JP2021018753A - 異常検知装置、異常検知方法、および異常検知プログラム - Google Patents

異常検知装置、異常検知方法、および異常検知プログラム Download PDF

Info

Publication number
JP2021018753A
JP2021018753A JP2019135695A JP2019135695A JP2021018753A JP 2021018753 A JP2021018753 A JP 2021018753A JP 2019135695 A JP2019135695 A JP 2019135695A JP 2019135695 A JP2019135695 A JP 2019135695A JP 2021018753 A JP2021018753 A JP 2021018753A
Authority
JP
Japan
Prior art keywords
abnormality detection
abnormality
target device
index
index value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135695A
Other languages
English (en)
Other versions
JP7367366B2 (ja
Inventor
一浩 武多
Kazuhiro Takeda
一浩 武多
将太 坂下
Shota Sakashita
将太 坂下
橋本 直哉
Naoya Hashimoto
直哉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2019135695A priority Critical patent/JP7367366B2/ja
Priority to EP20844882.9A priority patent/EP4005785A4/en
Priority to US17/621,685 priority patent/US20220357732A1/en
Priority to CN202080041120.XA priority patent/CN113924207B/zh
Priority to PCT/JP2020/008498 priority patent/WO2021014670A1/ja
Publication of JP2021018753A publication Critical patent/JP2021018753A/ja
Application granted granted Critical
Publication of JP7367366B2 publication Critical patent/JP7367366B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/26Programme control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/28Arrangements for preventing distortion of, or damage to, presses or parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34465Safety, control of correct operation, abnormal states

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Mechanical Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

【課題】異常判定を適切に行うことができる異常検知装置を提供する。【解決手段】対象装置の異常を検知する異常検知装置であって、前記対象装置の動作における第1指標に関する第1指標値と、第2指標に関する第2指標値と、を取得する取得部と、前記第1指標と、前記第2指標とを軸とする2次元平面における、前記第1指標値、及び前記第2指標値により示される点の、予め設定された基準曲線からの距離に基づいて、前記対象装置の異常を検知する異常検知部と、を備えた異常検知装置。【選択図】図1

