以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
(第1実施形態)
以下、本第1実施形態の熱交換器1について図1〜図4等を参照して説明する。
本実施形態の熱交換器1は、車載空調装置の冷凍サイクルを構成するものである。熱交換器1は、圧縮機の冷媒出口から吐出される高圧冷媒と冷却水との間の熱交換によって高圧冷媒から冷却水に放熱してこの放熱した冷媒を減圧弁の冷媒入口に排出する放熱器である。
熱交換器1は、図1に示すように、プレート積層体10、気液分離器20、冷媒コネクタ30a、30b、冷却水コネクタ40a、40b、およびレシーバコネクタ50を備える。プレート積層体10は、図2に示すように、凝縮部10A、および過冷却部10Bを備える。
凝縮部10Aは、圧縮機から流れる高圧冷媒と冷却水との間の熱交換によって高圧冷媒から冷却水に放熱する熱交換部である。過冷却部10Bは、気液分離器20から流れ出る液相冷媒と冷却水との間の熱交換によって液相冷媒から冷却水に放熱する熱交換部である。
気液分離器20は、凝縮部10Aから流れ出る冷媒を気相冷媒と液相冷媒とに分離して気相冷媒および液相冷媒のうち液相冷媒を排出する。本実施形態の凝縮部10Aは、過冷却部10Bに対して第2方向D2一方側(例えば、図2中上側)に配置されている。
気液分離器20は、過冷却部10Bに対して第2方向D2他方側(例えば、図2中下側)に配置されている。第2方向D2は、後述するプレートを積層する積層方向である。冷媒コネクタ30aおよび冷媒コネクタ30bは、それぞれ、凝縮部10Aに対して第2方向D2一方側に配置されている。
冷媒コネクタ30aは、入口側冷媒配管と凝縮部10Aの冷媒入口110とを接続するコネクタである。当該入口側冷媒配管は、圧縮機から吐出される高圧冷媒を熱交換器1の冷媒入口110に導くための冷媒配管である。
冷媒コネクタ30bは、過冷却部10Bの冷媒出口111と出口側冷媒配管とを接続するコネクタである。当該出口側冷媒配管は、過冷却部10Bの冷媒出口111から流れる冷媒を減圧弁の冷媒入口に導くための冷媒配管である。
レシーバコネクタ50は、凝縮部10Aの排出口114と気液分離器20の冷媒入口とを接続し、かつ過冷却部10Bの導入口115と気液分離器20の冷媒出口とを接続する。
このことにより、凝縮部10Aの排出口114から流れる冷媒を気液分離器20の冷媒入口に導くとともに、気液分離器20の冷媒出口から流れる液相冷媒を過冷却部10Bの導入口115に導く役割を果たす。
本実施形態の凝縮部10Aの排出口114および過冷却部10Bの導入口115は、それぞれ、過冷却部10Bに対して第2方向D2他方側(例えば、図3中下側)に配置されている。
図3のプレート積層体10は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、複数のインナープレート74、第1仕切りアウタプレート75、および第2仕切りアウタプレート76を備える。
これに加えて、図3のプレート積層体10には、複数の逆向き第2アウタプレート73A、ボトムプレート77、ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80が設けられている。
さらに、プレート積層体10には、図3および図4に示すように、冷媒貫通穴90、91、92、93、94および冷却水貫通穴95、96が設けられている。冷媒貫通穴90、91、92、93、94および冷却水貫通穴95、96は、それぞれ、プレート積層体10において第2方向D2に亘って形成されている。
具体的には、冷媒貫通穴90は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、および複数のインナープレート74を第2方向D2に貫通されている。
冷媒貫通穴91は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数のインナープレート74、第1仕切りアウタプレート75、および複数の第2アウタプレート73を第2方向D2に貫通されている。
冷媒貫通穴92は、複数の第2アウタプレート73、複数のインナープレート74、第2仕切りアウタプレート76、複数の逆向き第2アウタプレート73A、ボトムプレート77、ブラケット78を貫通されている。
冷媒貫通穴93は、複数のインナープレート74、複数の逆向き第2アウタプレート73A、ボトムプレート77、ブラケット78を貫通されている。
冷媒貫通穴94は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、複数のインナープレート74、第1仕切りアウタプレート75、および第2仕切りアウタプレート76を貫通している。冷媒貫通穴94は、複数の逆向き第2アウタプレート73Aを貫通している。
冷却水貫通穴95は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、複数のインナープレート74、第1仕切りアウタプレート75、第2仕切りアウタプレート76を貫通している。冷却水貫通穴95は、複数の逆向き第2アウタプレート73Aを貫通している。
冷却水貫通穴96は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、複数のインナープレート74、第1仕切りアウタプレート75、第2仕切りアウタプレート76を貫通している。冷却水貫通穴96は、複数の逆向き第2アウタプレート73Aを貫通している。
図5のトッププレート70は、第1方向D1と第3方向D3とに拡がる板状に形成されている。第1方向D1および第3方向D3は、互いに直交する方向である。第2方向D2および第3方向D3は、互いに直交する方向である。
トッププレート70には、冷媒貫通穴90を形成する貫通穴形成部90aが形成されている。冷媒貫通穴90のうち第1方向D1一方側は、冷媒入口110を構成する。すなわち、冷媒入口110は、プレート積層体10に構成されることになる。貫通穴形成部90aは、トッププレート70のうち第1方向D1一方側で、かつ第3方向D3一方側に配置されている。
トッププレート70には、冷媒貫通穴94を形成する貫通穴形成部94aが形成されている。冷媒貫通穴94のうち第1方向D1一方側は、冷媒出口111を構成する。冷媒出口111は、プレート積層体10に構成されることになる。貫通穴形成部94aは、トッププレート70のうち第1方向D1他方側で、かつ第3方向D3他方側に配置されている。
トッププレート70には、冷却水貫通穴95を形成する貫通穴形成部95aが形成されている。冷却水貫通穴95のうち第1方向D1一方側は、冷却水出口113を構成する。貫通穴形成部95aは、トッププレート70のうち第1方向D1一方側で、かつ第3方向D3他方側に配置されている。
トッププレート70には、冷却水貫通穴96を形成する貫通穴形成部96aが形成されている。冷却水貫通穴96のうち第1方向D1一方側は、冷却水入口112を構成する。貫通穴形成部96aは、トッププレート70のうち第1方向D1他方側で、かつ第3方向D3一方側に配置されている。
図6のトップアウタプレート71は、第1方向D1と第3方向D3とに拡がる板状に形成されている。トップアウタプレート71において、第1方向D1の寸法は、第3方向D3の寸法に比べて大きくなっている。
具体的には、トップアウタプレート71は、第1方向D1と第3方向D3とに拡がる長方形状に形成されている底部71aを備える。
底部71aには、冷媒貫通穴90を形成する貫通穴形成部90bが形成されている。貫通穴形成部90bは、底部71aのうち第1方向D1一方側で、かつ第3方向D3一方側に配置されている。
底部71aには、冷媒貫通穴94を形成する貫通穴形成部94bが形成されている。貫通穴形成部94bは、底部71aのうち第1方向D1他方側で、かつ第3方向D3中間側に配置されている。
底部71aには、冷却水貫通穴96を形成する貫通穴形成部96bが形成されている。貫通穴形成部96bは、底部71aのうち第1方向D1一方側で、かつ第3方向D3他方側に配置されている。
底部71aには、冷却水貫通穴95を形成する貫通穴形成部95bが形成されている。貫通穴形成部95bは、底部71aのうち第1方向D1他方側で、かつ第3方向D3一方側に配置されている。
図7の複数の第1アウタプレート72は、それぞれ、第1方向D1と第3方向D3とに拡がる板状に形成されている。第1アウタプレート72において、第1方向D1の寸法は、第3方向D3の寸法に比べて大きくなっている。
具体的には、複数の第1アウタプレート72は、それぞれ、第1方向D1と第3方向D3とに拡がる長方形状に形成されている底部72aと、この底部72aの全周の囲む側部72bとによって構成されている。
側部72bは、底部72aから第2方向D2一方側(すなわち、図7中紙面手前側)に突起するように形成されている。
底部72aには、冷媒貫通穴90を形成する貫通穴形成部90cが形成されている。貫通穴形成部90cは、底部72aのうち第1方向D1一方側で、かつ第3方向D3一方側に配置されている。
底部72aには、冷媒貫通穴91を形成する貫通穴形成部91cが形成されている。貫通穴形成部91cは、底部72aのうち第1方向D1他方側で、かつ第3方向D3他方側に配置されている。
底部72aには、冷媒貫通穴94を形成する貫通穴形成部94cが形成されている。貫通穴形成部94cは、底部72aのうち第1方向D1他方側で、かつ第2方向D2中間側に配置されている。
底部72aには、冷却水貫通穴95を形成する貫通穴形成部95cが形成されている。貫通穴形成部95cは、底部72aのうち第1方向D1一方側で、かつ第3方向D3他方側に配置されている。
底部72aには、冷却水貫通穴96を形成する貫通穴形成部96cが形成されている。貫通穴形成部96cは、底部72aのうち第1方向D1他方側で、かつ第3方向D3一方側に配置されている。
底部72aには、冷媒貫通穴97を形成する貫通穴形成部97cが形成されている。貫通穴形成部97cは、底部72aのうち第1方向D1一方側で、かつ第3方向D3中間側に配置されている。なお、本実施形態の冷媒貫通穴97は、冷媒や冷却水の通路には用いられていない。
貫通穴形成部90c、91cは、それぞれ、第3方向D3において、底部72aのうち冷媒流路101を形成する冷媒流路形成部72cと同一位置に配置されている。冷媒流路形成部72cは、底部72aのうち第1方向D1中間側に配置されている部位である。
貫通穴形成部95cは、図8に示すように、底部72aのうち冷媒流路を形成する冷媒流路形成部72cよりも第3方向D3よりも一方側に突起するように形成されている。貫通穴形成部96cは、図9に示すように、底部72aの冷媒流路形成部72cよりも第3方向D3よりも一方側に突起するように形成されている。
貫通穴形成部97cは、図10に示すように、底部72aの冷媒流路形成部72cよりも第3方向D3よりも一方側に突起するように形成されている。貫通穴形成部94cは、図11に示すように、底部72aの冷媒流路形成部72cよりも第3方向D3よりも一方側に突起するように形成されている。
底部72aには、突起部100c、101cが設けられている。突起部100c、101cは、それぞれ、底部72aの冷媒流路形成部72cよりも第2方向D2よりも一方側(すなわち、図7中紙面手前側)に突起するように形成されている。
突起部100cは、冷媒貫通穴97、90の間に配置されている。突起部101cは、冷媒貫通穴91、94の間に配置されている。
図12の複数の第2アウタプレート73は、それぞれ、第1方向D1と第3方向D3とに拡がる板状に形成されている。第2アウタプレート73において、第1方向D1の寸法は、第3方向D3の寸法に比べて大きくなっている。
具体的には、複数の第2アウタプレート73は、それぞれ、第1方向D1と第3方向D3とに拡がる長方形状に形成されている底部73aと、この底部73aの全周の囲む側部73bとによって構成されている。
側部73bは、底部73aから第2方向D2一方側に突起するように形成されている。底部73aには、冷媒貫通穴91を形成する貫通穴形成部91dが形成されている。
ここで、貫通穴形成部91dは、底部73aのうち第1方向D1他方側で、かつ第3方向D3他方側に配置されている。底部73aには、冷媒貫通穴92を形成する貫通穴形成部92dが形成されている。貫通穴形成部92dは、底部73aのうち第1方向D1他方側で、かつ第3方向D3中間側に配置されている。
底部73aには、冷媒貫通穴94を形成する貫通穴形成部94dが形成されている。貫通穴形成部94dは、底部73aのうち第1方向D1他方側で、かつ第3方向D3中間側に配置されている。
底部73aには、冷却水貫通穴95を形成する貫通穴形成部95dが形成されている。貫通穴形成部95dは、底部73aのうち第1方向D1一方側で、かつ第3方向D3他方側に配置されている。
底部73aには、冷却水貫通穴96を形成する貫通穴形成部96dが形成されている。貫通穴形成部96dは、底部73aのうち第1方向D1他方側で、かつ第3方向D3一方側に配置されている。貫通穴形成部91d、92dは、それぞれ、第3方向D3において、底部73aのうち冷媒流路を形成する冷媒流路形成部73cと同一位置に配置されている。 貫通穴形成部94c、95c、96cは、それぞれ、底部73aのうち冷媒流路101を形成する冷媒流路形成部73cよりも第3方向D3よりも一方側に突起するように形成されている。冷媒流路形成部73cは、底部73aのうち第1方向D1中間部に配置されている。底部73aには、突起部100d、101dが設けられている。
突起部100d、101dは、それぞれ、底部73aのうち冷媒流路形成部73cよりも第2方向D2よりも一方側に突起するように形成されている。突起部100dは、冷媒貫通穴92に対して第2方向D2一方側に配置されている。突起部101dは、冷媒貫通穴91、94の間に配置されている。
図13の複数のインナープレート74は、それぞれ、第1方向D1と第3方向D3とに拡がる板状に形成されている。インナープレート74において、第1方向D1の寸法は、第3方向D3の寸法に比べて大きくなっている。
具体的には、複数のインナープレート74は、それぞれ、第1方向D1と第3方向D3とに拡がる長方形状に形成されている底部74aと、この底部74aの全周の囲む側部74bとによって構成されている。側部74bは、底部74aから第2方向D2一方側に突起するように形成されている。
底部74aには、後述するように、冷媒貫通穴90、93のうちいずれか一方の冷媒貫通穴を形成する貫通穴形成部90eが形成されている。貫通穴形成部90eは、底部74aのうち第1方向D1一方側で、かつ第3方向D3一方側に配置されている。
底部74aには、冷媒貫通穴91を形成する貫通穴形成部91eが形成されている。貫通穴形成部91eは、底部74aのうち第1方向D1他方側で、かつ第3方向D3他方側に配置されている。
底部74aには、冷媒貫通穴94を形成する貫通穴形成部94eが形成されている。貫通穴形成部94eは、底部74aのうち第1方向D1他方側で、かつ第3方向D3中間側に配置されている。
底部74aには、冷却水貫通穴95を形成する貫通穴形成部95eが形成されている。貫通穴形成部95eは、底部74aのうち第1方向D1一方側で、かつ第3方向D3他方側に配置されている。
底部74aには、冷却水貫通穴96を形成する貫通穴形成部96eが形成されている。貫通穴形成部96eは、底部74aのうち第1方向D1他方側で、かつ第3方向D3一方側に配置されている。
底部74aには、冷媒貫通穴97、92のうちいずれか一方の冷媒貫通穴を形成する貫通穴形成部97eが形成されている。貫通穴形成部97eは、底部74aのうち第1方向D1一方側で、かつ第2方向D2中間側に配置されている。
