行った。通水流量は、除濁手段の下流側に設けられた流量計で確認し、膜間差圧は、除濁手段の入口側に設けられた圧力計による検出値と出口側に設けられた圧力計による検出値との差として測定した。除濁手段(MF膜)としては、公称孔径が1.0μmで長さが500mmのポリプロピレン製の積層型不織布フィルター(オルガノ株式会社製の「ミクロポアー(登録商標)」シリーズ)を用いた。
図2は、5つの異なる閉塞状態のそれぞれにおいて、除濁手段の通水流量と膜間差圧との関係をプロットしたグラフである。5つの閉塞状態1〜5のそれぞれのデータに対して回帰分析を行ったところ、除濁手段の通水流量Qと膜間差圧ΔPとの関係は、図2に実線で示すように、いずれも同じ関数形、すなわち、上記式(1)で近似できることが確認された。このとき得られた係数α,βを表1に示す。
Figure 2021045731
表1によれば、係数αは、除濁手段の閉塞が進行するにつれて増加し、係数βは、除濁手段の閉塞が進行するにつれて減少することが分かる。したがって、このような相関関係について、除濁手段の閉塞状態を規定する何らかのパラメータ(変数)を含む関数式で表すことができ、このパラメータを測定または算出することができれば、除濁手段が任意の閉塞状態にあるときでも、そのときの係数α,βが求められることが分かる。上述したように、除濁手段の閉塞状態は、一定流量で通水したときの除濁手段の膜間差圧を比較することで定量的に把握することができる。したがって、上述のパラメータとしては、ある基準流量で通水したときの除濁手段の膜間差圧(以下、「基準差圧」という)を用いることができる。
図3および図4は、基準流量を0.8m/hとしたときの基準差圧に対して係数α,βをそれぞれプロットしたグラフである。係数α,βと基準差圧ΔPとの関係についてそれぞれ回帰分析を行ったところ、各図に実線で示すように、係数αは一次関数で近似することができ、係数βはべき関数で近似することができることが確認された。これらの近似式は、以下の式(7)、(8)のように表すことができる。
α=a×ΔP+b (7)
β=c×ΔP (8)
ここで、a=1.27、b=0.0001.c=0.574、d=−0.191である。なお、これらの値は、基準流量を0.8m/hとしたときの基準差圧に対して得られた値であり、基準流量をどのように設定するかによって変化することに留意されたい。
除濁手段の通水流量が常に一定であり、その流量を基準流量として設定すれば、そのときに測定された膜間差圧を、基準差圧として上記式(7)、(8)にそのまま適用することができる。しかしながら、実際には、上述したように、除濁手段の通水流量は、例えば水温の変化に応じて変化することがあり、必ずしも一定であるわけではない。したがって、除濁手段の通水流量が任意の流量であるときに測定された膜間差圧を、除濁手段の通水流量が予め設定された基準流量であるときの膜間差圧(基準差圧)に変換する必要がある。以下、この変換式の導出について説明する。
図5は、図2に示す測定結果を、縦軸および横軸として別の指標を用いてプロットしたグラフであり、横軸が膜間差圧の測定値を示し、縦軸が、除濁手段がその膜間差圧を測定したときと同じ閉塞状態にあるときの基準差圧の測定値を示している。なお、図5では、基準差圧として、基準流量を0.8m/hとしたときの膜間差圧をプロットしている。図5によれば、同じ通水流量で比較したときに、除濁手段の基準差圧ΔPは、除濁手段の閉塞が進行するにつれて増加し、すなわち、除濁手段の膜間差圧ΔPが増加するにつれて増加することが分かる。このような関係について回帰分析を行ったところ、図5に実線で示すように、除濁手段の通水流量がいずれの場合も、以下の式(9)に示す一次式で近似できることが確認された。
ΔP=γ×ΔP (9)
このとき得られた係数γを表2に示し、この通水流量と係数γとの関係をプロットしたグラフを図6に示す。なお、表2に示す具体的な数値は、基準流量を0.8m/hとしたときの基準差圧に対して得られた値であり、基準流量をどのように設定するかによってそれぞれ変化することに留意されたい。すなわち、上記式(9)で示す除濁手段の膜間差圧ΔPと基準差圧ΔPとの線形関係は、基準流量をどのように設定するかによらずに成立する。そのため、係数γは、基準流量がどのように設定され、それに応じて基準差圧がどのような値になるかに基づいて決定されることに留意されたい。
Figure 2021045731
表2によれば、係数γは、除濁手段の通水流量Qが増加するにつれて減少することが分かる。このような関係について回帰分析を行ったところ、図6に実線で示すように、係数γはべき関数で近似することができ、その近似式は、以下の式(10)のように表されることが確認された。
γ=e×Q (10)
ここで、e=0.78、f=−1.28である。なお、これらの値は、係数γが表2に示すように具体的に与えられたときに得られた値であり、係数γと同様に、基準流量をどのように設定するかによって変化することに留意されたい。