Description

本発明は、対象装置の異常を検知する異常検知装置、異常検知方法、および異常検知プログラムに関する。
従来、プレスシステムにおいて、ワークをプレスする際のプレス荷重の荷重波形に基づいて、プレス異常を検知する技術が知られている(例えば、特許文献1参照)。
また、サーボモータの速度に依存した確立密度関数を用いて、モータを制御する技術が知られている(例えば、特許文献2参照)。
特許文献1、または特許文献2に記載の技術は、ワークを加工する加工動作による装置の実測値が、標準偏差内であるか否かで、異常が発生しているか否かを判定している。
特開2016−209885号公報 特開2006−158031号公報
ところで、サーボモータを動力源とする対象装置において、加工動作途中のプレス荷重、またはモータ速度の予測曲線は、加工動作途中で急峻となる部分がある場合がある。上述の従来技術のように、加工動作による装置の実測値が、標準偏差内であるか否かで、異常が発生しているか否かを判定する場合、予測曲線が急峻な時では、異常が発生していないのにも関わらず、異常であると判定されてしまう場合がある。
本発明の一態様は、上述した事情に鑑みてなされたものであり、異常判定を適切に行うことができる技術を提供することを目的とする。
前記の課題を解決するために、本発明の一態様に係る異常検知装置は、対象装置の異常を検知する異常検知装置であって、前記対象装置の動作における第1指標に関する第1指標値と、第2指標に関する第2指標値と、を取得する取得部と、前記第1指標と、前記第2指標とを軸とする2次元平面おける、前記第1指標値、及び前記第2指標値により示される点の、予め設定された基準曲線からの距離に基づいて、前記対象装置の異常を検知する異常検知部と、を備える。
また、前記の課題を解決するために、本発明の一態様に係る異常検知方法は、対象装置の異常を検知する異常検知装置において実行される異常検知方法であって、対象装置の動作における第1指標に関する第1指標値と、第2指標に関する第2指標値と、を取得する指標値取得ステップと、前記第1指標と、前記第2指標とを軸とする2次元平面おける、前記第1指標値、及び前記第2指標値により示される点の、予め設定された基準曲線からの距離に基づいて、前記対象装置の異常を検知する異常検知ステップと、を含む。
前記の構成によれば、対象装置の動作過程における異常判定を適切に行うことができる。
また、本発明の一態様に係る異常検知装置は、前記第1指標値は、前記対象装置の動作の段階に係る値であり、前記第2指標値は、前記対象装置の動作の負荷に係る値である。
前記の構成によれば、対象装置の動作の各段階において適切に異常判定を行うことができる。
また、本発明の一態様に係る異常検知装置は、前記2次元平面における前記第1指標値のスケールと、前記2次元平面における前記第2指標値のスケールとを、それぞれ個別に規格化するスケール規格化部を備える。
前記の構成によれば、各指標値を適切に規格化して、異常判定を行うため、異常判定を適切に行うことができる。
また、本発明の一態様に係る異常検知装置は、前記異常検知部は、前記異常検知部は、前記第2指標値が、前記基準曲線に対して負荷が大きい側であるか、負荷が小さい側であるかに応じて、前記距離に付す符号の正負を切り替え、正負が付された前記距離に基づいて前記対象装置の異常を検知する。
前記の構成によれば、指標値が基準曲線よりある程度小さくても異常ではないが、指標値が基準曲線より高いと異常の可能性が高い場合等であっても、適切に異常判定を行うことができる。
また、本発明の一態様に係る異常検知装置は、前記異常検知部は、前記距離に付された正負に応じて、前記対象装置の異常の有無に関する判断に用いる閾値であって、前記基準曲線からの距離の閾値を変更する。
前記の構成によれば、距離の正負に応じて、異常の有無に関する判断が異なる場合でも、適切に異常判定を行うことができる。
また、本発明の一態様に係る異常検知装置は、前記異常検知部は、加工動作中の前記距離の標準偏差に基づいて、前記対象装置の異常を検知する。
また、本発明の一態様に係る異常検知装置は、前記異常検知部は、加工動作中の前記距離の度数分布における特徴量に基づいて、前記対象装置の異常を検知する。
また、本発明の一態様に係る異常検知装置は、前記度数分布における特徴量は、加工動作中の前記距離をビンとしたヒストグラムにおける尖度である。
また、本発明の一態様に係る異常検知装置は、前記度数分布における特徴量は、加工動作中の前記距離をビンとしたヒストグラムにおける歪度である。
また、本発明の一態様に係る異常検知プログラムは、前記異常検知装置としてコンピュータを機能させるための異常検知プログラムであって、前記取得部、および前記異常検知部としてコンピュータを機能させる。
本発明の一態様によれば、対象装置の異常判定を適切に行うことができる。
本実施形態に係る異常検知装置が用いられる現場を模式的に示した図である。 異常検知装置の要部構成を示すブロック図である。 第1指標値、及び第2指標値の実測値を示すグラフである。 基準曲線を示すグラフである。 回帰予測モデルf(x)による基準曲線を示すグラフである。 逆回帰予測モデルg(y)による基準曲線を示すグラフである。 Δhの時間変化を示す図である。 異常検知装置による基準曲線生成処理の流れを示すフローチャートである。 異常検知装置による異常検知処理の流れを示すフローチャートである。 対象装置における一連の動作に係る種々のグラフである。 対象装置における一連の動作に係る種々のグラフである。 異常が生じている対象装置における、距離Δhのヒストグラムの例を示す。 異常が生じている対象装置における、距離Δhのヒストグラムの別の例を示す。 プレス機器ではない対象装置の一連の動作に係る第1指標値と、第2指標値と、基準曲線とを示す図である。
以下、本発明の一側面に係る実施形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。
§1 適用例
図1を用いて、本発明が適用される場面の一例について説明する。図1は、本実施形態に係る異常検知装置100が用いられる現場を模式的に示した図である。
図1に示すように、異常検知装置100は、例えば製造現場において用いられ、対象装置10の異常を検知する装置である。異常検知装置100は、例えば、PLC(プログラマブルコントローラ)によって実現される。PLCによって異常検知装置100を実現する構成では、異常検知装置100は、対象装置10の動作を制御する構成であってもよい。異常検知装置100は、フィールドネットワーク、またはローカルネットワーク等のネットワークを介して1又は複数の対象装置10と接続されている。