貫通穴形成部95d、96dは、それぞれ、第3方向D3において、底部74aのうち冷媒流路101を形成する冷媒流路形成部74cと同一位置に配置されている。冷媒流路形成部74cは、底部74aのうち第3方向D3のうち中間側に配置されている。
貫通穴形成部90eは、図14に示すように、底部74aのうち冷媒流路形成部74cよりも第3方向D3よりも一方側に突起するように形成されている。貫通穴形成部91eは、図15に示すように、底部74aのうち冷媒流路形成部74cよりも第3方向D3よりも一方側に突起するように形成されている。
貫通穴形成部94eは、底部74aのうち冷媒流路形成部74cよりも第3方向D3よりも一方側に突起するように形成されている。貫通穴形成部97eは、図15示すように、底部74aのうち冷媒流路形成部74cよりも第3方向D3よりも一方側に突起するように形成されている。
図16の第1仕切りアウタプレート75は、第1方向D1と第3方向D3とに拡がる板状に形成されている。第1仕切りアウタプレート75において、第1方向D1の寸法は、第3方向D3の寸法に比べて大きくなっている。
具体的には、第1仕切りアウタプレート75は、それぞれ、第1方向D1と第3方向D3とに拡がる長方形状に形成されている底部75aと、この底部75aの全周の囲む側部75bとによって構成されている。側部75bは、底部75aから第2方向D2一方側に突起するように形成されている。
底部75aには、冷媒貫通穴91(すなわち、第4貫通流路)を形成する貫通穴形成部91f(すなわち、第13貫通流路形成部)が形成されている。
貫通穴形成部91fは、底部75aのうち第1方向D1他方側で、かつ第3方向D3他方側に配置されている。
底部75aには、冷媒貫通穴94(すなわち、第2貫通流路)を形成する貫通穴形成部94f(すなわち、第14貫通流路形成部)が形成されている。貫通穴形成部94fは、底部75aのうち第1方向D1他方側で、かつ第3方向D3中間側に配置されている。
底部75aには、冷却水貫通穴95を形成する貫通穴形成部95fが形成されている。貫通穴形成部95fは、底部75aのうち第1方向D1一方側で、かつ第3方向D3他方側に配置されている。
底部75aには、冷却水貫通穴96を形成する貫通穴形成部96fが形成されている。貫通穴形成部96fは、底部75aのうち第1方向D1他方側で、かつ第3方向D3一方側に配置されている。
貫通穴形成部91fは、第2方向D2において、底部75aのうち冷媒流路101を形成する冷媒流路形成部75cと同一位置に配置されている。冷媒流路形成部75cは、底部75aのうち第3方向D3中間側に配置されている。
貫通穴形成部94f、95f、96fは、それぞれ、底部75aのうち冷媒流路形成部75cよりも第3方向D3よりも一方側に突起するように形成されている。
底部75aには、突起部100f、101fが設けられている。突起部100f、101fは、底部75aのうち冷媒流路形成部73cよりも第2方向D2一方側(すなわち、図16中紙面手前側)に突起するように形成されている。突起部101fは、冷却水貫通穴95よりも第3方向D3一方側に配置されている。突起部101fは、冷媒貫通穴91、94の間に配置されている。
図17の第2仕切りアウタプレート76は、第1方向D1と第3方向D3とに拡がる板状に形成されている。第2仕切りアウタプレート76において、第1方向D1の寸法は、第3方向D3の寸法に比べて大きくなっている。
具体的には、第2仕切りアウタプレート76は、それぞれ、第1方向D1と第3方向D3とに拡がる長方形状に形成されている底部76aと、この底部76aの全周の囲む側部76bとによって構成されている。
底部76aには、冷媒貫通穴92(すなわち、第1貫通流路)を形成する貫通穴形成部92g(すなわち、第15貫通流路形成部)が形成されている。貫通穴形成部92gは、底部76aのうち第1方向D1他方側で、かつ第3方向D3中間側に配置されている。
底部76aには、冷媒貫通穴94(すなわち、第2貫通流路)を形成する貫通穴形成部94g(すなわち、第16貫通流路形成部)が形成されている。貫通穴形成部94gは、底部76aのうち第1方向D1他方側で、かつ第3方向D3中間側に配置されている。
底部76aには、冷却水貫通穴95を形成する貫通穴形成部95gが形成されている。貫通穴形成部95gは、底部76aのうち第1方向D1一方側で、かつ第3方向D3他方側に配置されている。
底部76aには、冷却水貫通穴96を形成する貫通穴形成部96gが形成されている。貫通穴形成部96gは、底部76aのうち第1方向D1他方側で、かつ第3方向D3一方側に配置されている。
貫通穴形成部92gは、第3方向D3において、底部76aのうち冷媒流路101を形成する冷媒流路形成部76cと同一位置に配置されている。冷媒流路形成部76cは、底部76aのうち第3方向D3中間側に配置されている。
貫通穴形成部94g、95g、96gは、それぞれ、底部76aのうち冷媒流路形成部76cよりも第3方向D3よりも一方側に突起するように形成されている。
底部76aには、突起部100g、101gが設けられている。突起部100g、101gは、底部76aのうち冷媒流路形成部76cよりも第2方向D2一方側(すなわち、図17中紙面手前側)に突起するように形成されている。
冷媒流路形成部76cは、底部76aのうち第1方向D1中間部に配置されている。突起部100gは、冷媒貫通穴92よりも第3方向D3一方側に配置されている。突起部101gは、冷媒貫通穴94よりも第3方向D3他方側に配置されている。
図18の複数の逆向き第2アウタプレート73Aは、それぞれ、第1方向D1と第3方向D3とに拡がる板状に形成されている。本実施形態では、逆向き第2アウタプレート73Aおよび第2アウタプレート73は、共通のプレートによって構成されている。具体的には、逆向き第2アウタプレート73Aおよび第2アウタプレート73は、互いに軸線Sを中心とする点対称となるように形成されている。
軸線Sとは、図12、図18に示すように、逆向き第2アウタプレート73A、或いは第2アウタプレート73において、第1方向D1および第3方向D3を含む面方向(すなわち、底部73a)の中心を第2方向D2に通過する仮想線である。
逆向き第2アウタプレート73Aは、第2アウタプレート73のうち軸線を中心として180度回転させたプレートである。
このため、第2アウタプレート73のうち第3方向D3他方側に配置される貫通穴形成部91d、94d、96dが逆向き第2アウタプレート73Aのうち第3方向D3一方側に配置される。第2アウタプレート73のうち第3方向D3一方側に配置される貫通穴形成部92d、95dが第2アウタプレート73Aのうち第3方向D3他方側に配置される。
逆向き第2アウタプレート73Aの底部73aのうち貫通穴形成部91d(すなわち、第10貫通流路形成部)は、冷媒貫通穴93(すなわち、第5貫通流路)を形成する。貫通穴形成部91dは、底部73aのうち第1方向D1一方側で、かつ第3方向D3一方側に配置されている。
逆向き第2アウタプレート73Aの底部73aのうち貫通穴形成部94dは、冷媒貫通穴92、97のうちいずれか一方の冷媒貫通穴を形成する。貫通穴形成部94dは、底部73aのうち第1方向D1一方側で、かつ第3方向D3中間側に配置されている。
逆向き第2アウタプレート73Aの底部73aのうち貫通穴形成部92dは、冷媒貫通穴94を形成する。貫通穴形成部92dは、底部73aのうち第1方向D1他方側で、かつ第3方向D3中間側に配置されている。
逆向き第2アウタプレート73Aの底部73aのうち貫通穴形成部95dは、冷却水貫通穴96を形成する。貫通穴形成部95dは、底部73aのうち第1方向D1他方側で、かつ第3方向D3一方側に配置されている。
逆向き第2アウタプレート73Aの底部73aのうち貫通穴形成部96dは、冷却水貫通穴95を形成する。貫通穴形成部96dは、底部73aのうち第1方向D1一方側で、かつ第3方向D3他方側に配置されている。
貫通穴形成部91d、92dは、それぞれ、第3方向D3において、底部73aのうち冷媒流路101を形成する冷媒流路形成部73cと同一位置に配置されている。冷媒流路形成部73cは、底部73aのうち第3方向D3中間側に配置されている。
貫通穴形成部94c、95c、96cは、それぞれ、底部73aのうち冷媒流路形成部73cよりも第3方向D3よりも一方側(すなわち、図18中紙面手前側)に突起するように形成されている。
逆向き第2アウタプレート73Aの底部73aには、上述の第2アウタプレート73と同様に、突起部100d、101dが設けられている。
図19のボトムプレート77は、第1方向D1と第3方向D3とに拡がる板状に形成されている。ボトムプレート77において、第1方向D1の寸法は、第3方向D3の寸法に比べて大きくなっている。
具体的には、ボトムプレート77は、それぞれ、第1方向D1と第3方向D3とに拡がる長方形状に形成されている底部77aと、この底部77aの全周の囲む側部77bとによって構成されている。側部77bは、底部77aから第2方向D2一方側に突起するように形成されている。
底部77aには、冷媒貫通穴92を形成する貫通穴形成部92hが形成されている。貫通穴形成部92hは、底部77aのうち第1方向D1一方側で、かつ第3方向D3一方側に配置されている。
底部77aには、冷媒貫通穴92を形成する貫通穴形成部92hが形成されている。貫通穴形成部92hは、底部77aのうち第1方向D1他方側で、かつ第2方向D2中間側に配置されている。
図20のブラケット78は、第1方向D1と第3方向D3とに拡がる板状に形成されている。ブラケット78において、第1方向D1の寸法は、第3方向D3の寸法に比べて大きくなっている。
具体的には、ブラケット78は、それぞれ、第1方向D1と第3方向D3とに拡がる長方形状に形成されている底部78aと、この底部78aの全周の囲む側部78bとによって構成されている。側部78bは、底部78aから第2方向D2一方側に突起するように形成されている。
底部78aには、冷媒貫通穴93を形成する貫通穴形成部93jが形成されている。貫通穴形成部93jは、底部78aのうち第1方向D1一方側で、かつ第3方向D3一方側に配置されている。冷媒貫通穴93のうち第2方向D2他方側は、過冷却部10Bの導入口115を形成する。
底部78aには、冷媒貫通穴92を形成する貫通穴形成部92jが形成されている。貫通穴形成部92jは、底部78aのうち第1方向D1一方側で、かつ第2方向D2中間側に配置されている。冷媒貫通穴92のうち第2方向D2他方側は、凝縮部10Aの排出口114を形成する。
複数の冷却水フィン79は、それぞれ、後述する冷却水流路100内に配置されて、冷却水と冷媒との間の熱交換を促す。複数の冷媒フィン80は、それぞれ、後述する冷媒流路101内に配置されて、冷却水と冷媒との間の熱交換を促す。
次に、冷媒貫通穴90について図3、図21、図22を参照して説明する。
トッププレート70および第1仕切りアウタプレート75の間には、トップアウタプレート71、インナープレート74、第1アウタプレート72、インナープレート74、第1アウタプレート72・・の順にプレート71、72、74が並べられている。
プレート71、72、74は、トップアウタプレート71、インナープレート74、第1アウタプレート72を纏めた表記である。
図21に示すように、トップアウタプレート71およびインナープレート74の間には、冷却水が流れる冷却水流路100が形成されている。インナープレート74のうち貫通穴形成部90eは、トッププレート70に対してろう付けによって接合されている。このことにより、冷媒貫通穴90と冷却水流路100とが分離されている。
インナープレート74(すなわち、第1プレート)および第1アウタプレート72(すなわち、第2プレート)の間には、冷媒が第1方向D1一方側に流れる冷媒流路101(すなわち、第1冷媒流路)が形成されている。
冷媒流路101は、インナープレート74に対して第2方向D2他方側(例えば、図21中下側)で、かつ第1アウタプレート72に対して第2方向D2一方側(例えば、図21中上側)に配置されている。
第1アウタプレート72のうち貫通穴形成部90c(すなわち、第6貫通流路形成部)は、インナープレート74とともに、冷媒導入口101aを形成する。冷媒導入口101aは、冷媒貫通穴90から冷媒流路101に冷媒を導くために設けられている。
第1アウタプレート72(すなわち、第2プレート)およびインナープレート74(すなわち、第3プレート)の間には、冷却水が流れる冷却水流路100(すなわち、第1熱媒体流路)が形成されている。冷却水流路100は、第1アウタプレート72に対して第2方向D2他方側(例えば、図21中下側)で、かつインナープレート74に対して第2方向D2一方側(例えば、図21中上側)に配置されている。
インナープレート74のうち貫通穴形成部90e(第5貫通流路形成部)は、第1アウタプレート72に対してろう付けによって接合されている。このことにより、冷媒貫通穴90(すなわち、第3貫通流路)と冷却水流路100とが分離されている。
図22に示すように、インナープレート74および第1仕切りアウタプレート75の間には、冷媒が流れる冷媒流路101が形成されている。インナープレート74および第1仕切りアウタプレート75の間には、冷媒貫通穴90からの冷媒を冷媒流路101に導くための冷媒導入口101aが設けられている。
このようなトッププレート70および第1仕切りアウタプレート75の間には、冷却水流路100と冷媒流路101とが1つずつ交互に第3方向に並べられている。複数の冷却水流路100と冷媒貫通穴90とが分離されている。冷媒貫通穴90と複数の冷媒流路101とが連通されている。
次に、冷媒貫通穴91について図23、図24、図25、図26を参照して説明する。
図23のインナープレート74のうち貫通穴形成部91eは、トップアウタプレート71に対してろう付けによって接合されている。このことにより、冷媒貫通穴91と冷却水流路100とは分離されている。トップアウタプレート71は、冷媒貫通穴91のうち第2方向D2一方側(例えば、図23中上側)を塞いている。
第1アウタプレート72のうち貫通穴形成部91c(すなわち、第8貫通流路形成部)は、インナープレート74とともに、冷媒排出口101bを形成する。冷媒排出口101bは、冷媒流路101から冷媒貫通穴91に冷媒を排出させる。
インナープレート74のうち貫通穴形成部91e(すなわち、第7貫通流路形成部)は、第1アウタプレート72に対してろう付けによって接合されている。このことにより、冷媒貫通穴91と冷却水流路100とは分離されている。
図24の第1仕切りアウタプレート75のうち貫通穴形成部91fは、インナープレート74とともに、冷媒貫通穴91と冷媒流路101とを連通させる冷媒排出口101bが設けられている。このため、冷媒流路101は、冷媒導入口101aと冷媒排出口101bとの間に配置されている。
このようなトッププレート70および第1仕切りアウタプレート75の間では、複数の冷却水流路100と冷媒貫通穴91とが分離されている。冷媒貫通穴91と複数の冷媒流路101とが連通されている。
図3の第1仕切りアウタプレート75および第2仕切りアウタプレート76の間には、図25、図26の如くインナープレート74、第2アウタプレート73、インナープレート74、第2アウタプレート73・・・の順に、プレート74、73が並べられている。
プレート74、73は、インナープレート74、第2アウタプレート73を纏めた表記である。
