WO2023048006A1 - アルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜 - Google Patents

アルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜 Download PDF

Info

Publication number
WO2023048006A1
WO2023048006A1 PCT/JP2022/034076 JP2022034076W WO2023048006A1 WO 2023048006 A1 WO2023048006 A1 WO 2023048006A1 JP 2022034076 W JP2022034076 W JP 2022034076W WO 2023048006 A1 WO2023048006 A1 WO 2023048006A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
diaphragm
alkaline water
water electrolysis
mass
Prior art date
Application number
PCT/JP2022/034076
Other languages
English (en)
French (fr)
Inventor
信也 中山
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN202280064366.8A priority Critical patent/CN117999382A/zh
Priority to EP22872760.8A priority patent/EP4407072A1/en
Priority to JP2023549485A priority patent/JPWO2023048006A1/ja
Publication of WO2023048006A1 publication Critical patent/WO2023048006A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing a diaphragm for alkaline water electrolysis and a diaphragm for alkaline water electrolysis.
  • Alkaline water electrolysis electrolysis of alkaline water
  • Alkaline water electrolysis electrolysis of alkaline water
  • Such alkaline water electrolysis has an anode chamber in which an anode is arranged and a cathode chamber in which a cathode is arranged.
  • a compartmentalized electrolytic cell is used.
  • Electrolysis of alkaline water transfers electrons (or ions) from the cathode chamber to the anode chamber. Therefore, the diaphragm is required to have high ionic conductivity. Furthermore, the electrolysis of alkaline water is carried out using alkaline water with a high concentration of about 30% at 80 to 100° C. and under a high pressure of 1 MPa or more in some cases. Therefore, heat resistance, alkali resistance, etc. are also required.
  • a porous membrane made of an organic polymer such as polysulfone containing inorganic particles such as magnesium hydroxide is known.
  • a method using a non-solvent induced phase separation method (NIPS method) is known as a production method thereof (for example, Patent Document 1).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a diaphragm for alkaline water electrolysis in which the formation of macrovoids is suppressed.
  • the present invention provides a method for producing a diaphragm for alkaline water electrolysis having a porous layer, wherein the porous
  • RX (1) (In formula (1), R represents a hydrocarbon group having 6 or more carbon atoms, and X represents a hydrophilic functional group.)
  • the content of the compound represented by the general formula (1) is preferably 2 to 30% by mass with respect to 100% by mass as the total content of the organic polymer and the inorganic particles.
  • the present invention also provides a diaphragm for alkaline water electrolysis comprising a porous layer containing an organic polymer and inorganic particles, The pair of main surfaces of the porous layer form the front and back surfaces of the diaphragm for alkaline water electrolysis,
  • the two cross-sectional layers including the front and back surfaces are the surface layer and the back surface layer, and the other cross-sectional layer is the internal layer.
  • the internal layer is a diaphragm for alkaline water electrolysis having a larger average pore size than at least one of the surface layer and the back layer.
  • the present invention also provides a diaphragm for alkaline water electrolysis comprising a porous layer containing an organic polymer and inorganic particles, and a porous support,
  • the porous layer includes a non-impregnated layer that is not impregnated into the porous support, Among the three cross-sectional layers obtained by dividing the cross-section of the non-impregnated layer into three equal parts in the thickness direction, one cross-sectional layer including the surface of the diaphragm for alkaline water electrolysis is the surface layer, and two cross-sections other than the surface layer Assuming each layer as an inner layer, At least one of the internal layers is a diaphragm for alkaline water electrolysis having a larger average pore size than the surface layer.
  • the present invention also provides a diaphragm for alkaline water electrolysis comprising a porous layer containing an organic polymer and inorganic particles, and a porous support,
  • the porous layer includes an impregnated layer in which the porous support is impregnated and a non-impregnated layer in which the porous support is not impregnated,
  • one cross-sectional layer including the surface of the diaphragm for alkaline water electrolysis is a surface layer, and two cross sections other than the surface layer
  • At least one of the inner layers is a diaphragm for alkaline water electrolysis having a larger average pore size than the impregnated layer.
  • At least one of the internal layers preferably has a larger average pore size than the surface layer.
  • a diaphragm for alkaline water electrolysis having a porous layer in which the formation of macrovoids is suppressed can be produced.
  • FIG. 2 is a diagram showing a photograph (observation image) of a cross section (mainly a non-impregnated layer portion) of a diaphragm for alkaline water electrolysis taken using a scanning electron microscope with reference lines and the like.
  • FIG. 2 is a diagram showing a photograph (observation image) of a cross section (mainly an impregnated layer portion) of a diaphragm for alkaline water electrolysis taken using a scanning electron microscope with reference lines and the like.
  • ⁇ to ⁇ means “ ⁇ or more and ⁇ or less”.
  • 35 to 400 nm means “35 nm or more and 400 nm or less”.
  • the method for producing a diaphragm for alkaline water electrolysis of the present invention is a method for producing a diaphragm for alkaline water electrolysis comprising a porous layer, comprising: an organic polymer, inorganic particles, a compound represented by the following general formula (1), and a solvent obtaining the porous layer using the composition comprising RX (1)
  • RX represents a hydrocarbon group having 6 or more carbon atoms
  • X represents a hydrophilic functional group.
  • the manufacturing method of the diaphragm for alkaline water electrolysis of the present invention is also referred to as the manufacturing method of the present invention.
  • the compound represented by formula (1) is also referred to as compound (A), and the composition as composition (P).
  • Organic polymers include fluorine-based resins, olefin-based resins, aromatic hydrocarbon-based resins, and the like.
  • Fluorinated resins include ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polytetrafluoroethylene, tetrafluoro ethylene-perfluoroalkyl vinyl ether copolymer, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer and the like.
  • Olefin resins include polyethylene, polypropylene, polybutene, polymethylpentene, and the like.
  • Aromatic hydrocarbon resins include polyethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polystyrene, polysulfone, polyethersulfone, polyphenylene sulfide, polyphenylsulfone, polyarylate, polyetherimide, polyimide, and polyamideimide.
  • the organic polymer may contain only one type of the enumerated fluorine-based resin, olefin-based resin, aromatic hydrocarbon-based resin, or the like, or may include two or more types.
  • Aromatic hydrocarbon-based resins are preferable from the viewpoint of excellent heat resistance, pressure resistance, and alkali resistance, and at least one selected from polysulfone, polyethersulfone, and polyphenylsulfone is more preferable, and from the viewpoint of being easily dissolved in a solvent. Polysulfone is more preferred.
  • Inorganic particles include metal hydroxides or metal oxides such as magnesium, zirconium, titanium, zinc, aluminum and tantalum; sulfates such as calcium, barium, lead and strontium; nitrides such as titanium, zirconium and hafnium; , carbides such as hafnium, and the like.
  • the inorganic particles may contain only one of the listed metal hydroxides, metal oxides, sulfates, nitrides, carbides, etc., or may contain two or more of them. From the viewpoint of increasing the ionic conductivity of the diaphragm for alkaline water electrolysis, metal hydroxides or metal oxides are preferred, and magnesium hydroxide, zirconium hydroxide, titanium hydroxide, zirconium oxide and titanium oxide are more preferred. Zirconium hydroxide, titanium hydroxide and titanium oxide are more preferred, magnesium hydroxide, zirconium hydroxide and titanium hydroxide are more preferred, and magnesium hydroxide is particularly preferred.
  • the inorganic particles may be surface-treated.
  • the surface treatment is a known surface treatment using, for example, a silane coupling agent, stearic acid, oleic acid, phosphate ester, or the like.
  • the shape of the inorganic particles is not restricted. Any shape such as irregular shape, granular shape, granular shape, flake shape, plate shape such as hexagonal plate shape, and fibrous shape may be used. Granular, flaky, and plate-like are preferred, flaky and plate-like are more preferred, and flaky is even more preferred, from the viewpoint of enhancing adhesion to the organic polymer. From the viewpoint of increasing the strength of the diaphragm for alkaline water electrolysis, it is preferably flaky or plate-like, and more preferably flaky.
  • the average particle size of inorganic particles is not limited. From the viewpoint of increasing the strength of the diaphragm for alkaline water electrolysis, the thickness is preferably 0.05 ⁇ m or more and 2.0 ⁇ m or less. 0.08 ⁇ m or more and 1.5 ⁇ m or less is more preferable, and 0.1 ⁇ m or more and 1 ⁇ m or less is even more preferable.
  • the average particle size means the volume average particle size (D50) obtained from particle size distribution measurement by laser diffraction method. Specifically, the particle size distribution is measured using a laser diffraction/scattering particle size distribution analyzer (for example, "model number LA-920" manufactured by Horiba Ltd.), and the median diameter (D50) in the volume-based particle size distribution is averaged. Particle size. A measurement sample is obtained by mixing particles with ethanol and irradiating ultrasonic waves to disperse the particles.
  • the aspect ratio of inorganic particles is not limited. From the viewpoint of increasing the ion conductivity of the diaphragm for alkaline water electrolysis, it is preferably 2.0 or more and 8.0 or less. 2.5 or more and 7.0 or less are more preferable, and 3.0 or more and 6.0 or less are still more preferable.
  • Aspect ratio means the ratio [(a)/(b)] between the longest diameter (a) and the shortest diameter (b). Observe the inorganic particles with a scanning electron microscope (SEM), and measure the ratio [(a)/(b)] using analysis software for each of 10 arbitrary inorganic particles in the obtained image. . The average value of the ratio [(a)/(b)] of 10 inorganic particles is taken as the aspect ratio of the inorganic particles.
  • the shortest diameter among diameters perpendicular to the longest diameter is defined as the shortest diameter (b).
  • the inorganic particles are preferably magnesium hydroxide because they are excellent in alkali resistance and durability, and a diaphragm for alkaline water electrolysis can be obtained at a relatively low cost.
  • the average particle size of magnesium hydroxide is preferably 0.05 ⁇ m or more and 2.0 ⁇ m or less as described above.
  • the aspect ratio of magnesium hydroxide is preferably 2.0 or more and 8.0 or less as described above.
  • Magnesium hydroxide preferably has a crystallite size of 35 nm or more in the direction perpendicular to the (110) plane measured by X-ray diffraction. By doing so, the ion conductivity of the diaphragm for alkaline water electrolysis can be further enhanced. In particular, it is more preferably 40 nm or more, still more preferably 50 nm or more, even more preferably 60 nm or more, and particularly preferably 65 nm or more. Although the upper limit is not limited, it is usually 400 nm or less, preferably 350 nm or less, more preferably 300 nm or less.
  • the crystallite diameter in the direction perpendicular to the (110) plane measured by X-ray diffraction of magnesium hydroxide is preferably 35 to 400 nm, more preferably 40 to 350 nm, and still more preferably 50 to 300 nm. , more preferably 60 to 300 nm, particularly preferably 65 to 300 nm.
  • Magnesium hydroxide preferably has a crystallite size of 15 nm or more in the direction perpendicular to the (001) plane measured by X-ray diffraction. By doing so, the ion conductivity of the diaphragm for alkaline water electrolysis can be further enhanced. In particular, 18 nm or more is more preferable, 21 nm or more is still more preferable, and 24 nm or more is even more preferable. Although the upper limit is not limited, it is usually 300 nm or less, preferably 250 nm or less, more preferably 200 nm or less.
  • the crystallite diameter in the direction perpendicular to the (001) plane measured by X-ray diffraction of magnesium hydroxide is preferably 15 to 300 nm, more preferably 18 to 250 nm, and still more preferably 21 to 200 nm. and more preferably 24 to 200 nm.
  • the crystallite size is determined by the powder X-ray diffraction method.
  • the X-ray diffraction pattern of magnesium hydroxide particles is measured, and from the spread (half width) of the diffraction line attributed to the lattice plane of interest, the crystallite diameter (crystallite in the direction perpendicular to the lattice plane) is calculated using Scherrer's formula diameter).
  • Examples of methods for obtaining magnesium hydroxide having a specific crystallite size range include the following methods. That is, an aqueous solution of magnesium salt (magnesium chloride, magnesium nitrate, etc.) or an aqueous dispersion of magnesium oxide obtained by a conventionally known method is used as a raw material, and alkaline physical properties (lithium hydroxide, sodium hydroxide, calcium hydroxide, Ammonia water, etc.) is added to prepare magnesium hydroxide by performing a hydration reaction.
  • magnesium salt magnesium chloride, magnesium nitrate, etc.
  • alkaline physical properties lithium hydroxide, sodium hydroxide, calcium hydroxide, Ammonia water, etc.
  • the solubility of the generated magnesium hydroxide can be adjusted and the temperature of the hydrothermal reaction can be adjusted.
  • Particles with different crystallite sizes can be prepared by appropriately adjusting the temperature (eg, 150° C. to 270° C.) and time (eg, 30 minutes to 10 hours). The larger the amount of acid added, the more the crystal grows and the larger the crystallite size. Also, the higher the temperature of the hydrothermal reaction and the longer the time, the more the crystal growth progresses and the larger the crystallite size.
  • the inorganic particles may be commercially available.
  • magnesium hydroxide 200-06H manufactured by Kyowa Chemical Industry Co., Ltd., UP650-1 manufactured by Ube Material Co., Ltd., MAGSTAR#20 manufactured by Tateho Chemical Industry Co., Ltd., #200 manufactured by Kamijima Chemical Industry Co., etc. may be used. .
  • Compound (A) is represented by the following general formula (1).
  • RX (1) RX (1)
  • R in general formula (1) is a hydrocarbon group having 6 or more carbon atoms.
  • Hydrocarbon groups are not limited. It may be an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a saturated hydrocarbon group, an unsaturated hydrocarbon group, a chain hydrocarbon group, a cyclic hydrocarbon group, or the like.
  • the hydrocarbon group is preferably an alkyl group, an alkenyl group, an aryl group or an aromatic alkyl group.
  • Alkyl groups include hexyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, heptyl group, octyl group, 1-methylheptyl group, 2-ethylhexyl group, nonyl group and decyl group.
  • undecyl group dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group and octadecyl group; cyclic alkyl groups such as cyclohexyl group; An alkyl group having 6 to 18 carbon atoms is preferred, an alkyl group having 6 to 12 carbon atoms is more preferred, and an alkyl group having 6 to 10 carbon atoms is even more preferred.
  • the alkenyl group is a group in which one C—C single bond is a double bond among the listed alkyl groups.
  • An alkenyl group having 6 to 18 carbon atoms is preferred, and an alkenyl group having 6 to 12 carbon atoms is more preferred.
  • Aryl groups include phenyl, tolyl, xylyl, naphthyl, anthryl, biphenyl, triphenyl and the like.
  • a phenyl group, a tolyl group and a xylyl group are preferred.
  • An aryl group having 6 to 18 carbon atoms is preferred, and an aryl group having 6 to 12 carbon atoms is more preferred.
  • Aromatic alkyl groups include benzyl, phenethyl, phenylpropyl, phenylpentyl, phenylhexyl, and phenyloctyl groups.
  • An aromatic alkyl group having 6 to 18 carbon atoms is preferred, an aromatic alkyl group having 6 to 12 carbon atoms is more preferred, and an aromatic alkyl group having 6 to 10 carbon atoms is even more preferred.
  • the hydrocarbon group is preferably a hydrocarbon group having 6 to 12 carbon atoms. at least one selected from an alkyl group having 6 to 12 carbon atoms, an alkenyl group having 6 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an aromatic alkyl group having 6 to 12 carbon atoms; more preferred. Further, the hydrocarbon group is preferably at least one selected from an alkyl group and an aromatic alkyl group, and at least one selected from an alkyl group having 6 to 12 carbon atoms and an aromatic alkyl group having 6 to 12 carbon atoms.
  • At least one selected from alkyl groups having 6 to 10 carbon atoms and aromatic alkyl groups having 6 to 10 carbon atoms is more preferable, and at least one selected from alkyl groups having 6 to 10 carbon atoms is Even more preferred.
  • the hydrocarbon group may have a substituent.
  • a substituent is a halogen atom, an alkoxy group, or the like.
  • a halogen atom is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • a fluorine atom, a chlorine atom and a bromine atom are preferred.
  • Alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, s-butoxy, t-butoxy, pentyloxy, phenoxy, cyclohexyloxy, and benzyloxy groups.
  • An alkoxy group having 1 to 18 carbon atoms is preferred, an alkoxy group having 1 to 6 carbon atoms is more preferred, and a methoxy group is even more preferred.
  • X in general formula (1) is a hydrophilic functional group.
  • Hydrophilic functional groups are not limited. Carboxy group (-COOH), phosphate group (-OPO(OH) 2 ), hydroxyl group (-OH), sulfonic acid group (-SO 3 H), phosphonic acid group (-PO(OH) 2 ), phosphinic acid group Acidic functional groups such as (--PO(OH)--) and mercapto groups (---SH); basic functional groups such as amino groups, ammonium groups, imino groups, amide groups, imide groups and maleimide groups.
  • the compound (A) interacts with the organic polymer at the R (hydrocarbon group) portion to form X (hydrophilic functional group) It is believed to interact with the inorganic particles in part. It is presumed that this interaction suppresses the formation of macrovoids. The presumed reason will be described later.
  • Compound (A) is preferably removed after forming the porous layer in order to increase the ion conductivity of the obtained porous layer.
  • the hydrophilic functional group is preferably a hydroxyl group or a carboxyl group, more preferably a hydroxyl group, which have an appropriate interaction force with the inorganic particles.
  • the boiling point of compound (A) at normal pressure is preferably 300° C. or lower, more preferably 250° C. or lower, and even more preferably 200° C. or lower.
  • compound (A) is preferably a saturated aliphatic alcohol having 6 to 10 carbon atoms.
  • cyclohexanol, 1-hexanol, 2-hexanol, 2-methyl-1-pentanol, 1-heptanol, 1-octanol, 2-octanol (1-methylheptanol), 2-ethylhexanol, 1-nonanol Selected from primary alcohols such as 1-decanol, 1-undecanol and 1-dodecanol; secondary alcohols such as 2-hexanol and 3-methyl-2-pentanol; and tertiary alcohols such as 2-methyl-2-pentanol. is preferred.
  • the solubility of compound (A) in water at 25° C. is preferably 0.001 to 5% by mass. By doing so, it is easy to suppress the formation of macrovoids. In particular, 0.01 to 3% by mass is more preferable, and 0.05 to 2% by mass is even more preferable.
  • a solvent is an organic solvent capable of dissolving the organic polymer.
  • N-methyl-2-pyrrolidone is preferred in terms of excellent solubility of organic polymers and excellent dispersibility of inorganic particles.
  • the solvent may include a non-organic solvent such as water.
  • the total content of the organic polymer, inorganic particles, and compound (A) in composition (P) is preferably 20% by mass or more relative to 100% by mass of composition (P). Above all, 30% by mass or more is more preferable, and 40% by mass or more is even more preferable. Although the upper limit is not limited, it is preferably 80% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less. That is, the total content of the organic polymer, inorganic particles, and compound (A) in the composition (P) is preferably 20 to 80% by mass, more preferably 30 to 80% by mass, relative to 100% by mass of the composition (P). 60 mass %, more preferably 40 to 50 mass %.
