JP2021014619A - アルカリ水電解用隔膜ならびに該隔膜の製造方法 - Google Patents

アルカリ水電解用隔膜ならびに該隔膜の製造方法 Download PDF

Info

Publication number
JP2021014619A
JP2021014619A JP2019130457A JP2019130457A JP2021014619A JP 2021014619 A JP2021014619 A JP 2021014619A JP 2019130457 A JP2019130457 A JP 2019130457A JP 2019130457 A JP2019130457 A JP 2019130457A JP 2021014619 A JP2021014619 A JP 2021014619A
Authority
JP
Japan
Prior art keywords
diaphragm
alkaline water
inorganic particles
mass
water electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019130457A
Other languages
English (en)
Other versions
JP7284015B2 (ja
Inventor
信也 中山
Shinya Nakayama
信也 中山
芥川 寛信
Hironobu Akutagawa
寛信 芥川
弘子 原田
Hiroko Harada
弘子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2019130457A priority Critical patent/JP7284015B2/ja
Publication of JP2021014619A publication Critical patent/JP2021014619A/ja
Application granted granted Critical
Publication of JP7284015B2 publication Critical patent/JP7284015B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】より高いイオン伝導性とより高いガスバリア性を両立したアルカリ水電解用隔膜ならびに該隔膜の製造方法を提供すること。【解決手段】有機ポリマーと無機粒子とを含むアルカリ水電解用隔膜であって、該膜の表面に垂直な断面において、長手方向の両端から中央に向かって、該断面の幅aに対し0.4a以上離れた範囲で、該膜の表面と該膜の表面から深さ方向に1μm離れた位置との間の範囲において、有機ポリマーの面積の和に対する無機粒子の面積の和が120%以上であるアルカリ水電解用隔膜を提供する。【選択図】なし