対象装置10は、例えば、サーボモータを動力源として駆動するプレス機器である。対象装置10の一例であるプレス機器は、サーボモータ20を回転運動し、サーボモータ20の回転運動をアクチュエータ15により直線運動に変換して、圧入ワーク5bを被圧入ワーク5a内にプレスツール12を介して圧入する。
プレス機器におけるプレスツール12は、圧入の回数を重ねると、圧入ワーク5bとの接触面が摩耗する。プレスツール12の摩耗が進むと、金属粉が発生し、圧入時に、当該金属粉が圧入ワーク5bと被圧入ワーク5aとの間に挟み込まれると、異物噛み込みの異常、およびプレスツールが抜けなくなる異常等が発生する。
異常検知装置100は、対象装置10の動作に係るデータを収集し、学習し、監視する機能を有している。異常検知装置100は、対象装置10から、例えば、サーボモータのトルク、速度、および位置等の情報、およびロードセル16で測定されるプレスツール12に掛かる負荷の情報、および変位センサ11によって検知されたセンサ値(位置)を取得する。
異常検知装置100は、対象装置10の動作に係るデータに基づく、第1指標に関する第1指標値、例えば対象装置10の動作の段階に係る値と、第2指標に関する第2指標値、例えば対象装置10の動作の負荷に係る値と、を取得して、これらの2つの指標値を参照して、対象装置10に異常が生じているか否かを判定する。
異常検知装置100は、特に、第1指標と、第2指標とを軸とする2次元平面おける、第1指標値、及び第2指標値により示される点の、予め設定された基準曲線からの距離に基づいて対象装置10に異常が生じているか否かを判定する。
これにより、異常検知装置100は、対象装置10の加工動作開始から加工動作終了までを監視し、異常予兆を早く検知することができる。また、対象装置10の動作過程でセンサ値が急峻に変化する場面においても、異常が生じているか否かを適切に判定することができる。また、対象装置10の動作の段階に係る値と、対象装置10の動作の負荷に係る値とを、用いて異常判定を行うことで、対象装置10の動作の各段階において適切に異常判定を行うことができる。
§2 構成例
〔実施形態1〕
以下、本発明の一実施形態について、詳細に説明する。
(異常検知装置100の構成について)
図2は、異常検知装置100の要部構成を示すブロック図である。図2に示すように、異常検知装置100は、通信部101、制御部110、および記憶部120を備えている。
通信部101は、対象装置10との間でネットワークを介して通信を行い、データの送受信を実行する。通信部101は、例えば、通信IC(Integrated Circuits)などの集積回路を用いて実現される。通信部101は、有線通信、または無線通信により対象装置10との間で通信を行う。
制御部110は、異常検知装置100の各部を統括的に制御する機能を備えている演算装置である。制御部110は、例えば1つ以上のプロセッサ(例えばCPUなど)が、1つ以上のメモリ(例えばRAMやROMなど)に記憶されているプログラムを実行することで異常検知装置100の各部を制御してもよい。
記憶部120は、制御部110によって用いられる各種データ、および、制御部110によって実行される各種ソフトウェアを記憶している。また、記憶部120は、制御部110によって、対象装置10から取得し、学習された、対象装置10の動作に係るデータを記憶している。
(制御部110の構成について)
制御部110は、取得部111、基準生成部112、スケール規格化部113、および異常検知部114を含んでいる。
取得部111は、通信部101を介して、対象装置10の動作における第1指標に関する第1指標値と、第2指標に関する第2指標値と、を取得する。対象装置10の動作における第1指標の値と、第2指標の値とは、対象装置10の、サーボモータ20、変位センサ11、またはロードセル16が示す、位置、トルク、プレスツール12に加わる負荷(圧入ワーク5bに加わる負荷)等に係る値である。サーボモータ20のトルクからプレスツール12に加わる負荷を推定することもできる。
基準生成部112は、取得部111によって対象装置10から取得された、第1指標値と、第2指標値とを収集して、収集した第1指標値と、第2指標値とに対する機械学習の一手法である回帰予測モデルを生成する。基準生成部112は、機械学習の結果から、第1指標と、第2指標とを軸とする2次元平面における基準曲線を設定する。基準曲線は、対象装置10が正常な状態における、第1指標値と第2指標値との関係を表す。異常検知装置100は、外部から基準曲線を示す情報を予め取得してもよい。
第1指標に関する第1指標値は、対象装置10の動作の段階に係る値であり、対象装置10がサーボプレス機器である場合には、第1指標値は、例えば、1連のプレス動作における進行度合いを示す値(1連のプレス動作の開始から、終了まで何割工程が進行しているかを示す値、例えばサーボモータ20の位置またはプレスツール12の位置)、または1連のプレス動作の開始からの経過時間である。第2指標に関する第2指標値は、対象装置10の負荷に係る値である。
なお、第1指標値、および第2指標値は、1連のプレス動作における進行度合いを示す値と、対象装置10の負荷(ロードセルの負荷)に係る値と、に限られるものではなく、サーボモータの位置、トルク、速度、対象装置10に関する測定値等の値を適宜に選択して用いることができる。
スケール規格化部113は、第1指標と、第2指標とを軸とする2次元平面における、第1指標のスケールと、第2指標のスケールと、をそれぞれ個別に規格化する。スケール規格化部113は、基準生成部112による第1指標値と、第2指標値との機械学習の結果に基づいて、第1指標のスケールと、第2指標のスケールとを規格化する。当該規格化されたスケールによる2次元平面に対して、基準曲線が設定されてもよい。このように、各指標値を適切に規格化して、異常判定を行うことで、異常判定を適切に行うことができる。
図3は、サーボプレス機器である対象装置10から収集された、複数回分のプレス動作における第1指標値、及び第2指標値を示すグラフであり、第1指標(位置)を横軸とし、第2指標(負荷)を縦軸としている。
図4は、図3に示した収集データを用いて、スケール規格化部113によって規格化されたスケールを用いて、基準生成部112によって設定された基準曲線を示したグラフである。図4に示すよう、基準生成部112による機械学習によって設定された基準曲線は、例えば、折れ線グラフである。基準曲線は、スケール規格化部113によって規格化された第1指標に関する第1指標値である対象装置10の動作の段階に係る値(例えば位置)を横軸に、スケール規格化部113によって規格化された第2指標に関する第2指標値である負荷に係る値を縦軸に示している。なお、基準曲線は、例えば、サーボモータの位置と、プレスツールに掛かる負荷との相関図、または、サーボモータの速度と、サーボモータのトルクとの相関図等であってもよい。