第1仕切りアウタプレート75は、凝縮部10Aにおいて、第2方向D1一方側に冷媒を流す複数の冷媒流路101と、第2方向D2他方側に冷媒を流す複数の冷媒流路101とを仕切るための第1仕切りプレートである。第2仕切りアウタプレート76は、凝縮部10Aと過冷却部10Bとを仕切るための第2仕切りプレートである。
第1仕切りアウタプレート75およびインナープレート74の間には、冷却水が流れる冷却水流路100が形成されている。インナープレート74のうち貫通穴形成部91eは、第1仕切りアウタプレート75に対してろう付けによって接合されている。このことにより、冷媒貫通穴91と冷却水流路100とは分離されている。
インナープレート74(すなわち、第7プレート)および第2アウタプレート73(すなわち、第8プレート)の間には、冷媒が第1方向D1他方側に流れる冷媒流路101(すなわち、第3冷媒流路)が形成されている。第2アウタプレート73のうち貫通穴形成部91dは、インナープレート74とともに、冷媒貫通穴91と冷媒流路101とを連通させる冷媒導入口101aを形成する。
第2アウタプレート73(すなわち、第8プレート)およびインナープレート74(すなわち、第9プレート)の間には、冷却水が流れる冷却水流路100(すなわち、第3熱媒体流路)が形成されている。インナープレート74のうち貫通穴形成部91eは、第2アウタプレート73に対してろう付けによって接合されている。このことにより、冷媒貫通穴91と冷却水流路100とは分離されている。
図26のインナープレート74および第2仕切りアウタプレート76の間には、冷媒が流れる冷媒流路101が形成されている。インナープレート74および第2仕切りアウタプレート76の間には、冷媒貫通穴91から冷媒を冷媒流路101に導くための冷媒導入口101aが設けられている。
次に、本実施形態の冷媒貫通穴92について図27、図28を参照して説明する。
インナープレート74のうち貫通穴形成部97eは、第1仕切りアウタプレート75に対してろう付けによって接合されている。このことにより、冷媒貫通穴92と冷却水流路100とは分離されている。冷媒貫通穴92のうち第2方向D2一方側(例えば、図27中上側)は、第1仕切りアウタプレート75によって塞がれている。
インナープレート74のうち貫通穴形成部97eは、第2アウタプレート73に対してろう付けによって接合されている。このことにより、冷媒貫通穴92と冷却水流路100とは分離されている。
図27の第2アウタプレート73のうち貫通穴形成部92dは、インナープレート74とともに、冷媒貫通穴91からの冷媒を冷媒流路101に導くための冷媒導入口101aを形成する。
このような第1仕切りアウタプレート75および第2仕切りアウタプレート76の間では、冷却水流路100と冷媒流路101とが1つずつ交互に第3方向に並べられている。冷媒貫通穴92と複数の冷却水流路100とが分離されている。冷媒貫通穴92と複数の冷媒流路101とが連通されている。
図28〜図30に示す第2仕切りアウタプレート76およびブラケット78の間には、インナープレート74、逆向き第2アウタプレート73A、インナープレート74、逆向き第2アウタプレート73Aの順に、プレート74、73Aが並べられている。プレート74、73Aは、インナープレート74、逆向き第2アウタプレート73Aを纏めた表記である。
第2仕切りアウタプレート76およびブラケット78の間のうち上記プレート74、73Aに対して第3方向他方側には、インナープレート74、ボトムプレート77の順に、インナープレート74、ボトムプレート77が並べられている。
図28の第2仕切りアウタプレート76およびインナープレート74の間には、冷媒流路101が形成されている。第2仕切りアウタプレート76のうち冷媒貫通穴92を形成する貫通穴形成部92dは、インナープレート74とともに、冷媒貫通穴92からの冷媒を冷媒流路101に導くための冷媒導入口101aを形成する。
図29の第2仕切りアウタプレート76およびインナープレート74の間には、冷却水流路100が形成されている。インナープレート74のうち冷媒貫通穴92を形成する貫通穴形成部97eは、第2仕切りアウタプレート76にろう付けによって接合されている。
このことにより、冷媒貫通穴92と冷却水流路100とが分離されている。
インナープレート74(すなわち、第4プレート)および逆向き第2アウタプレート73A(すなわち、第5プレート)の間には、冷媒が流れる冷媒流路101(すなわち、第2冷媒流路)が形成されている。
冷媒流路101は、インナープレート74に対して第2方向D2他方側(例えば、図29中下側)で、かつ逆向き第2アウタプレート73Aに対して第2方向D2一方側(例えば、図29中上側)に配置されている。
逆向き第2アウタプレート73Aのうち冷媒貫通穴92を形成する貫通穴形成部94d(すなわち、第2貫通流路形成部)は、インナープレート74に対してろう付けによって接合されている。このことにより、冷媒貫通穴92と冷媒流路101とが分離されている。
逆向き第2アウタプレート73A(すなわち、第5プレート)およびインナープレート74(すなわち、第6プレート)の間には、冷却水が流れる冷却水流路100(すなわち、第2熱媒体流路)が形成されている。
冷却水流路100は、逆向き第2アウタプレート73Aに対して第2方向D2他方側(例えば、図29中下側)で、かつインナープレート74に対して第2方向D2一方側(例えば、図29中上側)に配置されている。
インナープレート74のうち冷媒貫通穴92を形成する貫通穴形成部97e(すなわち、第1貫通流路形成部)は、逆向き第2アウタプレート73Aに対してろう付けによって接合されている。このことにより、冷媒貫通穴92と冷却水流路100とが分離されている。
冷媒貫通穴92のうち第2方向D2他方側(例えば、図29中下側)は、ボトムプレート77のうち貫通穴形成部92hとブラケット78のうち貫通穴形成部92jとによって形成されている。図30の冷媒貫通穴92のうち第2方向D2他方側(例えば図中下側)は、排出口114を構成する。排出口114は、ブラケット78(すなわち、プレート積層体10)によって構成されている。
このように構成される冷媒貫通穴92のうち第2仕切りアウタプレート76およびボトムプレート77の間では、冷媒貫通穴92に対して複数の冷却水流路100と複数の冷媒流路101とが分離されている。
図31、図32に示すように、インナープレート74のうち冷媒貫通穴93を形成する貫通穴形成部90eは、第2仕切りアウタプレート76に対してろう付けによって接合されている。このことにより、冷媒貫通穴93と冷却水流路100とは分離されている。
第2仕切りアウタプレート76のうち冷媒貫通穴93を形成する貫通穴形成部91dが
インナープレート74とともに、冷媒導入口101aを形成する。冷媒導入口101aは、冷媒貫通穴93から冷媒流路101に冷媒を導くために設けられている。
インナープレート74のうち冷媒貫通穴93を形成する貫通穴形成部90e(すなわち、第9貫通流路形成部)は、逆向き第2アウタプレート73Aに対してろう付けによって接合されている。このことにより、冷媒貫通穴93(すなわち、第5貫通流路)と冷却水流路100(すなわち、第2熱媒体流路)とは分離されている。
このような第2仕切りアウタプレート76およびブラケット78の間では、冷却水流路100と冷媒流路101とが1つずつ交互に第3方向に並べられている。冷媒貫通穴93と複数の冷却水流路100とが分離されている。冷媒貫通穴93と複数の冷媒流路101とが連通されている。
冷媒貫通穴93は、ボトムプレート77およびブラケット78を貫通して第2方向D2他方側に開口されている。冷媒貫通穴93のうち第2方向D2他方側は、導入口115を構成している。導入口115は、ブラケット78(すなわち、プレート積層体10)によって構成されていることになる。
次に、本実施形態の冷媒貫通穴94について図33〜図38を参照して説明する。
図33、34に示す第2仕切りアウタプレート76およびブラケット78の間において、インナープレート74のうち貫通穴形成部94eは、第2仕切りアウタプレート76に対してろう付けによって接合されている。このことにより、冷媒貫通穴94と冷却水流路100とは分離されている。
逆向き第2アウタプレート73Aのうち貫通穴形成部92d(すなわち、第12貫通流路形成部)とインナープレート74(すなわち、第4プレート)との間には、冷媒排出口101b(すなわち、第2排出口)が設けられている。
ここで、冷媒排出口101bは、冷媒流路101(すなわち、第2冷媒流路)から冷媒貫通穴94(すなわち、第2貫通流路)に冷媒を排出するために設けられている。
インナープレート74のうち貫通穴形成部94e(すなわち、第11貫通流路形成部)は、逆向き第2アウタプレート73Aに対してろう付けによって接合されている。このことにより、冷媒貫通穴94(すなわち、第2貫通流路)と冷却水流路100(すなわち、第2熱媒体流路)とは分離されている。
図35、図36に示す第1仕切りアウタプレート75、および第2仕切りアウタプレート76の間において、インナープレート74のうち貫通穴形成部94eは、第1仕切りアウタプレート75に対してろう付けによって接合されている。このことにより、冷媒貫通穴94と冷却水流路100とは分離されている。
インナープレート74のうち貫通穴形成部94eは、第2アウタプレート73に対してろう付けによって接合されている。このことにより、冷媒貫通穴94と冷却水流路100とは分離されている。
第2アウタプレート73のうち貫通穴形成部94dは、インナープレート74に対してろう付けによって接合されている。このことにより、冷媒貫通穴94と冷媒流路101とが分離されている。
図37、図38に示すトップアウタプレート71および第1仕切りアウタプレート75の間において、インナープレート74のうち貫通穴形成部94eは、トップアウタプレート71に対してろう付けによって接合されている。このことにより、冷媒貫通穴94と冷却水流路100とは分離されている。
インナープレート74(すなわち、第3プレート)のうち貫通穴形成部94e(すなわち、第3貫通流路形成部)は、第1アウタプレート72(すなわち、第2プレート)に対してろう付けによって接合されている。
このことにより、冷媒貫通穴94(すなわち、第2貫通流路)と冷却水流路100(すなわち、第1熱媒体流路)とは分離されている。
第1アウタプレート72(すなわち、第2プレート)のうち貫通穴形成部94c(すなわち、第4貫通流路形成部)は、インナープレート74に対してろう付けによって接合されている。このことにより、冷媒貫通穴94(すなわち、第2貫通流路)と冷媒流路101(すなわち、第1冷媒流路)とが分離されている。
このように構成されるトッププレート70および第1仕切りアウタプレート75の間において、冷媒貫通穴94と複数の冷媒流路101とが分離されている。冷媒貫通穴94と複数の冷却水流路100とが分離されている。
次に、本実施形態の冷却水貫通穴95について図39、図40、図41、図42、図43、図44を参照して説明する。
図39、図40に示す第2仕切りアウタプレート76およびブラケット78の間では、インナープレート74のうち貫通穴形成部95eと第2仕切りアウタプレート76との間には、冷却水出口100bが設けられている。冷却水出口100bは、冷却水貫通穴95に冷却水流路100からの冷却水を排出するために設けられている。
インナープレート74のうち貫通穴形成部95eと逆向き第2アウタプレート73Aとの間には、冷却水貫通穴95と冷却水流路100との間を連通させる冷却水出口100bが設けられている。
逆向き第2アウタプレート73Aのうち貫通穴形成部96dは、インナープレート74に対してろう付けによって接合されている。このことにより、冷却水貫通穴95と冷媒流路101とが分離されている。
このような第2仕切りアウタプレート76およびブラケット78の間では、冷却水貫通穴95と複数の冷媒流路101とが分離されている。冷却水貫通穴95と複数の冷却水流路100とが連通されている。
図41、図42に示す第1仕切りアウタプレート75および第2仕切りアウタプレート76の間では、インナープレート74のうち貫通穴形成部95eと第1仕切りアウタプレート75との間には、冷却水出口100bが設けられている。冷却水出口100bは、冷却水貫通穴95と冷却水流路100との間を連通させる。
インナープレート74のうち貫通穴形成部95eと第2アウタプレート73との間には、冷却水貫通穴95と冷却水流路100との間を連通させる冷却水出口100bが設けられている。
第2アウタプレート73のうち貫通穴形成部95dはインナープレート74に対してろう付けによって接合されている。このことにより、冷却水貫通穴95と冷媒流路101とが分離されている。
このような第1仕切りアウタプレート75および第2仕切りアウタプレート76の間では、冷却水貫通穴95と複数の冷媒流路101とが分離されている。冷却水貫通穴95と冷却水流路100とが連通されている。
図43、図44に示すトッププレート70および第1仕切りアウタプレート75の間では、インナープレート74のうち貫通穴形成部95eとトップアウタプレート71との間には、冷却水出口100bが設けられている。冷却水出口100bは、冷却水流路100からの冷却水を冷却水貫通穴95に排出させる。
インナープレート74のうち貫通穴形成部95eと第1アウタプレート72との間には、冷却水貫通穴95に冷却水流路100からの冷却水を排出させる冷却水出口100bが設けられている。
第1アウタプレート72のうち貫通穴形成部95cはインナープレート74に対してろう付けによって接合されている。このことにより、冷却水貫通穴95と冷媒流路101とが分離されている。
このようなトッププレート70および第1仕切りアウタプレート75の間では、冷却水貫通穴95と複数の冷媒流路101とが分離されている。冷却水貫通穴95と冷却水流路100とが分離されている。
次に、本実施形態の冷却水貫通穴96について図45、図46、図47、図48、図49、図50を参照して説明する。
図45、図46に示すトッププレート70および第1仕切りアウタプレート75の間では、インナープレート74のうち貫通穴形成部96eとトップアウタプレート71との間には、冷却水入口100aが設けられている。冷却水入口100aは、冷却水貫通穴96からの冷却水を冷却水流路100に導くために設けられている。
インナープレート74のうち貫通穴形成部96eと第1アウタプレート72との間には、冷却水貫通穴96からの冷却水を冷却水流路100に導くための冷却水入口100aが設けられている。
第1アウタプレート72のうち貫通穴形成部96cはインナープレート74に対してろう付けによって接合されている。このことにより、冷却水貫通穴96と冷媒流路101とが分離されている。
このようなトッププレート70および第1仕切りアウタプレート75の間では、冷却水貫通穴96と複数の冷媒流路101とが分離されている。冷却水貫通穴96と冷却水流路100とが連通されている。
図47、図48に示す第1仕切りアウタプレート75および第2仕切りアウタプレート76の間において、インナープレート74のうち貫通穴形成部96eと第1仕切りアウタプレート75との間には、冷却水入口100aが設けられている。冷却水入口100aは、冷却水貫通穴96から冷却水を冷却水流路100に導くために設けられている。
インナープレート74のうち貫通穴形成部96eと第2アウタプレート73との間には、冷却水貫通穴96と冷却水流路100との間を連通させる冷却水入口100aが設けられている。
第2アウタプレート73のうち貫通穴形成部96dはインナープレート74に対してろう付けによって接合されている。このことにより、冷却水貫通穴96と冷媒流路101とが分離されている。