Description

本発明は、アルカリ水電解用隔膜ならびに該隔膜の製造方法に関する。
近年エネルギー源として注目を集めている水素ガスの工業的な製造方法の一つとして水の電気分解が知られている。水の電気分解は、一般的に、導電性を高めるために水酸化ナトリウムや水酸化カリウム等を電解質として添加した水に、直流電流を印加することにより行われている。そのような水の電気分解には、陽極室と陰極室を有し、これらが隔膜により仕切られた電解槽が使用される。
水の電気分解は、電子(又はイオン)の移動により行われる。そのため、電気分解を効率よく行うためには、隔膜には高いイオン透過性が必要とされる。また、陽極室で発生した酸素と、陰極室で発生した水素とを遮断し得るガスバリア性が必要とされる。水の電気分解では、30%程度の高濃度のアルカリ性水溶液が使用され、80〜90℃程度で行われる。このため、水の電気分解に使用されるアルカリ水電解用隔膜には耐高温や耐アルカリ性も必要とされる。また、アルカリ水電解用隔膜としては、より高いイオン伝導性とより高いガスバリア性を両立した隔膜が求められていた。
アルカリ水電解用隔膜としては、非溶媒誘起相分離法(NIPS)によって製造された多孔性膜がこれまでに種々提案されている。
非溶媒誘起相分離法による製膜について、非特許文献1には、非溶媒誘起相分離法によるポリフッ化ビニリデン膜の製造における、塩化リチウム等の添加物のキャスト溶液への添加効果として、塗液の熱力学的混和性を抑制することでNIPS時の溶媒・非溶媒交換を制御する旨が記載されている。
しかしながら、耐アルカリ性、耐熱性を有する樹脂と無機粒子とを併用したアルカリ水電解用隔膜においては、上記添加物に対する知見は多くなかった。
Desalination 192(2006)190−197
本発明の課題は、高いイオン伝導性と高いガスバリア性を両立したアルカリ水電解用隔膜ならびに該隔膜の製造方法を提供することにある。
本発明者らは、有機ポリマーと無機粒子とを含むアルカリ水電解用隔膜において、塩化リチウムを一定量以上添加することにより、膜表面層における無機粒子の割合が増加し、親水性に富んだ表面構造となり、高いイオン伝導性と高いガスバリア性を両立したアルカリ水電解用隔膜を提供できることを見出し、本発明を完成させるに至った。
すなわち、本発明のアルカリ水電解用隔膜は、有機ポリマーと無機粒子とを含むアルカリ水電解用隔膜であって、該膜の表面に垂直な断面において、長手方向の両端から中央に向かって、該断面の幅aに対し0.4a以上離れた範囲で、該膜の表面と該膜の表面から深さ方向に1μm離れた位置との間の範囲において、有機ポリマーの面積の和に対する無機粒子の面積の和が120%以上である。
また、本発明のアルカリ水電解用隔膜の製造方法は、無機粒子及び溶媒を含む分散液を調製する分散液調製工程;該分散液、有機高分子樹脂(R)及び塩化リチウムを混合して樹脂混合液を調製する樹脂混合液調製工程;及び、該樹脂混合液を用いて膜を形成する膜形成工程;を含み、該樹脂混合液調製工程において、該塩化リチウムの添加量が該無機粒子100質量%に対し3.0質量%以上である。
本発明によれば、高いイオン伝導性と高いガスバリア性を両立したアルカリ水電解用隔膜ならびに該隔膜の製造方法を提供できる。
本発明のアルカリ水電解用隔膜の断面の一形態を模式的に示す断面図である。 本発明のアルカリ水電解用隔膜の表面に垂直な断面において、長手方向の両端から中央に向かって、該断面の幅aに対し0.4a以上離れた範囲で、該膜の表面と該膜の表面から深さ方向に1μm離れた位置との間の範囲を模式的に表す図である。
以下に本発明を詳述する。なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。また、本明細書において、「A〜B」の記載は、「A以上、B以下」を意味する。
1.アルカリ水電解用隔膜
本発明のアルカリ水電解用隔膜は、有機ポリマーと無機粒子とを含むアルカリ水電解用隔膜であって、該膜の表面に垂直な断面において、長手方向の両端から中央に向かって、該断面の幅aに対し0.4a以上離れた範囲で、該膜の表面と該膜の表面から深さ方向に1μm離れた位置との間の範囲において、有機ポリマーの面積の和に対する無機粒子の面積の和が120%以上である。
1−1 有機ポリマー
本発明のアルカリ水電解用隔膜は、有機ポリマーを含む。有機ポリマーは無機粒子を保持する。有機ポリマーは無機粒子を保持する隔壁として機能し、後述する無機粒子の親水性表面の減少を最小限なものとしながら、アルカリ溶液中で隔膜から無機粒子が脱落するのを抑制することができる。
上記有機ポリマーとしては、無機粒子を保持し、好ましくはアルカリ溶液中で膨潤することなく、本発明の効果を発揮できる有機高分子樹脂(R)[以下、単に樹脂(R)という場合がある]であれば特に限定されない。上記樹脂(R)としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂;ポリプロピレン等のオレフィン系樹脂;又は、ポリスルホン、ポリスチレン等の芳香族炭化水素系樹脂等が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。なかでも、更に耐熱性、耐アルカリ性に優れたアルカリ水電解用隔膜とすることができる点で、芳香族炭化水素系樹脂が好ましい。
上記芳香族炭化水素系樹脂としては、より具体的には、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリスチレン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド等のポリアリーレンサルファイド樹脂、ポリフェニルスルホン、ポリアリレート、ポリエーテルイミド、ポリイミド、ポリアミドイミド等が挙げられる。なかでも、より一層優れた耐アルカリ性を付与することができる点で、ポリスルホン、ポリエーテルスルホン、及びポリフェニルスルホンからなる群より選択された少なくとも1種が好ましく、製造上の観点で、ポリスルホン、ポリエーテルスルホンがより好ましい。
ポリスルホン、ポリエーテルスルホン、及びポリフェニルスルホンからなる群より選択された少なくとも1種を用いることにより、例えば、非溶媒誘起相分離法や蒸気誘起相分離法を用いて隔膜を製造する際には、スルホニル基が後述の無機粒子との適度な親和性を有することにより、相分離条件の調整が容易となる。また、耐アルカリ性が更に高くなることで、アルカリ溶液中で長時間使用した場合の寸法や質量、抵抗値の安定性や新たな空孔の発生抑制効果により優れたものとなる。
上記樹脂(R)の含有量は、好ましくはアルカリ水電解用隔膜100質量%中3〜40質量%である。上記樹脂(R)の含有量が上述の範囲であると、アルカリ水電解用隔膜のイオン透過性や靱性が良好でありながら、アルカリ溶液中でのアルカリ水電解用隔膜からの無機成分の溶出が更に一層抑制される。また、高いイオン伝導性を示すと共に、イオン透過性、ガスバリア性、耐熱性及び耐アルカリ性にも優れたアルカリ水電解用隔膜となり得る。上記樹脂(R)の含有量は、アルカリ水電解用隔膜100質量%中、より好ましくは5〜35質量%であり、更に好ましくは7〜30質量%である。
上記樹脂(R)の含有量は、本発明のアルカリ水電解用隔膜が後述する多孔性支持体を含まない場合は、アルカリ水電解用隔膜100質量%中5〜40質量%であることが好ましく、より好ましくは10〜35質量%、更に好ましくは10〜25質量%である。本発明のアルカリ水電解用隔膜が有機ポリマーとして後述する多孔性支持体を含む場合は、上記樹脂(R)の含有量は、好ましくはアルカリ水電解用隔膜100質量%中3〜20質量%、より好ましくは5〜18質量%、更に好ましくは7〜15質量%である。
本発明のアルカリ水電解用隔膜は、後述する無機粒子100質量部に対して上記樹脂(R)を10〜40質量部含むことが好ましく、12〜35質量部含むことがより好ましく、15〜33質量部含むことが更に好ましい。無機粒子と上記樹脂(R)の含有割合が上述した範囲であると、アルカリ溶液中でのアルカリ水電解用隔膜からの無機成分の溶出が更に一層抑制される。また、高いイオン伝導性を示すと共に、イオン透過性、ガスバリア性、柔軟性、耐熱性及び耐アルカリ性にも優れたアルカリ水電解用隔膜となり得る。
1−1−1 多孔性支持体
本発明のアルカリ水電解用隔膜は、上述した有機ポリマーと後述する無機粒子を含む膜からなるものであるが、上記有機ポリマーとして多孔性支持体を含んでいてもよい。上記多孔性支持体は、多孔質の有機ポリマーであり、イオン透過性を阻害せず、アルカリ水電解用隔膜の支持体となり得る部材である。上記多孔性支持体は、シート状の部材であることが好ましい。