基準曲線は、例えば、以下の(式1)によって示される回帰予測モデルf(x)である折れ線グラフである。yidealは基準曲線上の第2指標値を示す。xnormは規格化された第1指標値を示す。
異常検知部114は、第1指標と、第2指標とを軸とする2次元平面における、第1指標値、及び第2指標値により示される点の、基準曲線からの距離に基づいて、対象装置10の異常を検知する。
図5は、第1指標に関する第1指標値と、第2指標に関する第2指標値とに係るパラメータを、回帰予測モデルf(x)による基準曲線上に示した図である。横軸は動作の段階を示す第1指標(x)、縦軸は第2指標(y)である。
スケール規格化部113は、まず、取得部111により取得された、第1指標値の実測値xactと、第2指標値の実測値yactとを、下記の(式2)、(式3)を用いて正規化した、xnormと、ynormとを求める。
ここで、xmin,yminは、それぞれ記憶部120に記憶されている第1指標値、および第2指標値の実測値xact,yactの最小値、または、基準曲線における第1指標値、および第2指標値の最小値の何れであってもよい。また、xmax,ymaxは、それぞれ記憶部120に記憶されている第1指標値、および第2指標値の実測値xact,yactの最大値、または、基準曲線における第1指標値、および第2指標値の最大値の何れであってもよい。規格化は、第1指標のスケールと第2指標のスケールとを一致させるために行われる。
続いて、異常検知部114は、正規化した第1指標値xnormに対するyidealを(式1)を用いて求める。異常検知部114は、正規化した第2指標値ynormに対するxidealを下記の(式4)を用いて求める。xidealは基準曲線上の第1指標値を示す。g(y)はf(x)の逆関数である。yidealは、対象装置10が正常である場合における第1指標値がxnormであるときの第2指標値(第2指標の理想値)を示す。xidealは、対象装置10が正常である場合における第2指標値がynormであるときの第1指標値(第1指標の理想値)を示す。
次に、異常検知部114は、正規化した第1指標値xnorm、第2指標値ynormの、それぞれの理想値xideal,yidealからの偏差であるΔxと、Δyとを以下の(式5)、(式6)を用いて求める。
異常検知部114は、第1指標値、第2指標値の、理想値xideal,yidealからの偏差Δx,Δyを用いて、以下の(式7)により、第1指標値、第2指標値により示される点の、基準曲線からの距離Δhを算出する。
なお、例えば、Δyが所定の値ε以下の場合、または|Δy|が所定の値ε以下の場合、Δh=0として基準曲線からの誤差を無視してもよい。
このように、異常検知部114は、第1指標と、第2指標とを軸とする2次元平面おける、第1指標値、及び第2指標値により示される点の、予め設定された基準曲線からの距離Δhに基づいて、対象装置10の異常を検知する。これにより、基準曲線において急峻に傾きが変わるような工程位置であっても、異常検知装置100は、適切に異常検知を行うことができ、異常が生じていないにも関わらず異常であると判定されるのを抑制することができる。
図6は、逆回帰予測モデルg(y)による基準曲線を示すグラフである。縦軸は動作の段階を示す第1指標(x)、横軸は第2指標(y)である。図6に示す様に、基準曲線は、回帰予測モデルf(x)によって示される構成に限らず、逆回帰予測モデルg(y)によって示される構成であってもよい。基準曲線が逆回帰予測モデルg(y)で示される場合であっても、異常検知部114は、(式2)〜(式8)を用いた上述の方法によって、第1指標値、第2指標値により示される点の、基準曲線からの距離Δhを算出することができる。
図7は、距離Δhの時間変化を示す図である。横軸は時間(第1指標)、縦軸は距離Δhである。図7に示すように、異常検知部114は、第2指標値(負荷)が基準曲線に対して大きい側である場合には、距離Δhに正の符号を付す。また、異常検知部114は、第2指標値が基準曲線に対して小さい側である場合には、距離Δhに負の符号を付す。このように、異常検知部114は、第2指標値が、基準曲線に対して大きい側であるか、小さい側であるかに応じて、距離Δhに付す符号の正負を切り替える。異常検知部114は、正負の符号が付された距離Δhが予め設定された正常範囲(正常範囲)内であるか否かに基づいて、対象装置10に異常が生じているか否かを判定する。なお、異常検知部114は、正負を区別せずに距離Δhの絶対値に基づいて異常の判定を行ってもよい。
ところで、対象装置10の種類によっては、例えば、第2指標値(負荷)が、基準曲線に対して大きい側である場合には、第2指標値が、基準曲線に対して小さい側である場合よりも、異常の可能性が高いことが考えられ得る。このため、異常検知部114は、距離Δhに付された正負の符号に応じて、対象装置10に異常が生じているか否かを判断するために用いる距離Δhの閾値を異ならせてもよい。すなわち、Δhに関する正常範囲の境界を示す正側の閾値と負側の閾値の絶対値とは異なっていてもよい。
このように、異常検知部114は、第1指標値、第2指標値により示される点の、基準曲線からの距離Δhの絶対値ではなく、第2指標値が基準曲線より負荷が大きい側であるか、負荷が小さい側であるかに応じて、正負の符号付した距離Δhに応じて、適切な閾値を選択して、対象装置10に異常が生じているか否かを判断することができる。よって、異常検知部114の構成により、対象装置10に異常が生じていないにも関わらず、異常が生じていると誤判断されるのを抑制することができ、異常判定を適切に行うことができる。
(異常検知装置の処理の流れについて)
図8は、異常検知装置100による基準曲線生成処理の流れを示すフローチャートである。
基準曲線生成処理において、異常検知装置100の制御部110は、まず、取得部111の機能により、第1指標に関する第1指標値と、第2指標に関する第2指標値と、を通信部101を介して、正常状態の対象装置10から取得する(ステップS1)。
制御部110は、取得部111の機能により取得した、第1指標に関する第1指標値と、第2指標に関する第2指標値と、を記憶部120に記憶する(ステップS2)。
制御部110は、対象装置10による圧入工程、および加締め工程等の一連の加工動作が終了したか否かを判定する(ステップS3)。制御部110は、対象装置10による一連の加工動作が終了したと判定すると(ステップS3でYES)、ステップS4に進む。制御部110は、対象装置10による一連の加工動作が終了していないと判定すると(ステップS3でNO)、ステップS1に戻り、第1指標に関する第1指標値と、第2指標に関する第2指標値との収集を継続する。