このような第1仕切りアウタプレート75および第2仕切りアウタプレート76の間では、冷却水貫通穴96と複数の冷媒流路101とが分離されている。冷却水貫通穴96と冷却水流路100とが連通されている。
図49、図50に示すように、第2仕切りアウタプレート76とブラケット78との間において、インナープレート74のうち貫通穴形成部96eは、第2仕切りアウタプレート76とともに、冷却水入口100aを形成する。冷却水入口100aは、冷却水貫通穴96から冷却水流路100に冷却水を導くために設けられている。
インナープレート74のうち貫通穴形成部96eと逆向き第2アウタプレート73Aとの間には、冷却水貫通穴96からの冷却水を冷却水流路100に導くための冷却水入口100aが設けられている。
逆向き第2アウタプレート73Aのうち貫通穴形成部95dは、インナープレート74に対してろう付けによって接合されている。このことにより、冷却水貫通穴96と冷媒流路101とが分離されている。
このような第2仕切りアウタプレート76およびブラケット78の間では、冷却水貫通穴96と複数の冷媒流路101とが分離されている。冷却水貫通穴96と複数の冷却水流路100とが連通されている。冷却水貫通穴96のうち第2方向D2他方側(例えば、図50中下側)がボトムプレート77によって塞がれている。
このような本実施形態では、第1アウタプレート72、第2アウタプレート73、第1仕切りアウタプレート75、第2仕切りアウタプレート76、および逆向き第2アウタプレート73Aは、外形形状が共通に構成されている。
第1アウタプレート72は、上述の如く、貫通穴形成部90c、91c、94c、95c、96c、97cを備える。 第2アウタプレート73は、上述の如く、貫通穴形成部91d、92d、95d、96dを備える。第1仕切りアウタプレート75は、上述の如く、貫通穴形成部91f、94f、95f、96fを備える。
第2仕切りアウタプレート76は、上述の如く、貫通穴形成部92g、94g、95g、96gを備える。逆向き第2アウタプレート73Aは、上述の如く、上述の如く、貫通穴形成部91d、92d、95d、96dを備える。
以下、説明の便宜上、第1アウタプレート72、第2アウタプレート73、第1仕切りアウタプレート75、第2仕切りアウタプレート76を纏めて、アウタプレート72、73、75、76という。
貫通穴形成部90c、91c、94c、95c、96c、97c、貫通穴形成部91d、92d、95d、96d、貫通穴形成部91f、94f、95f、96f、貫通穴形成部92g、94g、95g、96gを纏めて、貫通穴形成部90c・・・96gという。
本実施形態のアウタプレート72、73、75、76は、それぞれ、貫通穴形成部90c・・・96g(すなわち、複数の貫通流路形成部)のうち異なる組み合わせの貫通穴形成部(すなわち、貫通流路形成部)を備える。
このことことにより、アウタプレート72、73、75、76は、それぞれ、異なる種類のアウタプレートになる。第2アウタプレート73および逆向き第2アウタプレート73Aは、上述の如く、共通のプレートによって構成されている。
以上により、入れ子構造の金型を用いてアウタプレート72、73、75、76を成形することができる。この際に、異なる種類のアウタプレート毎に貫通穴形成部を形成するための入れ子金型を取り替えつつ、金型のうち入れ子金型以外のコアやキャビティーを共通部品として用いることなる。
次に、本実施形態の熱交換器1の作動について説明する。
まず、冷却水が冷却水コネクタ40aおよび冷却水入口112を通して冷却水貫通穴96に流れる。冷却水貫通穴96に流れる冷却水がトッププレート70およびブラケット78の間の複数の冷却水流路100に分流される。複数の冷却水流路100を通過した冷却水が冷却水貫通穴95に集合されて冷却水出口113および冷却水コネクタ40bを通して排出される。
一方、圧縮機から吐出される高圧冷媒が冷媒コネクタ30aおよび冷媒入口110を通して冷媒貫通穴90に流れる。この冷媒貫通穴90に流れる高圧冷媒がトップアウタプレート71および第1仕切りアウタプレート75の間の複数の冷媒流路101に分流される。このような複数の冷媒流路101に分流された流れる高圧冷媒は、冷媒貫通穴91に集合される。
このとき、トップアウタプレート71および第1仕切りアウタプレート75の間の複数の冷媒流路101内の高圧冷媒は、冷却水流路100内の冷却水に放熱する。
その後、冷媒貫通穴91から第1仕切りアウタプレート75および第2仕切りアウタプレート76の間の複数の冷媒流路101に分流される。このように複数の冷媒流路101に分流される高圧冷媒は、冷媒貫通穴92に集合される。
このとき、第1仕切りアウタプレート75および第2仕切りアウタプレート76の間の複数の冷媒流路101内の高圧冷媒は、冷却水流路100内の冷却水に放熱する。
その後、冷媒貫通穴92を通過した高圧冷媒は排出口114およびレシーバコネクタ50を通して気液分離器20に流れる。気液分離器20では、レシーバコネクタ50を通過した高圧冷媒を気相冷媒と液相冷媒とに分離して、液相冷媒および気相冷媒のうち液相冷媒を排出する。
気液分離器20からの液相冷媒はレシーバコネクタ50および導入口115を通して冷媒貫通穴93に流れる。冷媒貫通穴93内の液相冷媒は、第2仕切りアウタプレート76およびブラケット78の間の複数の冷媒流路101に分流される。
第2仕切りアウタプレート76およびブラケット78の間の複数の冷媒流路101内の液相冷媒は、冷媒貫通穴94に集合される。
このとき、第2仕切りアウタプレート76およびブラケット78の間の複数の冷媒流路101内の液相冷媒は、冷却水流路100内の冷却水に放熱する。このことにより、複数の冷媒流路101内の液相冷媒は、過冷却されることになる。
その後、冷媒貫通穴94に集合される液相冷媒は、冷媒貫通穴94を通過してから冷媒出口111および冷媒コネクタ30bを通して減圧弁に流れる。
次に、本実施形態の熱交換器1の製造方法について説明する。
まず、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、複数のインナープレート74、第1仕切りアウタプレート75、第2仕切りアウタプレート76を準備する。
複数の逆向き第2アウタプレート73A、ボトムプレート77、ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80を準備する。
次の工程では、このように準備したトッププレート70、トップアウタプレート71、・・・ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80を積層して仮固定する。以下、このような仮固定したトッププレート70、トップアウタプレート71、・・・ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80を仮固定プレート積層体という。
次の工程では、仮固定プレート積層体に対して気液分離器20、冷媒コネクタ30a、30b、冷却水コネクタ40a、40b、およびレシーバコネクタ50を組み付ける。
次に、このように組み付けた仮固定プレート積層体、気液分離器20、冷媒コネクタ30a、30b、冷却水コネクタ40a、40b、およびレシーバコネクタ50を高温炉でろう付けして一体化する。このことにより、熱交換器1の製造が完了する。
以上説明した本実施形態によれば、熱交換器1は、プレート積層体10および、気液分離器20を備える。プレート積層体10には、圧縮機からの冷媒が入る冷媒入口110と、減圧弁に冷媒を排出する冷媒出口111とが形成されている。
プレート積層体10は、インナープレート74、トップアウタプレート71、複数の第1アウタプレート72、および複数の第2アウタプレート73を備える。プレート積層体10は、第1仕切りアウタプレート75、第2仕切りアウタプレート76、および複数の逆向き第2アウタプレート73Aを備える。
インナープレート74、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、および第1仕切りアウタプレート75は、それぞれ、第1方向D1に拡がる板状に形成されている。
インナープレート74、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、および第1仕切りアウタプレート75は、第1方向に直交する第2方向D2に積層されている。
第2仕切りアウタプレート76、複数の逆向き第2アウタプレート73Aは、それぞれ、第1方向D1に拡がる板状に形成されている。第2仕切りアウタプレート76、複数の逆向き第2アウタプレート73Aは、第2方向D2に積層されている。
凝縮部10Aでは、第1アウタプレート72が2つのインナープレート74の間に配置されている。2つのインナープレート74のうち第2方向D2一方のインナープレート74と第1アウタプレート72との間には、冷媒入口110から流れる冷媒が流通する冷媒流路101が形成される。
2つのインナープレート74のうち第2方向D2他方のインナープレート74と第1アウタプレート72の間には、冷却水が流通する冷却水流路100が形成されている。凝縮部10Aは、冷媒流路101内の冷媒から冷却水流路100内の冷却水に放熱する。
気液分離器20は、凝縮部10Aから排出される冷媒を気相冷媒と液相冷媒に分離して、気相冷媒および液相冷媒のうち液相冷媒を排出する。過冷却部10Bでは、2つのインナープレート74の間に逆向き第2アウタプレート73Aが配置されている。
2つのインナープレート74のうち第2方向D2のうち一方側のインナープレート74と逆向き第2アウタプレート73Aとの間には、気液分離器20から排出される液相冷媒が冷媒貫通穴91に向けて流れる冷媒流路101が形成されている。
2つのインナープレート74のうち第2方向D2のうち他方側のインナープレート74と逆向き第2アウタプレート73Aとの間には、冷却水が流通する冷却水流路100が形成されている。過冷却部10Bは、冷媒流路101内の液相冷媒から冷却水流路100内の冷却水に放熱する。
冷媒入口110および冷媒出口111は、凝縮部10Aに対して過冷却部10Bの反対側に配置されている。
以上により、冷媒入口110が第2方向D2にて凝縮部10Aに対して過冷却部10Bの反対側に配置され、かつ冷媒出口111が第2方向D2にて過冷却部10Bに対して凝縮部10Aと反対側に配置される場合に比べて、次のような効果が得られる。
すなわち、車両(すなわち、被搭載対象)へ熱交換器1を搭載する製造工程において、第2方向D2一方側から冷媒入口110および冷媒出口111へ冷媒配管を接続することができる。このため、車両へ熱交換器1を搭載する際の組み付け工数を減らすことができる。さらに、車両への熱交換器1の搭載性を向上することができる。
本実施形態では、冷却水入口112および冷却水出口113が第2方向D2において凝縮部10Aに対して過冷却部10Bの反対側に配置されている。
このため、冷却水入口112が第2方向D2にて凝縮部10Aに対して過冷却部10Bの反対側に配置され、かつ冷却水出口113が第2方向D2にて過冷却部10Bに対して凝縮部10Aと反対側に配置される場合に比べて、次のような効果が得られる。
このため、冷却水入口112および冷却水出口113のそれぞれに冷却水配管を接続する工程を容易に実施することができる。
本実施形態の凝縮部10Aは、トッププレート70および第1仕切りアウタプレート75の間に配置されている冷媒流路101と、第1仕切りアウタプレート75および第2仕切りアウタプレート76の間に配置されている冷媒流路101とを備える。
ここで、トッププレート70および第1仕切りアウタプレート75の間に配置されている冷媒流路101を上側冷媒流路101とする。第1仕切りアウタプレート75および第2仕切りアウタプレート76の間に配置されている冷媒流路101を下側冷媒流路101とする。このことにより、上側冷媒流路101を通過した冷媒が下側冷媒流路101に流れることになる。
ここで、上側冷媒流路101に冷媒が流れる際には、上側冷媒流路101内の冷媒が冷却水流路100内の冷却水に放熱する。下側冷媒流路101に冷媒が流れる際には、下側冷媒流路101内の冷媒が冷却水流路100内の冷却水に放熱する。このため、気液分離器20の冷媒入口には、上側冷媒流路101および下側冷媒流路101で冷却された冷媒が流入されることになる。したがって、凝縮部10Aで冷媒を十分に冷却してから気液分離器20の冷媒入口に導くことができる。
本実施形態では、凝縮部10Aは、過冷却部10Bから液相冷媒を冷媒出口111に導くための冷媒貫通穴94を構成する。このため、過冷却部10Bから液相冷媒を冷媒出口111に導くための冷媒配管を別途設ける必要がない。
これに加えて、本実施形態では、過冷却部10Bは、凝縮部10Aからの冷媒を気液分離器20の冷媒入口に導く冷媒貫通穴92を構成する。このため、凝縮部10Aからの冷媒を気液分離器20の冷媒入口に導くための冷媒配管を別途設ける必要が無い。
以上により、部品点数を減らすことができるため、熱交換器1の構成を簡素にすることができる。
本実施形態では、上述の如く、異なる種類のアウタプレート毎に貫通穴形成部を形成するための入れ子金型を取り替えつつ、金型のうち入れ子金型以外のコアやキャビティーを共通部品として用いることなる。したがって、アウタプレート毎に全て異なる金型を用いる場合に比べて、製造コストを低減することができる。
本実施形態では、第2アウタプレート73および逆向き第2アウタプレート73Aは、互いに共通のプレートによって構成されている。このため、第2アウタプレート73および逆向き第2アウタプレート73Aを、異なるプレートによって構成する場合に比べて、プレートの種類を減らすことができるので、製造コストを下げることができる。
本実施形態の第1アウタプレート72の突起部100c、101cは、図51、図52に示すように、インナープレート74に接触している。このため、インナープレート74が第1アウタプレート72の突起部100c、101cによって第2方向D2他方側(例えば、図51、図52中下側)から支持されることになる。これにより、インナープレート74の第2方向D2の強度を増すことができる。
同様に、図53、図54に示すように、インナープレート74は、第2アウタプレート73のうち突起部100d、101dによって第2方向D2他方側(例えば、図53、図54中下側)から支持されることになる。これにより、インナープレート74の第2方向D2の強度を増すことができる。
第1仕切りアウタプレート75のうち突起部101fは、図55に示すように、インナープレート74に接触している。同様に、第1仕切りアウタプレート75のうち突起部100fは、インナープレート74に接触している。
このため、第1仕切りアウタプレート75が突起部100f、101fによってインナープレート74を第2方向D2他方側(例えば、図55中下側)から支持することになる。これにより、インナープレート74の第2方向D2の強度を増すことができる。
逆向き第2アウタプレート73Aのうち突起部100d、101dは、インナープレート74に接触している。このため、逆向き第2アウタプレート73Aが突起部100d、101dによってインナープレート74を支持することになる。これにより、インナープレート74の第2方向D2の強度を増すことができる。
同様に、第2仕切りアウタプレート76のうち突起部100g、101gがインナープレート74に接触している。このため、第2仕切りアウタプレート76のうち突起部100g、101gによってインナープレート74を支持することになる。これにより、インナープレート74の第2方向D2の強度を増すことができる。
