JP2021041526A - 工具クランプデバイスをモニタリングする方法 - Google Patents

工具クランプデバイスをモニタリングする方法 Download PDF

Info

Publication number
JP2021041526A
JP2021041526A JP2020145522A JP2020145522A JP2021041526A JP 2021041526 A JP2021041526 A JP 2021041526A JP 2020145522 A JP2020145522 A JP 2020145522A JP 2020145522 A JP2020145522 A JP 2020145522A JP 2021041526 A JP2021041526 A JP 2021041526A
Authority
JP
Japan
Prior art keywords
tool
force
spring
release
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020145522A
Other languages
English (en)
Other versions
JP7325114B2 (ja
Inventor
アッシュアウアー フロリアン
Aschauer Florian
アッシュアウアー フロリアン
メルツ フロリアン
merz Florian
メルツ フロリアン
ベクテラー ヴォルフガング
Bechteler Wolfgang
ベクテラー ヴォルフガング
グライフ ジョセフ
Greif Josef
グライフ ジョセフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OTT Jakob Spanntechnik GmbH
Original Assignee
OTT Jakob Spanntechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTT Jakob Spanntechnik GmbH filed Critical OTT Jakob Spanntechnik GmbH
Publication of JP2021041526A publication Critical patent/JP2021041526A/ja
Application granted granted Critical
Publication of JP7325114B2 publication Critical patent/JP7325114B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/002Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders
    • B23Q17/005Arrangements for observing, indicating or measuring on machine tools for indicating or measuring the holding action of work or tool holders by measuring a force, a pressure or a deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0078Safety devices protecting the operator, e.g. against accident or noise
    • B23Q11/0085Safety devices protecting the operator, e.g. against accident or noise by determining whether the machine tool is in a dangerous configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q16/00Equipment for precise positioning of tool or work into particular locations not otherwise provided for
    • B23Q16/001Stops, cams, or holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/08Work-clamping means other than mechanically-actuated
    • B23Q3/082Work-clamping means other than mechanically-actuated hydraulically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/24Chucks characterised by features relating primarily to remote control of the gripping means
    • B23B31/26Chucks characterised by features relating primarily to remote control of the gripping means using mechanical transmission through the working-spindle
    • B23B31/261Chucks characterised by features relating primarily to remote control of the gripping means using mechanical transmission through the working-spindle clamping the end of the toolholder shank
    • B23B31/265Chucks characterised by features relating primarily to remote control of the gripping means using mechanical transmission through the working-spindle clamping the end of the toolholder shank by means of collets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2703/00Work clamping
    • B23Q2703/02Work clamping means
    • B23Q2703/04Work clamping means using fluid means or a vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2717/00Arrangements for indicating or measuring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49128Determine maximum clamping force as function of allowable displacement workpiece
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/309352Cutter spindle or spindle support
    • Y10T409/309408Cutter spindle or spindle support with cutter holder
    • Y10T409/309464Cutter spindle or spindle support with cutter holder and draw bar

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Gripping On Spindles (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

【課題】工作機械の機械スピンドルで動作中の工具クランプデバイスをモニタリングする新しい方法を提供する。【解決手段】工具クランプデバイス1のクランプ力は、工具または工具ホルダ4のクランプまたはリリースを作動させる作動要素5に対して、クランプ位置の方向に力を加えるばねアセンブリ14によって生成され、この方法において、ばね力および作動要素5の変位が、工具または工具ホルダ4のリリース中および/またはクランプ中に連続的に測定され、時間の関数として記録される。これらの記録された関数を使用して、工具クランプデバイス1のステータスに特徴的な少なくとも1つのパラメータを特定することができる。時間の関数としてのばね力および変位に基づいて、ばね特性曲線が変位の関数としてのばね力の形でプロットされ、このばね特性曲線を分析することにより、いくつかの特徴的パラメータに関する情報が提供され得る。【選択図】図1