制御部110は、基準生成部112の機能により、記憶部120に記憶された、対象装置10による一連の加工動作に係る第1指標に関する第1指標値と、第2指標に関する第2指標値とについて、機械学習を行い、回帰モデルを生成する(ステップS4)。
制御部110は、基準生成部112による機械学習の結果を参照して、スケール規格化部113の機能により、第1指標と、第2指標とのスケールを規格化する。基準生成部112は、スケール規格化部113によって規格化されたスケールと、機械学習の結果とに基づいて、対象装置10による一連(動作開始から動作完了までの1ストローク)の加工動作に関する基準曲線(規格化された基準曲線)を設定する(ステップS5)。
制御部110は、設定された基準曲線を記憶部120に記憶させる。また、制御部110は、Δhに関する正常範囲を予め設定し、記憶部120に記憶させる。正常範囲は、ユーザによって入力されてもよい。
異常検知装置100は、ステップS5にて設定された基準曲線を参照して、異常検知部114の機能により、対象装置10による加工動作を監視し、対象装置10による加工動作に異常が生じた際に、それを検知する。
図9は、異常検知装置100による異常検知処理の流れを示すフローチャートである。
異常検知装置100は、対象装置10の加工動作中において、一連の動作の開始タイミングで、異常検知フラグ(Flag)を初期化(Flag=0)する(ステップS11)。
対象装置10の動作中、異常検知装置100の制御部110は、取得部111の機能により、通信部101を介して、対象装置10から、第1指標に関する第1指標値と、第2指標に関する第2指標値と、を取得する(ステップS12)。
制御部110は、スケール規格化部113の機能により、取得部111によって取得した第1指標値と、第2指標値とのそれぞれを、上述した(式2)、(式3)を用いて正規化する(ステップS13)。ここで、制御部110のスケール規格化部113は、規格化前の基準曲線における最大値、および最小値を用いて、第1指標値と、第2指標値とのそれぞれを、正規化する。
制御部110は、異常検知部114の機能により、上述した(式5)、(式6)を用いて、正規化した第1指標の指標値xnormの理想値xidealからの偏差Δxと、正規化した第2指標の指標値ynormの理想値yidealからの偏差Δyとを算出する(ステップS14)。
異常検知部114は、第1指標値の偏差Δxと、第2指標値の偏差Δyと、を用いて、上記の(式7)により、2次元平面における第1指標値、および第2指標値により示される点の、基準曲線からの距離Δhを算出する(ステップS15)。
制御部110は、距離Δhを記憶部120に記憶する。
続いて、制御部110は、異常検知部114の機能により、距離Δhが正負に応じた所定の正常範囲以内であるか否かを判定する(ステップS16)。制御部110は、異常検知部114によって距離Δhが正常範囲以内であると判定されると(ステップS16でYES)、ステップS18に進む。制御部110は、異常検知部114によって距離Δhが正常範囲外であると判定されると(ステップS16でNO)、ステップS17に進む。
制御部110は、距離Δhが正常範囲外である場合には、対象装置10に異常が生じていることを検知し、異常検知フラグ(Flag)をカウントアップ(Flag=Flag+1)し、ステップS18に進む(ステップS17)。Flagは、距離Δhが正常範囲外となった積算期間(積算区間)を表す。
制御部110は、ステップS16において、距離Δhが正常範囲以内であると判定した場合には、対象装置10による一連の動作全体が終了したか否かを判定する(ステップS18)。制御部110は、例えば、第1指標の指標値、および第2指標の指標値と、基準曲線と、を参照して、対象装置10による一連の動作全体が終了したか否かを判定してもよい。また、制御部110は、例えば、対象装置10から取得部111を介して、一連の動作全体が終了したか否かの情報を取得してもよい。
制御部110は、対象装置10による一連の動作全体が終了したと判定すると(ステップS18でYES)、ステップS19に進む。制御部110は、対象装置10による一連の動作全体が終了していないと判定すると(ステップS18でNO)、ステップS12に戻り、処理を継続する。これにより、制御部110は、対象装置10の一連の動作中、例えば、所定時間間隔毎に、通信部101を介して、対象装置10から、第1指標に関する第1指標値と、第2指標に関する第2指標値と、の取得を継続して行う。
制御部110は、対象装置10による一連の動作全体が終了すると、異常検知部114の機能により、一連の動作全体におけるΔhの特徴量を算出する(ステップS19)。異常検知部114は、対象装置10による一連の動作中に算出した距離Δhの平均、分散または標準偏差を、特徴量として算出してもよい。また、異常検知部114は、対象装置10による一連の加工動作中に算出した距離Δhの度数分布における特徴量を算出してもよい。ここで、対象装置10の加工動作中の距離Δhの度数分布は、加工動作中の距離Δhをビンとしたヒストグラムであってもよく、異常検知部114は、加工動作中の距離Δhの度数分布における特徴量として、ヒストグラムにおける尖度、または歪度を算出してもよい。
制御部110は、異常検知部114の機能により、対象装置10による一連の動作中の距離Δhの特徴量に基づいて、対象装置10の一連の動作全体において異常が生じていなかったどうかを判定する(ステップS20)。
異常検知部114は、例えば、距離Δhをビンとしたヒストグラムにおける尖度が所定の閾値よりも小さければ、対象装置10の一連の動作全体において異常が生じていると判定してもよい。また、異常検知部114は、距離Δhをビンとしたヒストグラムの歪み度が所定の閾値よりも大きければ、対象装置10の一連の動作全体において異常が生じていると判定してもよい。また、異常検知部114は、距離Δhの平均、分散または標準偏差が、所定の閾値よりも大きければ、対象装置10の一連の動作全体において異常が生じていると判定してもよい。
また、異常検知部114は、距離Δhの特徴量と異常検知フラグのカウント量とに基づいて、対象装置10の一連の動作全体において異常が生じていなかったどうかを判定してもよい。異常検知部114は、距離Δhの特徴量からは対象装置10の異常が疑われる場合であっても、異常検知フラグのカウント量(Flag)が初期値(0)のままであれば、対象装置10の一連の動作には異常が生じていないと判定してもよい。また、異常検知部114は、距離Δhの特徴量からは対象装置10に異常が生じているとは判定されない場合であっても、異常検知フラグのカウント量(Flag)が所定値より大きければ、対象装置10の一連の動作に異常が生じていると判定してもよい。
図10〜図13は、対象装置10において一連の動作を複数回行った際に収集した第1指標に関する第1指標値と、第2指標に関する第2指標値とに応じた、グラフを示す図である。