こうして、上記式(10)を用いることで、除濁手段の通水流量が任意の流量Qであるときの係数γを決定することができ、こうして決定された係数γから、上記式(9)を用いて、そのときに測定された膜間差圧ΔPを基準差圧ΔPに変換することができる。そして、こうして変換された除濁手段の基準差圧ΔPを上記式(7)、(8)に代入することで、係数α,βを決定することができる。換言すると、除濁手段の通水流量が任意の流量Qであるときに、そのときの除濁手段の膜間差圧をΔPとすると、係数α,βは、上記式(7)〜(10)を用いて、それぞれ以下のように表すことができる。
α=a×(e×ΔP×Q)+b (11)
β=c×(e×ΔP×Q (12)
ここで、係数a〜fは、上述したように、基準流量をどのように設定するかに応じて決定される値であり、それぞれ上述した具体的な数値は、単なる一例に過ぎず、本発明の範囲を限定するものではない。また、係数a〜fは、除濁手段としての除濁膜の孔径、寸法、材質、形状(プリーツ、積層、ワインドなど)に依存するため、実際に使用される除濁膜の孔径、寸法、材質、形状に応じて適宜決定されることが好ましい。
このように、閉塞判定部40は、除濁手段11の通水流量Qと膜間差圧ΔPの1組のデータから、上記式(11)、(12)を用いて係数α,βを決定し、決定した係数α,βを含む上記式(6)を用いて、除濁手段11の上限膜間差圧ΔPmaxに対応する最大通水流量Qmaxを算出する。そして、閉塞判定部40は、こうして算出した最大通水流量Qmaxに基づいて、水処理装置10の運転制御を行う。以下、閉塞判定部40による水処理装置10の運転制御の一例について説明する。
水処理装置10の運転は、上述したように、節水の観点から、ろ過手段12のRO膜またはNF膜の膜面に不純物であるシリカまたはカルシウムが析出しない範囲で回収率が最大になるように行われる。この最大の回収率が水温に応じて変化するため、そこから算出される濃縮排水の設定流量も水温に応じて変化する。したがって、透過水の設定流量と濃縮排水の設定流量との和として定義される除濁手段11の想定通水流量も水温に応じて変化する。このため、水温によっては、除濁手段11の想定通水流量が最大通水流量Qmaxを上回ることがあり、その場合、ろ過手段12に必要な流量の除濁水を供給できなくなる。除濁手段11の最大通水流量Qmaxは、除濁手段11の閉塞が進行するにつれて徐々に低下する。そのため、ろ過手段12に必要な流量の除濁水を供給できなくなるような状況は、除濁手段11の閉塞が進行するにつれてより頻繁に発生する可能性がある。
そこで、除濁手段11の最大通水流量Qmaxが算出されると、ろ過手段12に必要な流量の除濁水を供給できるかどうかを判断するために、算出された最大通水流量Qmaxと、除濁手段11の想定通水流量とが比較される。そして、除濁手段11の想定通水流量が最大通水流量Qmaxを上回る場合、あるいは、この先の水温変化によって、上回ることが予測される場合、除濁手段11の交換を行うことが好ましく、そのために、閉塞判定部40により警報が発せられる。ただし、除濁手段11の交換を行うには水処理装置10の運転を停止する必要があるが、状況によっては、それができないことがある。その場合には、除濁手段11の想定通水流量が最大通水流量Qmaxに等しくなるか、またはそれを下回るように、透過水の設定流量と濃縮排水の設定流量のうち少なくとも透過水の設定流量を低下させることが好ましい。例えば、透過水の設定流量を、現在の値から、算出された最大通水流量Qmaxから濃縮排水の設定流量を減じた値に変更することにより、除濁水中のシリカまたはカルシウムが析出しない最大の回収率を維持しながら、除濁手段11の想定通水流量を最も効率よく低下させることができる。
図示した実施形態では、除濁手段11は、供給ラインL1を介してろ過手段12に接続されているが、上述したように、供給ラインL1には、貯留タンクが設けられている場合がある。この場合、ろ過手段12には貯留タンクから除濁水が供給されるため、除濁手段11の通水流量は、ろ過手段12に供給される除濁水の流量と必ずしも一致せず、したがって、透過水流量計13による透過水の検出流量と排水流量計15による濃縮排水の検出流量との和に必ずしも一致しない。そのため、例えば、供給ラインL1のうち還流水ラインL5の接続部よりも上流側に流量計が設けられ、この流量計により検出された流量が、除濁手段11の通水流量として取得されることが好ましい。これにより、供給ラインL1に貯留タンクが設けられている場合にも、除濁手段11の正確な通水流量を取得することが可能になる。なお、この場合、除濁手段11に供給すべき原水の流量は、ろ過手段12に必要な除濁水の流量に左右されない。そのため、除濁手段11の閉塞状態に応じて、常に最適な流量の除濁水を除濁手段11に供給することが可能になる。すなわち、例えば、原水ラインL0に設けられた流量調整弁の開度を調整することで、除濁手段11の閉塞状態によらず、常に最大通水流量Qmaxを下回る流量の原水を除濁手段11に供給することが可能になる。
10 水処理装置
12 ろ過手段
13 透過水流量計
14 定流量弁
15 排水流量計
16 手動弁
17 差圧測定手段
17a 第1の圧力計
17b 第2の圧力計
20 透過水流量制御機構
21 加圧ポンプ
22 透過水流量制御部
30 排水流量制御機構
31 流量調整弁
32 排水流量制御部
40 閉塞判定部
L0 原水ライン
L1 供給ライン
L2 透過水ライン
L3 濃縮水ライン
L4 排水ライン
L5 還流水ライン