上記多孔性支持体の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリフェニレンサルファイド等のポリアリーレンサルファイド樹脂、ポリケトン、ポリイミド、ポリエーテルイミド、フッ素系樹脂等の樹脂材料が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なかでも、優れた耐熱性及び耐アルカリ性を発揮できる点で、ポリプロピレン、ポリエチレン、及びポリフェニレンサルファイドからなる群より選択された少なくとも1種の樹脂材料を含むことが好ましく、ポリプロピレン、及びポリフェニレンサルファイドからなる群より選択された少なくとも1種の樹脂材料を含むことがより好ましい。
上記多孔性支持体の形態としては、例えば、不織布、織布(織物)、編物、メッシュ、多孔質膜、フェルト又は不織布と織布の混合布等が挙げられるが、好ましくは、不繊布、織布、メッシュ、又はフェルトが挙げられ、より好ましくは、不織布、織布、メッシュが挙げられる。
上記多孔性支持体としては、なかでも、ポリプロピレン、ポリエチレン、及びポリフェニレンサルファイドからなる群より選択される少なくとも1種の樹脂を含む、不織布、織布、メッシュ、又はフェルトが好ましい。更に、多孔性支持体としては、ポリフェニレンサルファイドを含む、不織布、メッシュ、又はフェルトが好ましい。上記多孔性支持体中のポリプロピレン、ポリエチレン、及びポリフェニレンサルファイドの含有量は、合計で50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましい。
上記多孔性支持体がシート状である場合、上記多孔性支持体の厚みは、本発明のアルカリ水電解用隔膜が本発明の効果を発揮できる限り特に限定されないが、例えば、好ましくは30〜2000μm、より好ましくは50〜1000μm、更に好ましくは80〜500μm、最も好ましくは80〜250μmである。
1−2 無機粒子
本発明のアルカリ水電解用隔膜は、無機粒子を含む。本発明のアルカリ水電解用隔膜は、無機粒子間あるいは粒子と有機ポリマーとの空隙部分に電解液が満たされてイオン透過性を発揮することができる。また、無機粒子を含むことにより、アルカリ水電解用隔膜が親水化し、水の電気分解において発生する酸素ガスや水素ガスが隔膜に付着して電気分解の妨げになることを抑制することができる。
本発明において使用する無機粒子としては、例えば、マグネシウム、ジルコニウム、チタン、亜鉛、アルミニウム、タンタル等の水酸化物又は酸化物、カルシウム、バリウム、鉛、ストロンチウム等の硫酸塩等が挙げられる。なかでも、無機粒子の分散性やアルカリ溶液中での安定性がより一層優れる点で、水酸化マグネシウム、水酸化ジルコニウム、水酸化チタン、酸化ジルコニウム、酸化チタン、硫酸カルシウム、硫酸バリウムが好ましく、水酸化マグネシウム、酸化ジルコニウム、酸化チタン、硫酸バリウムがより好ましい。上記無機粒子は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
無機粒子としては、天然物であっても合成物であってもよい。また、表面が未処理のものであってもよく、溶媒への分散を向上させるために、シランカップリング剤、ステアリン酸、オレイン酸、脂肪酸、高級脂肪酸、カルボン酸エステル、リン酸エステル等により表面処理したものであってもよい。上記無機粒子の形状は、粒子状であれば特に限定されず、不定形;真球状、長楕円球状等の球状;薄片状、六角板状等の板状;繊維状のいずれの形状であってもよいが、溶媒に分散しやすく、樹脂組成物を調製しやすい点で、球状、板状、繊維状であることが好ましく、アルカリ水電解隔膜のイオン透過性や粒子の保持性の点で、板状であることがより好ましい。
上記無機粒子は、アスペクト比が1.0〜8.0であることが好ましい。アスペクト比が上述の範囲であると、イオン透過性がより一層優れ、均一性に優れた隔膜とすることができる。上記アスペクト比は、1.5〜7.0であることがより好ましく、2.0〜6.0であることが更に好ましい。
本明細書中、アスペクト比とは、最長径aと最短径bとの比(a/b)を意味し、粉体状の無機粒子をSEMで観察し、得られた画像の任意の10粒子において、解析ソフト等を使用して、各粒子の最長径aと最短径bとの比(a/b)を測定し、それらの比の単純平均値をその粒子のアスペクト比として求めることができる。
上記最長径aとしては、例えば、粒子の形状が板状の場合、粒子の板面の長径を採用し、繊維状である場合は、繊維の長さを採用する。また、最長径aの中点を通って最長径と直行する径のうちの最も短い径を最短径bとする。上記最短径bとしては、例えば、粒子の形状が板状の場合は、粒子の厚みを採用し、繊維状である場合は、繊維の太さを採用する。粒子の厚み及び繊維の太さとしては、最長径aの中点における厚み、太さをそれぞれ採用する。
上記無機粒子の平均粒子径は、上記無機粒子の分散性がより一層優れる点で、0.01〜2.0μmであることが好ましく、0.05〜1.0μmであることがより好ましく、0.08〜0.7μmであることが更に好ましい。なお、上記平均粒子径は、無機粒子と0.2質量%のヘキサメタリン酸ナトリウム水溶液を用いて分散処理を行った無機粒子分散液を用いて、レーザー回折・散乱法による粒度分布測定から求められる体積平均粒子径(d50)である。上記無機粒子の平均粒子径が上述の範囲であると、高いイオン伝導性を示すと共に、イオン透過性、ガスバリア性により優れた隔膜とすることができる。
上記無機粒子の比表面積は、隔膜のイオン透過性がより一層優れる点で、5〜35m/gが好ましく、5.5〜25m/gであることがより好ましく、6〜20m/gであることが更に好ましい。なお、上記比表面積は、粉体状の無機粒子について液体窒素を用いたBET法により測定される比表面積である。アルカリ水電解用隔膜におけるイオンパスは無機粒子の親水性の高い表面により形成されるため、上記無機粒子の比表面積が上述の範囲であると、イオン透過性により一層優れた隔膜とすることができる。
上記無機粒子の含有量は、好ましくは、アルカリ水電解用隔膜100質量%中30〜95質量%である。上記無機粒子の含有量が上述の範囲であると、アルカリ溶液中での無機成分の溶出がより一層抑制され、高いイオン伝導性を示すと共に、イオン透過性、ガスバリア性、耐熱性及び耐アルカリ性に優れた隔膜とすることができる。上記無機粒子の含有量は、アルカリ水電解用隔膜100質量%中、より好ましくは32〜92質量%、更に好ましくは35〜90質量%である。
上記無機粒子の含有量は、本発明のアルカリ水電解用隔膜が上記多孔性支持体を含まない場合は、アルカリ水電解用隔膜100質量%中60〜95質量%であることが好ましく、より好ましくは65〜92質量%、更に好ましくは75〜90質量%である。
本発明のアルカリ水電解用隔膜が上記多孔性支持体を含む場合は、上記無機粒子の含有量は、好ましくはアルカリ水電解用隔膜100質量%中30〜50質量%、より好ましくは32〜48質量%、更に好ましくは35〜45質量%である。
図1に、本発明のアルカリ水電解用隔膜の一形態を模式的に示す。アルカリ水電解用隔膜1は、単膜層2と支持体層3を含んでいる。単膜層2は、上記樹脂(R)と無機粒子とを含む層であり、支持体層3は、上記樹脂(R)と無機粒子と多孔性支持体とを含む層である。
本発明のアルカリ水電解用隔膜において、上述した単膜層2は、上記支持体層3の一方の面に形成されていてもよいし、両面に形成されていてもよい。
また、本発明のアルカリ水電解用隔膜は、上述した単膜層2は無くても良く、無機粒子と上記樹脂(R)と上記多孔性支持体とが一体化した支持体層3としての複合体であってもよい。上記複合体とすることにより、アルカリ水電解用隔膜の強度と靭性を向上させることができる。
1−3 膜表面構造
本発明のアルカリ水電解用隔膜は、有機ポリマーと無機粒子とを含むアルカリ水電解用隔膜であって、該膜の表面に垂直な断面において、長手方向の両端から中央に向かって、該断面の幅aに対し0.4a以上離れた範囲で、該膜の表面と該膜の表面から深さ方向に1μm離れた位置との間の範囲において、有機ポリマーの面積の和に対する無機粒子の面積の和が120%以上である。換言すると、有機ポリマーの面積の和を100%とした場合の無機粒子の面積の和が120%以上である。