Description

本発明は、請求項1の一般的概念による、機械スピンドルに取り付けられた工具クランプデバイスをモニタリングする方法に関する。
クランプシステムのステータスは、典型的には、顧客に出荷する前に試験リグを使用してチェックおよび記録される。この手順において、ばね定数または摩擦係数等のパラメータが決定される。これらのパラメータは、クランプシステムをスピンドルに取り付けて操作すると、ある程度変化する。(パラメータ値からの)ずれの理由は、経年変化プロセス、摩損、またはばね要素等の個々のコンポーネントの故障、またはシステムが正しく取り付けられて操作されていない場合を含む。現在、長期試験により、取り付けられた状態でのクランプシステムの寿命を予測することが可能である。しかしながら、このような試験は時間および費用がかかり、さらに、異なる製造公差を考慮することは困難である。少数しか生産されない特殊スピンドルの場合、そのようなアプローチは経済的に実行可能ではない。その結果、工作機械の動作中に一度だけエラーが検出されることが多く、必然的に高コストとなる。
動作中に工具クランプデバイスをモニタリングするために、特許文献1は、関連するリリース機構に位置センサを取り付けることを提案している。しかしながら、そのようなセンサを使用すると、クランプシステムがクランプ位置にあるかまたはリリース位置にあるかをチェックすること、したがって工具クランプデバイスが取り付けられている機械スピンドルで工具クランプデバイスが工作機械の機械制御ユニットの制御コマンドに正しく反応するかどうかをモニタリングすることしかできない。しかしながら、このタイプのセンサを使用すると、工具クランプデバイスの機能的に関連するパラメータが徐々に悪化するのを検出することはできない。
特許文献2は、工作機械のメインスピンドルユニットを開示しており、このユニットでは、ばねアセンブリによって加えられる工具クランプデバイスのクランプ力の低下を検出するために、工具クランプデバイスの流体圧リリース機構でクランプサイクル中に測定が行われ、その測定結果がクランプ力の測定値とみなされる。測定により、リリース機構の流体圧がクランプサイクル中に所定の値だけ減少する時間間隔、またはリリース機構の流体圧プランジャがクランプサイクル中に所定の位置に到達する流体圧のいずれかが得られる。したがって、いずれの場合でも、時間間隔または流体圧の単一の測定値のみを使用して、工具クランプデバイスのクランプ力が測定される。
DE102016108407A1 DE102015116347A1
本発明によって解決される問題は、工作機械の機械スピンドルで動作中の工具クランプデバイスをモニタリングする新しい方法を利用可能にすることであり、この方法は、機械加工されるワークピースの品質が低下する前に摩損およびその他の不具合を早期に検出することを可能にする。
この問題は、本発明によれば、請求項1の特徴を有する方法によって解決される。有用な実施形態は、従属請求項に従う。
本発明は、工具クランプデバイスをモニタリングする方法を開示し、工具クランプデバイスのクランプ力は、工具または工具ホルダをクランプまたはリリースするために提供された作動要素に対してクランプ位置の方向に力を加えるばねアセンブリによって生成され、この方法において、工具または工具ホルダがリリースおよび/またはクランプされている時間の関数として、ばね力および作動要素の変位がそれぞれ継続的に測定および記録され、これらの記録された関数に基づいて、時間の関数としてのばね力および変位から決定される変位の関数としてのばね力の形のばね特性曲線を用いて、工具クランプデバイスのステータスのための少なくとも1つのパラメータ特徴を決定することができる。
連続作動中のばね力および作動要素の変位の定期的な測定により、工具クランプデバイスの機能性を継続的にモニタリングすることができる。これらのデータに基づいて、工具クランプデバイスのステータスに関する複数の特徴についての情報を提供するさまざまなパラメータを決定することが可能である。モニタリングに必要な測定を行うために、機械スピンドルの動作を中断する必要はない。本発明に従って決定されたばね特性曲線は、ばね力で動作する工具クランプデバイスの機能の説明の主要な構成要素である。この曲線は、そのような工具クランプデバイスの機能ステータスを特徴付けるいくつかの特徴的パラメータを含む。
ばね特性曲線を分析する最も簡単な方法は、所定の変位に沿って作用するばね力を特徴的パラメータとして決定することである。構造に関連する期待値から過度に逸脱した値は、欠陥の最初の兆候とみなされる。
さらに、特徴的パラメータは、変位の所定のストレッチ(伸長部)内の変位の関数としてのばね力に基づいて計算されるばね定数であってもよく、変位の所定のストレッチは、ばね特性曲線がほぼ直線状に伸びるストレッチである。この場合も、設計に関連する期待値がばね定数に関して知られている。この値からの大きすぎる逸脱もまた、欠陥を示唆している。ばね定数の代わりに、変位の関数としてのばね力と所定の関数との間の類似性の尺度である相関係数を計算することも可能である。この場合、所定の関数は、設計に関連する予測特性曲線であり、これは非線形であってもよい。
完全なリリースおよびクランプのサイクルが実行されると、熱に変換されたエネルギー損失、または熱に変換されたエネルギー損失と成された全仕事との(割り算の)商を、特徴的パラメータとしての使用ために計算することができる。エネルギー損失が可能な限り低いこと、エネルギー損失とリリースおよびクランプサイクル中に行われた全仕事との商が可能な限り低いこと、ならびにエネルギー損失または前記商の過度に高い値が工具クランプデバイスの欠陥または少なくとも摩損を示唆することが、明らかに望ましい。
別の特徴的パラメータは、変位の最初の所定のストレッチ内の線形形状からの変位の関数としてのばね力のずれ(偏差)に基づいてもよく、線形形状からのずれは、望ましくは可能な限り低い。力vs変位の特性曲線に沿った直線性からのずれ、特に振動は、ばねアセンブリの撓みの不規則な挙動を示し、これは、ばねアセンブリのベアリングの摩損または潤滑油の部分的な不足を示す。
さらに、リリースサイクル中、変位の第2の所定のストレッチ内の線形形状からの変位の関数としてのばね力のずれは、特徴的パラメータとして機能し得、所定の程度のずれは、工具クランプデバイスから工具または工具ホルダが正しく排出されている兆候である。リリースサイクルの特定の段階での工具または工具ホルダの正確な排出は、工具クランプデバイスの機能性にとって非常に重要である。本発明によれば、ばね特性曲線の所定のストレッチを具体的に分析することにより、この機能の性能をモニタリングすることも可能である。
さらに、特徴的パラメータとして、ばね特性曲線の形状の所定の変化に関連する2つの時間の間の少なくとも1つの時間間隔を決定することもできる。これは、ばね特性曲線の各ポイントがリリースおよびクランプサイクル内の特定の時点に割り当てられていることで可能である。リリースおよびクランプサイクルの時間の長さは工具交換の時間の長さに含まれるため、特定の時間関連条件を維持することは、工具クランプデバイスの重要な性能的機能である。許容可能な時間間隔の超過は、工具クランプデバイスの欠陥を示唆する。
この特定の文脈において第一に興味深い時間間隔は、工具もしくは工具ホルダのリリースにつながる動きの電子的開始とこの動きの開始との間の時間、および/または、工具もしくは工具ホルダのリリースにつながる動きの開始とばねアセンブリへの力の印加との間の時間、および/または、ばねアセンブリへの力の印加と工具もしくは工具ホルダの排出との間の時間である。これら3つの時間間隔の合計は、工具または工具ホルダが実際に排出されるまでの合計経過時間である。