Claims (10)

  1. 水処理装置であって、
    被処理水に含まれる懸濁物質を除去する除濁膜を有する除濁手段と、
    前記除濁手段の膜間差圧を測定する差圧測定手段と、
    前記除濁手段の通水流量を取得し、該取得した通水流量と、前記通水流量を取得したときに前記差圧測定手段により測定された前記膜間差圧とに基づいて、前記除濁手段の閉塞状態を表す指標として、前記膜間差圧が予め設定された上限値を超えない範囲で最大になるときの前記除濁手段の通水流量である最大通水流量を算出する算出手段と、を有する水処理装置。
  2. 前記算出手段は、前記取得した通水流量と前記測定された膜間差圧とから、前記除濁手段の通水流量と膜間差圧との関係を表す関係式の係数であって前記除濁手段の閉塞状態に応じて変化する係数を決定し、該決定した係数を含む前記関係式を用いて、前記最大通水流量を算出する、請求項1に記載の水処理装置。
  3. 前記算出手段は、異なる閉塞状態ごとに前記除濁手段の通水流量と膜間差圧との関係を予め測定することで得られた計算式を用いて、前記係数を決定する、請求項2に記載の水処理装置。
  4. 前記除濁手段の下流側に設けられ、前記除濁手段を通過した被処理水を透過水と濃縮水とに分離する逆浸透膜またはナノろ過膜を有するろ過手段と、
    前記除濁手段と前記ろ過手段とを接続し、前記除濁手段を通過した被処理水を前記ろ過手段に供給する供給ラインと、
    前記ろ過手段に接続され、前記ろ過手段からの透過水を流通させる透過水ラインと、
    前記ろ過手段に接続され、前記ろ過手段からの濃縮水を流通させる濃縮水ラインと、
    前記濃縮水ラインから分岐し、前記濃縮水ラインを流れる濃縮水の一部を外部へ排出する排水ラインと、
    前記透過水ラインを流れる透過水の流量を検出する第1の流量検出手段と、
    前記排水ラインを流れる濃縮水の流量を検出する第2の流量検出手段と、を有し、
    前記算出手段は、前記第1の流量検出手段による検出値と前記第2の流量検出手段による検出値との和を、前記除濁手段の通水流量として取得する、請求項1から3のいずれか1項に記載の水処理装置。
  5. 前記透過水ラインを流れる透過水の流量を設定流量に調整する第1の流量制御手段と、
    前記排水ラインを流れる濃縮水の流量を設定流量に調整する第2の流量制御手段であって、前記排水ラインに設けられた流量調整弁と、前記第2の流量検出手段による検出値に基づいて、前記流量調整弁の開度を調整する制御部と、を有する第2の流量制御手段と、を有し、
    前記第2の流量制御手段の前記制御部は、前記透過水ラインを流れる透過水の流量と前記排水ラインを流れる濃縮水の流量との和に対する前記透過水ラインを流れる透過水の流量の割合である回収率の目標値と、前記第1の流量検出手段による検出値とに基づいて、前記排水ラインを流れる濃縮水の前記設定流量を決定する、請求項4に記載の水処理装置。
  6. 前記第2の流量制御手段の前記制御部は、前記第1の流量検出手段による検出値を前記回収率の目標値で除した値から、前記第1の流量検出手段による検出値を減じた値を、前記排水ラインを流れる濃縮水の前記設定流量として決定する、請求項5に記載の水処理装置。
  7. 前記ろ過手段に供給される被処理水と前記ろ過手段からの透過水と前記ろ過手段からの濃縮水とのいずれかの水温を検出する水温検出手段を有し、
    前記第2の流量制御手段の前記制御部は、前記水温検出手段で検出された前記水温に基づいて、前記ろ過手段の前記逆浸透膜またはナノろ過膜の膜面にシリカまたはカルシウムが析出しない最大の回収率を算出し、該算出した値を前記回収率の目標値として設定する、請求項5または6に記載の水処理装置。
  8. 前記算出手段は、前記透過水ラインを流れる透過水の前記設定流量と前記排水ラインを流れる濃縮水の前記設定流量との和を、前記最大通水流量と比較し、前記和が前記最大通水流量を上回る場合または上回ることが予測される場合、前記除濁手段の交換を促す警報を発するか、あるいは、前記第1の流量制御手段に前記透過水ラインを流れる透過水の前記設定流量を変更させる、請求項7に記載の水処理装置。
  9. 前記算出手段は、前記第1の流量制御手段に、前記透過水ラインを流れる透過水の前記設定流量を、現在の値から、前記最大通水流量から前記排水ラインを流れる濃縮水の前記設定流量を減じた値に変更させる、請求項8に記載の水処理装置。
  10. 第1の流量制御手段が、前記供給ラインに設けられ、該供給ラインを流れる被処理水の圧力を調整する圧力調整手段と、前記第1の流量検出手段による検出値に基づいて、前記圧力調整手段を制御する制御部と、を有する、請求項5から9のいずれか1項に記載の水処理装置。
JP2019171684A 2019-09-20 2019-09-20 水処理装置 Active JP7285748B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019171684A JP7285748B2 (ja) 2019-09-20 2019-09-20 水処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019171684A JP7285748B2 (ja) 2019-09-20 2019-09-20 水処理装置