図10のグラフ61a、62a、63aは、第1指標値(横軸)と、第2指標値(縦軸)とによって対象装置10の動作の過程を示したモーションプロファイルである。図10のグラフ61b、62b、63bのそれぞれは、グラフ61a、62a、63aの第1指標値と、第2指標値とをそれぞれ正規化したグラフである。図10、および図11のグラフ61c、62c、63cのそれぞれは、グラフ61b、62b、63bにそれぞれ示した正規化した第1指標値と、第2指標値とが示す点の、基準曲線からの距離Δhの分布を示すグラフ(横軸は第1指標)である。図11のグラフ61d、62d、63dのそれぞれは、グラフ61c、62c、63cにそれぞれ示した距離Δhをビンとしたヒストグラム(縦軸は距離Δh、横軸は度数)である。
図10、図11のグラフ61a、61b、61c、61dに示した例は、対象装置10の動作に対して、距離Δhによる異常の判定を行った結果も、距離Δhの度数分布における特徴量による異常の判定を行った結果も、異常ではないと判定される場合を示している。グラフ61c、61dに示すように、距離Δhの度数分布における標準偏差が所定の範囲内である場合、および、距離Δhをビンとしたヒストグラムの尖度、および歪度が所定の範囲内である場合には、異常検知部114は、対象装置10による動作における異常を検知しない(異常はないと判定する)。
図10、図11のグラフ62a、62b、62c、62dに示した例は、対象装置10の動作の過程において、距離Δhが、負側の閾値の範囲外となるときがあった場合を示している。グラフ62c、62dに示すように、距離Δhが、負側の閾値の範囲外となるときがある場合であっても、距離Δhの度数分布における標準偏差は所定の範囲内となることがある。このような場合であっても、異常検知部114は、距離Δhをビンとしたヒストグラムの尖度、または歪度が所定の範囲内であるか否かに基づいて、対象装置10による動作における異常を検知することができる。
なお、異常検知部114は、距離Δhが、負側の閾値の範囲外となったことを検知した時点で、対象装置10の異常を検知する構成であってもよいし、一連の動作全体における距離Δhの度数分布における標準偏差、および距離Δhをビンとしたヒストグラムの尖度、または歪度に基づいて、対象装置10の異常を検知する構成であってもよい。
図10、図11のグラフ63a、63b、63c、63dに示した例は、対象装置10の動作の過程において、距離Δhが、正側および負側の閾値の範囲外となるときがあった場合を示している。グラフ63c、63dに示すように、距離Δhが、正側および負側の閾値の範囲外となった場合であっても、距離Δhの度数分布における標準偏差が所定の範内となることがある。このような場合であっても、異常検知部114は、距離Δhをビンとしたヒストグラムの尖度、または歪度が所定の範囲内であるか否かに基づいて、対象装置10による動作における異常を検知することができる。
図12は、異常が生じている対象装置10における、距離Δhのヒストグラム(縦軸は距離Δh、横軸は度数)の例を示す。図12に示す例では、距離Δhの度数分布における平均が0を大きく下回っている(平均が負側の閾値未満である)。異常検知部114は、距離Δhの度数分布における平均等の統計値が正常範囲であるか否かに応じて、対象装置10の異常を検知してもよい。
図13は、異常が生じている対象装置10における、距離Δhのヒストグラム(縦軸は距離Δh、横軸は度数)の別の例を示す。図13に示す例では、距離Δhの度数分布における標準偏差が閾値より大きい。異常検知部114は、距離Δhの度数分布における標準偏差等の統計値が正常範囲であるか否かに応じて、対象装置10の異常を検知してもよい。
(対象装置10の他の例)
上記の説明では、対象装置10がサーボモータを動力源として駆動するプレス機器である場合を例に挙げた。しかしながら、対象装置10はプレス機器に限らず、サーボモータを動力源として駆動するいかなる装置であっても、異常検知装置100により適切に異常を検知することができる。また、異常検知装置100による異常検知処理は、サーボモータに限らず、ステッピングモータや、その他の単なるモータを動力源として駆動する装置にも適用可能である。更に、異常検知装置100による異常検知処理は、モータに限らず、油圧、空気圧等の一般的なアクチュエータを動力源として駆動する装置にも適用可能である。
図14は、対象装置10がプレス機器ではない装置である場合の第1指標に関する第1指標値と、第2指標に関する第2指標値と、基準曲線とを示す図である。図14の上のグラフは、横軸を時間として、対象装置10の一連の動作における第1指標に関する第1指標値であるサーボモータの回転速度と、第2指標に関する第2指標値であるサーボモータのトルクとの実測値xact,yactを示す図である。図14の下のグラフは、第1の指標をx軸とし、第2の指標をy軸とした2次元平面に、正規化した第1指標値xnorm、第2指標値ynormと、基準曲線とを示したグラフである。
このように、対象装置10がサーボモータを動力源として駆動するいかなる装置であっても、第1の指標をx軸とし、第2の指標をy軸とした2次元平面上における、正規化した第1指標値xnorm、第2指標値ynormから示される点と、基準曲線との距離Δhに基づいて、異常を検知することができる。
〔ソフトウェアによる実現例〕
異常検知装置100の制御ブロック(特に取得部111、基準生成部112、スケール規格化部113、および異常検知部114)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
後者の場合、異常検知装置100は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、前記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、前記コンピュータにおいて、前記プロセッサが前記プログラムを前記記録媒体から読み取って実行することにより、本発明の目的が達成される。前記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。前記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、前記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明の一態様は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
10 対象装置
20 サーボモータ
100 異常検知装置
110 制御部
111 取得部
112 基準生成部
113 スケール規格化部
114 異常検知部
120 記憶部