さらに別の特徴的パラメータは、リリースサイクルの終わりに生じる最大力であり、この力は、作動要素の変位が機械的停止によって制限されるときに生じる。この力は、前述の停止まで作動要素を撓ませることができるように、工具クランプデバイスを動作させるために必要な流体圧ユニットが加えなければならない最大圧力を決定する。
特徴的パラメータが、所定の値だけ超過することによって基準値からずれる場合、またはそのずれが任意の他の手段による欠陥の存在を示す場合、好ましくは、機械スピンドルの動作を制御する電子制御デバイスにメッセージが送信される、ならびに/または操作者への光学もしくは音響警告信号が表示ユニットによって発せられる。これによって、機械スピンドルが動作を続け、ワークピースが不良または許容できないほど低い品質で機械加工されるのが防止される。
基準値は、固定の所定値、または方法を実施するために提供されたモニタリングデバイスのデータ記憶ユニットに記憶された、以前のリリースおよびクランプサイクルで決定された特徴的パラメータの値であってもよい。この基準値は、以前のリリースおよびクランプサイクルで収集されたデータの評価において正しいものとして評価されていなければならず、固定の所定基準値が、工具クランプデバイスが動作された後にモニタリングされた少なくとも第1のリリースおよびクランプサイクルで使用される必要があることが理解される。しかしながら、原則として、常に固定の所定の基準値を常に使用することが可能である。
本発明によって開示される方法の好ましい実施形態によれば、収集された特徴的パラメータの値は、方法を実施するために提供されたモニタリングデバイスのデータ記憶ユニットに記憶され、記憶された値に基づいて、変化率が計算され、特徴的パラメータの経時的な将来の発展を予測するために使用される。例えば、ばね定数の発展をモニタリングすることができ、同じ一定の割合での緩やかな減少が認められた場合、ばね定数がその許容され得る許容範囲の下限の閾値に達すると予想される時点が予測され得る。したがって、本発明は、工具クランプデバイスの特徴的なステータスパラメータがその許容され得る許容範囲を離れる時間を予測することを可能にし、したがって工具クランプデバイスの必要な交換の時宜を得た計画および準備を可能にする。当然ながら、この分析方法は、ばね定数以外のパラメータにも適用され得る。
ばね力は、好ましくは、ばね力に対抗し、流体圧リリース機構のプランジャ(このプランジャはリリース動作中にリリース位置の方向に作動要素に力を加える)に印加される流体力が、作動流体の圧力、およびこの圧力が印加されるプランジャの表面積を測定することにより計算されることで、間接的に測定される。したがって、関係する要素が移動可能であるため、特にクランプおよびリリース動作を作動させるドローバーの形態の作動要素が、機械スピンドルが動作しているときにこのスピンドルとともに回転するため、力を測定するために、ばね力が作用している要素にひずみセンサを取り付ける必要はない。結果として、工具クランプデバイスから本発明による方法を実施するモニタリングユニットへのセンサ信号の送信が、著しく単純化される。
好ましくは、プランジャの各軸側で、プランジャに作用する作動流体の圧力が測定され、この圧力およびこの圧力が作用するプランジャの各側の表面積から、この側からプランジャに作用する力が計算され、またこれらの2つの力の差を計算することにより、ばね力に対抗する、プランジャに対して生じる流体力が計算され得る。この差を計算することにより、実際にプランジャに作用する流体力を高精度に決定することができる。
以下、本発明の実施例について図面を参照して説明する。
2つの異なる作動位置にあるクランプデバイスの縦断面図である。 プログラムフローチャートの形での本発明による方法の簡略化された表現を示す図である。 リリースおよびクランプサイクル完了後の工具クランプデバイスのばね特性曲線の形状の例を示す図である。 リリースおよびクランプサイクル完了後の工具クランプデバイスのばね特性曲線の形状の第2の例を示す図である。 リリースサイクル中の工具クランプデバイスのばね特性曲線の形状の例を示す図である。
図1は、工作機械の回転機械スピンドルに取り付けるように構成された工具クランプデバイス1を示し、この工具クランプデバイスは、リリース機構2と、潤滑クーラントまたは別の作動流体を供給するための回転フィードスルー3とを有する。工具クランプデバイス1は、軸方向に移動可能なドローバー5によって作動され得るクランプセット4を備える。ドローバーは、クランプセット4をリリースまたはクランプするための作動要素を形成する。図示される実施形態において、クランプセット4は、クランプコーン6と、工具または工具ホルダ8を保持するためのクランプコーン6の周りに配置された、複数のコレット要素7とを備える。図1の左半分は、工具ホルダ8がデバイスにクランプされるクランプ位置にある工具クランプデバイス1を示し、右半分は、工具ホルダ8がデバイスから取り外され、したがって交換され得るリリース位置にある工具クランプデバイスを示す。
クランプセット4のクランプコーン6は、工具ホルダ8に面するドローバー5の前端に取り付けられている。クランプコーン6をドローバー5上で軸方向に動かすことにより、コレット要素7を動かして工具レシーバ8をクランプまたはリリースすることができる。しかしながら、ここではコレットとして構成されているクランプセット4は、例えば、ラジアル(半径)方向に移動可能なボールを有するよう構成されてもよく、または任意の他の様式で構成されてもよい。図示される実施形態において、ドローバー5は、回転フィードスルー3を介して作動流体および/または洗浄流体を工具ホルダ8に供給するための貫通穴9を有する。
クランプセット4のコレット要素7の外端10は、工具レシーバ8の環状溝11に係合する。コレット要素7の内端12は、鞘状のスペーサ13内に配置される。ドローバー5は、このロッドの周りに同心円状に配置されたばねアセンブリ14によって、後退クランプ位置にプレロード(予圧)されている。図示される実施形態において皿ばねアセンブリであるばねアセンブリ14は、一方の側で機械スピンドルの内側で支持されるスリーブ形状の当接要素15に当接して支えられ、他方の側でドローバー5のより広い後部17の環状表面16に当接して支えられる。
リリース機構2は、ドローバー5の後端に配置され、工具ホルダ8とは反対側に面している。このリリース機構は、ケーシング内でガイドされ且つ圧力流体によって動かされるプランジャ18を収容し、このプランジャによって、ドローバー5は、ばねアセンブリ14の力に抗してリリース位置に押され得る。ドローバー5がリリース機構2のプランジャ18によって、ばねアセンブリ14の力に抗して、図1の右半分に示されるリリース位置から工具ホルダ8の方向に押された場合(これはリリース機構2に作動流体を供給することにより達成される)、コレット要素7はラジアル方向内側に移動され、機械スピンドルから取り外すために工具ホルダ8をリリースする。一方、リリース機構2を適切に作動させることによってプランジャ18が後退すると、ドローバー5もまたばねアセンブリ14の力によって後退し、これにより、コレット要素7がクランプコーン6によってラジアル方向外向きに押され、工具ホルダ8を機械スピンドル内に後退させ、クランプする。この位置は、図1の左半分で確認され得る。潤滑クーラントまたは他の作動流体は、回転フィードスルー3を介して、機械加工操作中に回転するドローバー5内に供給され、貫通穴9を介して工具ホルダ8に供給され得る。
プランジャ18は、リリース機構2の内部の、作動流体で満たされた中空空間を、後方チャンバ19および前方チャンバ20に分割する。リリースサイクルの間、流体圧ラインによってリリース機構2に接続される外部流体圧ユニット(図1には図示せず)によって後方チャンバ19に圧力が加えられ、一方、前方チャンバ20は減圧される。その結果、プランジャ18は前方に移動し、それにより、作動流体を前方チャンバ20から変位させる。(プランジャの)前端がドローバー5の後部17の面に当たると、プランジャは、コレットクランプ7が工具ホルダ8をリリースするまで、ばねアセンブリ14の圧縮下でドローバーを前方に移動させる。