  • the content of the inorganic particles in the composition (P) is preferably 50 to 90% by mass with respect to 100% by mass of the total content of the organic polymer and the inorganic particles.
  • the upper limit is more preferably 85% by mass, still more preferably 80% by mass.
  • the lower limit is more preferably 55% by mass, still more preferably 60% by mass.
  • the content of the inorganic particles in the composition (P) is more preferably 55 to 85% by mass, still more preferably 60 to 80% by mass, based on 100% by mass of the total content of the organic polymer and the inorganic particles.
  • the content of the compound (A) in the composition (P) is preferably 2 to 30% by mass with respect to 100% by mass of the total content of the organic polymer and the inorganic particles. In particular, 2.5% by mass or more is more preferable, 3% by mass or more is even more preferable, and 5% by mass or more is even more preferable. Moreover, 20 mass % or less is more preferable, and 15 mass % or less is still more preferable.
  • the content of the compound (A) in the composition (P) is more preferably 2.5 to 20% by mass, more preferably 3 to 15% by mass, relative to the total content of the organic polymer and the inorganic particles of 100% by mass. %, more preferably 5 to 15 mass %.
  • Composition (P) may contain a dispersant.
  • Dispersants include cationic surfactants, anionic surfactants, polymer dispersants, and the like.
  • the cationic surfactant preferably has a hydrocarbon chain with 5 or more carbon atoms.
  • the anionic surfactant preferably has a hydrocarbon chain with 5 or more carbon atoms.
  • the polymeric dispersant preferably contains a hydrocarbon chain having 5 or more carbon atoms as a structural unit (repeating unit) and has a hydrophilic functional group.
  • Hydrophilic functional groups include acidic functional groups such as carboxy groups, phosphoric acid groups, and sulfonic acid groups; basic functional groups such as amino groups. A carboxy group and a phosphate group are particularly preferred.
  • the content of the dispersant in the composition (P) is preferably more than 0.01% by mass and 8.0% by mass or less, and 0.1% by mass with respect to 100% by mass of the inorganic particles contained in the composition (P). 6.0 mass % or less is more preferable, and 1.0 mass % or more and 5.0 mass % or less is still more preferable.
  • the composition (P) may contain hydrophilic additives.
  • the hydrophilic additive can be an organic hydrophilic additive or an inorganic hydrophilic additive.
  • organic hydrophilic additives include water-soluble polymers such as polyvinylpyrrolidone, polyethylene glycol, polyethylene oxide, polyvinyl alcohol, polyethyleneimine having a molecular weight of less than 100,000, polyacrylic acid, and dextran; surfactants; glycerin; Polyethylenimine and polyacrylic acid are particularly preferred.
  • Inorganic hydrophilic additives are metal chlorides such as calcium chloride, magnesium chloride, lithium chloride, sodium chloride, potassium chloride. Metal chlorides are particularly preferred.
  • the content of the hydrophilic additive in the composition (P) is preferably 0.001 to 20% by mass with respect to 100% by mass of the inorganic particles.
  • the hydrophilic additive is a metal chloride
  • the content is preferably 0.001 to 15% by mass, more preferably 0.01 to 12% by mass, more preferably 0.05 to 0.05%, based on 100% by mass of the inorganic particles. 10% by mass is more preferred.
  • Composition (P) may contain other additives as needed.
  • the step of obtaining a porous layer using the composition (P) includes steps (1) to (3) below.
  • Step (1) is a step of mixing an organic polymer, inorganic particles, a compound (A), and a solvent to prepare a composition (P).
  • the mixing method and procedure are not limited.
  • a known mixing method may be used.
  • a method using a mixer, ball mill, jet mill, disper, sand mill, roll mill, pot mill, or paint shaker may be used. Any mixing procedure may be used.
  • the three components of the organic polymer, the inorganic particles and the compound (A) may be mixed in the solvent simultaneously or in any order.
  • the organic polymer, the inorganic particles, and the compound (A) may be separately mixed in a solvent, and the mixed solution thereof may be mixed.
  • Step (2) is a step of applying the composition (P) obtained in step (1) to a substrate or porous support to form a coating film.
  • Methods of coating the base material include die coating, spin coating, gravure coating, curtain coating, spray, applicator, and coater.
  • the substrate is a film or sheet made of a resin such as polytetraethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, polyvinyl chloride, polyvinyl acetal, polymethyl methacrylate, polycarbonate, or the like, a glass plate, or the like. Films or sheets of polytetraethylene terephthalate are preferred.
  • the step (2) is preferably a step of applying the composition (P) to the porous support.
  • the application method is not limited. A method of directly applying the composition (P) to a porous support, a method of immersing a porous support in the composition (P), and a method of applying the composition (P) onto the above-described substrate to form a coating film. A method of forming a coating film, bringing the porous support into contact with the coating film, and impregnating the porous support with the composition (P) may be used.
  • the coating film may be provided on one side or both sides of the porous support.
  • the entire coating film may be laminated on the surface of the porous support, or a part thereof may be impregnated into the porous support and the remaining part thereof may be laminated on the surface of the porous support.
  • the coating film may be partially impregnated in the thickness direction of the porous support, or the entire thickness direction of the porous support may be impregnated. good too.
  • Porous supports are resins such as polyethylene, polypropylene, polysulfone, polyethersulfone, polyphenylsulfone, polyphenylene sulfide, polyketone, polyimide, polyetherimide, and fluorine-based resins. 1 type of these may be included, and 2 or more types may be included. At least one selected from polypropylene, polyethylene, and polyphenylene sulfide is preferable, and at least one selected from polypropylene and polyphenylene sulfide is more preferable from the viewpoint of excellent heat resistance and alkali resistance.
  • the form of the porous support is not limited.
  • a nonwoven fabric, a woven fabric, a mesh, a porous membrane, or a mixed fabric of a nonwoven fabric and a woven fabric may be used.
  • a non-woven fabric, a woven fabric, or a mesh is preferred, a non-woven fabric or a mesh is more preferred, and a non-woven fabric is even more preferred.
  • the porous support is preferably a nonwoven fabric, woven fabric, or mesh containing at least one resin selected from polypropylene, polyethylene, and polyphenylene sulfide. More preferred are nonwoven fabrics or meshes comprising polyphenylene sulfide.
  • the thickness of the porous support in the form of a sheet is not limited. For example, it is 30 to 2000 ⁇ m. 50 to 1000 ⁇ m is preferred, 80 to 500 ⁇ m is more preferred, and 80 to 250 ⁇ m is even more preferred.
  • the thickness of the porous support can be obtained by observing the cross section with a field emission scanning electron microscope (FE-SEM). For example, the average value of thicknesses at arbitrary five points may be used as the thickness of the porous support.
  • FE-SEM field emission scanning electron microscope
  • Step (3) is a step of forming the coating film obtained in step (2) into a porous layer.
  • at least a non-solvent induced phase separation method is performed.
  • a liquid (non-solvent-containing liquid) containing a non-solvent for the organic polymer contained in the coating film obtained in step (2) is used.
  • this non-solvent-containing liquid is brought into contact with the coating film, the non-solvent diffuses into the coating film.
  • the solvent in the coating film that is soluble in the non-solvent is eluted from the coating film.
  • the organic polymer that is insoluble in the non-solvent solidifies to form a porous layer.
  • the coating film does not contain compound (A)
  • the interaction between the organic polymer and the inorganic particles in the coating film is not so strong. Therefore, when the coating film is brought into contact with the non-solvent-containing liquid, the non-solvent-containing liquid tends to enter the coating film rapidly and in large amounts. Since the portion occupied by the mixed liquid of the non-solvent-containing liquid and the solvent constituting the coating film becomes voids, a large number of macrovoids are likely to be formed.
  • the coating contains a compound (A) having a hydrophobic hydrocarbon group (R) and a hydrophilic functional group (X). It is believed that the hydrocarbon group (R) interacts with the organic polymer and the hydrophilic functional group (X) of compound (A) interacts with the inorganic particles. This interaction may extend two-dimensionally or three-dimensionally, like the hydrogen bonding of water molecules.
  • the diffusion rate of water is kept lower than when the compound (A) is not contained because the hydrophobic component is dispersed throughout the coating film. be done. As a result, it is believed that the formation of macrovoids is suppressed.
  • the method of bringing the coating film into contact with the non-solvent-containing liquid includes a method of immersing the coating film in the non-solvent-containing liquid (coagulation bath).
  • the non-solvent has the property of not substantially dissolving the organic polymer.
  • the phrase “substantially insoluble in the organic polymer” means that the solubility of the organic polymer is 100 mg or less per 100 g of the solvent at 25°C.
  • the non-solvent includes water such as pure water, distilled water, and ion-exchanged water; lower alcohols such as methanol, ethanol, and propyl alcohol; or mixed solvents thereof. From the viewpoint of waste liquid treatment, water is preferable, and ion-exchanged water is more preferable.
  • the non-solvent-containing liquid may contain a non-solvent.
  • the concentration of the non-solvent in the non-solvent-containing liquid may be 100% by weight or close to 100% by weight.
  • the non-solvent-containing liquid may contain a solvent other than the non-solvent.
  • Solvents other than non-solvents are not limited. For example, it is preferably the same solvent as the solvent contained in the coating film.
  • the concentration of the non-solvent in the non-solvent-containing liquid is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 40% by mass or more.
  • it is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 60% by mass or less. That is, the non-solvent concentration in the non-solvent-containing liquid is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and even more preferably 40 to 60% by mass.
  • the temperature of the non-solvent-containing liquid when contacting the coating is not limited.
  • a temperature of 5 to 70° C. is preferable in terms of uniformly solidifying the coating film.
  • 10 to 50°C is more preferred, and 15 to 30°C is even more preferred.
  • the time for which the coating film is immersed in the non-solvent-containing liquid is not limited. 0.5 to 30 minutes is preferred, 1 to 20 minutes is more preferred, and 2 to 15 minutes is even more preferred.
  • a vapor-induced phase separation method is performed before the non-solvent-induced phase separation method.
  • the coating film obtained in step (2) is exposed to vapor containing a non-solvent for the organic polymer (non-solvent-containing gas).
  • the method of exposing the coating film obtained in step (2) to the non-solvent-containing gas is not limited. A method of blowing a non-solvent-containing gas onto the coating film surface, a method of exposing the coating film to the gas phase portion of a reservoir containing a heated non-solvent-containing liquid, and the like may be used.
  • the non-solvent in the vapor-induced phase separation method is the same as the non-solvent in the non-solvent-induced phase separation method.
  • the non-solvent-containing gas may contain a gas normally contained in air such as oxygen, nitrogen, carbon dioxide, etc., and may contain vapor of a solvent similar to the solvent contained in the coating film.
  • the non-solvent containing gas should just contain the non-solvent.
  • the concentration of the nonsolvent in the nonsolvent-containing gas is preferably 50 to 100% by volume, more preferably 70 to 100% by volume, and 80 to 100% by volume with respect to 100% by volume of the nonsolvent-containing gas. is more preferred.
  • the temperature of the non-solvent containing gas when contacting the coating is not limited.
  • a temperature of 50 to 80° C. is preferable in terms of uniformly solidifying the coating film. In particular, 55 to 75°C is more preferred, and 60 to 70°C is even more preferred.
  • the time for contacting the coating film with the non-solvent-containing gas is preferably 1 to 60 seconds, more preferably 2 to 30 seconds, and even more preferably 3 to 15 seconds.
  • a porous layer containing an organic polymer and inorganic particles is obtained by steps (1) to (3).
  • This porous layer may be used as a diaphragm for alkaline water electrolysis.
  • the porous layer obtained in step (3) may contain the non-solvent contained in the non-solvent-containing liquid and the solvent component contained in the coating film formed in step (2). These substances can affect the performance of the diaphragm for alkaline water electrolysis.
  • the method for producing a diaphragm for alkaline water electrolysis of the present invention preferably further includes the following step (4). (4) A step of drying the porous layer.
  • Step (4) is a drying step for removing the non-solvent, compound (A), etc. contained in the porous layer obtained in step (3).
  • the drying temperature is preferably 60 to 150°C, more preferably 60 to 130°C.
  • the drying time is preferably 2 to 60 minutes, more preferably 2 to 30 minutes, even more preferably 5 to 30 minutes. Drying may be performed under normal pressure or under reduced pressure. Vacuum drying at 0.03 to 0.06 atmospheres is preferred to facilitate removal of volatile components.
  • a known step such as a step of press treatment may be included in order to uniformize the density of the diaphragm.
  • Diaphragm for Alkaline Water Electrolysis The diaphragm for alkaline water electrolysis of the present invention will be described.
  • the diaphragm for alkaline water electrolysis can be obtained, for example, by the manufacturing method described in the above "1. Manufacturing method of diaphragm for alkaline water electrolysis".
  • a diaphragm for alkaline water electrolysis comprises a porous layer containing an organic polymer and inorganic particles. Preferably, it further comprises a porous support.
  • the organic polymer, inorganic particles, and porous support are the same as those described in "1. Manufacturing method of diaphragm for alkaline water electrolysis".
  • the preferred organic polymer is polysulfone.
  • the inorganic particles are preferably magnesium hydroxide.
  • the porous support is a non-woven fabric or mesh comprising polyphenylene sulfide.
  • the content of the organic polymer is not restricted. It is preferably 10 to 50% by mass with respect to 100% by mass of the porous layer. Within this range, the ionic conductivity and mechanical strength are excellent. Above all, 15% by mass or more is more preferable, and 20% by mass or more is even more preferable. Moreover, 45 mass % or less is more preferable, and 40 mass % or less is still more preferable. That is, the content of the organic polymer is more preferably 15 to 45% by mass, still more preferably 20 to 40% by mass, relative to 100% by mass of the porous layer.
  • the content of inorganic particles is not particularly limited. It is preferably 50 to 90% by mass with respect to 100% by mass of the porous layer. Within this range, the ionic conductivity is excellent. Above all, 55% by mass or more is more preferable, and 60% by mass or more is even more preferable. Moreover, 85 mass % or less is more preferable, and 80 mass % or less is still more preferable. That is, the content of inorganic particles is more preferably 55 to 85% by mass, still more preferably 60 to 80% by mass, relative to 100% by mass of the porous layer.
  • the porous layer may contain the compound (A).
  • the compound (A) is the same as that described in "1. Manufacturing method of diaphragm for alkaline water electrolysis".
  • the content of compound (A) is not limited. 10 mass % or less is preferable with respect to 100 mass % of porous layers. In particular, 5% by mass or less is more preferable, and 1% by mass or less is even more preferable.
  • the porous layer may contain a dispersant.
  • the dispersant is the same as that described in "1. Manufacturing method of diaphragm for alkaline water electrolysis”. Content of the dispersant is not limited. It is preferably more than 0.01% by mass and 8.0% by mass or less, more preferably 0.1% by mass or more and 6.0% by mass or less, and 1.0% by mass with respect to 100% by mass of the inorganic particles in the porous layer % or more and 5.0 mass % or less is more preferable.
  • the porous layer can of course contain impurities.
  • impurity as used herein means a component that is not intentionally mixed regardless of whether it is unavoidable or unavoidable.
  • the content of the porous layer in the diaphragm for alkaline water electrolysis is not limited. It is preferably 10 to 80% by mass with respect to 100% by mass of the diaphragm for alkaline water electrolysis. Above all, 15% by mass or more is more preferable, and 20% by mass or more is even more preferable. Moreover, 75 mass % or less is more preferable, and 70 mass % or less is still more preferable.
  • the content of the porous layer in the diaphragm for alkaline water electrolysis is more preferably 15 to 75% by mass, still more preferably 20 to 70% by mass with respect to 100% by mass of the diaphragm for alkaline water electrolysis.
  • the porous layer may be provided on one side or both sides of the porous support.
  • the entire porous layer may be laminated on the surface of the porous support, or a part thereof may be impregnated into the porous support and the remainder may be laminated on the surface of the porous support.
  • the porous layer may impregnate a part of the porous support in the thickness direction, or may impregnate the entire thickness of the porous support. may Therefore, for example, two porous layers laminated on the front and back surfaces of a porous support may be integrated by a porous layer impregnated in the porous support.
  • the porous layer constituting the diaphragm for alkaline water electrolysis of the present invention contains 50% or less of macrovoids having a major axis of 30 ⁇ m or more and a minor axis of 5 ⁇ m or more. From the viewpoint of improving the mechanical strength of the diaphragm for alkaline water electrolysis, it is more preferably 30% or less, even more preferably 20% or less, and even more preferably 10% or less. For example, it may be 0% or more and 18% or less, preferably 0% or more and 12% or less.
  • the content of macrovoids means the ratio of the total area of macrovoids to the area of the porous layer in the cross section in the thickness direction of the porous layer.
  • the diaphragm for alkaline water electrolysis does not contain a porous support, the content of macrovoids in the porous layer is within the above range.
  • the diaphragm for alkaline water electrolysis includes a porous support, the content of macrovoids in the non-impregnated portion of the porous layer where the porous support is not impregnated falls within the above range.
  • a method for measuring the content of macrovoids will be described in detail in Examples.
  • the diaphragm for alkaline water electrolysis of the present invention is characterized by the form of the porous layer.
  • the diaphragm for alkaline water electrolysis (S1), the diaphragm for alkaline water electrolysis (S2), and the diaphragm for alkaline water electrolysis (S3) will be described for each form of the porous layer.
  • the diaphragm for alkaline water electrolysis (S1) is a diaphragm for alkaline water electrolysis comprising a porous layer containing an organic polymer and inorganic particles, and the pair of main surfaces of the porous layer are front and back surfaces of the diaphragm for alkaline water electrolysis.
  • the two cross-sectional layers including the front and back surfaces are the surface layer and the back surface layer
  • the other cross-sectional layer is the inner layer
  • the inner layer is a diaphragm for alkaline water electrolysis in which the average pore size is larger than that of at least one of the surface layer and the back layer.
  • the diaphragm for alkaline water electrolysis (S1) is also called diaphragm (S1).
  • the diaphragm (S1) is the diaphragm for alkaline water electrolysis of the present invention in a form that does not contain a porous support. Since it does not contain a porous support, the pair of main surfaces of the porous layer form the front and back surfaces of the diaphragm for alkaline water electrolysis.
  • the front and back surfaces of the diaphragm for alkaline water electrolysis are not particularly distinguished, and for convenience of explanation, one of the pair of main surfaces of the diaphragm for alkaline water electrolysis is referred to as the front surface and the other as the back surface.
  • a cross-sectional layer (surface layer) including the surface of the diaphragm for alkaline water electrolysis, a cross-sectional layer (inner layer) not including the front and back surfaces of the diaphragm for alkaline water electrolysis, A cross-sectional layer (back layer) including the back side of the diaphragm for alkaline water electrolysis is obtained.
  • the average pore size of the inner layer is larger than the average pore size of at least one of the surface layer and the back layer. From the viewpoint of improving the mechanical strength, the average pore size of the inner layer is preferably larger than the average pore size of both the surface layer and the back layer.