Claims (11)

  1. 対象装置の異常を検知する異常検知装置であって、
    前記対象装置の動作における第1指標に関する第1指標値と、第2指標に関する第2指標値と、を取得する取得部と、
    前記第1指標と、前記第2指標とを軸とする2次元平面おける、前記第1指標値、及び前記第2指標値により示される点の、予め設定された基準曲線からの距離に基づいて、前記対象装置の異常を検知する異常検知部と、
    を備えた異常検知装置。
  2. 前記第1指標値は、前記対象装置の動作の段階に係る値であり、
    前記第2指標値は、前記対象装置の動作の負荷に係る値である請求項1に記載の異常検知装置。
  3. 前記2次元平面における前記第1指標値のスケールと、前記2次元平面における前記第2指標値のスケールとを、それぞれ個別に規格化するスケール規格化部を備えた請求項1または2に記載の異常検知装置。
  4. 前記異常検知部は、
    前記第2指標値が、前記基準曲線に対して負荷が大きい側であるか、負荷が小さい側であるかに応じて、前記距離に付す符号の正負を切り替え、正負が付された前記距離に基づいて前記対象装置の異常を検知する請求項2または3に記載の異常検知装置。
  5. 前記異常検知部は、
    前記距離に付された正負に応じて、前記対象装置の異常の有無に関する判断に用いる閾値であって、前記基準曲線からの距離の閾値を変更する請求項4に記載の異常検知装置。
  6. 前記異常検知部は、
    前記対象装置の加工動作中の前記距離の標準偏差に基づいて、前記対象装置の異常を検知する請求項1から5のいずれか1項に記載の異常検知装置。
  7. 前記異常検知部は、
    前記対象装置の加工動作中の前記距離の度数分布における特徴量に基づいて、前記対象装置の異常を検知する請求項1から5のいずれか1項に記載の異常検知装置。
  8. 前記度数分布における特徴量は、前記対象装置の加工動作中の前記距離をビンとしたヒストグラムにおける尖度である請求項7に記載の異常検知装置。
  9. 前記度数分布における特徴量は、前記対象装置の加工動作中の前記距離をビンとしたヒストグラムにおける歪度である請求項7に記載の異常検知装置。
  10. 対象装置の異常を検知する異常検知装置において実行される異常検知方法であって、
    対象装置の動作における第1指標に関する第1指標値と、第2指標に関する第2指標値と、を取得する指標値取得ステップと、
    前記第1指標と、前記第2指標とを軸とする2次元平面おける、前記第1指標値、及び前記第2指標値により示される点の、予め設定された基準曲線からの距離に基づいて、前記対象装置の異常を検知する異常検知ステップと、を含む異常検知方法。
  11. 請求項1に記載の異常検知装置としてコンピュータを機能させるための異常検知プログラムであって、前記取得部、および前記異常検知部としてコンピュータを機能させるための異常検知プログラム。
JP2019135695A 2019-07-23 2019-07-23 異常検知装置、異常検知方法、および異常検知プログラム Active JP7367366B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019135695A JP7367366B2 (ja) 2019-07-23 2019-07-23 異常検知装置、異常検知方法、および異常検知プログラム
EP20844882.9A EP4005785A4 (en) 2019-07-23 2020-02-28 ANOMALITY DETECTION DEVICE, ANOMALITY DETECTION METHOD AND ANOMALITY DETECTION PROGRAM
US17/621,685 US20220357732A1 (en) 2019-07-23 2020-02-28 Abnormality detecting device, abnormality detecting method, and storage medium
CN202080041120.XA CN113924207B (zh) 2019-07-23 2020-02-28 异常探测装置、异常探测方法以及存储介质
PCT/JP2020/008498 WO2021014670A1 (ja) 2019-07-23 2020-02-28 異常検知装置、異常検知方法、および異常検知プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135695A JP7367366B2 (ja) 2019-07-23 2019-07-23 異常検知装置、異常検知方法、および異常検知プログラム