クランプサイクルの間、前方チャンバ20は流体圧ユニットによって加圧され、一方、後方チャンバ19は減圧される。流体力とばねアセンブリ14の力との組み合わせによって駆動されるプランジャ18は、後方に向かって移動し、それにより後方チャンバ19から作動流体を変位させる。前方チャンバ20内の圧力は、流体力がばねアセンブリ14の力よりも著しく低くなるように制御され、その結果、移動は主にばねアセンブリ14によって駆動される。プランジャ18がドローバー5の後部17の面から係合離脱した後、ばねアセンブリ14は、プランジャ18を動かす役割をもはや果たさず、代わりに、それ以降、プランジャは前方チャンバ20内の作動流体の圧力によってのみ移動する。クランプサイクルの運動シーケンスのこの部分は、ドローバー5およびプランジャ18の表面の間に軸方向距離を形成するように機能し、これらの表面は、リリースサイクル中に互いに接触するが、これは、プランジャ18が静止しワークピースが機械加工されている間、ドローバー5が回転するためである。
本発明によれば、後方チャンバ19内の作動流体の圧力を測定するための第1の圧力センサ21が中空空間の後方チャンバ19に配置され、前方チャンバ20内の作動流体の圧力を測定するための第2の圧力センサ22が中空空間の前方チャンバ20に配置される。プランジャ18に加えられる流体力は、これらの圧力およびこれらの圧力が印加されるプランジャ18の既知の面積に基づいて計算することができる。この文脈において、前部および後部に向かって2つのチャンバ19および20を軸方向に境界付けるプランジャ18の面積は、図1で確認され得るように、同一ではないことに注意すべきである。圧力センサ21および22は、例えば、当技術分野で知られているピエゾ抵抗または容量性圧力センサであってもよい。
リリースサイクルおよびクランプサイクルの両方において、2つのチャンバ19または20の一方にのみ外部から圧力が印加され、一方、他方のチャンバは減圧されるが、このチャンバ内のプランジャ18の動きの結果、それぞれの減圧されたチャンバから作動流体が変位するため、動圧が発生し、この動圧は、プランジャ18のそれぞれの動きの方向と反対の力がプランジャ18に作用するという効果を有する。その結果、プランジャの移動方向にプランジャ18に生じる力は、わずかに減少する。
本発明によれば、リリース機構2の内部に、ドローバー5の軸方向位置を検出するための位置センサ23が配置されている。このセンサは、好ましくは非接触センサである。適切なセンサの例は、差動変圧器(LVDT)または差動スロットルの形の誘導センサであり、それらのコイルはドローバー5の周りに巻かれている。位置センサ23の軸方向領域では、ドローバーの断面および/または透磁率が変化する。例えば、この領域では、ドローバー5は、それに取り付けられたリング24を有してもよく、このリングは、高透磁率の材料から構成され得る。異なる断面および/または異なる透磁率を有するそのようなセグメントの軸方向位置は、当技術分野で既知の方法を使用して、差動変圧器(LVDT)または差動スロットルによって測定することができる。
別の可能なタイプの非接触位置センサ23は、ドローバー5に取り付けられ、その外面が軸方向に面取りされている強磁性材料製のリングと組み合わさったラジアル誘導距離センサである。ドローバーが軸方向に移動したときの、このリングと距離センサとの間のラジアル方向距離の測定された変化に基づいて、ドローバー5の軸方向位置を決定することができる。適切な誘導距離センサは、当技術分野で知られている。
さらに別の可能なタイプの非接触位置センサ23は、異なる断面を有するドローバー5のセグメントが2つの直列接続されたキャパシタの共通電極を形成する容量センサである。このタイプの構成では、全体の静電容量は、ドローバー5を囲む2つの軸方向に連続する外側電極に対するドローバー5の前記セグメントの軸方向位置に依存する。このタイプの容量位置センサも同様に知られており、したがって詳細な説明は必要ない。
プランジャ18の後端位置を検出するように機能するプランジャ位置センサ25が、後方チャンバ19の後壁に配置されている。動作中にプランジャ位置センサ25の信号をサンプリングすることにより(このセンサは例えば誘導、容量または磁気近接スイッチであってもよい)、プランジャ18およびドローバー5の後部17の面が、機械スピンドルおよび機械スピンドルと共にドローバー5が回転するようにセットされる前に、もはや互いに接触していないということを確実にすることができる。
上述の圧力および位置センサ21〜23および場合によっては位置センサ25は、電子モニタリングデバイスによって本発明による方法を実施するのに役立つ。このモニタリングデバイスのハードウェアは、センサ信号の処理およびアナログ−デジタル変換のための電子信号処理ユニットと、センサ信号のプログラム制御解析のためのマイクロコンピュータと、測定および解析結果を記録するための不揮発性データ記憶ユニットと、を備える。マイクロコンピュータは、適切なインターフェースを介して、その機械スピンドルに工具クランプデバイス1が取り付けられている工作機械の機械制御ユニットに接続され、工作機械を操作する者に情報を表示するための表示ユニットを備えてもよい。したがって、ハードウェアモニタリングデバイスは、アナログおよびデジタル電子システムの標準コンポーネントから成り、したがって、詳細な説明は必要ない。
図2は、プログラムフローチャートの形での本発明による方法の基本的シーケンスを示す。リリースサイクルの開始は、本方法のサイクルの開始を形成する。この開始は、機械スピンドルを制御する制御ユニットによってモニタリングユニットに直接信号伝達されてもよく、またはセンサ信号によって、例えば、プランジャ18の動きによって開始される、後方チャンバ19の圧力センサ21によって測定された圧力の増加によってトリガされてもよい。しかしながら、代わりに、それはまた、プランジャ18の後端位置をモニタするプランジャ位置センサ25の信号によってトリガされてもよい。その理由は、プランジャ18がその後端位置から離れることが、リリースサイクルの開始を明確に示すためである。
サイクルが開始されると、圧力センサ21、22、および位置センサ23のセンサ信号と、これらの信号が取得される時間とが、ステップ26で記録される。時間(信号取得の時間)は、とりわけ、本発明による方法を実行するモニタリングデバイスがリアルタイムクロックを有するという事実によって可能になる。ステップ26の目的は、センサ21〜23の信号を時間の関数として記憶することである。これは、センサ信号の時間制御による取得が開始後の固定された時間間隔で行われ、センサ信号に対して取得された各測定値について、取得された時間も記憶されることで達成され得る。センサ信号の測定値は、ステップ27で測定サイクルの終わりに達したと判断されるまで、特定の時間間隔で継続的に記録される。
測定サイクルの終わりは、一般に、工具クランプデバイス1の完了したリリースおよびクランプサイクルの終了と一致する。この終了は、コレットクランプ7によって工具ホルダ8が(デバイスに)クランプされる後端位置にドローバー5が戻ったことを位置センサ23が示すことにより、信号伝達される。しかしながら、方法の簡略化されたバージョンでは、測定サイクルの終了は単にリリースサイクルの終了として定義することもでき、これは、工具ホルダ8がコレットクランプ7からリリースされるその前端位置にドローバー5が到達したことによって信号伝達される。