(第2実施形態)
上記第1実施形態では、気液分離器20、凝縮部10A、および過冷却部10Bによって熱交換器1を構成した例について説明した。
しかし、これに代えて、気液分離器20および過冷却部10Bを削除して、凝縮部10Aによって熱交換器1を構成した本第2実施形態について図56〜図63を参照して説明する。図56〜図59において、図1〜図4と同一の符号は、同一のものを示し、その説明を省略する。
本実施形態の熱交換器1は、図56〜図59に示すように、プレート積層体10、冷媒コネクタ30a、30b、冷却水コネクタ40a、40bを備える。本実施形態のプレート積層体10は、凝縮部10Aによって構成されている。冷媒コネクタ30a、30b、冷却水コネクタ40a、40bは、上記第1実施形態と同様、凝縮部10Aに対して第2方向D2一方側(例えば、図57中上側)に配置されている。
プレート積層体10は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73B、複数のインナープレート74、第1仕切りアウタプレート75、および第2仕切りアウタプレート76Aを備える。
これに加えて、プレート積層体10には、ボトムプレート77、ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80が設けられている。
プレート積層体10には、冷媒貫通穴90、91、93、94および冷却水貫通穴95、96が設けられている。冷媒貫通穴90、91、93、94および冷却水貫通穴95、96は、それぞれ、プレート積層体10において第2方向D2に亘って形成されている。
図58のプレート積層体10のうち第2仕切りアウタプレート76Aに対して第2方向D2他方側(例えば、図58中上側)の構成は、図3のプレート積層体10のうち第2仕切りアウタプレート76Aに対して第2方向D2他方側の構成と同一である。
図58のプレート積層体10のうち第2仕切りアウタプレート76Aに対して第2方向D2他方側(例えば、図58中下側)の構成は、図3のプレート積層体10のうち第2仕切りアウタプレート76Aに対して第2方向D2他方側の構成と異なる。
本実施形態のプレート積層体10における第2仕切りアウタプレート76Aに対して第2方向他方側(例えば、図58中下側)には、インナープレート74および第2アウタプレート73Bが1つずつ交互に配置されている。
まず、第2仕切りアウタプレート76Aに対して第2方向D2他方側(例えば、図58中下側)において第2仕切りアウタプレート76Aおよびインナープレート74の間には、冷却水流路100が形成されている。
インナープレート74に対して第2方向D2他方側においてインナープレート74および第2アウタプレート73Bの間には、冷媒流路101が形成されている。
さらに、第2アウタプレート73Bに対して第2方向D2他方側においてインナープレート74および第2アウタプレート73Bの間には、冷却水流路100が形成されている。
このように、図58、図59の第2仕切りアウタプレート76Aに対して第2方向D2他方側には、冷却水流路100および冷媒流路101が1つずつ第2方向D2に並べられていることになる。
本実施形態では、上記第1実施形態と同様に、冷却水流路100内には、冷却水フィン79が配置されている。冷媒流路101内には、冷媒フィン80が配置されている。
図60の第2アウタプレート73Bは、図12の第2アウタプレート73に対して貫通穴形成部90dを追加したものである。貫通穴形成部90dは、第2アウタプレート73Bの底部73aに冷媒貫通穴93を形成する。貫通穴形成部90dは、底部73aのうち第1方向D1他方側で第3方向D3一方側に配置されている。
貫通穴形成部90dは、それぞれ、第2方向D2において、底部72aのうち冷媒流路101を形成する冷媒流路形成部73cと同一位置に配置されている。冷媒流路形成部73cは、底部72aのうち第3方向D3中間側に配置されている。
これに加えて、第2アウタプレート73Bの底部72aのうち冷媒貫通穴94を形成する貫通穴形成部94dは、第3方向D3において、底部72aの冷媒流路形成部73cと同一位置に配置されている。
図61の第2仕切りアウタプレート76Aは、図17の第2仕切りアウタプレート76に対して貫通穴形成部90gを追加したものである。貫通穴形成部90gは、第2仕切りアウタプレート76Aの底部76aのうち冷媒貫通穴93を形成する。
貫通穴形成部90gは、第2方向D2において、底部76aの冷媒流路形成部76cと同一位置に配置されている。冷媒流路形成部76cは、底部76aのうち第3方向D3中間側に配置されている。
図62に示すように、インナープレート74のうち貫通穴形成部90eは、第2仕切りアウタプレート76Aに対してろう付けによって接合されている。このことにより、冷媒貫通穴93と冷却水流路100とは分離されている。
図62、図63に示すように、第2アウタプレート73Bのうち貫通穴形成部90dは、インナープレート74とともに、冷媒導入口101aを形成する。冷媒導入口101aは、冷媒貫通穴93から冷媒流路101に冷媒を導くために設けられている。
インナープレート74のうち貫通穴形成部90eは、第2アウタプレート73Bに対してろう付けによって接合されている。このことにより、冷媒貫通穴93と冷却水流路100とは分離されている。
このように、冷媒貫通穴93と複数の冷却水流路100とは分離されている。冷媒貫通穴93と複数の冷媒流路101とは連通されている。冷媒貫通穴93のうち第2方向D2他方側(例えば、図63中下側)がボトムプレート77によって閉鎖されている。
図64に示すように、インナープレート74のうち貫通穴形成部94eは、第2仕切りアウタプレート76Aに対してろう付けによって接合されている。このことにより、冷媒貫通穴94と冷却水流路100とは分離されている。
図65に示すように、第2アウタプレート73Bのうち貫通穴形成部94dは、インナープレート74とともに、冷媒排出口101bを形成する。冷媒排出口101bは、冷媒流路101から冷媒貫通穴94に冷媒を排出させる。
インナープレート74のうち貫通穴形成部94eは、第2アウタプレート73Bに対してろう付けによって接合されている。このことにより、冷媒貫通穴94と冷却水流路100とは分離されている。
このように、冷媒貫通穴94と複数の冷却水流路100とは分離されている。冷媒貫通穴94と複数の冷媒流路101とは連通されている。冷媒貫通穴94のうち第2方向D2他方側(例えば、図65中下側)がボトムプレート77によって閉鎖されている。
冷却水貫通穴96は、上記第1実施形態と同様に、第2仕切りアウタプレート76Aおよびボトムプレート77の間の複数の冷却水流路100に対して冷却水入口100aを介して連通している。
冷却水貫通穴95は、上記第1実施形態と同様に、第2仕切りアウタプレート76Aおよびボトムプレート77の間の複数の冷却水流路100に対して冷却水出口100bを介して連通している。
このような本実施形態では、第1アウタプレート72、第2アウタプレート73B、第1仕切りアウタプレート75、および第2仕切りアウタプレート76Aは、外形形状が共通に構成されている。
第1アウタプレート72は、上述の如く、貫通穴形成部90c、91c、94c、95c、96c、97cを備える。第2アウタプレート73Bは、上述の如く、貫通穴形成部90d、91d、92d、95d、96dを備える。第1仕切りアウタプレート75は、上述の如く、貫通穴形成部91f、94f、95f、96fを備える。第2仕切りアウタプレート76Aは、貫通穴形成部90g、92g、94g、95g、96gを備える。
以下、第1アウタプレート72、第2アウタプレート73B、第1仕切りアウタプレート75、および第2仕切りアウタプレート76Aを纏めてアウタプレート72、73B、75、76Aという。
貫通穴形成部90c、91c、94c、95c、96c、97cを貫通穴形成部90c、〜97cという。貫通穴形成部90c、〜97c、貫通穴形成部91f、94f、95f、96f、貫通穴形成部90g、92g、94g、95g、96gを貫通穴形成部90c〜96gという。
第1アウタプレート72、第2アウタプレート73B、第1仕切りアウタプレート75、および第2仕切りアウタプレート76Aは、貫通穴形成部90g〜96gのうち異なる組み合わせの貫通穴形成部を備えることにより、異なる種類になっている。
次に、本実施形態の熱交換器1の作動について説明する。
まず、冷却水が冷却水コネクタ40aおよび冷却水入口112を通して冷却水貫通穴96に流れる。冷却水貫通穴96に流れる冷却水がトッププレート70およびブラケット78の間の複数の冷却水流路100に分流される。このように複数の冷却水流路100に分流された冷却水が冷却水貫通穴95に集合されて冷却水出口113および冷却水コネクタ40bを通して排出される。
一方、圧縮機から吐出される高圧冷媒が冷媒コネクタ30aおよび冷媒入口110を通して冷媒貫通穴90に流れる。この冷媒貫通穴90に流れる高圧冷媒がトップアウタプレート71および第1仕切りアウタプレート75の間の複数の冷媒流路101に分流される。このように複数の冷媒流路101に分流された高圧冷媒は、冷媒貫通穴91に集合される。
このとき、トップアウタプレート71および第1仕切りアウタプレート75の間の複数の冷媒流路101内の高圧冷媒は、冷却水流路100内の冷却水に放熱する。
その後、冷媒貫通穴91から第1仕切りアウタプレート75および第2仕切りアウタプレート76Aの間の複数の冷媒流路101に分流される。このように複数の冷媒流路101に分流された高圧冷媒は、冷媒貫通穴92に集合される。
このとき、第1仕切りアウタプレート75および第2仕切りアウタプレート76Aの間の複数の冷媒流路101内の高圧冷媒は、冷却水流路100内の冷却水に放熱する。
その後、冷媒貫通穴92を通過した高圧冷媒は第2仕切りアウタプレート76Aおよび
ボトムプレート77の間の複数の冷媒流路101に分流される。このように複数の冷媒流路101に分流された高圧冷媒は、冷媒貫通穴94に集合される。
このとき、第2仕切りアウタプレート76Aおよびボトムプレート77の間の複数の冷媒流路101内の高圧冷媒は、冷却水流路100内の冷却水に放熱する。その後、冷媒貫通穴94に集合された冷媒は、冷媒貫通穴94から冷媒出口111および冷媒コネクタ30bを通して減圧弁に流れる。
次に、本実施形態の熱交換器1の製造方法について説明する。
まず、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73B、複数のインナープレート74、第1仕切りアウタプレート75、および第2仕切りアウタプレート76Aを準備する。
プレート積層体10には、ボトムプレート77、ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80を準備する。
次の工程では、このように準備したトッププレート70、トップアウタプレート71、・・・ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80を積層して仮固定する。このことにより、仮固定プレート積層体が成形されることになる。
次の工程では、このような仮固定プレート積層体に対して気液分離器20、冷媒コネクタ30a、30b、冷却水コネクタ40a、40b、およびレシーバコネクタ50を組み付ける。
次に、このように組み付けた仮固定プレート積層体、気液分離器20、冷媒コネクタ30a、30b、冷却水コネクタ40a、40b、およびレシーバコネクタ50を高温炉でろう付けして一体化する。このことにより、熱交換器1の製造が完了する。
以上説明した本実施形態によれば、本実施形態の熱交換器1は、プレート積層体10、および、気液分離器20を備える。プレート積層体10には、冷媒入口110および冷媒出口111が形成されている。冷媒入口110および冷媒出口111は、凝縮部10Aに対して第2方向D2一方側(例えば、図58中上側)に配置されている。
これにより、上記第1実施形態と同様に、車両へ熱交換器1を搭載する際の組み付け工数を減らすことができる。さらに、車両への熱交換器1の搭載性を向上することができる。
本実施形態では、冷却水入口112および冷却水出口113が凝縮部10Aに対して第2方向D2一方側(例えば、図59中上側)に配置されている。このため、冷却水入口112および冷却水出口113のそれぞれに冷却水配管を接続する工程を容易に実施することができる。
凝縮部10Aは、第1アウタプレート72およびインナープレート74間の冷媒流路101と、第2アウタプレート73およびインナープレート74間の冷媒流路101と、第2アウタプレート73Bおよびインナープレート74間の冷媒流路101とを備える。
第1アウタプレート72およびインナープレート74間の冷媒流路101を上側冷媒流路101とする。第2アウタプレート73およびインナープレート74間の冷媒流路101を中間側冷媒流路101とする。第2アウタプレート73Bおよびインナープレート74間の冷媒流路101を下側冷媒流路101とする。
このため、凝縮部10Aでは、上側冷媒流路101からの冷媒が中間側冷媒流路101を通過してから下側冷媒流路101に流れる。この際に、上側冷媒流路101、中間側冷媒流路101、および下側冷媒流路101を冷媒が流れる際に、冷却水流路100内の冷却水に冷媒が放熱する。したがって、凝縮部10Aで冷媒を十分に冷却してから排出することができる。
(第3実施形態)
上記第1実施形態では、第1方向D1一方側に冷媒を流す冷媒流路101と、第1方向D1他方側に冷媒を流す冷媒流路101とを凝縮部10Aに構成した例について説明した。
これに代えて、第1方向D1他方側に冷媒を流す冷媒流路101を削除して第1方向D1一方側に冷媒を流す冷媒流路101によって凝縮部10Aを構成した本第3実施形態について図66〜図68を参照して説明する。図66〜図68において、図1〜図4と同一の符号は、同一のものを示し、その説明を省略する。
本実施形態の熱交換器1は、図66〜図68に示すように、プレート積層体10、気液分離器20、冷媒コネクタ30a、30b、冷却水コネクタ40a、40b、およびレシーバコネクタ50を備える。プレート積層体10は、凝縮部10A、および過冷却部10Bを備える。
本実施形態の熱交換器1と上記第1実施形態の熱交換器1とは、プレート積層体10の構成が相違する。このため、以下、プレート積層体10の構成について主に説明する。
すなわち、本実施形態の熱交換器1の凝縮部10Aは、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72A、複数のインナープレート74、複数の冷却水フィン79、および複数の冷媒フィン80を備える。
凝縮部10Aのうちトッププレート70に対して第2方向D2他方側(例えば、図67中下側)にはトップアウタプレート71、インナープレート74、第1アウタプレート72A、インナープレート74、第1アウタプレート72A・・の順にプレート71、74、72Aが並べられている。
プレート71、74、72Aは、トップアウタプレート71、インナープレート74、第1アウタプレート72Aを纏めた表記である。
このため、凝縮部10Aのうちトップアウタプレート71に対して第2方向D2他方側(例えば、図67中下側)には、第1アウタプレート72Aとインナープレート74とが1つずつ交互に第2方向D2他方側に並べられている。
このことにより、凝縮部10Aのうちトップアウタプレート71に対して第2方向D2他方側には、冷却水流路100と冷媒流路101とが1つずつ交互に第2方向D2他方側に並べられている。