上記有機ポリマーの面積の和に対する無機粒子の面積の和は、120%以上であることが好ましく、140%以上であることがより好ましい。無機粒子の保持を維持するために、上記有機ポリマーの面積の和に対する無機粒子の面積の和の上限としては、280%が挙げられる。上記有機ポリマーの面積の和に対する無機粒子の面積の和を上述した範囲とした場合に、膜表面層における無機粒子の組成割合が増加し、膜表面層が親水性に富んだ構造となり、高いイオン伝導性と高いガスバリア性を両立したアルカリ水電解用隔膜となる。なお、本明細書において、膜表面層とは、膜の表面と、膜の表面から深さ方向に1μm離れた位置との間の範囲の部分を指す。
図2にアルカリ水電解用隔膜1の断面10を模式的に示す。上記有機ポリマーの面積の和に対する無機粒子の面積の和の算出方法を図2を用いて具体的に説明すると、アルカリ水電解用隔膜1の表面11に垂直な断面10において、長手方向の両端から中央に向かって、該断面10の幅aに対し0.4a以上離れた範囲で、該膜の表面11と、該表面11から深さ方向Sに1μm離れた位置との間の範囲12において、FE−SEM測定による断面観察画像を得る。得られた断面観察画像に対して、解析ソフトを用いて画像を明部と準明部に分ける。ここで、明部が無機粒子であり、準明部が有機ポリマーである。そして、明部の面積の和から無機粒子の面積の和を、準明部の面積の和から有機ポリマーの面積の和を得、これらの値から有機ポリマーの面積の和に対する無機粒子の面積の和を求める。
上記アルカリ水電解用隔膜の表面は特に限定されず、例えば、図1におけるアルカリ水電解用隔膜1の単膜層2側の表面でも良いし、支持体層3側の表面でも良い。また、上記無機粒子の面積の和ならびに有機ポリマーの面積の和の値を決定する方法としては、上記範囲12においてFE−SEMで3万倍率に観察した像(例えば、表面から1.0μm×4.2μm視野)で評価して決定することが好ましい。支持体層3側の表面を観察する場合、後述の基材成分を含まない視野を観察する。本発明のアルカリ水電解用隔膜では、このように決定した有機ポリマーの面積の和に対する無機粒子の面積の和が120%以上であれば、イオン伝導性とガスバリア性の向上が両立し、アルカリ水の電気分解に好適に用いることができる隔膜とすることができる。なお、有機ポリマーの面積の和に対する無機粒子の面積の和としては、上記範囲12で任意に選択した少なくとも1点において有機ポリマーの面積の和に対する無機粒子の面積の和として120%以上の値が得られれば、本発明の範囲に含まれる。有機ポリマーの面積の和に対する無機粒子の面積の和を得る領域の最小限の大きさとしては、1.0μm×4.2μmの領域が挙げられる。
1−4 空隙率
本発明のアルカリ水電解用隔膜では、膜全体としての空隙率が25〜80%であることが好ましく、30〜75%がより好ましく、35〜70%がさらに好ましい。膜全体としての空隙率が上述の範囲であると、隔膜中の空隙に電解液がより連続的に満たされるため、より高いイオン伝導性を示すと共に、イオン透過性により優れ、かつガスバリア性により優れた膜とすることができる。
上記膜全体としての空隙率は、下記に示す方法により測定された隔膜の実測密度値、および隔膜を構成する各成分の密度値(真密度)および組成比を用いて算出される隔膜の計算密度値より、下記式から算出できる。
空隙率(%)=[1−(実測密度値)/(計算密度値)]×100
実測密度値は、得られた隔膜の任意の場所から切り出した試験片について、質量と体積を測定し、質量を体積で除すことにより算出できる。体積は、試験片の縦方向の長さ、横方向の長さを、ノギスを用いて測定、膜厚を上記膜厚測定方法に基づき測定することにより算出できる。また、試験片の質量は、体積を測定した試験片について小数点以下4桁の精密天秤を用いて測定できる。
1−5 イオン伝導度
本発明のアルカリ水電解用隔膜のイオン伝導度は、実施例に記載の方法で算出できる。本発明のアルカリ水電解用隔膜のイオン伝導度は、100mS/cm超であることが好ましい。このようにした場合に、アルカリ水電解における電解効率をより高くできる。
1−6 厚み
本発明のアルカリ水電解用隔膜の厚みは、特に限定されず、使用する設備の大きさや取り扱い性等に応じて適宜選択すればよいが、膜の高いイオン伝導性と共に、ガスバリア性やイオン透過性、強度の観点から、50〜2000μmが好ましく、100〜1000μmがより好ましく、100〜500μmが更に好ましく、150〜350μmが最も好ましい。
また、上述した多孔性支持体を含む場合、本発明のアルカリ水電解用隔膜の厚みは、好ましくは50〜2000μm、より好ましくは100〜1000μm、更に好ましくは100〜500μm、最も好ましくは150〜300μmである。
2.アルカリ水電解用隔膜の製造方法
本発明のアルカリ水電解隔膜の製造方法は、無機粒子及び溶媒を含む分散液を調製する分散液調製工程;該分散液、有機高分子樹脂(R)及び塩化リチウムを混合して樹脂混合液を調製する樹脂混合液調製工程;及び、該樹脂混合液を用いて膜を形成する膜形成工程;を含み、該樹脂混合液調製工程において、該塩化リチウムの添加量が該無機粒子に対し3.0質量%以上である。
以下に、各工程について説明する。
2−1 分散液調製工程
上記製造方法では、無機粒子を上記樹脂(R)と混合する場合、予め無機粒子を溶媒に分散させた分散液を調製してから上記樹脂(R)と混合する。分散液を調製してから上記樹脂(R)と混合することにより、製造する膜表面層における無機粒子の割合が増加し、親水性に富んだ構造となり、イオン伝導性とガスバリア性の向上が両立できる。上記分散液には分散剤を添加しても良い。
上記分散剤としては、カチオン系界面活性剤;アニオン系面活性剤;カルボキシ基、リン酸基、スルホン酸基等の親水性官能基を有する従来公知の顔料分散剤等が挙げられる。
カチオン系界面活性剤としては、分子内に炭素数5以上の炭化水素鎖を有するカチオン系界面活性剤がより好ましい。
アニオン系界面活性剤としては、分子内に炭素数5以上の炭化水素鎖を有するアニオン系界面活性剤がより好ましい。
ポリマー顔料分散剤としては、親水性官能基を有するポリマーであれば特に制限されないが、炭素数が5以上の炭化水素鎖を主鎖または側鎖に有するポリマーであることが好ましく、さらに構成単位(繰り返し単位)として炭素数が5以上の炭化水素鎖を含むポリマーであることがより好ましく、構成単位として炭素数が5以上のポリエステルあるいはポリエーテルを含むポリマーであることがさらに好ましい。
このようなポリマーとしては、炭素数が5以上の炭化水素鎖を含む構成単位のみを繰返し単位として含むポリマーであっても、炭素数が5以上の炭化水素鎖を含む構成単位以外の構成単位を繰返し単位としてさらに含むものであってもよい。
また、後者の場合、炭素数が5以上の炭化水素鎖を含む構成単位のみを繰返し単位として含むブロックと他の構成単位から構成されるブロックとからなるポリマーであっても、分子内に、炭素数が5以上の炭化水素鎖を含む構成単位と他の構成単位とがランダムに繋がった構造のポリマーであってもよい。
上記分散剤の使用量は、溶媒100質量部に対して、1〜10質量部が好ましく、1.2〜8.0質量部がより好ましく、1.5〜5.0質量部以下がさらに好ましい。このようにすることにより、無機粒子の分散安定性をより効果的に向上できる。
上記分散液中の無機粒子の含有量は、20〜70質量%であることが好ましく、より好ましくは30〜65質量%、更に好ましくは50〜65質量%である。
無機粒子を分散させるための溶媒としては、後に混合する上記樹脂(R)を溶解し得る性質を有するものであれば特に限定されず、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、メチルエチルケトン、トルエン等が挙げられる。これらの溶媒は、1種単独で使用してもよいし、2種以上を混合して使用してもよい。なかでも、無機粒子の分散性が良好となる点で、N−メチル−2−ピロリドンが好ましい。分散液中の無機粒子に対する溶媒の使用量は、無機粒子100質量部に対して、50〜100質量部が好ましく、50〜90質量部がより好ましく、50〜80質量部がさらに好ましい。
無機粒子を溶媒に分散させる方法としては、特に限定されず、ミキサー、ボールミル、ジェットミル、ディスパー、サンドミル、ロールミル、ポットミル、ビーズミル、ペイントシェーカー等を用いる方法等、公知の混合分散の手段を適用することができる。
上記分散液中における無機粒子の平均粒子径は、好ましくは0.1〜1.0μm、より好ましくは0.15〜0.8μm、さらに好ましくは0.15〜0.5μmである。なお、上記分散液中における無機粒子の平均粒子径は、動的光散乱法による粒度分布測定器を用いて、分散液中に分散した無機粒子の粒子径測定を行い、キュムラント法解析により得られる平均粒子径とすることができる。