  • the ratio of the average pore size of the inner layer to the average pore size of at least one of the surface layer and the back layer is greater than 1.0. Above all, 1.1 or more is preferable, and 1.2 or more is more preferable. Moreover, 3.0 or less is preferable, 2.5 or less is more preferable, and 2.0 or less is still more preferable.
  • the average pore size of the inner layer is not particularly limited. It is preferably 0.1 to 5.0 ⁇ m in terms of improving mechanical strength. Above all, 0.2 ⁇ m or more is more preferable, and 0.3 ⁇ m or more is even more preferable. Moreover, 4.0 micrometers or less are more preferable, and 3.0 micrometers or less are still more preferable. That is, the average pore size of the inner layer is more preferably 0.2-4.0 ⁇ m, more preferably 0.3-3.0 ⁇ m.
  • the average pore size of the surface layer and back layer is not particularly limited. 0.05 to 3.0 ⁇ m is preferable in terms of improving mechanical strength. Above all, 0.1 ⁇ m or more is more preferable, and 0.2 ⁇ m or more is even more preferable. Moreover, it is more preferably 2.5 ⁇ m or less, and still more preferably 2.0 ⁇ m or less. Both the surface layer and the back layer preferably have such an average pore size. That is, the average pore size of the surface layer and back layer is more preferably 0.1 to 2.5 ⁇ m, still more preferably 0.2 to 2.0 ⁇ m.
  • the diaphragm for alkaline water electrolysis (S2) is a diaphragm for alkaline water electrolysis comprising a porous layer containing an organic polymer and inorganic particles, and a porous support,
  • the porous layer includes a non-impregnated layer that is not impregnated into the porous support,
  • the cross-sectional layer including the surface of the diaphragm for alkaline water electrolysis is the surface layer, and the two cross-sectional layers other than the surface layer are used.
  • At least one of the two internal layers is a diaphragm for alkaline water electrolysis having a larger average pore size than the surface layer.
  • the diaphragm for alkaline water electrolysis (S2) is also called diaphragm (S2).
  • the diaphragm (S2) is the diaphragm for alkaline water electrolysis of the present invention in a form containing a porous support. Since the porous support is included, one of the pair of main surfaces of the porous layer forms the surface of the diaphragm for alkaline water electrolysis.
  • one cross-sectional layer (surface layer) including the surface of the diaphragm for alkaline water electrolysis and two cross-sectional layers (inner layers) not including the surface of the diaphragm for alkaline water electrolysis. is obtained.
  • At least one of the two internal layers of the diaphragm (S2) has a larger average pore size than the surface layer.
  • the diaphragm (S2) may have a porous layer having this configuration on at least one main surface of the porous support.
  • the ratio of the average pore size of the inner layer having the larger average pore size to the average pore size of the surface layer is greater than 1.0. Above all, 1.1 or more is preferable, and 1.2 or more is more preferable. Moreover, 3.0 or less is preferable, 2.5 or less is more preferable, and 2.0 or less is still more preferable. That is, the average pore size ratio r11 is preferably more than 1.0 and 3.0 or less, more preferably 1.1 or more and 2.5 or less, and still more preferably 1.2 or more and 2.0 or less.
  • the average pore size of the inner layer having the larger average pore size is not particularly limited. From the viewpoint of improving the strength balance, the thickness is preferably 0.1 to 5.0 ⁇ m. Above all, 0.2 ⁇ m or more is more preferable, and 0.3 ⁇ m or more is even more preferable. Moreover, 4.0 micrometers or less are more preferable, and 3.0 micrometers or less are still more preferable. That is, the average pore size of the inner layer having the larger average pore size is more preferably 0.2 to 4.0 ⁇ m, still more preferably 0.3 to 3.0 ⁇ m. It is preferred that the average pore size of the inner layer having the smaller average pore size also have such an average pore size.
  • the average pore size of the surface layer is not particularly limited. From the viewpoint of improving the strength balance, the thickness is preferably 0.05 to 3.0 ⁇ m. Above all, 0.1 ⁇ m or more is more preferable, and 0.2 ⁇ m or more is even more preferable. Moreover, it is more preferably 2.5 ⁇ m or less, and still more preferably 2.0 ⁇ m or less. That is, the average pore size of the surface layer is more preferably 0.1 to 2.5 ⁇ m, still more preferably 0.2 to 2.0 ⁇ m.
  • the inner layer adjacent to the surface layer has a larger average pore size than the surface layer. Furthermore, it is preferred that both inner layers have a larger average pore size than the surface layer.
  • a part of the porous layer of the diaphragm (S2) is preferably impregnated into the porous support. That is, the porous layer preferably includes an impregnated layer in which the porous support is impregnated and a non-impregnated layer in which the porous support is not impregnated. At least one of the two internal layers in the non-impregnated layer preferably has a larger average pore size than the impregnated layer.
  • the ratio of the average pore size of the inner layer having the larger average pore size in the non-impregnated layer to the average pore size of the impregnated layer is preferably greater than 1.0. 1.2 or more is more preferable, and 1.4 or more is still more preferable. Moreover, 3.0 or less is preferable, 2.5 or less is more preferable, and 2.0 or less is still more preferable. That is, the average pore diameter ratio r12 is preferably more than 1.0 and 3.0 or less, more preferably 1.2 or more and 2.5 or less, and still more preferably 1.4 or more and 2.0 or less.
  • the average pore size of the impregnation layer is not particularly limited. From the viewpoint of improving the strength balance, the thickness is preferably 0.05 to 3.0 ⁇ m. Above all, 0.1 ⁇ m or more is more preferable, and 0.2 ⁇ m or more is even more preferable. Moreover, it is more preferably 2.5 ⁇ m or less, and still more preferably 2.0 ⁇ m or less. That is, the average pore size of the impregnated layer is more preferably 0.1 to 2.5 ⁇ m, still more preferably 0.2 to 2.0 ⁇ m.
  • the thickness of the non-impregnated layer is not particularly limited. From the viewpoint of improving the strength balance, the thickness is preferably 20 to 150 ⁇ m. Especially, 30 ⁇ m or more is more preferable, and 40 ⁇ m or more is even more preferable. Moreover, it is more preferably 120 ⁇ m or less, and still more preferably 100 ⁇ m or less.
  • the thickness is the thickness of each non-impregnated layer. That is, the thickness of the non-impregnated layer is more preferably 30 to 120 ⁇ m, still more preferably 40 to 100 ⁇ m.
  • the thickness of the impregnation layer is not particularly limited.
  • the thickness is preferably 50 to 300 ⁇ m from the viewpoint of excellent strength and low resistance. Especially, 80 ⁇ m or more is more preferable, and 130 ⁇ m or more is even more preferable. Moreover, 250 micrometers or less are more preferable.
  • the thickness of the impregnation layer is more preferably 80-250 ⁇ m, still more preferably 130-250 ⁇ m.
  • the diaphragm for alkaline water electrolysis (S3) is a diaphragm for alkaline water electrolysis comprising a porous layer containing an organic polymer and inorganic particles, and a porous support, wherein the porous layer is attached to the porous support.
  • the alkaline water electrolysis is performed.
  • one cross-sectional layer including the surface of the diaphragm is defined as a surface layer and two cross-sectional layers other than the surface layer are defined as internal layers, at least one of the internal layers has an average pore size larger than that of the impregnated layer. It is a diaphragm for water electrolysis.
  • the diaphragm for alkaline water electrolysis is excellent in both ion conductivity and gas barrier properties.
  • the diaphragm for alkaline water electrolysis (S3) is also called diaphragm (S3).
  • the diaphragm (S3) is the diaphragm for alkaline water electrolysis of the present invention in a form containing a porous support. Since the porous support is included, one of the pair of main surfaces of the porous layer forms the surface of the diaphragm for alkaline water electrolysis.
  • one cross-sectional layer (surface layer) including the surface of the diaphragm for alkaline water electrolysis and two cross-sectional layers (inner layers) not including the surface of the diaphragm for alkaline water electrolysis. is obtained.
  • At least one of the two inner layers of the diaphragm (S3) has a larger average pore size than the impregnated layer.
  • the diaphragm (S3) may have a porous layer having this configuration on at least one main surface side of the porous support.
  • the ratio of the average pore size of the inner layer having the larger average pore size in the non-impregnated layer to the average pore size of the impregnated layer is preferably greater than 1.0. Above all, 1.2 or more is more preferable, and 1.4 or more is even more preferable. Moreover, 3.0 or less is preferable, 2.5 or less is more preferable, and 2.0 or less is still more preferable. That is, the average pore diameter ratio r22 is preferably more than 1.0 and 3.0 or less, more preferably 1.2 or more and 2.5 or less, and still more preferably 1.4 or more and 2.0 or less.
  • the average pore size of the inner layer having the larger average pore size in the non-impregnated layer is not particularly limited. From the viewpoint of improving the strength balance, the thickness is preferably 0.1 to 5.0 ⁇ m. Above all, 0.2 ⁇ m or more is more preferable, and 0.3 ⁇ m or more is even more preferable. Moreover, 4.0 micrometers or less are more preferable, and 3.0 micrometers or less are still more preferable. That is, the average pore size of the inner layer having the larger average pore size in the non-impregnated layer is more preferably 0.2 to 4.0 ⁇ m, still more preferably 0.3 to 3.0 ⁇ m. It is preferable that the inner layer having the smaller average pore size in the non-impregnated layer also has such an average pore size.
  • the average pore size of the impregnation layer is not particularly limited. From the viewpoint of improving the strength balance, the thickness is preferably 0.05 to 3.0 ⁇ m. Above all, 0.1 ⁇ m or more is more preferable, and 0.2 ⁇ m or more is even more preferable. Moreover, it is more preferably 2.5 ⁇ m or less, and still more preferably 2.0 ⁇ m or less. That is, the average pore size of the impregnated layer is more preferably 0.1 to 2.5 ⁇ m, still more preferably 0.2 to 2.0 ⁇ m.
  • the thickness of the non-impregnated layer is not particularly limited. From the viewpoint of improving the strength balance, the thickness is preferably 20 to 150 ⁇ m. Especially, 30 ⁇ m or more is more preferable, and 40 ⁇ m or more is even more preferable. Moreover, it is more preferably 120 ⁇ m or less, and still more preferably 100 ⁇ m or less. That is, the thickness of the non-impregnated layer is more preferably 30 to 120 ⁇ m, still more preferably 40 to 100 ⁇ m. When non-impregnated layers exist on both sides of the porous support, the thickness is the thickness of each non-impregnated layer.
  • the thickness of the impregnation layer is not particularly limited.
  • the thickness is preferably 50 to 300 ⁇ m from the viewpoint of excellent strength and low resistance. 80 ⁇ m or more is more preferable, and 130 ⁇ m or more is even more preferable. Moreover, it is more preferably 250 ⁇ m or less, and still more preferably 200 ⁇ m or less. That is, the thickness of the impregnation layer is more preferably 80-250 ⁇ m, more preferably 130-200 ⁇ m. When impregnated layers are present on both sides of the porous support, it is the thickness of each non-impregnated layer.
  • the average pore size of the inner layer having the larger average pore size in the non-impregnated layer is larger than the average pore size of the surface layer.
  • the ratio of the average pore size of the inner layer having the larger average pore size to the average pore size of the surface layer is preferably greater than 1.0. Above all, 1.1 or more is more preferable, and 1.2 or more is even more preferable. Moreover, 3.0 or less is preferable, 2.5 or less is more preferable, and 2.0 or less is still more preferable. That is, the average pore diameter ratio r21 is preferably more than 1.0 and 3.0 or less, more preferably 1.1 or more and 2.5 or less, and still more preferably 1.2 or more and 2.0 or less.
  • the average pore size of the surface layer is not particularly limited. From the viewpoint of improving the strength balance, the thickness is preferably 0.05 to 3.0 ⁇ m. Above all, 0.1 ⁇ m or more is more preferable, and 0.2 ⁇ m or more is even more preferable. Moreover, it is more preferably 2.5 ⁇ m or less, and still more preferably 2.0 ⁇ m or less. That is, the average pore size of the surface layer is more preferably 0.1 to 2.5 ⁇ m, still more preferably 0.2 to 2.0 ⁇ m. It is preferred that the average pore size of the inner layer having the smaller average pore size also have such an average pore size.
  • the inner layer adjacent to the surface layer has a larger average pore size than the surface layer. Furthermore, it is preferred that both inner layers have a larger average pore size than the surface layer.
  • Observation Image Acquisition A cross section is obtained by cutting the diaphragm for alkaline water electrolysis in the thickness direction. The cross section is observed with a field emission scanning electron microscope (FE-SEM) to obtain an observed image. An example of an observed image is shown in FIG. An observation image 100 in FIG. 1 is assumed to be a rectangle having a horizontal length L1 and a vertical length L2. Also, the observation image 100 is obtained by selecting the imaging magnification so that the entire thickness direction of the non-impregnated layer 110 is included. The vertical direction of the observed image 100 is the thickness direction of the non-impregnated layer 110 , and the horizontal direction is the planar direction of the non-impregnated layer 110 .
  • FE-SEM field emission scanning electron microscope
  • the arbitrary main surfaces of the non-impregnation layer 110 be the upper side in the form of a diaphragm (S1).
  • the side opposite to impregnation layer 120 is the upper side. In this way, five observation images 100 are acquired.
  • the lateral length L1 is not particularly limited. For example, it is about 50 to 150 ⁇ m.
  • the vertical length L2 may be selected according to the thickness of the non-impregnated layer 110 . For example, it is about 20 to 150 ⁇ m.
  • FIG. 1 shows an observed image 100 surrounded by a dotted line.
  • Observed image 100 includes non-impregnated layer 110 .
  • a center line XL1 parallel to the vertical direction is drawn at the center of the observed image 100 in the horizontal direction. Let the area on the left side of the center line XL1 be the left area AL1 and the area on the right side be the right area AR1.
  • the uppermost position 103 in the left area AL1 and the uppermost position 104 in the right area AR1 is defined as a lower reference line LL1.
  • the lower reference line LL1 is regarded as the lower contour line of the non-impregnated layer 110 .
  • the uppermost position refers to the position with the greatest distance from the lower side of the observed image 100 .
  • an upper internal demarcation line UIL1 parallel to the upper reference line UL1 and passing through the intersection 13 and a lower internal demarcation line LIL1 parallel to the upper reference line UL1 and passing through the intersection 14 are drawn. If the distance from the intersection 15 to the intersection 16 is shorter, the intersections 17 and 18 are set on the right side of the observed image 100 from the intersection 15 side so as to divide the intersections 15 to 16 into three equal parts. Then, an upper internal demarcation line UIL1 parallel to the upper reference line UL1 and passing through the intersection 17 and a lower internal demarcation line LIL1 parallel to the upper reference line UL1 and passing through the intersection 18 are drawn.
  • the non-impregnated layer 110 has a region 111 sandwiched between the upper reference line UL1 and the upper internal dividing line UIL1, and the upper internal dividing line UIL1. and a region 112 sandwiched between the lower internal demarcation line LIL1 and a region 113 sandwiched between the lower internal demarcation line LIL1 and the lower reference line LL1.
  • the region 111 is the surface layer
  • the region 112 is the internal layer
  • the region 113 is the back layer.
  • region 111 is the surface layer and regions 112 and 113 are internal layers.
  • the average pore diameter of each layer (surface layer, inner layer, back layer) in the non-impregnated layer 110 can be determined by image analysis. It is preferable to use commercially available image analysis software. For example, Scion Image (manufactured by Scion) and Image-Pro Premier (manufactured by Media Cybernetics).
  • the average pore size in the surface layer is determined as follows. First, a measurement region is selected so that 50 or more holes are included. Next, the pore size of each pore observed within the measurement area is calculated. The pore diameter is calculated by the above image analysis software as the average value of the length of a line segment passing through two points on the periphery of the pore and the center of gravity. The pore is an opening formed by lack of organic polymer or inorganic particles.
  • This measurement is performed for five different measurement areas. Let the average value of the values obtained at five locations be the average pore diameter of the surface layer. The average pore diameters of the inner layer and the back layer are also obtained in the same manner.
  • the observation image 200 is obtained by selecting the photographing magnification so that the entire thickness direction of the impregnated layer 220 is included.
  • the vertical direction of the observed image 200 is the thickness direction of the impregnation layer 220
  • the horizontal direction is the plane direction of the impregnation layer 220 .
  • the side on which the non-impregnated layer 210 is provided is the upper side. When two non-impregnated layers 210 are connected by one impregnated layer 220, any non-impregnated layer 210 is the upper side. In this way, five observation images 200 are obtained.
  • the lateral length L1 is not particularly limited. For example, it is about 50 to 150 ⁇ m.
  • the length L2 in the longitudinal direction may be selected according to the thickness of the non-impregnated layer. For example, it is about 20 to 150 ⁇ m.
  • FIG. 2 shows an observed image 200 surrounded by a dotted line.
  • Observation image 200 includes non-impregnated layer 210 and impregnated layer 220 .
  • a center line XL2 parallel to the vertical direction is drawn at the center of the observed image 200 in the horizontal direction. Let the area on the left side of the center line XL2 be a left area AL2 and the area on the right side be a right area AR2.
  • the average pore diameter of the impregnated layer 220 can be determined by image analysis. It is preferable to use commercially available image analysis software. For example, Scion Image (manufactured by Scion) and Image-Pro Premier (manufactured by Media Cybernetics).
  • the average pore size of the impregnated layer is obtained as follows. First, a measurement region is selected so that 50 or more holes are included. Next, the pore size of each pore observed within the measurement area is calculated. The pore diameter is calculated by the above image analysis software as the average value of the length of a line segment passing through two points on the periphery of the pore and the center of gravity. The pore is an opening formed by lack of organic polymer or inorganic particles.
  • This measurement is performed for five different measurement areas. Let the average value of the value obtained in five places be the average pore diameter of an impregnation layer.
  • Diaphragms (S1) to (S3) Preferred Embodiments of Diaphragms (S1) to (S3) will be described.
  • the diaphragms (S1) to (S3) will simply be referred to as diaphragms when not distinguished from each other.
  • the diaphragm (S1) preferably contains 50% or less of macrovoids having a major axis of 30 ⁇ m or more and a minor axis of 5 ⁇ m or more in the inner layer. It is more preferable that the content of macrovoids in the surface layer and the back layer is 50% or less.
  • Separators (S2) to (S3) preferably contain 50% or less of macrovoids having a major axis of 30 ⁇ m or more and a minor axis of 5 ⁇ m or more in at least one of the two internal layers in the non-impregnated layer. It is more preferable that the content of macrovoids in the surface layer is 50% or less.
  • the diaphragm preferably has a mass reduction rate of 2% or less in an ultrasonic test. Within this range, the constituent components of the diaphragm are suppressed from coming off, so the mechanical strength is excellent.
  • the mass reduction rate is more preferably 1.5% or less, still more preferably 1.2% or less, and even more preferably 1% or less. A method for measuring the mass reduction rate will be described in detail in Examples.
  • the diaphragm preferably has a membrane resistance of 0.30 ⁇ cm 2 or less. Within this range, ionic conduction in alkaline water electrolysis is good, resulting in excellent electrolysis efficiency. A method for measuring the membrane resistance will be described in detail in Examples.