本実施形態において、図69の第1アウタプレート72Aは、図7の第1アウタプレート72から貫通穴形成部91cを削除したものである。このように構成される凝縮部10Aにおいては、冷媒貫通穴90、94、97、および冷却水貫通穴95、96が構成されている。
図67の過冷却部10Bには、複数の逆向き第1アウタプレート72B、複数のインナープレート74、ボトムプレート77、およびブラケット78が設けられている。
ここで、図70の逆向き第1アウタプレート72Bと図69の第1アウタプレート72Aとは、共通のプレートによって構成されている。具体的には、逆向き第1アウタプレート72Bおよび第1アウタプレート72Aは、互いに軸線Gを中心とする点対称となるように形成されている。
軸線Gとは、図69、図70に示すように、逆向き第1アウタプレート72B或いは第1アウタプレート72Aにおいて、第1方向D1および第3方向D3を含む面方向(すなわち、底部72a)の中心を第2方向D2に通過する仮想線である。逆向き第1アウタプレート72Bは、第1アウタプレート72Aのうち中心点を中心として180度回転させたプレートである。
このため、第1アウタプレート72Aのうち第3方向D3他方側に配置される貫通穴形成部94c、96cが逆向き第1アウタプレート72Bのうち第3方向D3一方側に配置される。
第1アウタプレート72Aのうち第3方向D3一方側に配置される貫通穴形成部90c、97c、95cが逆向き第1アウタプレート72Bのうち第3方向D3他方側に配置される。
図67の過冷却部10Bのうちボトムプレート77、およびブラケット78に対して第2方向D2他方側には、逆向き第1アウタプレート72Bとインナープレート74とが1つずつ交互に第2方向D2他方側(例えば、図67中下側)に並べられている。
このことにより、過冷却部10Bのうちボトムプレート77、およびブラケット78に対して第2方向D2他方側には、冷却水流路100と冷媒流路101とが1つずつ交互に第2方向D2他方側に並べられている。
このように構成される熱交換器1には、冷媒貫通穴90、94、97、冷却水貫通穴95、96が構成されている。
次に、本実施形態の凝縮部10A、過冷却部10Bについて図71〜図76を参照して説明する。
まず、凝縮部10Aのトッププレート70およびトップアウタプレート71の間には冷媒流路101が形成されている。トップアウタプレート71のうち冷媒貫通穴90を形成する貫通穴形成部90kがトッププレート70に対してろう付けによって接合されている。
このことにより、トッププレート70およびトップアウタプレート71の間の冷媒流路101と冷媒貫通穴90とが分離されている。
インナープレート74のうち冷媒貫通穴90を形成する貫通穴形成部90eがトップアウタプレート71に対してろう付けによって接合されている。
このことにより、インナープレート74およびトップアウタプレート71の間の冷却水流路100と冷媒貫通穴90とが分離されている。
第1アウタプレート72Aのうち冷媒貫通穴90を形成する貫通穴形成部90cがインナープレート74とともに、冷媒導入口101aを形成する。冷媒導入口101aは、冷媒貫通穴90から冷媒を冷媒流路101に導くために設けられている。
但し、図72に示すように、凝縮部10Aのうち最も第2方向D2他方側に配置されている第1アウタプレート72Aの冷媒貫通穴90が閉じられている。
図73に示すように、インナープレート74のうち冷媒貫通穴97を形成する貫通穴形成部97eがトップアウタプレート71に対してろう付けによって接合されている。
このことにより、インナープレート74およびトップアウタプレート71の間の冷却水流路100と冷媒貫通穴97とが分離されている。
第1アウタプレート72Aのうち冷媒貫通穴97を形成する貫通穴形成部97cは、インナープレート74とともに、冷媒排出口101bを形成する。冷媒排出口101bは、冷媒流路101から冷媒を冷媒貫通穴97に排出させる。
インナープレート74のうち冷媒貫通穴97を形成する貫通穴形成部97eが第1アウタプレート72Aに対してろう付けによって接合されている。このことにより、冷媒貫通穴97と冷却水流路100とが分離されている。
このように構成される凝縮部10Aの冷媒貫通穴97は、過冷却部10Bの冷媒貫通穴97に連通されている。冷媒貫通穴97は、ブラケット78の排出口114に連通されている。
図74に示す過冷却部10Bでは、逆向き第2アウタプレート73Bのうち冷媒貫通穴97を形成する貫通穴形成部97cがインナープレート74に対してろう付けによって接合されている。
このことにより、逆向き第2アウタプレート73Bおよびインナープレート74の間の冷媒流路101と冷媒貫通穴97とが分離されている。
インナープレート74のうち冷媒貫通穴97を形成する貫通穴形成部97cが逆向き第2アウタプレート73Bに対してろう付けによって接合されている。このことにより、インナープレート74および逆向き第2アウタプレート73Bの間の冷却水流路100と冷媒貫通穴97とが分離されている。
本実施形態の冷媒貫通穴97のうち第2方向D2他方側(例えば、図74中下側)は、ボトムプレート77、ブラケット78を通して貫通されている。冷媒貫通穴97のうち第2方向D2他方側は、排出口114を形成する。
図75、図76に示す過冷却部10Bでは、逆向き第1アウタプレート72Bのうち冷媒貫通穴90を形成する貫通穴形成部90cは、第1アウタプレート72Aに対してろう付けによって接合されている。
このことにより、第1アウタプレート72Aおよび逆向き第1アウタプレート72Bの間の冷媒流路101と冷媒貫通穴90とが分離されている。
逆向き第1アウタプレート72Bのうち冷媒貫通穴90を形成する貫通穴形成部90cは、インナープレート74とともに、冷媒導入口101aを形成する。冷媒導入口101aは、冷媒貫通穴90から冷媒流路101に導くために設けられている。
インナープレート74のうち冷媒貫通穴90を形成する貫通穴形成部94eが逆向き第1アウタプレート72Bに対してろう付けによって接合されている。このことにより、インナープレート74および逆向き第1アウタプレート72Bの間の冷却水流路100と冷媒貫通穴90とが分離されている。
このように冷媒貫通穴90は、過冷却部10Bの複数の冷媒流路101に連通されている。冷媒貫通穴90は、過冷却部10Bの複数の冷却水流路100に対して分離されている。
図77に示す凝縮部10Aにおいて、インナープレート74のうち冷媒貫通穴97を形成する貫通穴形成部97eは、トップアウタプレート71に対してろう付けによって接合されている。
このことにより、インナープレート74およびトップアウタプレート71の間の冷却水流路100と冷媒貫通穴97とが分離されている。
第1アウタプレート72Aのうち冷媒貫通穴97を形成する貫通穴形成部97cは、インナープレート74に対してろう付けによって接合されている。このことにより、インナープレート74および第1アウタプレート72Aの間の冷媒流路101と冷媒貫通穴97とが分離されている。
インナープレート74のうち冷媒貫通穴97を形成する貫通穴形成部97eは、第1アウタプレート72Aに対してろう付けによって接合されている。このことにより、インナープレート74および第1アウタプレート72Aの間の冷却水流路100と冷媒貫通穴97とが分離されている。
このような凝縮部10Aでは、冷媒貫通穴97は、複数の冷媒流路101と分離されている。冷媒貫通穴97は、複数の冷却水流路100と分離されている。
図78に示す過冷却部10Bでは、逆向き第1アウタプレート72Bのうち冷媒貫通穴97を形成する貫通穴形成部94cは、インナープレート74とともに、冷媒排出口101bを形成する。冷媒排出口101bは、冷媒流路101から冷媒貫通穴94に冷媒を排出させる。
インナープレート74のうち冷媒貫通穴94を形成する貫通穴形成部94eが逆向き第1アウタプレート72Bに対してろう付けによって接合されている。このことにより、インナープレート74および逆向き第1アウタプレート72Bの間の冷却水流路100と冷媒貫通穴94とが分離されている。
本実施形態の過冷却部10Bの冷媒貫通穴94と凝縮部10Aの冷媒貫通穴97と連通されている。過冷却部10Bの冷媒貫通穴94のうち第2方向D2他方側(例えば、図78中下側)は、ボトムプレート77によって塞がれている。
次に、本実施形態の熱交換器1の作動について説明する。
まず、冷却水が冷却水コネクタ40aおよび冷却水入口112を通して冷却水貫通穴96に流れる。冷却水貫通穴96に流れる冷却水がトッププレート70およびブラケット78の間の複数の冷却水流路100に分流される。
このように複数の冷却水流路100に分流された冷却水が冷却水貫通穴95に集合されて冷却水出口113および冷却水コネクタ40bを通して排出される。
一方、圧縮機から吐出される高圧冷媒が冷媒コネクタ30aおよび冷媒入口110を通して冷媒貫通穴90に流れる。この冷媒貫通穴90に流れる高圧冷媒が凝縮部10Aの複数の冷媒流路101に分流される。複数の冷媒流路101に流れる高圧冷媒は、冷媒貫通穴94に集合される。
このとき、複数の冷媒流路101内の高圧冷媒は、凝縮部10Aの冷却水流路100内の冷却水に放熱する。
その後、高圧冷媒が冷媒貫通穴94から過冷却部10Bの冷媒貫通穴97、排出口114、およびレシーバコネクタ50を通して気液分離器20に流れる。気液分離器20では、冷媒貫通穴92を通過した高圧冷媒を気相冷媒と液相冷媒とに分離して、気相冷媒および液相冷媒のうち液相冷媒を排出する。
気液分離器20からの液相冷媒はレシーバコネクタ50、導入口115を通して過冷却部10Bの冷媒貫通穴90に流れる。冷媒貫通穴90内の液相冷媒は、過冷却部10Bの複数の冷媒流路101に分流される。
過冷却部10Bの複数の冷媒流路101内の液相冷媒は、冷媒貫通穴94に集合される。
このとき、過冷却部10Bの複数の冷媒流路101内の液相冷媒は、過冷却部10Bの冷却水流路100内の冷却水に放熱する。このことにより、複数の冷媒流路101内の液相冷媒は、過冷却されることになる。
その後、冷媒貫通穴94に集合される液相冷媒は、凝縮部10Aの冷媒貫通穴97に流れる。すると、冷媒貫通穴97内の液相冷媒は、インナープレート74および第1アウタプレート72Aの間の冷媒流路101、冷媒出口111、および冷媒コネクタ30bを通して減圧弁に流れる。
以上説明した本実施形態によれば、本実施形態の熱交換器1は、プレート積層体10、および気液分離器20を備える。プレート積層体10には、冷媒入口110および冷媒出口111が形成されている。冷媒入口110および冷媒出口111は、凝縮部10Aに対して第2方向D2一方側(例えば、図68中上側)に配置されている。
これにより、上記第1実施形態と同様に、車両へ熱交換器1を搭載する際の組み付け工数を減らすことができる。さらに、車両への熱交換器1の搭載性を向上することができる。
本実施形態では、冷却水入口112および冷却水出口113が凝縮部10Aに対して第2方向D2一方側(例えば、図67中上側)に配置されている。このため、冷却水入口112および冷却水出口113のそれぞれに冷却水配管を接続する工程を容易に実施することができる。
本実施形態では、逆向き第1アウタプレート72Bと第1アウタプレート72Aとは、共通のプレートによって構成されている。このため、共通の金型を用いて逆向き第1アウタプレート72Bと第1アウタプレート72Aを製造することができる。よって、製造コストを下げることができる。
(第4実施形態)
上記第3実施形態では、気液分離器20、凝縮部10A、および過冷却部10Bによって熱交換器1を構成した例について説明した。
しかし、これに代えて、気液分離器20および過冷却部10Bを削除して、凝縮部10Aによって熱交換器1を構成した本第4実施形態について図79〜図87を参照して説明する。図79〜図87において、図1〜図4と同一の符号は、同一のものを示し、その説明を省略する。
本実施形態の熱交換器1は、図79〜図81に示すように、プレート積層体10、冷媒コネクタ30a、30b、冷却水コネクタ40a、40bを備える。本実施形態のプレート積層体10は、凝縮部10Aによって構成されている。冷媒コネクタ30a、30b、冷却水コネクタ40a、40bは、上記第1実施形態と同様、凝縮部10Aに対して第2方向D2一方側(例えば、図80中上側)に配置されている。
プレート積層体10は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、複数のインナープレート74を備える。
これに加えて、プレート積層体10には、ボトムプレート77、ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80が設けられている。
プレート積層体10には、冷媒貫通穴90、91、92、97および冷却水貫通穴95、96が設けられている。冷媒貫通穴90、91、92、97および冷却水貫通穴95、96は、それぞれ、プレート積層体10において第2方向D2に亘って形成されている。
図80のプレート積層体10のうちトッププレート70、トップアウタプレート71に対して第2方向D2他方側(図80中下側)には、複数の第1アウタプレート72、および複数のインナープレート74が1つずつ交互に第2方向D2他方側に並べられている。
プレート積層体10のうち複数の第1アウタプレート72、複数のインナープレート74とボトムプレート77、ブラケット78との間には、複数の第2アウタプレート73、複数のインナープレート74が1つずつ交互に第2方向D2他方側に並べられている。
まず、プレート積層体10のトッププレート70およびトップアウタプレート71の間には冷媒流路101が形成されている。トッププレート70には、冷媒流路101に連通されている冷媒入口110が形成されている。トップアウタプレート71のうち冷媒貫通穴90を形成する貫通穴形成部90kがトッププレート70に対してろう付けによって接合されている。
このことにより、トッププレート70およびトップアウタプレート71の間の冷媒流路101と冷媒貫通穴90とが分離されている。
インナープレート74のうち冷媒貫通穴90を形成する貫通穴形成部90eがトップアウタプレート71に対してろう付けによって接合されている。このことにより、インナープレート74およびトップアウタプレート71の間の冷却水流路100と冷媒貫通穴90とが分離されている。
第1アウタプレート72のうち冷媒貫通穴90を形成する貫通穴形成部90cがインナープレート74とともに、冷媒導入口101aを形成する。冷媒導入口101aは、第1アウタプレート72およびインナープレート74の間の冷媒流路101に冷媒貫通穴90からの冷媒を導くために設けられている。
但し、図83に示すように、プレート積層体10のうち最も第2方向D2他方側(例えば図83中下側)に配置されている第1アウタプレート72Aの冷媒貫通穴90が閉じられている。
図84に示すように、インナープレート74のうち冷媒貫通穴91を形成する貫通穴形成部91eがトップアウタプレート71に対してろう付けによって接合されている。このことにより、インナープレート74およびトップアウタプレート71の間の冷却水流路100と冷媒貫通穴91とが分離されている。
インナープレート74のうち冷媒貫通穴91を形成する貫通穴形成部91eが第1アウタプレート72に対してろう付けによって接合されている。このことにより、インナープレート74および第1アウタプレート72の間の冷却水流路100と冷媒貫通穴91とが分離されている。
第1アウタプレート72のうち冷媒貫通穴91を形成する貫通穴形成部91cがインナープレート74とともに、冷媒排出口101bを形成する。冷媒排出口101bは、第1アウタプレート72およびインナープレート74の間の冷媒流路101から冷媒貫通穴91に冷媒を排出させる。