センサ信号が取得される個々の時間を記録する代わりに、測定サイクルの開始後の時間を記録することも可能であり、センサ信号は、測定サイクルの終了に達するまで、連続的に、且つ交互のサイクルにおいてセンサ間で取得され得る。この場合、測定サイクルの最後に時間を再度取得するだけでよく、取得した2つの時間の差およびセンサ信号の測定値の数に基づいて、それぞれの個々の測定値に対して、値が記録された時間を計算し、測定された値にこの時間を割り当てて記憶することが可能であるが、ただし、センサ信号の継続的な取得は、特に測定する個々の値の取得間の均一な時間間隔で定期的なスケジュールに従う。
本発明による方法の本質的な態様は、測定サイクルの終了後、すなわち、方法がステップ28に進む前に、センサ21〜23によって取得された測定値が、時間の関数として記憶されること、すなわち、各センサ信号について、複数の測定値が記憶され、そのそれぞれに値が取得された時間が割り当てられることである。この時間は絶対時間である必要はなく、代わりに、測定サイクルが開始した開始時間に対する時間差であってもよい。
次に、ステップ28において、圧力センサ21および22の信号の測定値、ならびにプランジャ18の前面および後面の既知の面積に基づいて、プランジャ18に及ぼされた結果的な流体力が時間の関数として計算され、プランジャ18とドローバー5との接触時の対応する反力は、ばねアセンブリ14の力である。ステップ29において、時間の関数としてのこのばね力曲線および時間の関数としてのドローバー5の記憶された位置に基づいて、プランジャ18に及ぼされた結果的な流体力の形のばねアセンブリ14のばね特性曲線が、その後、ドローバー5の変位の関数として決定される。このアプローチは、システム全体のリリースおよびクランプサイクルの運動シーケンスにおいて不可避的に発生する摩擦力が、ばねアセンブリ14のばね力およびプランジャ18の結果的な流体力に対して無視できるという仮定に基づいている。
ステップ30は、工具クランプデバイス1の現在のステータスに関する情報を提供するばね特性曲線に基づくいくつかの特徴的パラメータを定義するが、これについては、以下で図3〜図5を参照して説明する。ステップ31において、これらのパラメータが記憶され、経時的なそれらの発展が記録される。
次に、ステップ32において、パラメータが工具クランプデバイス1の既存の欠陥または初期欠陥を特定するかどうかを決定するために、パラメータがチェックされる。もし欠陥が検出された場合、ステップ33で適切なメッセージが生成または出力される。そのようなメッセージは、工具クランプデバイス1が取り付けられている機械スピンドルの、工作機械の機械制御ユニットに宛てられてもよい。しかしながら、代替として、またはそれに加えて、機械を操作する者に対する光学および/または音響警告信号が、表示ユニットに出力されてもよい。ステップ32または33の後、本発明による方法の1サイクルが完了する。
図3は、ステップ29で決定されるタイプの典型的なばね特性曲線の変位の関数としての測定された力を示す。これに関連して、図3に示されているばね特性曲線は、ドローバー5のばねアセンブリ14が、所定の開始点から開始して特定の長さの変位だけ圧縮され、その後再び開始点まで弛緩された試験リグに対してプロットされていることに留意されたい。これが、図3において変位および力がゼロから開始しない理由であり、取り付けられた場合でも、ばねアセンブリ14には、不可避的にある程度プレストレスがかかっていることに留意されたい。したがって、品質の観点から、ばねアセンブリ14が圧縮された変位の長さに沿って、本発明によって開示されるように、機械スピンドルに取り付けられた工具クランプデバイスによってプロットされたばね特性曲線は、図3に示すような形状と同じ形状を有するであろう。図3と一致するグラフにおいて、ばね特性曲線は単に水平方向および垂直方向にシフトしている場合がある。
動作時に工具クランプデバイス1が正しく機能しているかどうかをチェックするために使用され得る第1のパラメータは、特定の所定の変位に沿って測定された力の値である。期待される設定値からの過度に高いずれだけでも、工具クランプデバイス1のばねアセンブリ14の不具合の兆候である。このチェックは複雑な計算を必要としないため、非常に迅速に実行することができる。結果が否定的である場合、ワークピースの正しい機械加工が期待できないため、工具クランプデバイス1は操作されるべきではない。
図3に示されるように、移動の開始時の非線形上昇の後、リリースサイクル中に、示された矢印の方向に上向きに進むばね特性曲線の上側の分岐は、可能な限り直線状に伸びる。事前に分かっている引張を有するばね特性曲線の線形ストレッチの場合、特性曲線の関連する分岐の勾配を計算することは容易であり、その勾配は、ばねアセンブリ14の第1のばね定数を構成する。この第1のばね定数は、ステップ30で工具クランプデバイス1の状態を評価するために使用され得る別のパラメータである。ダイ工具クランプデバイス1が無傷である場合、このばね定数は、所定の設定値付近の所定の許容範囲内でなければならない。設定値からの過度に高いずれは、ばねアセンブリ14の不具合の兆候である。ばね定数の過度に低い値は、複数の負荷変化後のばねアセンブリ14の材料疲労または変形の兆候である。
勾配を計算する代わりに、その特性曲線と所定の基準特性曲線との類似性の尺度を表す相関係数を計算することも可能である。このタイプの分析は、線形のばね特性曲線だけでなく、関心のある領域内で設計関連の非線形形状のばね特性曲線を有するばねアセンブリ14にも適用され得る。2つの関数の類似性分析のための相関方法は、当技術分野において知られている。
図3が示すように、クランプサイクルの開始時における非線形の力の低下後、クランプサイクル中に、示された矢印の方向に下向きに進むばね特性曲線の下側の分岐も、可能な限り直線状に伸びる。前記線形ストレッチの場合、特性曲線の対応する分岐の勾配を計算することも容易であり、その勾配は、ばねアセンブリ14の第2のばね定数を構成する。図3をよく見るとわかるように、2つのばね定数は一般に互いに同一ではない。第2のばね定数はまた、工具クランプデバイス1のステータスパラメータを構成し、第1のばね特性曲線と同じ基準によって分析される。
図3におけるばね特性曲線で囲まれた領域は、完全なリリースおよびクランプサイクル内で摩擦力に打ち勝つために消費されなければならないエネルギー損失を構成する。このエネルギーは、工具クランプデバイス1のステータスを特徴付ける追加のパラメータである。設計の目的は、エネルギー損失が可能な限り低く保たれるようにクランプシステムを構築することである。したがって、損傷のない工具クランプデバイス1は、エネルギー損失が所定の閾値を超えないことを必要とする。過度に高いエネルギー損失は、工具クランプデバイス1内の1つまたは複数の領域での材料の摩耗による過度に高い摩擦の兆候である。
エネルギー損失を分析するためのもう1つの有用なパラメータは、エネルギー損失とリリースサイクル中に消費される仕事との(割り算の)商を計算することによって得られ、リリースサイクル中に消費される仕事は、図3の特性曲線の上側の分岐と横座標との間の面積によって定義される。この商は、消費された仕事全体のどの部分が失われたエネルギー、すなわち熱に変換されるかを指定する。この値は、工具クランプデバイス1が取り付けられ、操作されたときに、最小限にしか変化しないはずである。より高いずれが観察される場合は、クランプシステムの寿命が短くなることが予想される。ばねの動きの速度とともに、エネルギー損失もまた増加することに留意されたい。したがって、工具クランプデバイス1の寿命を短くする過負荷状態を特定することが可能である。