  • the diaphragm preferably has a ratio of membrane resistance after 240-hour durability to membrane resistance after 24-hour durability (membrane resistance ratio) of 0.7 or more in the thermal alkali durability test. Within this range, the alkali resistance is excellent because the influence of the hot alkali is small. A method for measuring the film resistance ratio will be described in detail in Examples.
  • the diaphragm preferably has an air permeability of 50 to 5000 seconds. Within this range, gas is less likely to permeate through the diaphragm, resulting in excellent gas barrier properties.
  • the air permeability is more preferably 100 to 1000 seconds, even more preferably 150 to 800 seconds. A method for measuring air permeability will be described in detail in Examples.
  • the diaphragm preferably has a thickness of 50 to 2000 ⁇ m. Within this range, it is easy to balance mechanical strength, gas barrier properties, and ionic conductivity.
  • the thickness is more preferably 100-1000 ⁇ m, still more preferably 100-500 ⁇ m, and most preferably 150-350 ⁇ m. A method for measuring the thickness of the diaphragm will be described in detail in Examples.
  • the diaphragm preferably has an air permeability per unit thickness, ie, a value obtained by dividing the air permeability of the diaphragm by the thickness of the diaphragm, of 0.6 or more. Within this range, gas is less likely to permeate through the diaphragm, resulting in excellent gas barrier properties.
  • the air permeability per unit thickness is more preferably 0.65 or more, still more preferably 0.70 or more, and even more preferably 0.75 or more.
  • the upper limit of the air permeability per unit thickness is not limited, it is preferably 4.00 or less, more preferably 3.50 or less.
  • the air permeability per unit thickness is preferably 0.6 or more and 4.00 or less, more preferably 0.65 or more and 3.50 or less, still more preferably 0.70 or more and 3.50 or less, still more preferably It is 0.75 or more and 3.50 or less.
  • the diaphragm for alkaline water electrolysis of the present invention can be used for electrolysis of alkaline water.
  • An alkaline water electrolysis apparatus provided with the diaphragm for alkaline water electrolysis of the present invention and an alkaline water electrolysis method will be described.
  • An alkaline water electrolysis device includes an anode, a cathode, and a diaphragm for alkaline water electrolysis.
  • an alkaline water electrolysis apparatus has an electrolytic cell in which an anode chamber in which an anode exists and a cathode chamber in which a cathode exists are separated by a diaphragm for alkaline water electrolysis.
  • the diaphragm for alkaline water electrolysis is preferably installed near the anode or the cathode, and more preferably installed so as to be in contact with the anode and the cathode (so-called zero-gap structure). As the distance between the electrodes decreases, the electrical resistance decreases and the efficiency of electrolysis improves.
  • the anode and cathode are not particularly limited.
  • a conductive substrate provided with a catalyst layer may be used.
  • the conductive substrate may be copper, lead, nickel, chromium, titanium, gold, platinum, iron, metal compounds thereof, metal oxides, alloys containing two or more of these metals, and the like.
  • the catalyst layer may be a metal compound containing nickel, cobalt, palladium, iridium, platinum, or the like, a metal oxide, an alloy, or the like.
  • the catalyst layer may be omitted.
  • the shape of the electrode may be a known shape such as a sheet shape, a rod shape, a prism shape, etc., but the sheet shape is preferable from the viewpoint of increasing the contact area with the diaphragm and improving the efficiency of electrolysis.
  • the electrolytic device may comprise other commonly used members. Examples thereof include a gas-liquid separation tank for separating generated gas and electrolyte, a condenser for stably performing electrolysis, a mist separator, and the like.
  • the alkaline water electrolysis method is carried out by filling the above-described alkaline water electrolysis apparatus with an electrolytic solution (an alkaline aqueous solution in which potassium hydroxide or sodium hydroxide is dissolved) and applying an electric current to the electrolytic solution.
  • the concentration of the alkali metal hydroxide in the electrolytic solution is preferably 20-40 mass %.
  • the temperature for electrolysis is preferably 50 to 120°C, more preferably 80 to 90°C.
  • the current density for electrolysis is usually 0.2 A/cm 2 or higher, preferably 0.3 A/cm 2 or higher. If the current density is high, a large amount of hydrogen gas and oxygen gas can be obtained in a short time.
  • the voltage for electrolysis is, for example, 1.5-2.5V.
  • the current density is adjusted within this range.
  • the pressure for electrolysis is not particularly limited. Normal pressure may be used, or pressurization may be used. Since the diaphragm for alkaline water electrolysis of the present invention is excellent in gas barrier properties, it can be used even under high pressure of 1 MPa or more (for example, 3 MPa).
  • a cross section obtained by cutting approximately the center of the produced diaphragm for alkaline water electrolysis in the thickness direction was observed with an FE-SEM (manufactured by Hitachi High-Technologies Corporation, model number: S-4800) to obtain an observed image. The magnification was 300 times.
  • a measurement area of the observed image was a range of 60 ⁇ m in the depth direction from the outermost surface of the non-impregnated layer of the diaphragm for alkaline water electrolysis and a range of about 400 ⁇ m in the direction orthogonal to the depth direction. Void images in the measurement region were extracted using image analysis software (Scion Image, manufactured by Scion).
  • the longitudinal length (Lt) along the thickness direction of the diaphragm for alkaline water electrolysis and the lateral length (Lf) perpendicular to the thickness direction were obtained.
  • the thickness direction is the direction in which the pair of main surfaces of the diaphragm for alkaline water electrolysis face each other. Therefore, the vertical length (Lt) is defined as the distance along the opposing direction between the point closest to one side and the point closest to the other side in the opposing direction in the outline of the void image.
  • the horizontal length (Lt) was defined as the distance along the direction perpendicular to the opposing direction between the point on the most one side and the point on the other side of the outline of the void image in the direction perpendicular to the opposing direction.
  • Mass reduction rate (%) 100 ⁇ (mass (g) after ultrasonic test/mass (g) before ultrasonic test ⁇ 100).
  • the membrane resistance of the produced diaphragm for alkaline water electrolysis was measured as follows. That is, two diaphragm samples for measurement are cut out from one sheet of the manufactured diaphragm and prepared. Using each diaphragm sample, a cell formed with the following cell configuration was allowed to stand in a constant temperature bath at 25°C for 30 minutes, and then AC impedance was measured under the following measurement conditions. Membrane resistance is calculated by the following formula using the intercept component (Ra) of the real part of the AC impedance measured when the diaphragm sample is not set and the intercept component (Rb) of the real part of the AC impedance measured when no diaphragm sample is set.
  • ⁇ Measurement of membrane resistance ratio in thermal alkali endurance test A 3 cm square was cut from the manufactured diaphragm for alkaline water electrolysis to obtain a test piece. Two test pieces were prepared. Two of these test pieces were placed in a fluororesin container (made of PFA), immersed in 30 g of a 30% KOH aqueous solution, and held at 90°C. After 24 hours and 240 hours from the start of holding at 90 ° C., the test piece was taken out, the membrane resistance was measured at room temperature, and It was calculated as a membrane resistance ratio after the endurance test.
  • the air permeability Z per unit thickness of the produced diaphragm for alkaline water electrolysis was calculated from the following equation using the air permeability and thickness obtained by the above method.
  • Z air permeability of diaphragm (seconds)/thickness of diaphragm ( ⁇ m)
  • ⁇ Measurement of average pore size> The average pore diameter of the produced diaphragm for alkaline water electrolysis was measured according to the methods described in ⁇ Method for Determining Average Pore Diameter in Non-Impregnated Layer>> and ⁇ Method for Determining Average Pore Diameter in Impregnated Layer>>.
  • Image-Pro Premier manufactured by Media Cybernetics was used as image analysis software.
  • Example 1 (1. Preparation of inorganic particle dispersion) Magnesium hydroxide (average particle size 0.20 ⁇ m, plate-like, aspect ratio 6.21) and N-methyl-2-pyrrolidone (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were mixed at a mass ratio of 1:1. This mixture was dispersed in a pot mill containing zirconia media balls at room temperature for 6 hours to obtain a magnesium hydroxide dispersion.
  • Magnesium hydroxide average particle size 0.20 ⁇ m, plate-like, aspect ratio 6.21
  • N-methyl-2-pyrrolidone manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • composition 100 parts by mass of the obtained magnesium hydroxide dispersion and polysulfone resin (manufactured by BASF, product number Ultrason S3010) (PSU) at a concentration of 35% by mass at 80 ° C.
  • N-methyl-2-pyrrolidone Mitsubishi Chemical Co., Ltd. 57 parts by mass of a polysulfone resin solution obtained by thermally dissolving in (manufactured by Mitsubishi Chemical Corporation) and 31 parts by mass of N-methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical Corporation) are mixed, and 2-ethyl-1-hexanol is added.
  • a mixture was prepared by adding 20 parts by mass to the total content of 100 parts by mass of magnesium hydroxide and polysulfone. The resulting mixture was mixed at room temperature for about 30 minutes at 1000 rpm in a rotation/revolution mixer (product number Awatori Mixer ARE-500, manufactured by THINKY CORPORATION) to obtain a composition.
  • a rotation/revolution mixer product number Awatori Mixer ARE-500, manufactured by THINKY CORPORATION
  • the composition was applied (22 mg/cm 2 ) onto a polyphenylene sulfide nonwoven fabric (thickness: 130 ⁇ m, basis weight: 60 g/m 2 ) to impregnate it. Thereafter, the nonwoven fabric impregnated with the composition was bathed in a water tank filled with deionized water at room temperature for 5 minutes. The obtained membrane was dried at 120° C. for 10 minutes to obtain a diaphragm for alkaline water electrolysis (1).
  • Example 1 By partially changing Example 1, the diaphragms for alkaline water electrolysis (2) to (13) of Examples 2 to 13 and the diaphragm for alkaline water electrolysis (C1) of Comparative Example 1 were obtained. Only the changes are described below.
  • Example 3 In (1. Preparation of Inorganic Particle Dispersion), titanium oxide (average particle size 0.5 ⁇ m) was used instead of magnesium hydroxide.
  • Example 4 In (2. Preparation of composition), lithium chloride (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was further added. The amount of lithium chloride added was 0.7 parts by mass with respect to 100 parts by mass of magnesium hydroxide.
  • Example 5 In (2. Preparation of composition), lithium chloride (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and polyvinylpyrrolidone (manufactured by Nippon Shokubai Co., Ltd., K30) were added. The amount of lithium chloride added was 0.7 parts by mass with respect to 100 parts by mass of magnesium hydroxide. The amount of polyvinylpyrrolidone added was 14 parts by mass with respect to 100 parts by mass of magnesium hydroxide.
  • Example 6 In (2. Preparation of composition), lithium chloride (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and polyvinylpyrrolidone (manufactured by Kishida Chemical Co., Ltd., K15) were added.
  • the amount of lithium chloride added was 0.7 parts by mass with respect to 100 parts by mass of magnesium hydroxide.
  • the amount of polyvinylpyrrolidone added was 14 parts by mass with respect to 100 parts by mass of magnesium hydroxide.
  • Example 7 In (2. Preparation of composition), 1-dodecanol was used instead of 2-ethyl-1-hexanol. The amount of 1-dodecanol added was 3 parts by mass with respect to 100 parts by mass of the total content of magnesium hydroxide and polysulfone.
  • Example 8 In (2. Preparation of composition), the amount of 2-ethyl-1-hexanol added was changed. The amount of 2-ethyl-1-hexanol added was 42 parts by mass with respect to 100 parts by mass of the total content of magnesium hydroxide and polysulfone.
  • Example 10 In (2. Preparation of composition), lithium chloride (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and polyvinylpyrrolidone (manufactured by Nippon Shokubai Co., Ltd., K30) were added. The amount of lithium chloride added was 0.7 parts by mass with respect to 100 parts by mass of magnesium hydroxide. The amount of polyvinylpyrrolidone added was 14 parts by mass with respect to 100 parts by mass of magnesium hydroxide.
  • the coating method was changed as follows.
  • the composition was put into a SUS vat, and then a polyphenylene sulfide nonwoven fabric (thickness: 130 ⁇ m, basis weight: 60 g/m 2 ) was immersed. After that, the polyphenylene sulfide nonwoven fabric was pulled up from the SUS vat. The composition was applied to both sides of the nonwoven fabric in this manner.
  • Example 11 In (1. Preparation of inorganic particle dispersion), magnesium hydroxide (average particle size 0.20 ⁇ m, plate shape, aspect ratio 6.21) and N-methyl-2-pyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was changed to a mass ratio of 3:2. Furthermore, 3 parts by mass of a polyphosphate dispersant was added to 100 parts by mass of magnesium hydroxide.
  • lithium chloride manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • polyvinylpyrrolidone manufactured by Nippon Shokubai Co., Ltd., K30
  • the amount of lithium chloride added was 0.7 parts by mass with respect to 100 parts by mass of magnesium hydroxide.
  • the amount of polyvinylpyrrolidone added was 14 parts by mass with respect to 100 parts by mass of magnesium hydroxide.
  • Example 12 In (1. Preparation of inorganic particle dispersion), magnesium hydroxide (average particle size 0.20 ⁇ m, plate shape, aspect ratio 6.21) and N-methyl-2-pyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was changed to a mass ratio of 3:2. Further, 2 parts by mass of phosphate polyester was added as a dispersant to 100 parts by mass of magnesium hydroxide.
  • composition 100 parts by mass of magnesium hydroxide dispersion, 80 mass of a solution of polysulfone resin (manufactured by BASF, product number Ultrason S3010) dissolved in N-methyl-2-pyrrolidone at a concentration of 30 mass% parts, 7.5 parts by weight of 2-ethyl-1-hexanol, 4.3 parts by weight of polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., Epomin SP-200), and 18.2 parts by weight of N-methyl-2-pyrrolidone were mixed.
  • Example 13 In (1. Preparation of inorganic particle dispersion), magnesium hydroxide (average particle size 0.20 ⁇ m, plate shape, aspect ratio 6.21) and N-methyl-2-pyrrolidone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was changed to a mass ratio of 3:2. Further, 2 parts by mass of phosphate polyester was added as a dispersant to 100 parts by mass of magnesium hydroxide.
  • composition 100 parts by mass of magnesium hydroxide dispersion, 80 mass of a solution of polysulfone resin (manufactured by BASF, product number Ultrason S3010) dissolved in N-methyl-2-pyrrolidone at a concentration of 30 mass% part, 2-ethyl-1-hexanol 12.5 parts by mass, polyacrylic (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 250,000) 1.3 parts by mass, N-methyl-2-pyrrolidone 16.2 parts by mass Mix bottom.
  • polysulfone resin manufactured by BASF, product number Ultrason S3010
  • 2-ethyl-1-hexanol 12.5 parts by mass
  • polyacrylic manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., molecular weight 250,000
  • Example 1 shows the results.
  • the inner layer 1 in Table 1 means the inner layer closer to the surface layer.
  • Inner layer 2 in Table 1 means the inner layer farther from the surface layer.
  • Example 9 does not include a porous support, it does not include the inner layer 2 but includes a back layer. Since Example 10 has porous layers on both sides of the porous support, one of the two porous layers is referred to as porous layer 1 and the other is referred to as porous layer 2 .
  • the diaphragms for alkaline water electrolysis (1) to (13) of Examples 1 to 13 significantly suppressed the formation of macrovoids. It is considered that this is because 2-ethyl-1-hexanol or the like was added to the composition in Example 1 in the production of the diaphragm for alkaline water electrolysis.
  • the diaphragms for alkaline water electrolysis (1) to (8) and (10) to (13) of Examples 1 to 8 and 10 to 13 had an inner layer having a larger average pore size than the surface layer in the non-impregnated layer. .
  • the diaphragm for alkaline water electrolysis (9) of Example 9 had an inner layer with a larger average pore size than the two surface layers.
  • the non-impregnated layer of the diaphragm for alkaline water electrolysis (C1) of Comparative Example 1 the internal layer having a larger average pore diameter than that of the surface layer was not provided.