Publications (2)

Publication Number Publication Date
JP2021018753A true JP2021018753A (ja) 2021-02-15
JP7367366B2 JP7367366B2 (ja) 2023-10-24

Family

ID=74192721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135695A Active JP7367366B2 (ja) 2019-07-23 2019-07-23 異常検知装置、異常検知方法、および異常検知プログラム

Country Status (5)

Country Link
US (1) US20220357732A1 (ja)
EP (1) EP4005785A4 (ja)
JP (1) JP7367366B2 (ja)
CN (1) CN113924207B (ja)
WO (1) WO2021014670A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022151203A (ja) * 2021-03-26 2022-10-07 横河電機株式会社 装置、方法およびプログラム
EP4414913A1 (en) 2023-02-08 2024-08-14 OMRON Corporation Task analysis device, task analysis system, task analysis method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884889B (zh) * 2021-10-29 2024-04-26 章鱼博士智能技术(上海)有限公司 一种电池安全预警的方法、装置、存储介质及电子设备
US12072251B2 (en) * 2022-03-01 2024-08-27 Asmpt Singapore Pte. Ltd. Force measurement device and method for bonding or encapsulation process and apparatus incorporating the device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158031A (ja) * 2004-11-26 2006-06-15 Yaskawa Electric Corp モータ制御装置およびその制御方法
JP2016209885A (ja) * 2015-04-30 2016-12-15 コマツ産機株式会社 プレスシステムおよびプレスシステムの制御方法
JP2019003389A (ja) * 2017-06-15 2019-01-10 株式会社 日立産業制御ソリューションズ 異常診断装置、異常診断方法及び異常診断プログラム
JP2019104039A (ja) * 2017-12-14 2019-06-27 蛇の目ミシン工業株式会社 電動プレス、荷重判定方法およびプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119311A (en) * 1988-07-14 1992-06-02 Coors Brewing Company Monitor and control assembly for use with a can end press
JP3231536B2 (ja) * 1993-02-25 2001-11-26 トヨタ自動車株式会社 プレス機械の異常診断方法
JP3996428B2 (ja) * 2001-12-25 2007-10-24 松下電器産業株式会社 異常検知装置及び異常検知システム
JP4431415B2 (ja) * 2004-02-12 2010-03-17 株式会社リコー 異常診断方法、状態判定装置及び画像形成装置
JP4250552B2 (ja) * 2004-03-03 2009-04-08 株式会社東芝 製造装置管理システム、製造装置管理方法及びプログラム
JP4769983B2 (ja) * 2007-05-17 2011-09-07 独立行政法人産業技術総合研究所 異常検出装置および異常検出方法
BR112013026063B1 (pt) * 2011-04-14 2021-08-31 Koninklijke Philips N.V Dispositivo de medição de estresse para a determinação de um nível de estresse de um usuário, dispositivo trajável usado por um usuário, sistema de medição de estresse, método de medição de estresse para a determinação de um nível de estresse de um usuário, dispositivo de medição de pressão sanguínea e método de medição de pressão sanguínea
JP6326321B2 (ja) * 2014-08-07 2018-05-16 株式会社日立製作所 データ表示システム
JP6492555B2 (ja) 2014-11-07 2019-04-03 株式会社Ihi 異常診断方法、異常診断装置及び異常診断プログラム
ES2732473T3 (es) 2015-02-16 2019-11-22 Siemens Ag Dispositivo y procedimiento de diagnóstico para la supervisión del funcionamiento de un bucle de control
JP6593715B2 (ja) * 2017-10-27 2019-10-23 株式会社安川電機 異常判定システム、モータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158031A (ja) * 2004-11-26 2006-06-15 Yaskawa Electric Corp モータ制御装置およびその制御方法
JP2016209885A (ja) * 2015-04-30 2016-12-15 コマツ産機株式会社 プレスシステムおよびプレスシステムの制御方法
JP2019003389A (ja) * 2017-06-15 2019-01-10 株式会社 日立産業制御ソリューションズ 異常診断装置、異常診断方法及び異常診断プログラム
JP2019104039A (ja) * 2017-12-14 2019-06-27 蛇の目ミシン工業株式会社 電動プレス、荷重判定方法およびプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022151203A (ja) * 2021-03-26 2022-10-07 横河電機株式会社 装置、方法およびプログラム
JP7347468B2 (ja) 2021-03-26 2023-09-20 横河電機株式会社 装置、方法およびプログラム
EP4414913A1 (en) 2023-02-08 2024-08-14 OMRON Corporation Task analysis device, task analysis system, task analysis method, and program
KR20240124197A (ko) 2023-02-08 2024-08-16 오므론 가부시키가이샤 작업 분석 장치, 작업 분석 시스템, 작업 분석 방법 및 프로그램

Also Published As

Publication number Publication date
CN113924207B (zh) 2024-04-05
EP4005785A4 (en) 2023-07-26
EP4005785A1 (en) 2022-06-01
WO2021014670A1 (ja) 2021-01-28
JP7367366B2 (ja) 2023-10-24
CN113924207A (zh) 2022-01-11
US20220357732A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2021014670A1 (ja) 異常検知装置、異常検知方法、および異常検知プログラム
US10525563B2 (en) Abnormality-detecting device and method for tool of machine tool
US11467024B2 (en) Diagnostic device, computer program, and diagnostic system
US20220390271A1 (en) Diagnostic device, computer program, and diagnostic system
Wang et al. Sensor fusion for online tool condition monitoring in milling
US10725465B2 (en) State diagnostic device
JP2008097363A (ja) 異常診断方法及びその装置
US20070282548A1 (en) Method and Apparatus for Assessing Condition of Motor-Driven Mechanical System
Choi et al. Prediction of drill failure using features extraction in time and frequency domains of feed motor current
US10607470B2 (en) Vibrational analysis systems and methods
Tiwari et al. Tool wear prediction in end milling of Ti-6Al-4V through Kalman filter based fusion of texture features and cutting forces
Kannan et al. Multi-sensor data analytics for grinding wheel redress life estimation-an approach towards Industry 4.0
JP2009004442A (ja) 半導体ウェハの研磨方法
CN112711850A (zh) 一种基于大数据的机组在线监测方法
CN114077919A (zh) 用于预测加工异常的系统
JP2007108107A (ja) 設備診断装置
JP7361573B2 (ja) 送り軸装置の異常診断方法及び異常診断装置
JP6915763B1 (ja) 異常診断システム及び異常診断方法
JP6759439B1 (ja) 工作機械および表示装置
JP2021076597A (ja) 過渡速度動作中の振動傾向を決定することによるロータ異常の検出
JP2021149727A (ja) 要因分析装置および要因分析方法
JP7311820B1 (ja) 異常判定方法、異常判定装置及びプログラム
JP7576594B2 (ja) 切削システム及び切削方法
WO2023139790A9 (ja) 診断装置及びコンピュータ読み取り可能な記録媒体
US11269309B2 (en) Analysis unit and method for determining at least one forming process characteristic of a servo press

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7367366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150