工具クランプデバイス1の別のステータスパラメータは、変位の所定のストレッチ内の2つの分岐の実質的な直線性を特徴とする、図3に示される形状からのばね特性曲線の形状のずれに基づく。そのような主に線形の形状から著しく逸脱した特性曲線の例を図4に示す。図4のΔxで指定された変位のストレッチ内で、ばね特性曲線の両方の分岐は、変位の短いストレッチ内の力の大幅な増加を示している。これらの増加は、ばねアセンブリ14が均一に圧縮または伸張しないことを示し、それにより、クランプシステムの寿命が短くなる可能性がある。この原因は、ばねアセンブリ14を構成する、ドローバー5上の皿ばねの個々の要素への負荷が均一ではないためである可能性があり、これは個々の要素が詰まったときに発生し得る。別の可能性は、例えば、ばねアセンブリのバランスを改善するためにアセンブリの中心に固定されている支持スリーブがドローバー5に引っ掛かることであり、これにより、ばねアセンブリ14の片側に負荷が印加されることになる。
ばね要素とドローバー5との間に生じる摩擦は、ばね特性曲線における振動の形で現れる。これらは、リリースおよびクランプの両方のサイクルで確認され得る。線形性からのずれの適切な指標は、計算されたばね定数によって与えられる線形形状からの測定値の標準偏差である。ばねアセンブリが無傷である場合は、所定の閾値を超えないはずである。これを確実にするために、オイル、グリース、または適切な潤滑剤を使用して、ドローバー5のばね要素の良好なスリップ挙動を確保する。流体が(ドローバーに)入る場合、または個々のばね要素が(ドローバーに)引っかかる場合、スリップ特性が低下し、ばねガイドの摩耗につながる可能性がある。上記の分析を使用して、ドローバー5のばね要素の滑り特性を、したがってばね要素、ばねガイドおよび潤滑のシステムのトライボロジーステータスをチェックすることができる。
図5は、リリースサイクル中に機械スピンドルに完全に取り付けられた工具クランプデバイス1のばね特性曲線の分岐の例を示している。ウェイポイントxとxとの間のストレッチは、図3の特性曲線の上側分岐とほぼ相関しているが、システムは試験リグで測定されているため、ウェイポイントxでの極大値は生じない。図5の点xの左側にΔxとして指定された、図5のばね特性曲線の最初の部分は、プランジャ18の前端がドローバー5の後部17の後面と接触することなしに、後方チャンバ19内の圧力の結果としてプランジャ18が前方に移動する領域を表す。変位の長さが増加しても、ばねアセンブリ14はまだ圧縮されていないため、力はほぼ一定のままである。
ウェイポイントxでは、プランジャ18の前端がドローバー5の後部17の後面と接触し、この時点からばねアセンブリ14の圧縮が開始し、これが、変位の長さが増加するにつれて力がほぼ直線状に増加する理由である。ウェイポイントxでは、力は力ΔFだけ急激に増加して極大値に達し、その後再び同じように急激に減少する。その後、以前のほぼ線形の力応答が短期間継続してから、力はウェイポイントxから開始してリリースサイクルの終了を示すウェイポイントxでの極めて高い値Fmaxまで急激に増加する。
ウェイポイントxでの力の極大値は、クランプされた工具または工具ホルダの排出によって引き起こされる。その理由は、クランプサイクルでは、工具ホルダ4のコーンが、ばね力によって工具レシーバの中に引っ張られる(コーン圧入)ためである。引き込み力の大きさにより、工具レシーバはわずかに変形し、工具ホルダ4は、ばねアセンブリ14の力がなくてもレシーバに捕捉される。したがって、リリースを可能にするには、この追加の力に打ち勝つ必要があり、これは、ばね特性曲線において、ウェイポイントxでの力の一時的な増加ΔFで現れる。工具が排出されない場合、その理由は、例えば、クランプコーンと接触しない不良の工具ホルダ4である可能性がある。この場合、ばね特性曲線には、ウェイポイントxでの極大値が存在しない。加えられたリリース力が十分に高くないために工具が排出されない場合、ウェイポイントxへのばね力の最後の急激な増加のみが発生するが、この場合も、ばね特性曲線にはウェイポイントxでの極大値は存在しない。
図5のばね特性曲線を分析する場合、工具が正しく排出されたかどうかを検出する1つの可能性は、工具の排出が予想されるウェイポイントx近くの変位の所定領域内で、ばね特性曲線の極大値、すなわち、所定範囲内(つまり、最小値と最大値との間)にある高さΔFを探すことである。正しい検出を確実にするために、追加の基準として、極大値の左右の曲線の変曲点の計算に基づいて、力の一時的な増加の領域の幅を使用し、この幅を予想される幅と比較することもできる。
工具が正しく排出されたことを示す極大値の存在は、工具クランプデバイス1のステータスを特徴付け、ばね特性曲線で確認され得る別の特徴的パラメータである。予想される工具の排出が検出されなかった場合は、ワークピースの誤った加工を回避するために、動作を中断することができ、また関連する欠陥を修正することができるように、優先度の高いエラーメッセージが機械制御ユニットに送信されるべきであることは明らかである。
ワークピースが正しく排出された後、プランジャ18は、ドローバー5が、図5ではウェイポイントxとxとの間の力の非常に急激な増加によって特定される機械的停止に到達するまで、ドローバーを押し続ける。移動の最後、すなわち図5のウェイポイントxで、流体圧ユニットおよびプランジャ18によって加えることができる最大力Fmaxが確認され得る。工具クランプデバイス1のステータスの別の特徴的パラメータであるこの最大工具リリース力Fmaxを決定することにより、例えば、エネルギー効率の観点から、流体圧ユニットによって生成される圧力を調整することができる。
変位および力の各値について記録された時間に基づいて、これらの2つの特性の時間関数から工具クランプデバイス1のリリースおよびクランプサイクルの時間関連パラメータを決定することも可能である。そのようなパラメータは、工具リリース時間が工具クランプデバイス1の重大な特徴であるという点で重要である。次の時間間隔が主に関連している。
−機械制御ユニットによる(工具の)リリースの信号を受信してから、リリース位置の方向にプランジャ18に力が印加され始めるまでの時間。この時間間隔の終わりは、後方チャンバ19の圧力センサ21の信号によって検出され得る。
−リリース位置の方向にプランジャ18に力が印加され始めてから、プランジャ18の前端とドローバー5の後部17とが接触するまでの時間。図5では、この時間間隔に割り当てられたドローバーの変位がΔxで示されている。接触したという事実は、力の急激な増加によって検出することができ、これは、図5においてウェイポイントxで確認され得る。
−プランジャ18の前端とドローバー5の後部17とが接触してから、工具が排出されるまでの時間。図5では、この時間間隔に割り当てられたドローバーの変位がΔxで示されている。接触したという事実は、力の一時的な増加ΔFによって検出することができ、これは、図5においてウェイポイントxで確認され得る。
上記の特徴的な時間間隔は、工具クランプデバイス1のステータスの追加の特徴的パラメータである。これらのパラメータを決定することで、技術的な変形を比較および最適化することが可能になる。さらに、これらのパラメータにより、流体圧システムの圧力変動および異常をモニタリングすることができる。機械の動作中に、リリース時間の変化を記録して、動的な工具交換プログラムに使用することができる。代替として、工具交換の可能な限り長い時間(最悪の場合)を計算の基礎として使用することができる。
議論された実施例で開示されたような圧力測定による力の間接測定は有用であるが、それが利用可能な唯一の可能性では決してないことが強調されるべきである。すでに述べたように、例えば信号の送信に伴う人件費および設備費の増加を受け入れることで、ドローバー5のひずみを測定することによりばね力を測定することもできる。さらに、例えば光学センサまたはレーダーベースのセンサ等、言及したもの以外のセンサを使用して、ドローバー5の位置に基づいてばねアセンブリ14の撓みを測定することも可能である。これに関連して、図3〜図5における力および変位の数値は単なる例として示されていることも言及されるべきである。