  • the diaphragms for alkaline water electrolysis (1) to (13) of Examples 1 to 13 had an air permeability per unit thickness greater than that of the diaphragm for alkaline water electrolysis (C1) of Comparative Example 1, and thus had excellent gas barrier properties. Similarly, by comparing the membrane resistance, the ionic conductivity was excellent. A comparison of the film resistance ratio in the hot alkali endurance test showed excellent alkali resistance. Excellent mechanical strength by comparison of mass reduction rate in ultrasonic test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、マクロボイドの形成が抑制されたアルカリ水電解用隔膜の製造方法を提供する。本発明は、多孔質層を備えるアルカリ水電解用隔膜の製造方法であって、有機ポリマー、無機粒子、下記一般式(1)で示される化合物、及び溶媒を含む組成物を用いて上記多孔質層を得る工程を有する、アルカリ水電解用隔膜の製造方法。 R-X (1) (式(1)中、Rは炭素数6以上の炭化水素基、Xは親水性官能基を表す。)

Description

アルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜
本発明は、アルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜に関する。
アルカリ水電解(アルカリ水の電気分解)は、水素ガスの工業的な製造方法の一つとして知られている。一般的に、水酸化ナトリウムや水酸化カリウム等を添加した水に電流を印加して行われる。このようなアルカリ水電解には、陽極(アノード)が配置された陽極室と陰極(カソード)が配置された陰極室とを有し、これらがアルカリ水電解用隔膜(以降、隔膜とも称する)により仕切られた電解槽が使用される。
アルカリ水の電気分解では、陰極室から陽極室へ電子(又はイオン)が移動する。そのため、隔膜には高いイオン伝導性が必要とされる。更に、アルカリ水の電気分解は、30%程度の高濃度のアルカリ水を使用して、80~100℃、場合によっては1MPa以上の高圧力下で行われる。そのため、耐熱性、耐アルカリ性等も必要とされる。
隔膜としては、ポリスルホン等の有機ポリマーからなる多孔質膜に、水酸化マグネシウム等の無機粒子を含有させたものが知られている。その製法として非溶媒誘起相分離法(NIPS法)を用いる方法が知られている(例えば、特許文献1)。
国際公開第2019/021774号
鋭意検討の結果、非溶媒誘起相分離法(NIPS法)により得られた隔膜には、マクロボイドが形成され易いことが判明した。マクロボイドの存在は、イオン伝導性の変動の原因等になり得ると考えられる。
本発明は、上記問題に鑑みてなされたものであり、マクロボイドの形成が抑制されたアルカリ水電解用隔膜の製造方法を提供することを目的とする。
本発明は、多孔質層を備えるアルカリ水電解用隔膜の製造方法であって、有機ポリマー、無機粒子、下記一般式(1)で示される化合物、及び溶媒を含む組成物を用いて上記多孔質層を得る工程を有する、アルカリ水電解用隔膜の製造方法である。
R-X   (1)
(式(1)中、Rは炭素数6以上の炭化水素基、Xは親水性官能基を表す。)
上記組成物において、上記一般式(1)で示される化合物の含有量が、上記有機ポリマーと上記無機粒子との合計含有量100質量%に対して2~30質量%であることが好ましい。
本発明はまた、有機ポリマー及び無機粒子を含む多孔質層からなるアルカリ水電解用隔膜であって、
上記多孔質層の一対の主面は上記アルカリ水電解用隔膜の表裏面をなし、
上記多孔質層の断面を厚み方向に3等分して得られる3つの断面層において、上記表裏面を含む2つの断面層を表面層及び裏面層とし、他の断面層を内部層としたとき、
上記内部層は上記表面層及び上記裏面層の少なくとも一方より平均孔径が大きい、アルカリ水電解用隔膜である。
本発明はまた、有機ポリマー及び無機粒子を含む多孔質層と、多孔質支持体とを備えるアルカリ水電解用隔膜であって、
上記多孔質層は、上記多孔質支持体に含浸していない非含浸層を含み、
上記非含浸層の断面を厚み方向に3等分して得られる3つの断面層において、上記アルカリ水電解用隔膜の表面を含む1つの断面層を表面層とし、上記表面層以外の2つの断面層をそれぞれ内部層としたとき、
上記内部層のうち少なくとも一方は上記表面層より平均孔径が大きい、アルカリ水電解用隔膜である。
本発明はまた、有機ポリマー及び無機粒子を含む多孔質層と、多孔質支持体とを備えるアルカリ水電解用隔膜であって、
上記多孔質層は、上記多孔質支持体に含浸した含浸層と、上記多孔質支持体に含浸していない非含浸層とを含み、
上記非含浸層の断面を厚み方向に3等分して得られる3つの断面層において、上記アルカリ水電解用隔膜の表面を含む1つの断面層を表面層とし、該表面層以外の2つの断面層をそれぞれ内部層としたとき、
上記内部層のうち少なくとも一方は上記含浸層より平均孔径が大きい、アルカリ水電解用隔膜である。
上記内部層のうち少なくとも一方は、上記表面層より平均孔径が大きいことが好ましい。
本発明により、マクロボイドの形成が抑制された多孔質層を備えるアルカリ水電解用隔膜を製造できる。
アルカリ水電解用隔膜の断面(主に非含浸層の部分)を、走査型電子顕微鏡を用いて撮影した写真(観察画像)に基準線等を付記した図である。 アルカリ水電解用隔膜の断面(主に含浸層の部分)を、走査型電子顕微鏡を用いて撮影した写真(観察画像)に基準線等を付記した図である。
以下に本発明を詳述する。なお、本明細書において、「〇~△」と示される数値範囲は、「〇以上△以下」を意味する。例えば、「35~400nm」は、「35nm以上400nm以下」を意味する。
1.アルカリ水電解用隔膜の製造方法
本発明のアルカリ水電解用隔膜の製造方法について説明する。本発明のアルカリ水電解用隔膜の製造方法は、多孔質層を備えるアルカリ水電解用隔膜の製造方法であって、有機ポリマー、無機粒子、下記一般式(1)で示される化合物、及び溶媒を含む組成物を用いて上記多孔質層を得る工程を有する。
R-X   (1)
(式(1)中、Rは炭素数6以上の炭化水素基、Xは親水性官能基を表す。)
なお、本発明のアルカリ水電解用隔膜の製造方法を、本発明の製造方法とも称する。また、一般式(1)で示される化合物を化合物(A)、組成物を組成物(P)とも称する。
有機ポリマーはフッ素系樹脂、オレフィン系樹脂、芳香族炭化水素系樹脂等である。
フッ素系樹脂はエチレン-テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニル、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン-フッ化ビニリデン共重合体等である。
オレフィン系樹脂はポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等である。
芳香族炭化水素系樹脂はポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリスチレン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリフェニルスルホン、ポリアリレート、ポリエーテルイミド、ポリイミド、ポリアミドイミド等である。
有機ポリマーは、列挙されたフッ素系樹脂、オレフィン系樹脂、芳香族炭化水素系樹脂等を1種のみ含んでもよいし、2種以上含んでもよい。耐熱性、耐圧性、耐アルカリ性に優れる点で、芳香族炭化水素系樹脂が好ましく、ポリスルホン、ポリエーテルスルホン、及びポリフェニルスルホンから選択される少なくとも1種がより好ましく、溶媒に溶解しやすい点でポリスルホンが更に好ましい。
無機粒子はマグネシウム、ジルコニウム、チタン、亜鉛、アルミニウム、タンタル等の金属水酸化物又は金属酸化物;カルシウム、バリウム、鉛、ストロンチウム等の硫酸塩;チタン、ジルコニウム、ハフニウム等の窒化物;チタン、ジルコニウム、ハフニウム等の炭化物等である。
無機粒子は、列挙された金属水酸化物、金属酸化物、硫酸塩、窒化物、炭化物等を1種のみ含んでもよいし、2種以上含んでもよい。アルカリ水電解用隔膜のイオン伝導性を高める点で、金属水酸化物又は金属酸化物が好ましく、水酸化マグネシウム、水酸化ジルコニウム、水酸化チタン、酸化ジルコニウム、酸化チタンがより好ましく、水酸化マグネシウム、水酸化ジルコニウム、水酸化チタン、酸化チタンが更に好ましく、水酸化マグネシウム、水酸化ジルコニウム、水酸化チタンがより更に好ましく、水酸化マグネシウムが特に好ましい。
無機粒子は表面処理されていてもよい。表面処理は、例えばシランカップリング剤、ステアリン酸、オレイン酸、リン酸エステル等を用いた公知の表面処理である。
無機粒子の形状は制限されない。不定形状、粒状、顆粒状、薄片状、六角板状等の板状、及び繊維状等のいずれの形状でよい。有機ポリマーとの密着性を高める点で、粒状、薄片状、板状が好ましく、薄片状、板状がより好ましく、薄片状が更に好ましい。アルカリ水電解用隔膜の強度を高める点で、薄片状、板状が好ましく、薄片状がより好ましい。
無機粒子の平均粒子径は制限されない。アルカリ水電解用隔膜の強度を高める点で、0.05μm以上2.0μm以下が好ましい。0.08μm以上1.5μm以下がより好ましく、0.1μm以上1μm以下が更に好ましい。
平均粒子径は、レーザー回折法による粒度分布測定から求められる体積平均粒子径(D50)を意味する。具体的には、レーザー回折/散乱式粒度分布測定装置(例えば、堀場製作所社製「型番LA-920」)を用いて粒度分布を測定し、体積基準の粒度分布におけるメジアン径(D50)を平均粒子径とする。なお、粒子をエタノールに混合し超音波照射して分散させたものを測定試料とする。
無機粒子のアスペクト比は制限されない。アルカリ水電解用隔膜のイオン伝導性を高める点で、2.0以上8.0以下が好ましい。2.5以上7.0以下がより好ましく、3.0以上6.0以下が更に好ましい。
アスペクト比は、最長径(a)と最短径(b)との比[(a)/(b)]を意味する。無機粒子を走査型電子顕微鏡(SEM)で観察し、得られた画像内の任意の10個の無機粒子のそれぞれについて、解析ソフトを使用して比[(a)/(b)]を測定する。10個の無機粒子の比[(a)/(b)]の平均値を無機粒子のアスペクト比とする。通常、最長径と直交する径のうちの最も短い径を最短径(b)とする。
再び、無機粒子は耐アルカリ性、耐久性に優れ、比較的安価にアルカリ水電解用隔膜を得る点で、水酸化マグネシウムが好ましい。水酸化マグネシウムの平均粒子径は、上述したように0.05μm以上2.0μm以下が好ましい。水酸化マグネシウムのアスペクト比は、上述したように2.0以上8.0以下が好ましい。
水酸化マグネシウムは、X線回折により測定される(110)面に垂直な方向の結晶子径が35nm以上であると好ましい。このようにすると、アルカリ水電解用隔膜のイオン伝導性をより高めることができる。とりわけ、40nm以上がより好ましく、50nm以上が更に好ましく、60nm以上がより更に好ましく、65nm以上が特に好ましい。上限値は限定されないが、通常は400nm以下であり、好ましくは350nm以下、更に好ましくは300nm以下である。
すなわち、水酸化マグネシウムのX線回折により測定される(110)面に垂直な方向の結晶子径は、好ましくは35~400nmであり、より好ましくは40~350nmであり、更に好ましくは50~300nmであり、より更に好ましくは60~300nmであり、特に好ましくは65~300nmである。
水酸化マグネシウムは、X線回折により測定される(001)面に垂直な方向の結晶子径が15nm以上であると好ましい。このようにすると、アルカリ水電解用隔膜のイオン伝導性をより高めることができる。とりわけ、18nm以上がより好ましく、21nm以上が更に好ましく、24nm以上がより更に好ましい。上限値は限定されないが、通常は300nm以下であり、好ましくは250nm以下、更に好ましくは200nm以下である。
すなわち、水酸化マグネシウムのX線回折により測定される(001)面に垂直な方向の結晶子径は、好ましくは15~300nmであり、より好ましくは18~250nmであり、更に好ましくは21~200nmであり、より更に好ましくは24~200nmである。
結晶子径は粉末X線回折法により求められる。水酸化マグネシウム粒子のX線回折パターンを測定し、対象の格子面に帰属される回折線の広がり(半値幅)から、Scherrerの式を用いて結晶子径(上記格子面に垂直方向の結晶子径)を算出する。
上述した特定の結晶子径範囲の水酸化マグネシウムを得るための方法としては、例えば、以下の方法が挙げられる。すなわち、マグネシウム塩(塩化マグネシウム、硝酸マグネシウム等)の水溶液、又は、従来公知の方法で得られた酸化マグネシウムの水分散液を原料とし、アルカリ性物性(水酸化リチウム、水酸化ナトリウム、水酸化カルシウム、アンモニア水等)の添加により、水和反応を行うことで水酸化マグネシウムを調製する。この際に、蟻酸、酢酸、プロピオン酸等の有機酸、硝酸、硫酸等の多塩基酸、又は、これらの混合物の添加により、生成した水酸化マグネシウムの溶解度を調整したり、水熱反応の温度(例えば150℃から270℃)や時間(例えば30分~10時間)を適宜調整したりすることにより、結晶子径の異なる粒子を調製できる。酸の添加量が多い方が結晶成長は進み、結晶子径が大きくなる。また、水熱反応の温度は高い方が、時間は長い方が、結晶成長が進み、結晶子径は大きくなる。
無機粒子は市販品でもよい。例えば水酸化マグネシウムの市販品としては、協和化学工業社製の200-06H、宇部マテリアル社製UP650-1、タテホ化学工業社製MAGSTAR♯20、神島化学工業社製♯200等を使用してよい。
化合物(A)は下記一般式(1)で表される。
R-X   (1)
一般式(1)におけるRは炭素数6以上の炭化水素基である。炭化水素基は制限されない。脂肪族炭化水素基、芳香族炭化水素基、飽和炭化水素基、不飽和炭化水素基、鎖状炭化水素基、環状炭化水素基等でよい。
炭化水素基はアルキル基、アルケニル基、アリール基、芳香族アルキル基が好ましい。
アルキル基はヘキシル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、ヘプチル基、オクチル基、1-メチルヘプチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等の鎖状アルキル基;シクロヘキシル基等の環状アルキル基等である。炭素数6~18のアルキル基が好ましく、炭素数6~12のアルキル基がより好ましく、炭素数6~10のアルキル基が更に好ましい。
アルケニル基は列挙されたアルキル基において1つのC-C単結合を二重結合とした基等である。炭素数6~18のアルケニル基が好ましく、炭素数6~12のアルケニル基がより好ましい。
アリール基はフェニル基、トリル基、キシリル基、ナフチル基、アントリル基、ビフェニル基、トリフェニル基等である。フェニル基、トリル基、キシリル基が好ましい。炭素数6~18のアリール基が好ましく、炭素数6~12のアリール基がより好ましい。
芳香族アルキル基はベンジル基、フェネチル基、フェニルプロピル基、フェニルペンチル基、フェニルヘキシル基、フェニルオクチル基等である。炭素数6~18の芳香族アルキル基が好ましく、6~12の芳香族アルキル基がより好ましく、炭素数6~10の芳香族アルキル基が更に好ましい。
炭化水素基は炭素数が6~12の炭化水素基が好ましい。炭素数が6~12のアルキル基、炭素数が6~12のアルケニル基、炭素数が6~12のアリール基、及び炭素数が6~12の芳香族アルキル基から選択される少なくとも1種がより好ましい。また、炭化水素基は、アルキル基及び芳香族アルキル基から選択される少なくとも1種が好ましく、炭素数6~12のアルキル基及び炭素数6~12の芳香族アルキル基から選択される少なくとも1種がより好ましく、炭素数6~10のアルキル基及び炭素数6~10の芳香族アルキル基から選択される少なくとも1種が更に好ましく、炭素数6~10のアルキル基から選択される少なくとも1種がより更に好ましい。
炭化水素基は置換基を有していてもよい。置換基はハロゲン原子、アルコキシ基等である。ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等である。フッ素原子、塩素原子、臭素原子が好ましい。アルコキシ基はメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、フェノキシ基、シクロヘキシルオキシ基、ベンジルオキシ基等である。炭素数1~18のアルコキシ基が好ましく、炭素数1~6のアルコキシ基がより好ましく、メトキシ基が更に好ましい。
一般式(1)におけるXは親水性官能基である。親水性官能基は制限されない。カルボキシ基(-COOH)、リン酸基(-OPO(OH))、水酸基(-OH)、スルホン酸基(-SOH)、ホスホン酸基(-PO(OH))、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)等の酸性官能基;アミノ基、アンモニウム基、イミノ基、アミド基、イミド基、マレイミド基等の塩基性官能基等でよい。
化合物(A)は組成物(P)を用いてアルカリ水電解用隔膜の多孔質層を形成する過程において、R(炭化水素基)部分で有機ポリマーと相互作用し、X(親水性官能基)部分で無機粒子と相互作用するように考えられる。この相互作用がマクロボイドの形成を抑制すると推定される。推定理由は後述する。
化合物(A)は、得られる多孔質層のイオン伝導性を高めるために、多孔質層形成後に除去されることが好ましい。この観点から、親水性官能基は無機粒子との相互作用力が適度である水酸基及びカルボキシ基が好ましく、水酸基がより好ましい。
また、同じ観点から、化合物(A)は揮発しやすいと好ましい。化合物(A)の常圧における沸点は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。
以上総合すると、化合物(A)は、炭素数6~10の飽和脂肪族アルコールが好ましい。例えば、シクロヘキサノール、1-ヘキサノール、2-ヘキサノール、2-メチル-1-ペンタノール、1-ヘプタノール、1-オクタノール、2-オクタノール(1-メチルヘプタノール)、2-エチルヘキサノール、1-ノナノール、1-デカノール、1-ウンデカノール、1-ドデカノール等の1級アルコール;2-ヘキサノール、3-メチル-2-ペンタノール等の2級アルコール;2-メチル-2-ペンタノール等の3級アルコールから選択される少なくとも1種が好ましい。
化合物(A)の25℃における水への溶解度は0.001~5質量%が好ましい。このようにすると、マクロボイドの形成を抑制しやすい。とりわけ、0.01~3質量%がより好ましく、0.05~2質量%が更に好ましい。