2−2 樹脂混合液調製工程
上記樹脂混合液調製工程では、上記分散液調製工程で調製された分散液に有機高分子樹脂(R)と塩化リチウムを混合して樹脂混合液を調製する。塩化リチウムの添加量は、無機粒子100質量%に対し3.0質量%以上であり、4.0質量%以上であることが好ましく、5.0質量%以上であることがより好ましい。塩化リチウムの添加量を上記範囲とした場合に、膜表面層における無機粒子の割合が増加し、親水性に富んだ表面構造となり、高いイオン伝導性と高いガスバリア性を両立したアルカリ水電解用隔膜とすることができる。
上記樹脂混合液には、有機親水性添加剤を添加しても良い。上記有機親水性添加剤としては、例えば、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリエチレンイミン、ポリアクリル酸、デキストラン等の水溶性ポリマー;界面活性剤;グリセリン;糖類等が挙げられる。親水性添加剤の使用量は、分散液中の無機粒子100質量部に対して、0.1質量部以上20質量部以下が好ましい。
上記分散液調製工程で調製された分散液に上記樹脂(R)を混合する方法としては、上記分散液と上記樹脂(R)を充分に混合することができる方法であれば特に限定されず、上記分散液に上記樹脂(R)をそのまま混合してもよいし、予め上記樹脂(R)を溶媒に溶解させた樹脂溶液を調製して、上記樹脂溶液と上記分散液とを混合してもよい。なかでも、上記無機粒子と上記樹脂(R)をより均一に分散・混合できる点で、上記樹脂溶液を調製して、上記樹脂溶液と上記分散液とを混合して樹脂混合液とする方法が好ましい。
上記樹脂混合液を調製する場合に使用する溶媒としては、上記樹脂(R)を溶解する性質を有するものであれば特に限定されず、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、メチルエチルケトン、トルエン等が挙げられる。なかでも、上記無機粒子と上記樹脂(R)がより均一に分散・混合できる点で、上記分散液の調製に使用した溶媒と同じ溶媒が好ましい。
上記樹脂溶液中の上記樹脂(R)の含有量は、5〜50質量%であることが好ましく、10〜45質量%であることがより好ましく、15〜40質量%であることが更に好ましい。
上記混合する方法としては、上記分散液調製工程で記載した混合分散の手段と同様の手段が挙げられる。
上記分散液と上記樹脂(R)は、好ましくは、無機粒子100質量部に対して、上記樹脂(R)が10〜40質量部、より好ましくは12〜35質量部、さらに好ましくは15〜33質量部になるように混合することが好ましい。無機粒子と上記樹脂(R)の含有割合が上述した範囲であると、得られたアルカリ水電解用隔膜のアルカリ溶液中での無機成分の溶出が更に一層抑制され、より高いイオン伝導性を示すと共に、イオン透過性、ガスバリア性、耐熱性及び耐アルカリ性にもより優れたアルカリ水電解用隔膜を製造できる。
上記無機粒子の分散液と上記樹脂(R)の溶液とを混合する場合、無機粒子の分散液中の溶媒と上記樹脂(R)の溶液中の溶媒との合計含有量は、無機粒子の分散液と上記樹脂(R)の溶液との合計質量100質量%に対して、30〜75質量%であることが好ましい。より好ましくは、35〜70質量%であり、更に好ましくは、40〜65質量%である。アルカリ水電解用隔膜の空隙率を好ましい範囲に調整するためにはこのような割合で溶媒を用いることが好ましい。
2−3 膜形成工程
上記膜形成工程では、上記樹脂混合液調製工程で得られた樹脂混合液を用いて膜を形成する。
上記膜を形成する方法としては、アルカリ溶液中での無機成分の溶出がより一層抑制されたアルカリ水電解用隔膜を容易に製造することができる点で、下記の工程(a)、(b)を含むことが好ましい。
(a)上記樹脂混合液の塗膜を形成する工程、及び、
(b)上記塗膜を非溶媒と接触させることにより上記塗膜を凝固させ、多孔質膜を得る工程
(a)樹脂混合液の塗膜を形成する工程
上記樹脂混合液の塗膜を形成する方法としては、例えば、上記で得られた樹脂混合液を基材上に塗布する方法や、上記樹脂混合液中に基材を浸漬させ、上記樹脂混合液が含浸した基材を得る方法等が挙げられる。なかでも、簡便に塗膜を形成できる点で、上記樹脂混合液を基材上に塗布する方法が好ましい。
上記樹脂混合液を基材上に塗布する方法としては、特に限定されず、ダイコーティング、スピンコーティング、グラビアコーティング、カーテンコーティング、スプレー、アプリケーター、バーコーター等を用いる方法等の公知の塗布手段を適用することができる。
上記基材としては、上記樹脂混合液を塗布して塗膜を形成することができるものであれば、特に限定されず、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリビニルアセタール、ポリメタクリル酸メチル、ポリカーボネート等の樹脂からなるフィルム又はシート、ガラス板等が挙げられる。なかでも、ハンドリングが良好である点および原料コストが低減できる点で、ポリエチレンテレフタレートが好ましい。
また、上述した多孔性支持体を含むアルカリ水電解用隔膜を製造する場合は、上記基材として上記多孔性支持体を使用してもよい。
また、無機粒子と上記樹脂(R)を含む膜と多孔性支持体とが一体化した複合体であるアルカリ水電解用隔膜を製造する場合は、上記基材上に、上記樹脂混合液を塗布し、その塗液上に上記多孔性支持体を置いて塗液を上記多孔性支持体に含浸させてもよい。
上記樹脂混合液の塗布量としては、特に限定されず、上記隔膜が、上述した効果が発揮できる厚みを有するよう適宜設定すればよい。
(b)上記塗膜を非溶媒と接触させることにより上記塗膜を凝固させる工程
上記塗膜を非溶媒と接触させることにより、上記塗膜中に非溶媒が拡散し、非溶媒に溶解しない上記樹脂(R)が凝固する。一方、非溶媒に溶解しうる塗膜中の溶媒は、塗膜から溶出する。このように相分離が生じることにより、上記樹脂(R)(及び無機粒子)が凝固し、多孔質膜が形成される。
上記塗膜と非溶媒とを接触させる方法としては、上記塗膜を上記非溶媒中に浸漬させる方法(凝固浴)、上記塗膜を上記非溶媒蒸気雰囲気中に晒す方法等が挙げられる。また、塗膜を上記非溶媒蒸気雰囲気中に晒した後、引き続き、非溶媒中に浸漬させてもよい。この場合に、非溶媒蒸気雰囲気中に晒す時間は3〜60秒程度、非溶媒中に浸漬する時間は、1〜15分程度とすることができる。
塗膜を浸漬する非溶媒の温度としては、10℃以上が好ましく、15℃以上がより好ましく、20℃以上がさらに好ましい。また、55℃以下が好ましく、50℃以下がより好ましく、45℃以下がさらに好ましい。このような温度とすることにより、製造した隔膜におけるイオンパスをより多く形成でき、高いイオン伝導性を示すと共に、より高いガスバリア性とより高い耐久性を両立したアルカリ水電解用隔膜をより容易に製造できる。
上記非溶媒としては、上記樹脂(R)を実質的に溶解しない性質を有するものであれば、特に限定されないが、例えば、イオン交換水;メタノール、エタノール、イソプロピルアルコール等の低級アルコール;又はこれらの混合溶媒等が好ましく使用できる。経済性と廃液処理の観点からはイオン交換水が好ましい。また上記非溶媒は、上述した成分以外に、塗膜中に含まれる溶媒と同様の溶媒を少量含んでいてもよい。
上記非溶媒の使用量は、塗膜100質量部、すなわち、塗膜の形成に用いられる樹脂混合液の固形分100質量部に対して、50〜10000質量部であることが好ましい。より好ましくは、100〜5000質量部であり、更に好ましくは、200〜1000質量部である。得られる隔膜の空隙率を好ましい範囲に調整する点、塗膜中の溶媒を完全に非溶媒中に抽出する点において、非溶媒をこのような割合で使用することが好ましい。
更に、非溶媒を除去するために、上記工程で凝固した塗膜を乾燥させて、隔膜を得てもよい。
上記塗膜の乾燥温度としては、60〜120℃が好ましい。
乾燥時間としては、0.5〜120分が好ましく、1〜60分がより好ましく、1〜30分が更に好ましい。
本発明のアルカリ水電解用隔膜の製造方法では、塩化リチウムを無機粒子に対し3.0質量%以上加えることにより、樹脂混合液の親水性が高くなり、樹脂(R)が凝集しやすくなると考えられる。このため、製膜時に塗膜中の溶媒が塗膜から溶出する際に樹脂(R)が移動しにくくなり、溶媒の表面移動に伴い、無機粒子が膜表面に移動して、膜表面層における無機粒子の割合が増加し、親水性に富んだ膜表面構造となり、イオン伝導性とガスバリア性の向上が両立できる膜が製造されると考えられる。