Claims (14)

  1. 機械スピンドルに取り付けられた工具クランプデバイス(1)をモニタリングする方法であって、前記工具クランプデバイスのクランプ力が、工具または工具ホルダ(4)のクランプまたはリリースを作動させる作動要素(5)に対してクランプ位置の方向に力を加えるばねアセンブリ(14)によって生成される、方法において、前記工具または工具ホルダ(4)のリリースおよび/またはクランプの間、ばね力および前記作動要素(5)の変位が時間の関数として継続的に測定および記録され、記録されたこれらの関数に基づいて、前記工具クランプデバイス(1)のステータスの少なくとも1つのパラメータ特徴が、時間の関数としてのばね力および変位に基づいて決定される変位の関数としてのばね力の形のばね特性曲線を用いて決定されることを特徴とする方法。
  2. 前記特徴的パラメータは、所定の変位に沿って作用するばね力に基づいて決定されることを特徴とする、請求項1に記載の方法。
  3. 前記特徴的パラメータは、変位の所定のストレッチ内の変位の関数としてのばね力に基づいて計算されるばね定数であるか、またはこの関数と所定の関数との間の類似性の尺度である相関係数である、請求項1または2に記載の方法。
  4. リリースおよびクランプの全サイクルが完了し、前記特徴的パラメータは熱に変換された損失エネルギーであるか、または熱に変換された損失エネルギーと消費された全仕事の商であることを特徴とする、請求項1から3のいずれか一項に記載の方法。
  5. 前記特徴的パラメータは、変位の第1の所定のストレッチ内の線形曲線からの変位の関数としてのばね力のずれの尺度であり、線形曲線からの可能な限り小さいずれが望ましいことを特徴とする、請求項1から4のいずれか一項に記載の方法。
  6. リリースサイクルにおいて、前記特徴的パラメータは、変位の第2の所定のストレッチ内の線形曲線からの変位の関数としてのばね力のずれの尺度であり、所定の範囲のずれは、前記工具クランプデバイスからの工具または工具ホルダ(4)の正しい排出の兆候であることを特徴とする、請求項1から5のいずれか一項に記載の方法。
  7. 前記特徴的パラメータは、前記ばね特性曲線の形状の所定の変化に割り当てられた2つの時点の間の少なくとも1つの時間間隔であることを特徴とする、請求項1から6のいずれか一項に記載の方法。
  8. 前記時間間隔は、前記工具もしくは工具ホルダ(4)のリリースにつながる動きの電子的トリガとこの動きの開始との間の時間、および/または、工具もしくは工具ホルダ(4)のリリースにつながる動きの開始と前記ばねアセンブリ(14)への力の印加との間の時間、および/または、前記ばねアセンブリ(14)への力の印加と前記工具もしくは工具ホルダ(4)の排出との間の時間であることを特徴とする、請求項7に記載の方法。
  9. 前記特徴的パラメータは、前記作動要素(5)の変位が機械的停止によって制限されるときに生じる、リリースサイクルの終わりに生じる最大力であることを特徴とする、請求項1から8のいずれか一項に記載の方法。
  10. 所定の閾値を超えるか、または任意の他の手段によって欠陥の存在を示す、基準値からの特徴的パラメータのずれの場合において、前記機械スピンドルの動作を制御する電子制御ユニットにメッセージが送信される、ならびに/または操作者のための光学および/もしくは音響警告信号が、表示ユニットによって発せられることを特徴とする、請求項1から9のいずれかに記載の方法。
  11. 前記基準値は、固定の所定値、または前記方法を実施するために提供されたモニタリングデバイスのデータ記憶ユニットに記憶された前記特徴的パラメータの値であり、この値は、以前のリリースおよびクランプサイクルにおいて決定されたものであることを特徴とする、請求項10に記載の方法。
  12. 決定された特徴的パラメータの値は、前記方法を実施するために提供されたモニタリングデバイスのデータ記憶ユニットに記憶され、記憶された値に基づいて、変化率が計算され、変化率は前記特徴的パラメータの経時的な将来の発展を予測するために使用されることを特徴とする、請求項1から11のいずれか一項に記載の方法。
  13. 前記ばね力に対抗する流体力であって、リリース動作中にリリース位置の方向に前記作動要素(5)に力を及ぼす、流体圧リリース機構(2)のプランジャ(18)に印加される流体力が、作動流体の圧力測定、およびこの圧力が印加される前記プランジャ(18)の表面積から計算されることで、前記ばね力が間接的に測定されることを特徴とする、請求項1から12のいずれか一項に記載の方法。
  14. 前記プランジャ(18)の各軸側で、前記プランジャ(18)に作用する前記作動流体の圧力が測定され、この圧力および前記プランジャ(18)の各側それぞれの表面積に基づき、この側から前記プランジャ(18)に作用する力が計算され、これらの2つの力の差をとることにより、前記ばね力に対抗する前記プランジャ(18)に対して生じる流体力が計算されることを特徴とする、請求項13に記載の方法。
JP2020145522A 2019-09-05 2020-08-31 工具クランプデバイスをモニタリングする方法 Active JP7325114B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019123838.2A DE102019123838A1 (de) 2019-09-05 2019-09-05 Verfahren zur Überwachung einer Werkzeugspannvorrichtung
DE102019123838.2 2019-09-05