このことにより、トッププレート70およびトップアウタプレート71の間の冷媒流路101と冷媒貫通穴91とが分離されている。冷媒貫通穴91は、トップアウタプレート71によって塞がれている。
このような冷媒貫通穴91は、複数の冷媒流路101に連通されている。冷媒貫通穴91は、複数の冷却水流路100と分離されている。
図85に示すように、第2アウタプレート73のうち冷媒貫通穴91を形成する貫通穴形成部91dがインナープレート74とともに、冷媒導入口101aを形成する。冷媒導入口101aは、冷媒貫通穴91からの冷媒を冷媒流路101に導くために設けられている。
インナープレート74のうち冷媒貫通穴91を形成する貫通穴形成部91dが第2アウタプレート73に対してろう付けによって接合されている。このことにより、第2アウタプレート73およびインナープレート74の間の冷却水流路100と冷媒貫通穴91とが分離されている。
ここで、プレート積層体10のうち最も第2方向D2他方側(図85中下側)に配置されている第2アウタプレート73の冷媒貫通穴90がボトムプレート77によって閉じられている。
図86に示すように、インナープレート74のうち冷媒貫通穴97を形成する貫通穴形成部97cは、トップアウタプレート71に対してろう付けによって接合されている。このことにより、インナープレート74とトップアウタプレート71との間の冷却水流路100と冷媒貫通穴97とが分離されている。
冷媒貫通穴97は、トッププレート70およびトップアウタプレート71の間の冷媒流路101に連通されている。
第1アウタプレート72のうち冷媒貫通穴97を形成する貫通穴形成部97cがインナープレート74に対してろう付けによって接合されている。このことにより、第1アウタプレート72およびインナープレート74の間の冷媒流路101と冷媒貫通穴97とが分離されている。
インナープレート74のうち冷媒貫通穴97を形成する貫通穴形成部97eが第1アウタプレート72に対してろう付けによって接合されている。このことにより、冷媒貫通穴97と冷却水流路100とは分離されている。
このようにインナープレート74および第1アウタプレート72の間の冷却水流路100、冷媒流路101が冷媒貫通穴97と分離されている。
図87に示すように、インナープレート74のうち冷媒貫通穴97を形成する貫通穴形成部97eが第2アウタプレート73とともに、冷媒排出口101bを形成する。冷媒排出口101bは、冷媒流路101から冷媒貫通穴97に冷媒を排出させる。
インナープレート74のうち冷媒貫通穴92を形成する貫通穴形成部97eが第2アウタプレート73に対してろう付けによって接合されている。このことにより、第2アウタプレート73およびインナープレート74の間の冷却水流路100と冷媒貫通穴92とが分離されている。
このように複数の第2アウタプレート73と複数のインナープレート74とによって構成される冷媒貫通穴92は、複数の第1アウタプレート72と複数のインナープレート74とによって構成される冷媒貫通穴97に連通されている。冷媒貫通穴97のうち第2方向D2一方側(例えば、図86中上側)は、トッププレート70によって塞がれている。
このような本実施形態では、第1アウタプレート72、第2アウタプレート73は、外形形状が共通に構成されている。
第1アウタプレート72は、上述の如く、貫通穴形成部90c、91c、94c、95c、96c、97cを備える。 第2アウタプレート73は、上述の如く、貫通穴形成部91d、92d、95d、96dを備える。
以下、説明の便宜上、第1アウタプレート72、第2アウタプレート73を纏めて、アウタプレート72、73という。貫通穴形成部90c、91c、94c、95c、96c、97c、貫通穴形成部91d、92d、95d、96dを纏めて、貫通穴形成部90c・・・96dという。
本実施形態のアウタプレート72、73は、それぞれ、貫通穴形成部90c・・・96dのうち異なる組み合わせの貫通穴形成部を備えることにより、異なる種類のアウタプレートである。
次に、本実施形態の熱交換器1の作動について説明する。
まず、冷却水が冷却水コネクタ40aおよび冷却水入口112を通して冷却水貫通穴96に流れる。冷却水貫通穴96に流れる冷却水がトッププレート70およびブラケット78の間の複数の冷却水流路100に分流される。このように複数の冷却水流路100に分流した冷却水が冷却水貫通穴95に集合されて冷却水出口113および冷却水コネクタ40bを通して排出される
一方、圧縮機から吐出される高圧冷媒が冷媒コネクタ30aおよび冷媒入口110を通して冷媒貫通穴90に流れる。この冷媒貫通穴90に流れる高圧冷媒が複数の冷媒流路101に分流される。このように複数の冷媒流路101に分流された高圧冷媒は、冷媒貫通穴91に集合される。
このとき、複数の冷媒流路101内の高圧冷媒は、冷却水流路100内の冷却水に放熱する。
その後、冷媒貫通穴91から第2アウタプレート73毎に第2アウタプレート73およびインナープレート74の間に形成される複数の冷媒流路101に分流される。このように複数の冷媒流路101に分流される高圧冷媒は、冷媒貫通穴92に集合される。
このとき、複数の冷媒流路101内の高圧冷媒は、冷却水流路100内の冷却水に放熱する。
その後、冷媒貫通穴92を通過した高圧冷媒は冷媒貫通穴97を通してトッププレート70およびトップアウタプレート71の間の冷媒流路101に流れる。この冷媒流路101に流れる冷媒は、冷媒出口111および冷媒コネクタ30bを通して減圧弁に流れる。
次に、本実施形態の熱交換器1の製造方法について説明する。
まず、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数の第2アウタプレート73、複数のインナープレート74を準備する。ボトムプレート77、ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80を準備する。
次の工程では、このように準備したトッププレート70、トップアウタプレート71、・・・ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80を積層して仮固定して、仮固定プレート積層体を成形する。
次の工程では、仮固定プレート積層体に対して冷媒コネクタ30a、30b、冷却水コネクタ40a、40bを組み付ける。
次に、このように組み付けた仮固定プレート積層体、冷媒コネクタ30a、30b、冷却水コネクタ40a、40b、およびレシーバコネクタ50を高温炉でろう付けして一体化する。このことにより、熱交換器1の製造が完了する。
以上説明した本実施形態によれば、本実施形態の熱交換器1は、プレート積層体10、および気液分離器20を備える。プレート積層体10には、冷媒入口110および冷媒出口111が形成されている。冷媒入口110および冷媒出口111は、凝縮部10Aに対して第2方向D2一方側(例えば、図80中上側)に配置されている。
これにより、上記第1実施形態と同様に、車両へ熱交換器1を搭載する際の組み付け工数を減らすことができる。さらに、車両への熱交換器1の搭載性を向上することができる。
本実施形態では、冷却水入口112および冷却水出口113が凝縮部10Aに対して第2方向D2一方側(例えば、図81中上側)に配置されている。このため、冷却水入口112および冷却水出口113のそれぞれに冷却水配管を接続する工程を容易に実施することができる。
本実施形態では、上述の如く、異なる種類のアウタプレート毎に貫通穴形成部を形成するための入れ子金型を取り替えつつ、金型のうち入れ子金型以外コアやキャビティーを共通部品として用いることにより、アウタプレート72、73を成形する。
このことにより、アウタプレート毎に全て異なる金型を用いてアウタプレート72、73を成形する場合に比べて、製造コストを低減することができる。
(第5実施形態)
上記第4実施形態では、第3方向D3一方側に冷媒が流れる冷媒流路101と、第3方向D3他方側に冷媒が流れる冷媒流路101とによって凝縮部10Aを構成した例について説明した。
しかし、第3方向D3一方側に冷媒が流れる冷媒流路101によって凝縮部10Aを構成した本第5実施形態について図88〜図90を参照して説明する。図88〜図90において、図79〜図81と同一の符号は、同一のものを示し、その説明を省略する。
本実施形態の熱交換器1は、図88〜図90に示すように、プレート積層体10、冷媒コネクタ30a、30b、冷却水コネクタ40a、40bを備える。本実施形態のプレート積層体10は、凝縮部10Aによって構成されている。冷媒コネクタ30a、30b、冷却水コネクタ40a、40bは、上記第1実施形態と同様、凝縮部10Aに対して第2方向D2一方側(例えば、図89中上側)に配置されている。
プレート積層体10は、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数のインナープレート74を備える。これに加えて、プレート積層体10には、ボトムプレート77、ブラケット78、複数の冷却水フィン79、および複数の冷媒フィン80が設けられている。
プレート積層体10には、冷媒貫通穴90、91および冷却水貫通穴95、96が設けられている。冷媒貫通穴90、91および冷却水貫通穴95、96は、それぞれ、トッププレート70、トップアウタプレート71、複数の第1アウタプレート72、複数のインナープレート74を第2方向D2に貫通している。
図89のプレート積層体10のうちトッププレート70、トップアウタプレート71に対して第2方向D2他方側には、複数の第1アウタプレート72、および複数のインナープレート74が1つずつ交互に第2方向D2他方側に並べられている。ここで、第2方向D2他方側とは、例えば、図89中下側を意味する。
トッププレート70のうち冷媒貫通穴90を形成する貫通形成部は、冷媒入口110を構成している。トッププレート70のうち冷媒貫通穴91を形成する貫通形成部は、冷媒出口111を構成している。
トッププレート70のうち冷却水貫通穴96を形成する貫通形成部は、冷却水入口112を構成している。トッププレート70のうち冷却水貫通穴95を形成する貫通形成部は、冷却水出口113を構成している。
プレート積層体10のうち複数の第1アウタプレート72、複数のインナープレート74に対して第2方向D2他方側(例えば、図89中下側)には、ボトムプレート77、ブラケット78が配置されている。
冷媒貫通穴90のうち第2方向D2他方側は、ボトムプレート77によって塞がれている。冷媒貫通穴91のうち第2方向D2他方側は、ボトムプレート77によって塞がれている。冷却水貫通穴96のうち第2方向D2他方側は、ボトムプレート77によって塞がれている。冷却水貫通穴95のうち第2方向D2他方側は、ボトムプレート77によって塞がれている。
まず、プレート積層体10では、トッププレート70、トップアウタプレート71に対して第2方向D2他方側(例えば、図89中下側)には、冷却水流路100と冷媒流路101とが1つずつ交互に第2方向D2に並べられている。
冷媒貫通穴90は、上記第4実施形態と同様に、複数の冷媒流路101に連通されている。冷媒貫通穴91は、上記第4実施形態と同様に、複数の冷媒流路101に連通されている。
冷却水貫通穴96は、上記第4実施形態と同様に、複数の冷却水流路100に連通されている。冷却水貫通穴95は、上記第4実施形態と同様に、複数の冷却水流路100に連通されている。
次に、本実施形態の熱交換器1の作動について説明する。
まず、冷却水が冷却水コネクタ40aおよび冷却水入口112を通して冷却水貫通穴96に流れる。冷却水貫通穴96に流れる冷却水がトッププレート70およびブラケット78の間の複数の冷却水流路100に分流される。複数の冷却水流路100を通過した冷却水が冷却水貫通穴95に集合されて冷却水出口113および冷却水コネクタ40bを通して排出される。
一方、圧縮機から吐出される高圧冷媒が冷媒コネクタ30aおよび冷媒入口110を通して冷媒貫通穴90に流れる。この冷媒貫通穴90に流れる高圧冷媒が複数の冷媒流路101に分流される。このように複数の冷媒流路101に分流される高圧冷媒は、冷媒貫通穴91に集合される。
このとき、複数の冷媒流路101内の高圧冷媒は、冷却水流路100内の冷却水に放熱する。
その後、冷媒貫通穴91から高圧冷媒は冷媒貫通穴91に流れる。この冷媒貫通穴91を通過した高圧冷媒は冷媒出口111から減圧弁に流れる。
以上説明した本実施形態によれば、本実施形態の熱交換器1は、プレート積層体10、および気液分離器20を備える。プレート積層体10には、冷媒入口110および冷媒出口111が形成されている。冷媒入口110および冷媒出口111は、凝縮部10Aに対して第2方向D2一方側(例えば、図89中上側)に配置されている。
これにより、上記第1実施形態と同様に、車両へ熱交換器1を搭載する際の組み付け工数を減らすことができる。さらに、車両への熱交換器1の搭載性を向上することができる。
本実施形態では、冷却水入口112および冷却水出口113が凝縮部10Aに対して第2方向D2一方側(例えば、図90中上側)に配置されている。このため、冷却水入口112および冷却水出口113のそれぞれに冷却水配管を接続する工程を容易に実施することができる。
(他の実施形態)
(1)上記第1〜第5実施形態では、本発明の熱交換器として、車載空調装置用の熱交換器1を用いた例について説明したが、これに代えて、車載空調装置以外の他の機器に適用される熱交換器1を本発明の熱交換器としてもよい。
(2)上記第1〜第5実施形態では、第1アウタプレート72において、図7に示すように、貫通穴形成部90c、91c、94c、95c、96c、97cを配置した例について説明した。
しかし、第1アウタプレート72において、貫通穴形成部90c、91c、94c、95c、96c、97cを次の(a)(b)(c)(d)(e)(f)(g)のように配置してもよい。
(a)例えば、図91に示すように、貫通穴形成部95cを貫通穴形成部90c、97cの間に配置して、かつ貫通穴形成部96cを貫通穴形成部91c、94cの間に配置してもよい。
(b)図91に示すように、貫通穴形成部95cに対して貫通穴形成部90c、97cを第3方向D3一方側に配置して、かつ貫通穴形成部96cに対して貫通穴形成部91c、94cを第3方向D3他方側に配置してもよい。
(c)第1アウタプレート72、複数の第2アウタプレート73、インナープレート74、第1仕切りアウタプレート75、第2仕切りアウタプレート76、逆向き第2アウタプレート73Aにおいても同様である。
(d)上記第2実施形態で用いる第2アウタプレート73Bにおいても、貫通穴形成部90d、91d、92d、95d、96dを図60以外の配置にしてもよい。
(e)上記第2実施形態で用いる第2仕切りアウタプレート76Aにおいても、貫通穴形成部90g、92g、94g、95g、96gを図61以外の配置にしてもよい。
(f)上記第3実施形態で用いる第1アウタプレート72Aにおいて、貫通穴形成部94c、95c、96cを図69以外の配置にしてもよい。
(g)上記第3実施形態で用いる逆向き第1アウタプレート72Bにおいて、貫通穴形成部90c、94c、95c、96c、97cを図70以外の配置にしてもよい。
(3)上記第2実施形態では、凝縮部10Aに対して第2方向D2一方側に冷媒入口110および冷媒出口111を配置した例について説明した。しかし、これに代えて、凝縮部10Aに対して第2方向D2他方側に冷媒入口110および冷媒出口111を配置してもよい。