このように、上述した工程により、本発明のアルカリ水電解用隔膜を簡便に製造することができる。
3.用途
本発明のアルカリ水電解用隔膜では、高いイオン伝導性を示すと共に、より高いガスバリア性とより高い耐久性を両立する。そのため、本発明のアルカリ水電解用隔膜は、アルカリ性水溶液を電解液とした水の電気分解用の隔膜として好適に使用することができる。また、上述したアルカリ水電解用隔膜の他、アルカリ形燃料電池用セパレータ、1次電池用セパレータ、2次電池用セパレータ等の電池用セパレータ、食塩電解用セパレータ等の用途に用いることができる。
4.アルカリ水電解装置
本発明のアルカリ水電解用隔膜は、アルカリ水電解装置の部材として用いられる。上記アルカリ水電解装置としては、例えば、陽極、陰極、及び、陽極と陰極の間に配置された上記アルカリ水電解用隔膜を含むものが挙げられる。より具体的には、上記アルカリ水電解装置は、上記アルカリ水電解用隔膜によって隔てられた、陽極が存在する陽極室と、陰極が存在する陰極室とを有する。
陽極、及び陰極としては、ニッケル又はニッケル合金等を含む導電性基体等、公知の電極が挙げられる。
5.電解方法
本発明のアルカリ水電解用隔膜を備えたアルカリ水電解装置を用いて行う水の電気分解の方法は、特に限定されず、公知の方法で行うことができる。例えば、上述した本発明のアルカリ水電解用隔膜を備えたアルカリ水電解装置に、電解液を充填し、電解液中で電流を印加することにより行うことができる。
上記電解液としては、水酸化カリウム又は水酸化ナトリウム等の電解質を溶解したアルカリ性水溶液が用いられる。上記電解液における電解質の濃度は、特に限定されないが、電解効率がより一層向上し得る点で、20〜40質量%であることが好ましい。
また、電気分解を行う場合の温度としては、電解液のイオン伝導性がより向上し、電解効率がより一層向上し得る点で、50〜120℃が好ましく、80〜90℃がより好ましい。電流の印加条件は、公知の条件・方法で行うことができる。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。
<実施例1>
(1.水酸化マグネシウム分散液の調製)
水酸化マグネシウム(平均粒子径0.20μm)とN−メチル−2−ピロリドン(富士フイルム和光純薬工業社製)を質量比1:1となるよう混合し、ジルコニアメディアボールを入れたポットミルにて、室温で6時間分散処理を行うことにより水酸化マグネシウム分散液を調製した。
(2.ポリスルホン樹脂溶解液の調製)
ポリスルホン樹脂(BASF社製、品番ウルトラゾーンS3010)を30質量%の濃度で80〜100℃にてN−メチル−2−ピロリドン(富士フイルム和光純薬工業社製)に熱溶解させた。
(3.塗液の調製)
上記で得られた水酸化マグネシウム分散液とポリスルホン樹脂溶解液とを、固形分が40質量%かつ水酸化マグネシウム100質量部に対してポリスルホン樹脂(PSU)が33質量部になるように計量し、さらに塩化リチウム(富士フイルム和光純薬工業社製)を水酸化マグネシウム100質量%に対して5質量%加え、自転公転ミキサー(シンキー社製、品番あわとり練太郎ARE−500)にて室温で1000rpmで約10分間混合した。得られた混合液を、SUSの200メッシュで濾過することで塗液を得た。
(4.塗膜の形成)
ポリフェニレンサルファイド不織布(東レ社製、トルコンペーパー#100)上に、乾燥後の隔膜の厚みが全体で270μmになるように塗布し、不織布に塗液を完全に含浸させた。その後、塗液を含浸させた不織布を、室温にて10分間水浴させ、塗液を凝固させて膜を形成した。水浴後、得られた膜を、乾燥機にて80℃で、30分間乾燥し、不織布と水酸化マグネシウム及びポリスルホン樹脂を含む膜との複合体からなるアルカリ水電解用隔膜を得た。
(5.膜厚の測定方法)
得られたアルカリ水電解用隔膜の厚さは、デジマチックマイクロメーター(ミツトヨ社製)を用いて測定した。任意10点を測定し、その平均値を膜厚とした。膜厚は269μmであった。
(6.膜表面層における有機ポリマーの面積の和に対する無機粒子の面積の和の測定、算出方法)
得られたアルカリ水電解用隔膜の表面に垂直な断面について、長手方向の両端から中央に向かって、上記断面の幅aに対し0.4a以上離れた範囲で、上記膜の表面と該表面から1μm離れた位置との間の範囲におけるFE−SEM(日本電子社製、型番:JSM−7600F)測定による断面観察画像(倍率:30,000倍)を得た。
得られた断面観察画像に対して、解析ソフト(Image−Pro Premier)を用いて、メディアン処理にて画像を明部と準明部と暗部に分け、そのヒストグラムよりポリスルホン樹脂に対応する準明部の面積の合計値と、水酸化マグネシウムに対応する明部の面積の合計値を算出した。そして、ポリスルホン樹脂の面積の和に対する水酸化マグネシウムの面積の和を求めた。その結果、ポリスルホン樹脂の面積の和に対する水酸化マグネシウムの面積の和は142%であった。
(7.バブルポイント値の測定)
得られたアルカリ水電解用隔膜について、リキッドポロシメーター(Porous Materials社製)を用いてバブルポイント値を測定した。具体的には、2.5cmφの隔膜をイオン交換水中に室温で1時間浸漬させて十分に湿潤させた後、フッ素系溶剤であるGalwick(Porous Materials社製)を隔膜上に満たした。隔膜に対するガス圧を昇圧させていき、水の液膜が破壊されて、Galwickが膜を透過して天秤でその重量を観測した時点のガス圧をバブルポイント値とした。上記隔膜のバブルポイント値は、測定上限の1000kPa以上であった。
(8.ガーレー値の測定)
得られたアルカリ水電解用隔膜について、デジタル型王研式透気度試験機EGBO−S−1(旭精工社製)を用いてガーレー値を測定した。
上記隔膜のガーレー値は、85sであった。
(9.イオン伝導度の測定方法)
得られたアルカリ水電解用隔膜について、下記測定方法によりイオン伝導度を測定した。その結果、229mS/cmであった。
(測定方法)
測定用の隔膜試料を2枚準備する。
各隔膜試料を用いて、以下のセル構成で形成したセルを25℃の恒温槽内で30分静置した後、以下の測定条件で交流インピーダンス測定を行い、得られた切片成分(Ra)と測定サンプルを入れない場合の切片成分(Rb)および上記膜厚測定方法により得られた膜厚の値を用いて、下記式によりイオン伝導度を測定する。
隔膜試料2枚について上記測定を行い、得られた測定値(2点)の平均値を算出し、これを隔膜のイオン伝導度とする。
[イオン伝導度(mS/cm)]=[膜厚(cm)]÷[(Ra−Rb)×1000×1.77]
(測定条件)
・セル構成
作用極:Ni板
対極 :Ni板
電解液:30質量%水酸化カリウム水溶液
サンプル前処理:上記電解液に1晩浸漬
測定有効面積:1.77cm
・交流インピーダンス測定条件
印加電圧:10mV vs.開回路電圧
周波数領域:100kHz〜100Hz
<比較例1>
塩化リチウムの使用量を水酸化マグネシウム100質量%に対して2質量%に変更した以外は、実施例1と同様にしてアルカリ水電解用隔膜を得た。膜厚は288μm、上記有機ポリマーの面積の和に対する無機粒子の面積の和は73%、バブルポイント値は460kPa、ガーレー値は43Sであった。
得られたアルカリ水電解用隔膜について実施例1の場合と同様にしてイオン伝導度を測定した結果、204mS/cmであった。
<比較例2>
塩化リチウムを使用しなかった以外は、実施例1と同様にしてアルカリ水電解用隔膜を得た。膜厚は270μm、上記有機ポリマーの面積の和に対する無機粒子の面積の和は118%、バブルポイント値は測定上限の1000kPa以上、ガーレー値は69Sであった。
得られたアルカリ水電解用隔膜について実施例1の場合と同様にしてイオン伝導度を測定した結果、146mS/cmであった。
実施例1と比較例1を比較すると、イオン伝導度は近い値であったが、実施例1ではバブルポイント値が増加し緻密性が向上(ガスバリア性が向上)した。実施例1と比較例2を比較すると、バブルポイント値は測定上限値を超える点では同じであったが、実施例1の方がイオン伝導度が高かった。実施例、比較例ともにイオン伝導度はアルカリ水電解用隔膜として使用可能な値を示したが、実施例の方がより高いレベルでイオン伝導性とガスバリア性を両立できることが確認された。
1 アルカリ水電解用隔膜
2 単膜層
3 支持体層
10 アルカリ水電解用隔膜の断面
11 アルカリ水電解用隔膜の表面
12 測定範囲
a アルカリ水電解用隔膜の表面に垂直な断面の幅
S アルカリ水電解用隔膜の表面から深さ方向