Publications (2)

Publication Number Publication Date
JP2021045731A true JP2021045731A (ja) 2021-03-25
JP7285748B2 JP7285748B2 (ja) 2023-06-02

Family

ID=74877244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171684A Active JP7285748B2 (ja) 2019-09-20 2019-09-20 水処理装置

Country Status (1)

Country Link
JP (1) JP7285748B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346910B2 (ja) 2019-05-28 2023-09-20 三菱電機ビルソリューションズ株式会社 クリアランスの測定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929070A (ja) * 1995-07-24 1997-02-04 Tohoku Electric Power Co Inc 水処理用膜分離装置
JP2019018186A (ja) * 2017-07-21 2019-02-07 オルガノ株式会社 膜ろ過装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0929070A (ja) * 1995-07-24 1997-02-04 Tohoku Electric Power Co Inc 水処理用膜分離装置
JP2019018186A (ja) * 2017-07-21 2019-02-07 オルガノ株式会社 膜ろ過装置

Also Published As

Publication number Publication date
JP7285748B2 (ja) 2023-06-02

Similar Documents

Publication Publication Date Title
JP4831480B2 (ja) 膜濾過システム
JP7045814B2 (ja) 膜ろ過装置
JP6891121B2 (ja) 浄水システムおよび方法
JP5345344B2 (ja) スケール防止剤の供給管理方法および供給管理装置
JP6851877B2 (ja) 膜ろ過装置
JP2010120015A (ja) 膜濾過方法
JP5067299B2 (ja) 膜ろ過システム、及び膜ろ過システムの運転方法
JP2021045731A (ja) 水処理装置
JP5103747B2 (ja) 水処理装置及び水処理方法
TWI723224B (zh) 逆滲透膜裝置的運轉管理方法以及逆滲透膜處理系統
US9856154B2 (en) Fresh water generation method
JP7017365B2 (ja) 膜ろ過装置
JP7181809B2 (ja) 膜ろ過装置
JP7045870B2 (ja) 膜ろ過装置
KR20140146388A (ko) 유동적 회수율을 갖는 2단 막여과 시스템 및 이의 운전방법
JP7106283B2 (ja) 膜ろ過装置
JP7364451B2 (ja) 水処理装置および水処理装置の運転管理方法
JP2000279769A (ja) 膜破損検知方法、その装置、および膜分離装置
JP2021084085A (ja) 膜ろ過装置およびその運転方法
TWI757581B (zh) 水處理裝置
JP7106395B2 (ja) 膜ろ過装置
JP7303861B2 (ja) 膜ろ過装置
JP6512322B1 (ja) 逆浸透膜のスケール抑制方法
JP2023032684A (ja) 膜ろ過装置
JP2021079330A (ja) 膜ろ過装置およびその運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230523

R150 Certificate of patent or registration of utility model

Ref document number: 7285748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150