上記第4実施形態においても、凝縮部10Aに対して第2方向D2一方側に冷媒入口110および冷媒出口111を配置する場合に限らず、凝縮部10Aに対して第2方向D2他方側に冷媒入口110および冷媒出口111を配置してもよい。
同様に、上記第第5実施形態においても、凝縮部10Aに対して第2方向D2一方側に冷媒入口110および冷媒出口111を配置する場合に限らず、凝縮部10Aに対して第2方向D2他方側に冷媒入口110および冷媒出口111を配置してもよい。
(4)上記第1実施形態および上記第3実施形態では、冷媒入口110および冷媒出口111をプレート積層体10のうち凝縮部10Aに対して過冷却部10Bの反対側に配置した例について説明した。
しかし、これに代えて、プレート積層体10のうち過冷却部10Bに対して凝縮部10Aの反対側に冷媒入口110および冷媒出口111を配置してもよい。すなわち、冷媒入口110および冷媒出口111を、プレート積層体10のうち気液分離器20側に配置してもよい。
この場合、冷媒入口110から流れる冷媒を凝縮部10Aに導くための冷媒貫通流路と、過冷却部10Bから流れる液相冷媒を冷媒出口111に導くための冷媒貫通流路とをプレート積層体10に設けることになる。
(5)上記第1〜第6実施形態では、第2方向D2に並ぶ2つのプレートのうち第2方向D2の他方側のプレートの貫通孔形成部が突起部(すなわち、リブ)を構成している。この突起部が2つのプレートの底部の間に冷却水流路100、或いは冷媒流路101を構成している。
例えば、図29において、第2方向D2に並ぶインナープレート74および第2アウタプレート73Aのうち、第2アウタプレート73Aの貫通孔形成部94dが突起部(すなわち、リブ)を構成している。この貫通孔形成部94dがインナープレート74の底部74aおよび第2アウタプレート73Aの底部73aの間に冷媒流路101を構成している。
しかし、これに代えて、第2方向D2に並ぶ2つのプレートのそれぞれに貫通孔形成部や突起部を構成し、前記それぞれの貫通孔形成部や突起部によって2つのプレートの底部の間に冷却水流路100、或いは冷媒流路101を構成してもよい。
図93において、プレート積層体10において冷媒貫通穴92を構成する構造の具体例を示す。
第2仕切りアウタプレート76のうち貫通孔92を形成する貫通孔形成部120が底部76aよりも第2方向D2の他方側に突起されている。
インナープレート74のうち貫通孔92を形成する貫通孔形成部123が底部74aよりも第2方向D2の他方側に突起している。インナープレート74のうち貫通孔形成部123の外周側には、底部74aよりも第2方向D2の一方側に突起する突起部121が設けられている。
第2アウタプレート73Aのうち貫通孔92を形成する貫通孔形成部124が底部73aよりも第2方向D2の一方側に突起している。第2アウタプレート73Aのうち貫通孔形成部124の外周側には、底部73aよりも第2方向D2の他方側に突起する突起部122が設けられている。
ここで、第2仕切りアウタプレート76のうち貫通孔形成部120とインナープレート74の突起部121とが接合されて第2仕切りアウタプレート76の底部76aとインナープレート74の底部74aとの間に冷却水流路100が構成されている。貫通孔形成部120の第2方向D2寸法aと突起部121の第2方向D2寸法bとが同一になっている。
インナープレート74の貫通孔形成部123と第2アウタプレート73Aの貫通孔形成部124とが接合されてインナープレート74の底部74aと第2アウタプレート73Aの底部73aとの間に冷媒流路101が構成されている。貫通孔形成部123の第2方向D2寸法aと貫通孔形成部124の第2方向D2寸法bとが同一になっている。
第2アウタプレート73Aの突起部122とインナープレート74の突起部121と接合されて第2アウタプレート73Aの底部73aとインナープレート74の底部74aの間に冷却水流路100が構成されている。突起部122の第2方向D2寸法aと突起部121の第2方向D2寸法bとが同一になっている。
なお、冷媒貫通穴92以外の冷媒貫通穴91、92・・・94を構成する構造においても、図94と同様に、2つのプレートのそれぞれの貫通孔形成部や突起部によって2つのプレートの底部の間に冷却水流路100、或いは冷媒流路101を構成してもよい。
(6)なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
(まとめ)
上記第1〜5実施形態、および他の実施形態の一部または全部に記載された第1の観点によれば、熱交換器は、プレート積層体、および気液分離器を備える。
プレート積層体は、第1方向に拡がる板状に形成されて第1方向に交差する第2方向に積層されている第1プレート、第2プレート、および第3プレートを備える。
プレート積層体は、第1プレート、第2プレート、および第3プレートに対して第2方向に配置され、かつ第1方向に拡がる板状に形成されて第2方向に積層されている第4プレート、第5プレート、および第6プレートを備える。
第1プレートおよび第2プレートの間には、冷媒入口から流れる冷媒が流通する第1冷媒流路(101)が形成され、第2プレートおよび第3プレートの間には、熱媒体が流通する第1熱媒体流路が形成されている。
第1プレート、第2プレート、および第3プレートは、第1冷媒流路内の冷媒から第1熱媒体流路の熱媒体に放熱する凝縮部を構成する。気液分離器は、第1冷媒流路から排出される冷媒を気相冷媒と液相冷媒に分離して気相冷媒および液相冷媒のうち液相冷媒を排出する。
第4プレートおよび第5プレートの間には、気液分離器から排出される液相冷媒が冷媒出口に向けて流れる第2冷媒流路が形成されている。第5プレートおよび第6プレートの間には、熱媒体が流通する第2熱媒体流路が形成されている。
第4プレート、第5プレート、および第6プレートは、第2冷媒流路内の液相冷媒から第2熱媒体流路の熱媒体に放熱する過冷却部を構成する。冷媒入口および冷媒出口は、凝縮部に対して過冷却部の反対側に配置されている。
第2の観点によれば、プレート積層体は、第1方向に拡がる板状に形成されて第2方向に積層されている第7プレート、第8プレート、および第9プレートを備える。
第7プレート、第8プレート、第9プレートは、第1プレート、第2プレート、第3プレートと、第4プレート、第5プレート、第6プレートとの間に配置されている。
第7プレートおよび第8プレートの間には、第1冷媒流路からの冷媒が気液分離器に向けて流通する第3冷媒流路が形成されている。第8プレートおよび第9プレートの間には、熱媒体が流通する第3熱媒体流路が形成されている。
第7プレート、第8プレート、および第9プレートは、第3冷媒流路内の冷媒から第3熱媒体流路の熱媒体に放熱する凝縮部を構成する。
これにより、第1冷媒流路および第3冷媒流路のそれぞれで冷媒を冷却してから気液分離器に流入させることができる。このため、気液分離器に流入させる冷媒をより一層放熱させることができる。
第3の観点によれば、第1冷媒流路および第3冷媒流路のうち一方の冷媒流路には、冷媒が第1方向の一方側に流れ、第1冷媒流路および第3熱媒体流路のうち一方の冷媒流路以外の他方の冷媒流路には、冷媒が第1方向の他方側に流れる。
第4の観点によれば、熱交換器は、コネクタを備える。プレート積層体には、凝縮部からの冷媒を排出するための排出口と、気液分離器から排出される液相冷媒を過冷却部に導くための導入口とが形成されている。コネクタは、排出口からの冷媒を気液分離器に導くとともに、気液分離器からの液相冷媒を導入口に導く。
これにより、コネクタによってプレート積層体および気液分離器の間を接続することができる。
第5の観点によれば、第1プレート、第2プレート、および第3プレートには、第1プレート、第2プレート、および第3プレートを貫通して第2冷媒流路から液相冷媒を冷媒出口に導くための貫通流路が構成されている。
第6の観点によれば、熱交換器は、プレート積層体、および気液分離器を備える。プレート積層体は、第1方向に拡がる板状に形成されて第1方向に交差する第2方向に積層されている第1プレート、第2プレート、および第3プレートを備える。
熱交換器は、第1プレート、第2プレート、および第3プレートに対して第2方向の一方側に配置され、かつ第1方向に拡がる板状に形成されて第2方向に積層されている第4プレート、第5プレート、および第6プレートを備える。
プレート積層体には、排出口および導入口が形成されている。
第1プレートおよび第2プレートの間には、冷媒入口から流れる冷媒が排出口に向けて流通する第1冷媒流路が形成され、第2プレートおよび第3プレートの間には、熱媒体が流通する第1熱媒体流路が形成されている。
第1プレート、第2プレート、および第3プレートは、第1冷媒流路内の冷媒から第1熱媒体流路の熱媒体に放熱する凝縮部を構成する。
気液分離器は、凝縮部から排出される冷媒を気相冷媒と液相冷媒に分離して気相冷媒および液相冷媒のうち液相冷媒を導入口に向けて排出する。第4プレートおよび第5プレートの間には、導入口からの液相冷媒が冷媒出口に向けて流通される第2冷媒流路が形成されている。
第5プレートおよび第6プレートの間には、熱媒体が流通する第2熱媒体流路が形成されている。第4プレート、第5プレート、および第6プレートは、第2冷媒流路内の液相冷媒から第2熱媒体流路の熱媒体に放熱する過冷却部を構成する。
第4プレート、第5プレート、および第6プレートには、第4プレート、第5プレート、および第6プレートを貫通して第1冷媒流路からの冷媒を排出口に導くための第1貫通流路が構成されている。
第1プレート、第2プレート、および第3プレートには、第1プレート、第2プレート、および第3プレートを貫通して第2冷媒流路から液相冷媒を冷媒出口に導くための第2貫通流路が構成されている。
排出口および導入口は、過冷却部に対して凝縮部の反対側に配置されている。
第7の観点によれば、熱交換器は、排出口からの冷媒を気液分離器に導くとともに、気液分離器からの液相冷媒を導入口に導くためのコネクタを備える。
これにより、プレート積層体および気液分離器の間をコネクタによって接続することができる。
第8の観点によれば、熱交換器において、第6プレートのうち第1貫通流路を形成する第1貫通流路形成部が第5プレートに接合されて、第2貫通流路と第2熱媒体流路とを分離する。
第5プレートのうち第1貫通流路を形成する第2貫通流路形成部が第4プレートに接合されて、第2貫通流路と第2冷媒流路とを分離する。第3プレートのうち第2貫通流路を形成する第3貫通流路形成部が第2プレートに接合されて、第2貫通流路と第1熱媒体流路とを分離する。
第2プレートのうち第2貫通流路を形成する第4貫通流路形成部が第1プレートに接合されて、第2貫通流路と第1冷媒流路とを分離する。
第9の観点によれば、熱交換器において、第1プレート、第2プレート、および第3プレートには、第1プレート、第2プレート、および第3プレートを貫通して冷媒入口からの冷媒を第1冷媒流路に流すための第3貫通流路が形成されている。
第1プレート、第2プレート、および第3プレートには、第1プレート、第2プレート、および第3プレートを貫通して第1冷媒流路からの冷媒を排出口に導くための第4貫通流路が構成されている。
第4プレート、第5プレート、および第6プレートには、第4プレート、第5プレート、および第6プレートを貫通して導入口からの液相冷媒を第2冷媒流路に導くための第5貫通流路を構成する。
第10の観点によれば、熱交換器において、第3プレートのうち第3貫通流路を形成する第5貫通流路形成部が第2プレートに接合されて、第3貫通流路と第1熱媒体流路とを分離する。
第2プレートのうち第3貫通流路を形成する第6貫通流路形成部が第1プレートとともに、第3貫通流路からの冷媒を第1冷媒流路に導くための冷媒導入口を形成する。第3プレートのうち第4貫通流路を形成する第7貫通流路形成部が第2プレートに接合されて、第4貫通流路と第1熱媒体流路とを分離する。
第2プレートのうち第4貫通流路を形成する第8貫通流路形成部が第1プレートとともに、第1冷媒流路からの冷媒を第4貫通流路に排出する冷媒排出口を形成する。第6プレートのうち第5貫通流路を形成する第9貫通流路形成部が第5プレートに接合されて、第5貫通流路と第2熱媒体流路とを分離する。
第5プレートのうち第5貫通流路を形成する第10貫通流路形成部が第4プレートとともに、第5貫通流路からの冷媒を第2冷媒流路に導くための冷媒導入口を形成する。第6プレートのうち第2貫通流路を形成する第11貫通流路形成部が第5プレートに接合されて、第2貫通流路と第2熱媒体流路とを分離する。
第5プレートのうち第2貫通流路を形成する第12貫通流路形成部が第4プレートとともに、第2冷媒流路から第2貫通流路に排出する第2排出口を形成する。
第11の観点によれば、熱交換器において、プレート積層体は、第1方向に拡がる板状に形成されて第2方向に積層されている第7プレート、第8プレート、および第9プレートを備える。
第7プレート、第8プレート、第9プレートは、第1プレート、第2プレート、第3プレートと、第4プレート、第5プレート、第6プレートとの間に配置されている。第7プレートおよび第8プレートの間には、第1冷媒流路からの冷媒が気液分離器に向けて流通する第3冷媒流路が形成されている。
第8プレートおよび第9プレートの間には、熱媒体が流通する第3熱媒体流路が形成されている。第7プレート、第8プレート、および第9プレートは、第3冷媒流路内の冷媒から第3熱媒体流路の熱媒体に放熱する凝縮部を構成する。
第12の観点によれば、熱交換器において、プレート積層体は、第1仕切りプレートおよび第2仕切りプレートを備える。
第1仕切りプレートは、第1プレート、第2プレート、第3プレートと、第7プレート、第8プレート、第9プレートとの間に配置されている。第2仕切りプレートは、第7プレート、第8プレート、第9プレートと、第4プレート、第5プレート、第6プレートとの間に配置されている。
第1仕切りプレートは、第4貫通流路を形成する第13貫通流路形成部と、第2貫通流路を形成する第14貫通流路形成部を形成する。第2仕切りプレートは、第1貫通流路を形成する第15貫通流路形成部と、第2貫通流路を形成する第16貫通流路形成部とを形成する。
第13の観点によれば、熱交換器において、第2プレート、第1仕切りプレート、および第2仕切りプレート、第5プレートは、それぞれ、外形が共通に形成されている。
第2貫通流路形成部、第4貫通流路形成部、第6貫通流路形成部、第8貫通流路形成部、第10貫通流路形成部、第12貫通流路形成部、第13貫通流路形成部、第14貫通流路形成部、第15貫通流路形成部、および第16貫通流路形成部を纏めて複数の貫通流路形成部とする。
第2プレート、第1仕切りプレート、第2仕切りプレート、および第5プレートは、それぞれ、複数の貫通流路形成部のうち異なる組み合わせの貫通流路形成部を備えることにより、異なる種類のプレートになっている。
第14の観点によれば、熱交換器は、プレート積層体、および気液分離器を備える。プレート積層体は、第1方向に拡がる板状に形成されて第1方向に交差する第2方向に積層されている第1プレート、第2プレート、および第3プレートを備える。
プレート積層体には、冷媒が入る冷媒入口と、冷媒を排出する冷媒出口とが形成されている。
第1プレートおよび第2プレートの間には、冷媒入口から流れる冷媒が冷媒出口に向けて流通する第1冷媒流路が形成され、第2プレートおよび第3プレートの間には、熱媒体が流通する第1熱媒体流路が形成されている。
第1プレート、第2プレート、および第3プレートは、第1冷媒流路内の冷媒から第1熱媒体流路の熱媒体に放熱する凝縮部を構成する。冷媒入口および冷媒出口は、凝縮部に対して第2方向の一方側、或いは他方側に配置されている。