Claims (2)

  1. 有機ポリマーと無機粒子とを含むアルカリ水電解用隔膜であって、
    該膜の表面に垂直な断面において、長手方向の両端から中央に向かって、該断面の幅aに対し0.4a以上離れた範囲で、該膜の表面と該膜の表面から深さ方向に1μm離れた位置との間の範囲において、有機ポリマーの面積の和に対する無機粒子の面積の和が120%以上である
    アルカリ水電解用隔膜。
  2. 無機粒子及び溶媒を含む分散液を調製する分散液調製工程、
    該分散液、有機高分子樹脂(R)及び塩化リチウムを混合して樹脂混合液を調製する樹脂混合液調製工程、及び、
    該樹脂混合液を用いて膜を形成する膜形成工程を含み、
    該樹脂混合液調製工程において、該塩化リチウムの添加量が該無機粒子100質量%に対し3.0質量%以上である
    アルカリ水電解用隔膜の製造方法。

JP2019130457A 2019-07-12 2019-07-12 アルカリ水電解用隔膜ならびに該隔膜の製造方法 Active JP7284015B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019130457A JP7284015B2 (ja) 2019-07-12 2019-07-12 アルカリ水電解用隔膜ならびに該隔膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019130457A JP7284015B2 (ja) 2019-07-12 2019-07-12 アルカリ水電解用隔膜ならびに該隔膜の製造方法