Publications (2)

Publication Number Publication Date
JP2021041526A true JP2021041526A (ja) 2021-03-18
JP7325114B2 JP7325114B2 (ja) 2023-08-14

Family

ID=71620252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020145522A Active JP7325114B2 (ja) 2019-09-05 2020-08-31 工具クランプデバイスをモニタリングする方法

Country Status (5)

Country Link
US (1) US11667002B2 (ja)
EP (1) EP3789833B1 (ja)
JP (1) JP7325114B2 (ja)
DE (1) DE102019123838A1 (ja)
ES (1) ES2970424T3 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125418A1 (de) 2021-09-30 2023-03-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Überwachung von Bearbeitungsprozessen in einer Bearbeitungsmaschine sowie Bearbeitungsmaschinen
CN114273936A (zh) * 2021-11-22 2022-04-05 北京航空航天大学 一种具有装夹力测量功能的夹具及其使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61297044A (ja) * 1985-06-26 1986-12-27 Toyoda Mach Works Ltd 主軸工具アンクランプ装置
JPH10291105A (ja) * 1997-04-18 1998-11-04 Toyota Motor Corp 工具クランプ力測定装置
WO2006004340A1 (en) * 2004-06-30 2006-01-12 Sta Inc. Position sensor of draw-bar unit
JP2008246610A (ja) * 2007-03-29 2008-10-16 Mitsubishi Heavy Ind Ltd 工作機械の主軸装置
JP2010017830A (ja) * 2008-07-14 2010-01-28 Yamaha Motor Co Ltd 工作機械におけるクランプばね劣化検出装置
JP2015016525A (ja) * 2013-07-10 2015-01-29 Smc株式会社 工作機械用チャック装置及び工作機械のチャック方法
JP2016074050A (ja) * 2014-10-03 2016-05-12 株式会社ジェイテクト 工作機械の主軸装置
WO2016139726A1 (ja) * 2015-03-02 2016-09-09 株式会社牧野フライス製作所 工具装着評価方法および工作機械
JP2018001323A (ja) * 2016-06-30 2018-01-11 株式会社ニイガタマシンテクノ 工作機械の工具アンクランプ装置と工具アンクランプ方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119530A (ja) * 1984-07-06 1986-01-28 Toyoda Mach Works Ltd 主軸工具のクランプ・アンクランプ装置
JPH02311206A (ja) * 1989-05-26 1990-12-26 Brother Ind Ltd スピンドル装置
US5741981A (en) * 1996-11-22 1998-04-21 Industrial Technology Research Institute Device and method of measuring the draw-in force for stationary and rotating spindle
US7516656B2 (en) * 2003-03-10 2009-04-14 Shikoku Research Institute Incorporated Method and apparatus for diagnosing motor-operated valve
KR100658406B1 (ko) * 2003-03-31 2006-12-15 닛본 세이고 가부시끼가이샤 주축 장치 및 주축 장치를 구비한 공작 기계
DE102007007389B3 (de) * 2007-02-12 2008-07-03 Ott-Jakob Spanntechnik Gmbh Spannvorrichtung
DE102016108407A1 (de) * 2016-05-06 2017-11-09 Ott-Jakob Spanntechnik Gmbh Löseeinrichtung für einen Werkzeug- oder Werkstückspanner
EP3444067A1 (de) * 2017-08-18 2019-02-20 HILTI Aktiengesellschaft Elektrisch isoliertes rastelement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61297044A (ja) * 1985-06-26 1986-12-27 Toyoda Mach Works Ltd 主軸工具アンクランプ装置
JPH10291105A (ja) * 1997-04-18 1998-11-04 Toyota Motor Corp 工具クランプ力測定装置
WO2006004340A1 (en) * 2004-06-30 2006-01-12 Sta Inc. Position sensor of draw-bar unit
JP2008246610A (ja) * 2007-03-29 2008-10-16 Mitsubishi Heavy Ind Ltd 工作機械の主軸装置
JP2010017830A (ja) * 2008-07-14 2010-01-28 Yamaha Motor Co Ltd 工作機械におけるクランプばね劣化検出装置
JP2015016525A (ja) * 2013-07-10 2015-01-29 Smc株式会社 工作機械用チャック装置及び工作機械のチャック方法
JP2016074050A (ja) * 2014-10-03 2016-05-12 株式会社ジェイテクト 工作機械の主軸装置
WO2016139726A1 (ja) * 2015-03-02 2016-09-09 株式会社牧野フライス製作所 工具装着評価方法および工作機械
JP2018001323A (ja) * 2016-06-30 2018-01-11 株式会社ニイガタマシンテクノ 工作機械の工具アンクランプ装置と工具アンクランプ方法

Also Published As

Publication number Publication date
US11667002B2 (en) 2023-06-06
DE102019123838A1 (de) 2021-03-11
EP3789833A1 (de) 2021-03-10
JP7325114B2 (ja) 2023-08-14
ES2970424T3 (es) 2024-05-28
US20210069845A1 (en) 2021-03-11
EP3789833B1 (de) 2023-12-06

Similar Documents

Publication Publication Date Title
JP2021041526A (ja) 工具クランプデバイスをモニタリングする方法
KR101099968B1 (ko) 공작 기계의 주축 장치
US7503196B2 (en) Rivet monitoring system
JPH08294740A (ja) ブラインドリベット取付け確認装置及びその方法
US20160282249A1 (en) Method for calculating an indenter area function and quantifying a deviation from the ideal shape of an indenter
WO2018007503A1 (en) Methods for surface evaluation
CN109506563B (zh) 回转支承径向间隙和齿面跳动检测装置及方法
CN107917846B (zh) 土壤剪切特性精量测定装置及其测定方法
JP6330789B2 (ja) 位置測定装置
JP2008058152A (ja) 潤滑剤及び粘稠性物質の劣化診断装置及びその劣化診断方法
CN113523765A (zh) 一种用于弹簧操动机构的弹簧压装装置及弹簧压装方法
US20230211767A1 (en) Aircraft braking indicators
JP6850687B2 (ja) インジケータ検査機とその検査方法及び検査プログラム
US20200386651A1 (en) Automatic machine health assessment system for assessing health of a machining tool
CN106290027B (zh) 双卡套接头弯曲疲劳试验机
CN113365806B (zh) 用于监控压接装置的压紧元件的状态的方法和设备
US20150336302A1 (en) Powder press
JP7366386B2 (ja) ワーク挙動検出機能を備えたクランプシステム
JP5519102B2 (ja) 潤滑グリースの油分離性を求める試験方法及びこれを実施する試験装置
CN109404364A (zh) 一种伺服阀检测装置及检测方法
CN216746782U (zh) 一种高速轴承在高低温下工作耐久性的测试设备
CN113008679B (zh) 一种基于持久试验的蠕变速率测量方法
CN220489903U (zh) 一种工件开孔偏差检测装置
CN216717189U (zh) 液压螺栓拉伸量测量装置
US4730483A (en) Means for determining maximum ironing reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230725

R150 Certificate of patent or registration of utility model

Ref document number: 7325114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150