溶媒は、有機ポリマーを溶解させることができる有機溶媒である。N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド等である。これらの溶媒を1種のみ含んでもよいし、2種以上含んでもよい。有機ポリマーの溶解性に優れ、無機粒子の分散性にも優れる点で、N-メチル-2-ピロリドンが好ましい。なお、溶媒は水等の非有機溶媒を含んでもよい。
組成物(P)における有機ポリマー、無機粒子、及び化合物(A)の合計含有量は、組成物(P)100質量%に対して、20質量%以上であると好ましい。とりわけ、30質量%以上がより好ましく、40質量%以上が更に好ましい。上限値は限定されないが、80質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。すなわち、組成物(P)における有機ポリマー、無機粒子、及び化合物(A)の合計含有量は、組成物(P)100質量%に対して、好ましくは20~80質量%、より好ましくは30~60質量%、更に好ましくは40~50質量%である。
組成物(P)における無機粒子の含有量は、有機ポリマーと無機粒子との合計含有量100質量%に対して、50~90質量%であると好ましい。とりわけ、上限は85質量%がより好ましく、80質量%が更に好ましい。下限は55質量%がより好ましく、60質量%が更に好ましい。組成物(P)における無機粒子の含有量は、有機ポリマーと無機粒子との合計含有量100質量%に対して、より好ましくは55~85質量%、更に好ましくは60~80質量%である。
組成物(P)における化合物(A)の含有量は、有機ポリマーと無機粒子との合計含有量100質量%に対して、2~30質量%であると好ましい。とりわけ、2.5質量%以上がより好ましく、3質量%以上が更に好ましく、5質量%以上がより更に好ましい。また、20質量%以下がより好ましく、15質量%以下が更に好ましい。組成物(P)における化合物(A)の含有量は、有機ポリマーと無機粒子との合計含有量100質量%に対して、より好ましくは2.5~20質量%、更に好ましくは3~15質量%、より更に好ましくは5~15質量%である。
組成物(P)は分散剤を含んでもよい。分散剤はカチオン系界面活性剤、アニオン系面活性剤、高分子分散剤等である。カチオン系界面活性剤は炭素数5以上の炭化水素鎖を有するものが好ましい。アニオン系界面活性剤は炭素数5以上の炭化水素鎖を有するものが好ましい。高分子分散剤は、構成単位(繰り返し単位)として炭素数が5以上の炭化水素鎖を含み、親水性官能基を有するものが好ましい。親水性官能基はカルボキシ基、リン酸基、スルホン酸基等の酸性官能基;アミノ基等の塩基性官能基等である。とりわけ、カルボキシ基、リン酸基が好ましい。
組成物(P)における分散剤の含有量は、組成物(P)に含まれる無機粒子100質量%に対して、0.01質量%超8.0質量%以下が好ましく、0.1質量%以上6.0質量%以下がより好ましく、1.0質量%以上5.0質量%以下が更に好ましい。
組成物(P)は親水性添加剤を含んでもよい。親水性添加剤は、有機親水性添加剤でも無機親水性添加剤でもよい。有機親水性添加剤は、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルアルコール、分子量10万未満のポリエチレンイミン、ポリアクリル酸、デキストラン等の水溶性ポリマー;界面活性剤;グリセリン;糖類等である。特に、ポリエチレンイミン、ポリアクリル酸が好ましい。無機親水性添加剤は、塩化カルシウム、塩化マグネシウム、塩化リチウム、塩化ナトリウム、塩化カリウム等の金属塩化物である。特に、金属塩化物が好ましい。
組成物(P)における親水性添加剤の含有量は、無機粒子100質量%に対して、0.001~20質量%が好ましい。親水性添加剤が金属塩化物である場合の含有量は、無機粒子100質量%に対して、0.001~15質量%が好ましく、0.01~12質量%がより好ましく、0.05~10質量%が更に好ましい。
組成物(P)は、必要に応じて他の添加剤を含んでもよい。
組成物(P)を用いて多孔質層を得る工程は、下記工程(1)~(3)を含む。
(1)組成物(P)を調製する工程。
(2)組成物(P)を塗膜とする工程。
(3)塗膜を多孔質層とする工程。
工程(1)は、有機ポリマーと、無機粒子と、化合物(A)と、溶媒を混合して組成物(P)を調製する工程である。混合の方法や手順は限定されない。混合方法は公知のものでよい。例えばミキサー、ボールミル、ジェットミル、ディスパー、サンドミル、ロールミル、ポットミル、ペイントシェーカーを用いる方法でよい。混合手順は任意でよい。例えば有機ポリマーと無機粒子と化合物(A)の3成分を同時または任意の順番で溶媒に混合してよい。他には、有機ポリマーと、無機粒子と、化合物(A)と別々に溶媒に混合し、それらの混合液を混合してもよい。
工程(2)は、工程(1)で得られた組成物(P)を基材や多孔質支持体に塗布して塗膜を形成する工程である。
基材への塗膜方法はダイコーティング、スピンコーティング、グラビアコーティング、カーテンコーティング、スプレー、アプリケーター、コーターを用いる方法等である。
基材はポリテトラエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリビニルアセタール、ポリメタクリル酸メチル、ポリカーボネート等の樹脂からなるフィルム又はシート、ガラス板等である。ポリテトラエチレンテレフタレートのフィルム又はシートが好ましい。
工程(2)は、多孔質支持体に組成物(P)を塗布する工程であることが好ましい。塗布方法は限定されない。多孔質支持体に組成物(P)を直接塗布する方法、多孔質支持体を組成物(P)中に浸漬する方法、組成物(P)を上述した基材上に塗布して塗膜を形成し、塗膜に多孔質支持体を接触させて、組成物(P)を多孔質支持体に含浸させる方法等でよい。
塗膜は多孔質支持体の片面側に設けられてもよく、両面側に設けられてもよい。塗膜は全てが多孔質支持体の表面に積層されていてもよく、一部が多孔質支持体に含浸するとともに残部が多孔質支持体の表面に積層されてもよい。塗膜が多孔質支持体に含浸する形態において、塗膜は多孔質支持体の厚み方向の一部に含浸していてもよく、多孔質支持体の厚み方向の全体に亘って含浸していてもよい。塗布方法や組成物(P)の粘度等を適宜調整することにより、塗膜が多孔質支持体内に含浸する程度を調整できる。
多孔質支持体はポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリフェニレンサルファイド、ポリケトン、ポリイミド、ポリエーテルイミド、フッ素系樹脂等の樹脂である。これらを1種のみ含んでもよいし、2種以上含んでもよい。耐熱性及び耐アルカリ性に優れる点で、ポリプロピレン、ポリエチレン、及びポリフェニレンサルファイドから選択される少なくとも1種が好ましく、ポリプロピレン、及びポリフェニレンサルファイドから選択される少なくとも1種がより好ましい。
多孔質支持体の形態は限定されない。不織布、織布、メッシュ、多孔質膜、又は不織布と織布の混合布等でよい。不織布、織布、又はメッシュが好ましく、不織布、メッシュがより好ましく、不織布が更に好ましい。
多孔質支持体は、ポリプロピレン、ポリエチレン、及びポリフェニレンサルファイドから選択される少なくとも1種の樹脂を含む不織布、織布、又はメッシュが好ましい。ポリフェニレンサルファイドを含む不織布又はメッシュがより好ましい。
多孔質支持体がシート状である場合の厚みは限定さない。例えば30~2000μmである。50~1000μmが好ましく、80~500μmがより好ましく、80~250μmが更に好ましい。
多孔質支持体の厚みは、断面を電界放出型走査電子顕微鏡(FE-SEM)で観察して求めることができる。例えば、任意の5点における厚みの平均値を多孔質支持体の厚みとしてよい。
工程(3)は、工程(2)で得られた塗膜を多孔質層とする工程である。本発明では、少なくとも非溶媒誘起相分離法を行う。
非溶媒誘起相分離法では、工程(2)で得られた塗膜に含まれる有機ポリマーに対する非溶媒を含む液(非溶媒含有液)を用いる。この非溶媒含有液を塗膜に接触させると塗膜中に非溶媒が拡散する。このとき、非溶媒に溶解しうる塗膜中の溶媒は塗膜から溶出する。この結果、非溶媒に溶解しない有機ポリマーが凝固して多孔質層が形成される。
従来方法では、多孔質層にマクロボイドが多く形成されたが、本発明の製造方法においてはマクロボイドの形成が抑制される。言い換えると、形成されるマクロボイドの数が従来方法より減少する。その理由は以下のように推定される。
塗膜が化合物(A)を含まない場合、塗膜中における有機ポリマーと無機粒子との相互作用はそれほど強くない。そのため、塗膜に非溶媒含有液を接触させると、塗膜中に非溶媒含有液が速やかに且つ大量に侵入し易い。非溶媒含有液と塗膜を構成する溶媒との混合液により占有された部分がボイドとなるため、マクロボイドが多数形成されやすい。
これに対する本発明の製造方法では、塗膜が疎水性の炭化水素基(R)と親水性官能基(X)とを有する化合物(A)を含む。炭化水素基(R)は有機ポリマーと相互作用し、化合物(A)の親水性官能基(X)は無機粒子と相互作用していると考えられる。この相互作用は、水分子の水素結合のように、2次元的あるいは3次元的に拡がっている可能性もある。このような塗膜に非溶媒含有液を接触させると、この疎水性成分が塗膜全体に分散していることで、水の拡散速度は、化合物(A)を含まない場合に比べて低く抑えられる。その結果、マクロボイドの生成が抑制されると考えられる。
塗膜と非溶媒含有液とを接触させる方法は、塗膜を非溶媒含有液中に浸漬させる方法(凝固浴)等である。
なお、非溶媒は有機ポリマーを実質的に溶解しない性質を有するものである。有機ポリマーを実質的に溶解しないとは、25℃で、溶媒100gに対し、有機ポリマーの溶解度が100mg以下である場合をいう。非溶媒は純水、蒸留水、イオン交換水等の水;メタノール、エタノール、プロピルアルコール等の低級アルコール;又はこれらの混合溶媒等である。排液処理の観点から水が好ましく、イオン交換水がより好ましい。
非溶媒含有液は、非溶媒を含んでいればよい。非溶媒含有液における非溶媒の濃度は100質量%または100質量%に近い値でもよい。
非溶媒含有液は非溶媒以外の溶媒を含んでもよい。非溶媒以外の溶媒は限定されない。例えば、塗膜に含まれる溶媒と同様の溶媒であると好ましい。非溶媒以外の溶媒を含む場合、非溶媒含有液における非溶媒の濃度は10質量%以上が好ましく、20質量%以上がより好ましく、40質量%以上が更に好ましい。また、90質量%以下が好ましく、80質量%以下がより好ましく、60質量%以下が更に好ましい。すなわち、非溶媒含有液における非溶媒の濃度は、好ましくは10~90質量%、より好ましくは20~80質量%、更に好ましくは40~60質量%である。
塗膜に接触させる際の非溶媒含有液の温度は制限されない。塗膜を均一に凝固させる点で、5~70℃が好ましい。とりわけ、10~50℃がより好ましく、15~30℃が更に好ましい。塗膜を非溶媒含有液に浸漬させる時間は限定されない。0.5~30分が好ましく、1~20分がより好ましく、2~15分が更に好ましい。
工程(3)において、非溶媒誘起相分離法の前に蒸気誘起相分離法を行うことが好ましい。蒸気誘起相分離法では、工程(2)で得られた塗膜を有機ポリマーに対する非溶媒を含む蒸気(非溶媒含有ガス)に晒す。工程(2)で得られた塗膜を非溶媒含有ガスに晒す方法は制限されない。非溶媒含有ガスを該塗膜表面に吹き付ける方法、加温した非溶媒含有液を含む貯槽の気相部に該塗膜を晒す方法等でよい。
蒸気誘起相分離法における非溶媒は、非溶媒誘起相分離法における非溶媒と同様である。非溶媒含有ガスは酸素、窒素、炭酸ガス等の通常空気に含まれるガスを含んでいてもよく、塗膜中に含まれる溶媒と同様の溶媒の蒸気を含んでいてもよい。
非溶媒含有ガスは非溶媒を含んでいればよい。非溶媒含有ガスにおける非溶媒の濃度は、非溶媒含有ガス100体積%に対して、非溶媒分子の割合は50~100体積%が好ましく、70~100体積%がより好ましく、80~100体積%が更に好ましい。
塗膜に接触させる際の非溶媒含有ガスの温度は制限されない。塗膜を均一に凝固させる点で、50~80℃が好ましい。とりわけ、55~75℃がより好ましく、60~70℃が更に好ましい。塗膜を非溶媒含有ガスに接触させる時間は、1~60秒が好ましく、2~30秒がより好ましく、3~15秒が更に好ましい。
工程(1)~(3)により、有機ポリマー及び無機粒子を含む多孔質層が得られる。この多孔質層をアルカリ水電解用隔膜としてもよい。しかしながら、工程(3)により得られた多孔質層は、非溶媒含有液に含まれる非溶媒や工程(2)で形成した塗膜に含まれる溶媒成分を含み得る。これらの物質はアルカリ水電解用隔膜の性能に影響し得る。このような観点から、本発明のアルカリ水電解用隔膜の製造方法は、更に、下記工程(4)を含むことが好ましい。
 (4)多孔質層を乾燥する工程。
工程(4)は、工程(3)により得られた多孔質層に含まれる非溶媒や化合物(A)等を除去する乾燥工程である。乾燥温度は60~150℃が好ましく、60~130℃がより好ましい。乾燥時間は2~60分間が好ましく、2~30分間がより好ましく、5~30分間が更に好ましい。乾燥は常圧で行ってもよいし減圧下で行ってもよい。揮発成分の除去を促進するために0.03~0.06気圧における減圧乾燥することが好ましい。
更に、上述した工程(1)~(4)以外に、隔膜の密度を均一にするためにプレス処理する工程等、公知の工程を含んでいてもよい。
以上説明した方法により、マクロボイドの形成が抑制されたアルカリ水電解用隔膜を製造することができる。
2.アルカリ水電解用隔膜
本発明のアルカリ水電解用隔膜について説明する。アルカリ水電解用隔膜は、例えば上述の「1.アルカリ水電解用隔膜の製造方法」で説明された製造方法により得られる。
アルカリ水電解用隔膜は、有機ポリマー及び無機粒子を含む多孔質層を備える。好ましくは、更に多孔質支持体を備える。
有機ポリマー、無機粒子、多孔質支持体については「1.アルカリ水電解用隔膜の製造方法」で説明されたものと同様である。例えば、有機ポリマーはポリスルホンが好ましい。無機粒子は水酸化マグネシウムが好ましい。多孔質支持体はポリフェニレンサルファイドを含む、不織布又はメッシュが好ましい。
有機ポリマーの含有量は制限されない。多孔質層100質量%に対して10~50質量%が好ましい。この範囲であると、イオン伝導性や機械的強度に優れる。とりわけ、15質量%以上がより好ましく、20質量%以上が更に好ましい。また、45質量%以下がより好ましく、40質量%以下が更に好ましい。すなわち、有機ポリマーの含有量は、多孔質層100質量%に対して、より好ましくは15~45質量%、更に好ましくは20~40質量%である。
無機粒子の含有量は特に制限されない。多孔質層100質量%に対して、50~90質量%が好ましい。この範囲であると、イオン伝導性に優れる。とりわけ、55質量%以上がより好ましく、60質量%以上が更に好ましい。また、85質量%以下がより好ましく、80質量%以下が更に好ましい。すなわち、無機粒子の含有量は、多孔質層100質量%に対して、より好ましくは55~85質量%、更に好ましくは60~80質量%である。
多孔質層は化合物(A)を含んでもよい。化合物(A)は「1.アルカリ水電解用隔膜の製造方法」で説明されたものと同様である。化合物(A)の含有量は制限されない。多孔質層100質量%に対して、10質量%以下が好ましい。とりわけ、5質量%以下がより好ましく、1質量%以下が更に好ましい。
多孔質層は分散剤を含んでもよい。分散剤は「1.アルカリ水電解用隔膜の製造方法」で説明されたものと同様である。分散剤の含有量は制限されない。多孔質層中の無機粒子100質量%に対して、0.01質量%超、8.0質量%以下が好ましく、0.1質量%以上6.0質量%以下がより好ましく、1.0質量%以上5.0質量%以下が更に好ましい。
多孔質層は当然不純物を含み得る。ここでいう不純物は可避不可避を問わず、積極的には混入させない成分を意味する。
アルカリ水電解用隔膜が多孔質支持体を含む場合、アルカリ水電解用隔膜における多孔質層の含有量は制限されない。アルカリ水電解用隔膜100質量%に対して、10~80質量%が好ましい。とりわけ、15質量%以上がより好ましく、20質量%以上が更に好ましい。また、75質量%以下がより好ましく、70質量%以下が更に好ましい。すなわち、上記アルカリ水電解用隔膜における多孔質層の含有量は、アルカリ水電解用隔膜100質量%に対して、より好ましくは15~75質量%、更に好ましくは20~70質量%である。
多孔質層は多孔質支持体の片面側に設けられてもよく、両面側に設けられてもよい。多孔質層は全てが多孔質支持体の表面に積層されてもよく、一部が多孔質支持体に含浸するとともに残部が多孔質支持体の表面に積層されてもよい。多孔質層が多孔質支持体に含浸する形態において、多孔質層は多孔質支持体の厚み方向の一部に含浸してもよいし、多孔質支持体の厚み方向の全体に亘って含浸してもよい。よって、例えば、多孔質支持体の表裏面に積層された2つ多孔質層が多孔質支持体に含浸した多孔質層によって一体化された形態でもよい。
本発明のアルカリ水電解用隔膜を構成する多孔質層は、長径が30μm以上、且つ短径が5μm以上であるマクロボイドの含有率が50%以下である。アルカリ水電解用隔膜の機械的強度を向上させる点で、30%以下がより好ましく、20%以下が更に好ましく、10%以下がより更に好ましい。例えば0%以上18%以下であってよく、好ましくは0%以上12%以下であってもよい。
マクロボイドの含有率は、多孔質層の厚み方向の断面における、多孔質層の面積に対するマクロボイドの合計面積の割合を意味する。アルカリ水電解用隔膜が多孔質支持体を含まない場合は、多孔質層におけるマクロボイドの含有率が上記の範囲である。アルカリ水電解用隔膜が多孔質支持体を含む場合は、多孔質層のうち多孔質支持体に含浸していない非含浸部のマクロボイドの含有率が上記の範囲である。マクロボイドの含有率の測定方法は実施例にて詳述する。
本発明のアルカリ水電解用隔膜は多孔質層の形態に特徴を有する。以下、多孔質層の形態ごとに、アルカリ水電解用隔膜(S1)、アルカリ水電解用隔膜(S2)及びアルカリ水電解用隔膜(S3)として説明する。
<アルカリ水電解用隔膜(S1)>
アルカリ水電解用隔膜(S1)は、有機ポリマー及び無機粒子を含む多孔質層からなるアルカリ水電解用隔膜であって、上記多孔質層の一対の主面は上記アルカリ水電解用隔膜の表裏面をなし、上記多孔質層の断面を厚み方向に3等分して得られる3つの断面層において、上記表裏面を含む2つの断面層を表面層及び裏面層とし、他の断面層を内部層としたとき、上記内部層は上記表面層及び上記裏面層の少なくとも一方より平均孔径が大きい、アルカリ水電解用隔膜である。
上記の構成とすることにより、イオン伝導性とガスバリア性の両方に優れる。上記アルカリ水電解用隔膜(S1)を隔膜(S1)とも称する。
隔膜(S1)は、本発明のアルカリ水電解用隔膜において、多孔質支持体を含まない形態である。多孔質支持体を含まないため、多孔質層の一対の主面がアルカリ水電解用隔膜の表裏面をなす。なお、アルカリ水電解用隔膜の表裏は特に区別されるものではなく、説明の便宜上、アルカリ水電解用隔膜の一対の主面のうち一方を表面とし、他方を裏面としているに過ぎない。
多孔質層の断面を厚み方向に3等分すると、アルカリ水電解用隔膜の表面を含む断面層(表面層)と、アルカリ水電解用隔膜の表裏面を含まない断面層(内部層)と、アルカリ水電解用隔膜の裏面を含む断面層(裏面層)とが得られる。内部層の平均孔径は表面層及び裏面層の少なくとも一方の平均孔径よりも大きい。機械的強度を向上させる点で、内部層の平均孔径は表面層及び裏面層の双方の平均孔径よりも大きいと好ましい。
表面層及び裏面層の少なくとも一つの平均孔径に対する内部層の平均孔径の比(平均孔径比r11)は1.0超である。とりわけ、1.1以上が好ましく、1.2以上がより好ましい。また、3.0以下が好ましく、2.5以下がより好ましく、2.0以下が更に好ましい。