Publications (2)

Publication Number Publication Date
JP2021014619A true JP2021014619A (ja) 2021-02-12
JP7284015B2 JP7284015B2 (ja) 2023-05-30

Family

ID=74530829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019130457A Active JP7284015B2 (ja) 2019-07-12 2019-07-12 アルカリ水電解用隔膜ならびに該隔膜の製造方法

Country Status (1)

Country Link
JP (1) JP7284015B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086213A (zh) * 2021-10-27 2022-02-25 四川华能氢能科技有限公司 一种降低碱性电解水制氢能耗的复合隔膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106726A1 (ja) * 2005-03-31 2006-10-12 Ebara Corporation 高分子電解質膜、電極、膜電極複合体および燃料電池
WO2016148302A1 (ja) * 2015-03-18 2016-09-22 旭化成株式会社 アルカリ水電解用隔膜、アルカリ水電解装置、水素の製造方法及びアルカリ水電解用隔膜の製造方法
JP2017066184A (ja) * 2015-09-28 2017-04-06 旭化成株式会社 ポリフェニレン共重合体を含む微多孔膜、及びその製造方法
WO2018070444A1 (ja) * 2016-10-13 2018-04-19 旭硝子株式会社 アルカリ水電解用隔膜およびアルカリ水電解装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106726A1 (ja) * 2005-03-31 2006-10-12 Ebara Corporation 高分子電解質膜、電極、膜電極複合体および燃料電池
WO2016148302A1 (ja) * 2015-03-18 2016-09-22 旭化成株式会社 アルカリ水電解用隔膜、アルカリ水電解装置、水素の製造方法及びアルカリ水電解用隔膜の製造方法
JP2017066184A (ja) * 2015-09-28 2017-04-06 旭化成株式会社 ポリフェニレン共重合体を含む微多孔膜、及びその製造方法
WO2018070444A1 (ja) * 2016-10-13 2018-04-19 旭硝子株式会社 アルカリ水電解用隔膜およびアルカリ水電解装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086213A (zh) * 2021-10-27 2022-02-25 四川华能氢能科技有限公司 一种降低碱性电解水制氢能耗的复合隔膜

Also Published As

Publication number Publication date
JP7284015B2 (ja) 2023-05-30

Similar Documents

Publication Publication Date Title
JP6752974B2 (ja) アルカリ水電解用隔膜、その製造方法、及び無機有機複合膜の製造方法
JP7114726B2 (ja) アルカリ水電解用隔膜
WO2020158719A1 (ja) 電極付きアルカリ水電解用隔膜、その製造方法、及び水電解装置
CN115029732B (zh) 碱性水电解用隔膜及其制备方法与应用
JP7232110B2 (ja) アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7284001B2 (ja) アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7284015B2 (ja) アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7273650B2 (ja) アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7365748B2 (ja) アルカリ水電解用隔膜の製造方法
JP7129903B2 (ja) アルカリ水電解用隔膜
JP2022176792A (ja) アルカリ水電解用隔膜、及びその製造方法
JP7166118B2 (ja) アルカリ水電解用隔膜
WO2011089521A2 (en) Method of manufacturing proton-conducting membranes
WO2024048235A1 (ja) アルカリ水電解用隔膜、アルカリ水電解セル、及び、アルカリ水電解方法
JP6985159B2 (ja) 無機有機複合膜の製造方法
JP2020105557A (ja) アルカリ水電解用隔膜
JP2022063055A (ja) アルカリ水電解用隔膜、及び、その製造方法
JP2022082168A (ja) アルカリ水電解用隔膜
WO2023048006A1 (ja) アルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜
US20240173678A1 (en) High Performance Double Layer Ion Selective Membrane With Nanoporous Boron Nitride And Polyetherimide
JP6955995B2 (ja) 電気化学素子用セパレータ
US8016984B2 (en) Ion-permeable diaphragm
KR102018538B1 (ko) 징크-브로민 산화환원 흐름 전지용 분리막, 그 제조방법 및 이를 구비한 징크-브로민 산화환원 흐름 전지
CN117385413A (zh) 一种复合聚合物多孔膜及其制备方法和应用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7284015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150