内部層の平均孔径は特に制限されない。機械的強度を向上させる点で、0.1~5.0μmが好ましい。とりわけ、0.2μm以上がより好ましく、0.3μm以上が更に好ましい。また、4.0μm以下がより好ましく、3.0μm以下が更に好ましい。すなわち、内部層の平均孔径は、より好ましくは0.2~4.0μm、更に好ましくは0.3~3.0μmである。
表面層及び裏面層の平均孔径は特に制限されない。機械的強度を向上させる点で、0.05~3.0μmが好ましい。とりわけ、0.1μm以上がより好ましく、0.2μm以上が更に好ましい。また、2.5μm以下がより好ましく、2.0μm以下が更に好ましい。表面層及び裏面層の双方がこのような平均孔径を有すると好ましい。すなわち、表面層及び裏面層の平均孔径は、より好ましくは0.1~2.5μm、更に好ましくは0.2~2.0μmである。
<アルカリ水電解用隔膜(S2)>
アルカリ水電解用隔膜(S2)は、有機ポリマー及び無機粒子を含む多孔質層と、多孔質支持体とを備えるアルカリ水電解用隔膜であって、
上記多孔質層は、上記多孔質支持体に含浸していない非含浸層を含み、
上記非含浸層の断面を厚み方向に3等分して得られる3つの断面層において、上記アルカリ水電解用隔膜の表面を含む断面層を表面層とし、上記表面層以外の2つの断面層をそれぞれ内部層としたとき、上記2つの内部層のうち少なくとも一方は上記表面層より平均孔径が大きい、アルカリ水電解用隔膜である。
上記構成とすることにより、イオン伝導性とガスバリア性の両方に優れる。上記アルカリ水電解用隔膜(S2)を隔膜(S2)とも称する。
隔膜(S2)は、本発明のアルカリ水電解用隔膜において、多孔質支持体を含む形態である。多孔質支持体を含むため、多孔質層の一対の主面の一方がアルカリ水電解用隔膜の表面をなす。
多孔質層の断面を厚み方向に3等分すると、アルカリ水電解用隔膜の表面を含む断面層(表面層)1つと、アルカリ水電解用隔膜の表面を含まない断面層(内部層)2つとが得られる。隔膜(S2)は、2つの内部層のうち少なくとも一方が表面層より平均孔径が大きい。隔膜(S2)は、この構成を有する多孔質層を多孔質支持体の少なくとも一主面に有していればよい。
表面層の平均孔径に対する平均孔径が大きい方の内部層の平均孔径の比(平均孔径比r11)は1.0超である。とりわけ、1.1以上が好ましく、1.2以上がより好ましい。また、3.0以下が好ましく、2.5以下がより好ましく、2.0以下が更に好ましい。すなわち、上記平均孔径比r11は、好ましくは1.0超3.0以下、より好ましくは1.1以上2.5以下、更に好ましくは1.2以上2.0以下である。
平均孔径が大きい方の内部層の平均孔径は特に制限されない。強度のバランス向上の観点から、0.1~5.0μmが好ましい。とりわけ、0.2μm以上がより好ましく、0.3μm以上が更に好ましい。また、4.0μm以下がより好ましく、3.0μm以下が更に好ましい。すなわち、平均孔径が大きい方の内部層の平均孔径は、より好ましくは0.2~4.0μm、更に好ましくは0.3~3.0μmである。
平均孔径が小さい方の内部層の平均孔径もこのような平均孔径を有することが好ましい。
表面層の平均孔径は特に制限されない。強度のバランス向上の観点から、0.05~3.0μmが好ましい。とりわけ、0.1μm以上がより好ましく、0.2μm以上が更に好ましい。また、2.5μm以下がより好ましく、2.0μm以下が更に好ましい。すなわち、表面層の平均孔径は、より好ましくは0.1~2.5μm、更に好ましくは0.2~2.0μmである。
また、表面層に隣接する内部層が表面層より平均孔径が大きいと好ましい。更に、2つの内部層の双方が表面層より平均孔径が大きいと好ましい。
隔膜(S2)は、多孔質層の一部が多孔質支持体に含浸していることが好ましい。すなわち、多孔質層は多孔質支持体に含浸した含浸層と、上記多孔質支持体に含浸していない非含浸層とを含むことが好ましい。非含浸層における2つの内部層のうち少なくとも一方は、含浸層よりも平均孔径が大きいことが好ましい。
含浸層の平均孔径に対する非含浸層における平均孔径が大きい方の内部層の平均孔径の比(平均孔径比r12)は、1.0超が好ましい。1.2以上がより好ましく、1.4以上が更に好ましい。また、3.0以下が好ましく、2.5以下がより好ましく、2.0以下が更に好ましい。すなわち、上記平均孔径比r12は、好ましくは1.0超3.0以下、より好ましくは1.2以上2.5以下、更に好ましくは1.4以上2.0以下である。
含浸層の平均孔径は特に制限されない。強度のバランス向上の観点から、0.05~3.0μmが好ましい。とりわけ、0.1μm以上がより好ましく、0.2μm以上が更に好ましい。また、2.5μm以下がより好ましく、2.0μm以下が更に好ましい。すなわち、含浸層の平均孔径は、より好ましくは0.1~2.5μm、更に好ましくは0.2~2.0μmである。
非含浸層の厚みは特に制限されない。強度のバランス向上の観点から、20~150μmが好ましい。とりわけ、30μm以上がより好ましく、40μm以上が更に好ましい。また、120μm以下がより好ましく、100μm以下が更に好ましい。なお、非含浸層が多孔質支持体の両面側に存在する場合は、それぞれの非含浸層の厚みである。すなわち、非含浸層の厚みは、より好ましくは30~120μm、更に好ましくは40~100μmである。
含浸層の厚みは特に制限されない。強度に優れ、抵抗を低くする観点から、50~300μmが好ましい。とりわけ、80μm以上がより好ましく、130μm以上が更に好ましい。また、250μm以下がより好ましい。なお、含浸層が多孔質支持体の両面側に存在する場合は、それぞれの非含浸層の厚みである。すなわち、含浸層の厚みは、より好ましくは80~250μm、更に好ましくは130~250μmである。
<アルカリ水電解用隔膜(S3)>
アルカリ水電解用隔膜(S3)は、有機ポリマー及び無機粒子を含む多孔質層と、多孔質支持体とを備えるアルカリ水電解用隔膜であって、上記多孔質層は、上記多孔質支持体に含浸した含浸層と、上記多孔質支持体に含浸していない非含浸層とを含み、上記非含浸層の断面を厚み方向に3等分して得られる3つの断面層において、上記アルカリ水電解用隔膜の表面を含む1つの断面層を表面層とし、該表面層以外の2つの断面層をそれぞれ内部層としたとき、上記内部層のうち少なくとも一方は上記含浸層より平均孔径が大きい、アルカリ水電解用隔膜である。
上記構成とすることにより、イオン伝導性とガスバリア性の両方に優れるアルカリ水電解用隔膜となる。上記アルカリ水電解用隔膜(S3)を隔膜(S3)とも称する。
隔膜(S3)は、本発明のアルカリ水電解用隔膜において、多孔質支持体を含む形態である。多孔質支持体を含むため、多孔質層の一対の主面の一方がアルカリ水電解用隔膜の表面をなす。
多孔質層の断面を厚み方向に3等分すると、アルカリ水電解用隔膜の表面を含む断面層(表面層)1つと、アルカリ水電解用隔膜の表面を含まない断面層(内部層)2つとが得られる。隔膜(S3)は、2つの内部層のうち少なくとも一方が含浸層より平均孔径が大きい。隔膜(S3)は、この構成を有する多孔質層を多孔質支持体の少なくとも一主面側に有していればよい。
含浸層の平均孔径に対する非含浸層における平均孔径が大きい方の内部層の平均孔径の比(平均孔径比r22)は1.0超であることが好ましい。とりわけ、1.2以上がより好ましく、1.4以上が更に好ましい。また、3.0以下が好ましく、2.5以下がより好ましく、2.0以下が更に好ましい。すなわち、上記平均孔径比r22は、好ましくは1.0超3.0以下、より好ましくは1.2以上2.5以下、更に好ましくは1.4以上2.0以下である。
非含浸層における平均孔径が大きい方の内部層の平均孔径は特に制限されない。強度のバランス向上の観点から、0.1~5.0μmが好ましい。とりわけ、0.2μm以上がより好ましく、0.3μm以上が更に好ましい。また、4.0μm以下がより好ましく、3.0μm以下が更に好ましい。すなわち、非含浸層における平均孔径が大きい方の内部層の平均孔径は、より好ましくは0.2~4.0μm、更に好ましくは0.3~3.0μmである。非含浸層における平均孔径が小さい方の内部層の平均孔径もこのような平均孔径を有することが好ましい。
含浸層の平均孔径は特に制限されない。強度のバランス向上の観点から、0.05~3.0μmが好ましい。とりわけ、0.1μm以上がより好ましく、0.2μm以上が更に好ましい。また、2.5μm以下がより好ましく、2.0μm以下が更に好ましい。すなわち、含浸層の平均孔径は、より好ましくは0.1~2.5μm、更に好ましくは0.2~2.0μmである。
非含浸層の厚みは特に制限されない。強度のバランス向上の観点から、20~150μmが好ましい。とりわけ、30μm以上がより好ましく、40μm以上が更に好ましい。また、120μm以下がより好ましく、100μm以下が更に好ましい。すなわち、非含浸層の厚みは、より好ましくは30~120μm、更に好ましくは40~100μmである。なお、非含浸層が多孔質支持体の両面側に存在する場合は、それぞれの非含浸層の厚みである。
含浸層の厚みは特に制限されない。強度に優れ、抵抗を低くする観点から、50~300μmが好ましい。80μm以上がより好ましく、130μm以上が更に好ましい。また、250μm以下がより好ましく、200μm以下が更に好ましい。すなわち、含浸層の厚みは、より好ましくは80~250μm、更に好ましくは130~200μmである。なお、含浸層が多孔質支持体の両面側に存在する場合は、それぞれの非含浸層の厚みである。
隔膜(S3)は、非含浸層における平均孔径が大きい方の内部層の平均孔径が表面層の平均孔径よりも大きいと好ましい。
表面層の平均孔径に対する平均孔径が大きい方の内部層の平均孔径の比(平均孔径比r21)は、1.0超が好ましい。とりわけ、1.1以上がより好ましく、1.2以上が更に好ましい。また、3.0以下が好ましく、2.5以下がより好ましく、2.0以下が更に好ましい。すなわち、上記平均孔径比r21は、好ましくは1.0超3.0以下、より好ましくは1.1以上2.5以下、更に好ましくは1.2以上2.0以下である。
表面層の平均孔径は特に制限されない。強度のバランス向上の観点から、0.05~3.0μmが好ましい。とりわけ、0.1μm以上がより好ましく、0.2μm以上が更に好ましい。また、2.5μm以下がより好ましく、2.0μm以下が更に好ましい。すなわち、表面層の平均孔径は、より好ましくは0.1~2.5μm、更に好ましくは0.2~2.0μmである。平均孔径が小さい方の内部層の平均孔径もこのような平均孔径を有することが好ましい。
また、表面層に隣接する内部層が表面層より均孔径が大きいと好ましい。さらに、2つの内部層の双方が表面層より平均孔径が大きいと好ましい。
 <<非含浸層における平均孔径の求め方>>
隔膜(S1)~隔膜(S3)について、非含浸層における平均孔径の求め方の一例を説明する。なお、隔膜(S1)は多孔質支持体に多孔質層が含浸していないから、ここでは非含浸層として扱う。以後、隔膜(S1)~(S3)を区別しない場合は、単に隔膜と称する。
(1)観察画像の取得
アルカリ水電解用隔膜を厚み方向に切断して断面を得る。断面を電界放出型走査電子顕微鏡(FE-SEM)で観察して観察画像を得る。観察画像の一例を図1に示す。図1の観察画像100は横方向の長さL1、縦方向の長さL2を有する長方形とする。また、非含浸層110の厚み方向全体が含まれるように撮影倍率を選択して観察画像100を得るようにする。観察画像100の縦方向は非含浸層110の厚み方向とし、横方向は非含浸層110の面方向とする。なお、隔膜(S1)の形態では非含浸層110の任意の主面を上側とする。隔膜(S2)~(S3)の形態では含侵層120とは反対側を上側とする。このようにして、観察画像100を5個取得する。
横方向の長さL1は特に制限されない。例えば50~150μm程度である。縦方向の長さL2は非含浸層110の厚みに応じて選択すればよい。例えば20~150μm程度である。
(2)非含浸層における表面層、内部層、裏面層の決定
非含浸層110の断面を厚み方向に3等分して表面層、内部層、及び裏面層を決定する。図1を参照しながらこの方法を説明する。図1には、点線で囲まれた観察画像100が示される。観察画像100には非含浸層110が含まれる。観察画像100の横方向の中央に、縦方向に並行な中心線XL1を引く。中心線XL1の左側の領域を左領域AL1、右側の領域を右領域AR1とする。
(2-1)上側基準線UL1の決定
観察画像100における非含浸層110の上側の輪郭線において、左領域AL1における最も上側の位置101と、右領域AR1における最も上側の位置102とを結ぶ直線を上側基準線UL1とする。以後、上側基準線UL1を非含浸層110の上側の輪郭線とみなす。なお、最も上側の位置とは、観察画像100の上辺からの距離が最も小さい位置を指す。
(2-2)下側基準線LL1の決定
観察画像100における非含浸層110の下側の輪郭線において、左領域AL1における最も上側の位置103と、右領域AR1における最も上側の位置104と、を結ぶ直線を下側基準線LL1とする。以後、下側基準線LL1を非含浸層110の下側の輪郭線とみなす。なお、最も上側の位置とは、観察画像100の下辺からの距離が最も大きい位置を指す。
(2-3)内部区分線の決定
上側基準線UL1と観察画像100の左辺との交点11を求める。下側基準線LL1と観察画像100の左辺との交点12を求める。上側基準線UL1と観察画像100の右辺との交点15を求める。下側基準線LL1と観察画像100の右辺との交点16を求める。次に、交点11から交点12までの距離と、交点15から交点16までの距離とのうち、短い方を選択する。図1に示すように交点11から交点12までの距離の方が短い場合は、交点11から交点12を3等分するように、観察画像100の左辺に交点11側から順に交点13、交点14を定める。そして、上側基準線UL1に平行で交点13を通る上側内部区分線UIL1と、上側基準線UL1に平行で交点14を通る下側内部区分線LIL1とを引く。交点15から交点16までの距離の方が短い場合は、交点15から交点16を3等分するように、観察画像100の右辺に交点15側から順に交点17、交点18を定める。そして、上側基準線UL1に平行で交点17を通る上側内部区分線UIL1と、上側基準線UL1に平行で交点18を通る下側内部区分線LIL1とを引く。
(2-4)表面層、内部層及び裏面層の決定
以上説明した方法により、非含浸層110は、上側基準線UL1及び上側内部区分線UIL1で挟まれた領域111と、上側内部区分線UIL1及び下側内部区分線LIL1で挟まれた領域112と、下側内部区分線LIL1及び下側基準線LL1で挟まれた領域113と、に区分される。隔膜(S1)においては、領域111が表面層、領域112が内部層、領域113が裏面層である。隔膜(S2)~(S3)においては、領域111が表面層、領域112、113が内部層である。
(3)平均孔径の測定
非含浸層110における各層(表面層、内部層、裏面層)の平均孔径は、それぞれを画像解析して求めることができる。市販の画像解析ソフトを用いることが好ましい。例えば、Scion Image(Sciion社製)、Image-Pro Premier(Media Cybernetics社製)である。
表面層における平均孔径は以下のようにして求める。まず、空孔が50個以上含まれるように測定領域を選定する。次に測定領域内において観察される個々の空孔の孔径を算出する。孔径は、空孔の外周の2点と重心とを通る線分の長さの平均値として、上記画像解析ソフトによって算出される。なお、空孔は有機ポリマーや無機粒子が欠如して形成された開口部のことである。
そして、孔径が0.1μm以上の空孔のみを対象として、各空孔の孔径の平均値を算出する。平均値は50個の空孔から算出される。
この測定を5か所の異なる測定領域に対して行う。5か所において得られた値の平均値を表面層の平均孔径とする。内部層や裏面層の平均孔径も同様に求める。
<<含浸層における平均孔径の求め方>>
隔膜(S2)~隔膜(S3)について、含浸層における平均孔径の求め方の一例を説明する。以後、隔膜(S2)~(S3)を区別しない場合は、単に隔膜と称する。
(1)断面観察画像の取得
アルカリ水電解用隔膜を厚み方向に切断して断面を得る。断面を電界放出型走査電子顕微鏡(FE-SEM)で観察して観察画像を得る。観察画像の一例を図2に示す。図2の観察画像200は横方向の長さL1、縦方向の長さL2を有する長方形とする。また、含浸層220の厚み方向全体が含まれるように撮影倍率を選択して観察画像200を得るようにする。観察画像200の縦方向は含浸層220の厚み方向とし、横方向は含浸層220の面方向とする。非含浸層210が設けられている側を上側とする。2つの非含浸層210が1つの含浸層220によって接続されている場合は任意の非含侵層210を上側とする。このようにして、観察画像200を5個取得する。
横方向の長さL1は特に制限されない。例えば50~150μm程度である。縦方向の長さL2は非含浸層の厚みに応じて選択すればよい。例えば20~150μm程度である。
(2)含浸層の決定
図2を参照しながら含浸層の決定方法を説明する。図2には、点線で囲まれた観察画像200が示される。観察画像200には非含浸層210と含浸層220とが含まれる。観察画像200の横方向の中央に、縦方向に並行な中心線XL2を引く。中心線XL2の左側の領域を左領域AL2、右側の領域を右領域AR2とする。
(2-1)上側基準線UL2の決定
観察画像200における含浸層220の上側の輪郭線において、左領域AL2における最も上側の位置201と、右領域AR2における最も上側の位置202とを結ぶ直線を上側基準線UL2とする。以後、上側基準線UL2を含浸層220の上側の輪郭線とみなす。なお、最も上側の位置とは、観察画像200の上辺からの距離が最も小さい位置を指す。
(2-2)下側基準線LL2の決定
観察画像200における含浸層220の下側の輪郭線において、左領域AL2における最も上側の位置203と、右領域AR2における最も上側の位置204とを結ぶ直線を下側基準線LL2する。以後、下側基準線LL2を含浸層220の下側の輪郭線とみなす。なお、最も上側の位置とは、観察画像200の下辺からの距離が最も大きい位置を指す。
(3)平均孔径の測定
含浸層220の平均孔径は画像解析して求めることができる。市販の画像解析ソフトを用いることが好ましい。例えば、Scion Image(Sciion社製)、Image-Pro Premier(Media Cybernetics社製)である。
含浸層における平均孔径は以下のようにして求める。まず、空孔が50個以上含まれるように測定領域を選定する。次に測定領域内において観察される個々の空孔の孔径を算出する。孔径は、空孔の外周の2点と重心とを通る線分の長さの平均値として、上記画像解析ソフトによって算出される。なお、空孔は有機ポリマーや無機粒子が欠如して形成された開口部のことである。
そして、孔径が0.1μm以上の空孔のみを対象として、各空孔の孔径の平均値を算出する。平均値は50個の空孔から算出される。
この測定を5か所の異なる測定領域に対して行う。5か所において得られた値の平均値を含浸層の平均孔径とする。
<隔膜(S1)~(S3)の好ましい態様>
隔膜(S1)~(S3)の好ましい態様について説明する。以後、隔膜(S1)~(S3)を区別しない場合は、単に隔膜と称する。
隔膜(S1)は、内部層において長径が30μm以上、且つ短径が5μm以上であるマクロボイドの含有率が50%以下であると好ましい。表面層及び裏面層においてもマクロボイドの含有率が50%以下であるとより好ましい。隔膜(S2)~(S3)は、非含浸層における2つの内部層の少なくとも一方において長径が30μm以上、且つ短径が5μm以上であるマクロボイドの含有率が50%以下であると好ましい。表面層においてもマクロボイドの含有率が50%以下であるとより好ましい。
隔膜は、超音波試験において、質量減少率が2%以下であると好ましい。この範囲であると、隔膜の構成成分の脱落が抑制されているため、機械的強度に優れる。質量減少率は、1.5%以下がより好ましく、1.2%以下が更に好ましく、1%以下がより更に好ましい。質量減少率の測定方法は実施例にて詳述する。
隔膜は、膜抵抗が0.30Ωcm以下であると好ましい。この範囲であると、アルカリ水電解におけるイオン伝導が良好であるため、電解効率に優れる。膜抵抗の測定方法は実施例にて詳述する。
隔膜は、熱アルカリ耐久試験において、24時間耐久後の膜抵抗に対する240時間耐久後の膜抵抗の比(膜抵抗比)が0.7以上であることが好ましい。この範囲であると、熱アルカリによる影響が少ないため、耐アルカリ性に優れる。膜抵抗比の測定方法は実施例にて詳述する。
隔膜は、透気度が50~5000秒であると好ましい。この範囲であると、ガスが隔膜を透過し難いので、ガスバリア性に優れる。透気度は100~1000秒であることがより好ましく、150~800秒であることが更に好ましい。透気度の測定方法は実施例にて詳述する。
隔膜は、厚みが50~2000μmであると好ましい。この範囲であると、機械的強度、ガスバリア性、イオン伝導性のバランスを取りやすい。厚みは100~1000μmがより好ましく、100~500μmが更に好ましく、150~350μmが最も好ましい。隔膜の厚みの測定方法は実施例にて詳述する。
隔膜は、単位厚みあたりの透気度、すなわち、隔膜の透気度を隔膜の厚みで除した値が0.6以上であると好ましい。この範囲であると、ガスが隔膜を透過し難いので、ガスバリア性に優れる。単位厚みあたりの透気度は、0.65以上がより好ましく、0.70以上が更に好ましく、0.75以上がより更に好ましい。単位厚みあたりの透気度の上限は制限されないが、4.00以下が好ましく、3.50以下がより好ましい。すなわち、単位厚みあたりの透気度は、好ましくは0.6以上4.00以下、より好ましくは0.65以上3.50以下、更に好ましくは0.70以上3.50以下、より更に好ましくは0.75以上3.50以下である。
3.用途
本発明のアルカリ水電解用隔膜はアルカリ水の電気分解に使用できる。本発明のアルカリ水電解用隔膜を備えるアルカリ水電解装置とアルカリ水電解方法とについて説明する。
(アルカリ水電解装置)
アルカリ水電解装置は陽極、陰極、及びアルカリ水電解用隔膜を含む。具体的には、アルカリ水電解装置は、陽極が存在する陽極室と陰極が存在する陰極室とがアルカリ水電解用隔膜によって隔離された電解槽を有する。
アルカリ水電解用隔膜は陽極又は陰極の近くに設置されると好ましく、陽極及び陰極と接するように設置される(いわゆるゼロギャップ構造)とより好ましい。電極間の距離が小さくなると、電気抵抗が小さくなり、電解の効率が向上する。
陽極及び陰極は特に制限されない。導電性基体に触媒層が設けられたもの等でよい。導電性基体は、銅、鉛、ニッケル、クロム、チタン、金、白金、鉄、これらの金属化合物、金属酸化物、及びこれらの金属の2種以上を含む合金等でよい。触媒層は、ニッケル、コバルト、パラジウム、イリジウム、又は白金等を含む金属化合物、金属酸化物、あるいは、合金等でよい。触媒層は省略されてもよい。電極の形状はシート状、棒状、角柱状等の公知形状でよいが、隔膜との接触面積を大きくして電解の効率を向上させる点で、シート状が好ましい。
電解装置は、通常使用されるその他の部材を備えていてもよい。例えば、発生したガスと電解液を分離するための気液分離タンク、電解を安定して行うためのコンデンサー、ミストセパレーター等が挙げられる。
(アルカリ水電解方法)
アルカリ水電解方法は、上述したアルカリ水電解装置に電解液(水酸化カリウム又は水酸化ナトリウム等を溶解したアルカリ性水溶液)を満たして、電解液に電流を印加して行う。電解液中のアルカリ金属水酸化物の濃度は20~40質量%が好ましい。電気分解を行う際の温度は50~120℃が好ましく、80~90℃がより好ましい。電気分解を行う際の電流密度は、通常0.2A/cm以上、好ましくは0.3A/cm以上である。電流密度が高いと、短時間に多くの水素ガス、酸素ガスを得ることができる。電気分解を行う際の電圧は、例えば1.5~2.5Vである。この範囲で、電流密度が高くなるように調整する。電気分解を行う際の圧力は特に限定されない。常圧であってもよいし、加圧であってもよい。本発明のアルカリ水電解用隔膜はガスバリア性に優れるため、1MPa以上の高圧下(例えば3MPa)でも使用できる。
以下に実施例を掲げて本発明のアルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜について説明する。もちろん、本発明はこれらの実施例に限定されるものではない。
<マクロボイドの含有率の測定>
製造されたアルカリ水電解用隔膜のおよそ中央を厚み方向に切断して得られる断面をFE-SEM(日立ハイテクノロジーズ社製、型番:S-4800)で観察して観察画像を得た。倍率は300倍とした。観察画像に対して、アルカリ水電解用隔膜の非含侵層の最表面から深さ方向に60μmの範囲、且つ深さ方向と直交する方向に約400μmの範囲に亘る領域を測定領域とした。画像解析ソフト(Scion Image、Scion社製)を用いて、測定領域におけるボイド像を抽出した。各ボイド像について、アルカリ水電解用隔膜の厚み方向に沿う縦長さ(Lt)及び厚み方向に垂直な横長さ(Lf)を求めた。厚み方向は、アルカリ水電解用隔膜の一対の主面の対向方向である。したがって、縦長さ(Lt)は、ボイド像の輪郭のうち、上記対向方向において最も一方側の点と最も他方側の点との上記対向方向に沿う距離とした。また、横長さ(Lt)は、ボイド像の輪郭のうち、上記対向方向に垂直な方向において最も一方側の点と最も他方側の点との上記対向方向に垂直な方向に沿う距離とした。このようにして求めた(Lt)、(Lf)の内、大きい方をボイドの長径(Lb)、小さい方をボイドの短径(Ls)とした。この方法で、抽出された各ボイド像の長径(Lb)、短径(Ls)を求めた。長径(Lb)が30μm以上、且つ短径(Ls)が5μm以上のボイド像の個々の面積(S)を求め、それらの合計を求め、得られた合計面積をマクロボイドの総面積(Sy)とした。上記測定領域の面積(St)を求め、(St)に対する(Sy)の割合(Sy/St×100(%))を求めた。同様の操作をおよそ等間隔で離れた任意の5つの視野で実施し、その平均値を長径が30μm以上、且つ短径が5μm以上であるマクロボイドの含有率とした。
<超音波試験における質量減少率の測定>
製造されたアルカリ水電解用隔膜を5×5cmに切り出して試験片とした。試験片とイオン交換水6ccとをチャック付ポリ袋(生産日本社製、ユニパックC-4)に入れて封止した。水槽を30℃に調温した超音波洗浄機(株式会社エスエヌディ製、型名:US-103)を用意して、チャック付ポリ袋を水槽中に1時間静置した。その後、3分間超音波(高周波出力:100w、発信周波数:38kHz)を照射した。超音波試験の前後において試験片の重さを精密天秤(エー・アンド・デイ社製、型番:GH-200)を用いて測定し、下記式により質量減少率を算出した。
質量減少率(%)=100-(超音波試験後の質量(g)/超音波試験前の質量(g)×100)。
<膜抵抗の測定>
(測定方法)
製造されたアルカリ水電解用隔膜の膜抵抗は次のように測定した。すなわち、製造された1枚の隔膜から測定用の隔膜試料を2枚切り出して準備する。各隔膜試料を用いて、以下のセル構成で形成したセルを25℃の恒温槽内で30分静置した後、以下の測定条件で交流インピーダンス測定を行い、隔膜試料をセットした場合に測定される交流インピーダンスの実部の切片成分(Ra)と、隔膜試料をセットしない場合に測定される交流インピーダンスの実部の切片成分(Rb)を用いて、下記式により膜抵抗を算出する。隔膜試料2枚について上記測定を行い、得られた測定値(2点)の平均値を算出し、これを隔膜の膜抵抗とする。
[膜抵抗(Ωcm)]=(Ra-Rb)×1.77
(測定条件)
・セル構成。
作用極:Ni板。
対極:Ni板。
電解液:30質量%水酸化カリウム水溶液。
サンプル前処理:上記電解液に1晩浸漬。
測定有効面積:1.77cm
・交流インピーダンス測定条件。
印加電圧:10mV vs.開回路電圧。
周波数領域:100kHz~100Hz。
<熱アルカリ耐久試験における膜抵抗比の測定>
製造されたアルカリ水電解用隔膜を3cm角に切り出して試験片とした。試験片は2枚用意した。この試験片2枚をフッ素樹脂容器(PFA製)に入れて、30gの30%KOH水溶液に浸漬して、90℃で保持した。90℃での保持を開始してから24時間後と240時間後と試験片を取り出し、室温にて膜抵抗を測定し、(240時間後の膜抵抗/24時間後の膜抵抗)を熱アルカリ耐久試験後の膜抵抗比として算出した。
<厚みの測定>
製造されたアルカリ水電解用隔膜の厚みは、デジマチックマイクロメーター(ミツトヨ社製)を用いて測定した。およそ等間隔で離れた任意の10点を測定し、その平均値を採用した。
<透気度の測定>
製造されたアルカリ水電解用隔膜の透気度は、王研式透気度試験機(旭精工社製、型番:EGBO)を用いて測定した。およそ等間隔で離れた任意の3点を測定し、その平均値を採用した。
<単位厚みあたりの透気度>
製造されたアルカリ水電解用隔膜の単位厚みあたりの透気度Zは、上記の方法で求めた、透気度及び厚みを用いて、次式より算出した。
Z=隔膜の透気度(秒)/隔膜の膜厚(μm)
<平均孔径の測定>
製造されたアルカリ水電解用隔膜の平均孔径は、上述の<<非含浸層における平均孔径の求め方>>、<<含浸層における平均孔径の求め方>>で説明した方法に従って測定した。なお、画像解析ソフトはImage-Pro Premier(Media Cybernetics社製)を用いた。
[実施例1]
(1.無機粒子分散液の調製)
水酸化マグネシウム(平均粒子径0.20μm、板状、アスペクト比6.21)とN-メチル-2-ピロリドン(富士フイルム和光純薬社製)とを質量比1:1で混合した。この混合物を、ジルコニアメディアボールを入れたポットミルにて、室温で6時間分散処理して水酸化マグネシウム分散液とした。
(2.組成物の調製)
得られた水酸化マグネシウム分散液100質量部と、ポリスルホン樹脂(BASF社製、品番ウルトラゾーンS3010)(PSU)を35質量%の濃度で80℃にてN-メチル-2-ピロリドン(三菱ケミカル社製)に熱溶解させることにより得られたポリスルホン樹脂溶液57質量部と、N-メチル-2-ピロリドン(三菱ケミカル社製)31質量部とを混合し、更に、2-エチル-1-ヘキサノールを水酸化マグネシウムとポリスルホンとの合計含有量100質量部に対して20質量部となるように添加して、混合物を調製した。得られた混合物を自転公転ミキサー(シンキー社製、品番あわとり練太郎ARE-500)にて室温で1000rpmで約30分間混合することにより組成物を得た。
(3.アルカリ水電解用隔膜の形成)
ポリフェニレンサルファイド不織布(膜厚130μm、目付60g/m)上に、組成物を塗布(22mg/cm)して含浸させた。その後、組成物を含浸させた不織布を、室温にて、イオン交換水を満たした水槽に5分間水浴させた。得られた膜を、120℃にて、10分間乾燥させてアルカリ水電解用隔膜(1)を得た。
実施例1の一部を変更して、実施例2~13のアルカリ水電解用隔膜(2)~(13)及び比較例1のアルカリ水電解用隔膜(C1)を得た。以下、変更点のみを記載する。
[実施例2]
(1.無機粒子分散液の調製)において、水酸化マグネシウムの代わりに酸化ジルコニウム(第一稀元素化学工業社製、品番UEP)を用いた。
[実施例3]
(1.無機粒子分散液の調製)において、水酸化マグネシウムの代わりに酸化チタン(平均粒子径0.5μm)を用いた。
[実施例4]
(2.組成物の調製)において、さらに塩化リチウム(富士フイルム和光純薬社製)を添加した。塩化リチウムの添加量は、水酸化マグネシウム100質量部に対して0.7質量部とした。
[実施例5]
(2.組成物の調製)において、さらに塩化リチウム(富士フイルム和光純薬社製)とポリビニルピロリドン(日本触媒社製、K30)とを添加した。塩化リチウムの添加量は、水酸化マグネシウム100質量部に対して0.7質量部とした。ポリビニルピロリドンの添加量は、水酸化マグネシウム100質量部に対して14質量部とした。
[実施例6]
(2.組成物の調製)において、さらに塩化リチウム(富士フイルム和光純薬社製)とポリビニルピロリドン(キシダ化学社製、K15と)を添加した。塩化リチウムの添加量は、水酸化マグネシウム100質量部に対して0.7質量部とした。ポリビニルピロリドンの添加量は、水酸化マグネシウム100質量部に対して14質量部とした。
[実施例7]
(2.組成物の調製)において、2-エチル-1-ヘキサノールの代わりに1-ドデカノールを用いた。1-ドデカノールの添加量は、水酸化マグネシウムとポリスルホンとの合計含有量100質量部に対して3質量部とした。
[実施例8]
(2.組成物の調製)において、2-エチル-1-ヘキサノールの添加量を変更した。2-エチル-1-ヘキサノールの添加量は、水酸化マグネシウムとポリスルホンとの合計含有量100質量部に対して42質量部とした。
[実施例9]
(2.組成物の調製)において、さらに塩化リチウム(富士フイルム和光純薬社製)とポリビニルピロリドン(日本触媒社製、K30)とを添加した。塩化リチウムの添加量は、水酸化マグネシウム100質量部に対して0.7質量部とした。ポリビニルピロリドンの添加量は、水酸化マグネシウム100質量部に対して14質量部とした。(3.アルカリ水電解用隔膜の形成)において、ポリフェニレンサルファイド不織布の代わりにPETフィルムを用いた。PETフィルム状にアルカリ水電解用隔膜を形成したあと、これをPETフィルムから剥離してアルカリ水電解用隔膜(9)とした。
[実施例10]
(2.組成物の調製)において、さらに塩化リチウム(富士フイルム和光純薬社製)とポリビニルピロリドン(日本触媒社製、K30)とを添加した。塩化リチウムの添加量は、水酸化マグネシウム100質量部に対して0.7質量部とした。ポリビニルピロリドンの添加量は、水酸化マグネシウム100質量部に対して14質量部とした。
(3.アルカリ水電解用隔膜の形成)において、塗布方法を次のように変更した。SUSバットに組成物を投入し、その後ポリフェニレンサルファイド不織布(膜厚130μm、目付60g/m)を浸漬させた。そのあと、ポリフェニレンサルファイド不織布をSUSバットから引き上げた。このようにして不織布の両面に組成物を塗布した。
[実施例11]
(1.無機粒子分散液の調製)において、水酸化マグネシウム(平均粒子径0.20μm、板状、アスペクト比6.21)とN-メチル-2-ピロリドン(富士フイルム和光純薬社製)との混合比を、質量比3:2となるよう変更した。更に、ポリリン酸エステル分散剤を水酸化マグネシウム100質量部に対して3質量部添加した。
 (2.組成物の調製)において、さらに塩化リチウム(富士フイルム和光純薬社製)とポリビニルピロリドン(日本触媒社製、K30)とを添加した。塩化リチウムの添加量は、水酸化マグネシウム100質量部に対して0.7質量部とした。ポリビニルピロリドンの添加量は、水酸化マグネシウム100質量部に対して14質量部とした。
[実施例12]
(1.無機粒子分散液の調製)において、水酸化マグネシウム(平均粒子径0.20μm、板状、アスペクト比6.21)とN-メチル-2-ピロリドン(富士フイルム和光純薬社製)との混合比を、質量比3:2となるよう変更した。更に、分散剤としてリン酸ポリエステルを水酸化マグネシウム100質量部に対して2質量部添加した。
(2.組成物の調製)において、水酸化マグネシウム分散液100質量部、濃度30質量%でポリスルホン樹脂(BASF社製、品番ウルトラゾーンS3010)をN-メチル-2-ピロリドンに溶解した溶液80質量部、2-エチル-1-ヘキサノール7.5質量部、ポリエチレンイミン(日本触媒社製、エポミンSP-200)4.3質量部、N-メチル-2-ピロリドン18.2質量部を混合した。
[実施例13]
(1.無機粒子分散液の調製)において、水酸化マグネシウム(平均粒子径0.20μm、板状、アスペクト比6.21)とN-メチル-2-ピロリドン(富士フイルム和光純薬社製)との混合比を、質量比3:2となるよう変更した。更に、分散剤としてリン酸ポリエステルを水酸化マグネシウム100質量部に対して2質量部添加した。
(2.組成物の調製)において、水酸化マグネシウム分散液100質量部、濃度30質量%でポリスルホン樹脂(BASF社製、品番ウルトラゾーンS3010)をN-メチル-2-ピロリドンに溶解した溶液80質量部、2-エチル-1-ヘキサノール12.5質量部、ポリアクリル(富士フイルム和光純薬社製、分子量25万)1.3質量部、N-メチル-2-ピロリドン16.2質量部を混合した。
[比較例1]
(2.組成物の調製)において、2-エチル-1-ヘキサノールを添加しなかった。
実施例1~13及び比較例1のアルカリ水電解用隔膜(1)~(13)、(C1)について、マクロボイドの含有率、超音波試験における質量減少率、膜抵抗、熱アルカリ耐久試験における膜抵抗比、隔膜の厚み、単位厚みあたりの透気度、表面層の平均孔径、内部層の平均孔径、裏面層の平均孔径、含浸層の平均孔径を測定した。結果を表1に示す。なお、表1における内部層1は表面層に近い方の内部層を意味する。表1における内部層2は表面層から遠い方の内部層を意味する。また、実施例9は多孔質支持体を備えないため、内部層2を備えず裏面層を備える。実施例10は多孔質支持体の両面側に多孔質層を備えるため、2つの多孔質層の一方を多孔質層1とし、他方を多孔質層2とする。
Figure JPOXMLDOC01-appb-T000001
実施例1~13のアルカリ水電解用隔膜(1)~(13)は、比較例1に比べて、マクロボイドの生成が顕著に抑制された。これは、アルカリ水電解用隔膜の製造において、実施例1では組成物に2-エチル-1-ヘキサノール等を含有させたためと考えられた。
実施例1~8、10~13のアルカリ水電解用隔膜(1)~(8)、(10)~(13)は、非含浸層において、表面層より平均孔径が大きい内部層を備えていた。実施例9のアルカリ水電解用隔膜(9)は、2つの表面層より平均孔径が大きい内部層を備えていた。一方、比較例1のアルカリ水電解用隔膜(C1)は、非含浸層において、表面層より平均孔径が大きい内部層を備えていなかった。
実施例1~13のアルカリ水電解用隔膜(1)~(13)は、単位厚みあたりの透気度が比較例1のアルカリ水電解用隔膜(C1)より大きいので、ガスバリア性に優れた。同様に膜抵抗の比較により、イオン伝導性に優れた。熱アルカリ耐久試験における膜抵抗比の比較により、耐アルカリ性に優れた。超音波試験における質量減少率の比較により、機械的強度に優れた。
100、200 観察画像
110、210 非含浸層
111、112、113 領域
120、220 含浸層

 

Claims (6)

  1. 多孔質層を備えるアルカリ水電解用隔膜の製造方法であって、
    有機ポリマー、無機粒子、下記一般式(1)で示される化合物、及び溶媒を含む組成物を用いて前記多孔質層を得る工程を有する、アルカリ水電解用隔膜の製造方法。
    R-X   (1)
    (式(1)中、Rは炭素数6以上の炭化水素基、Xは親水性官能基を表す。)
  2. 前記組成物において、前記一般式(1)で示される化合物の含有量が、前記有機ポリマーと前記無機粒子との合計含有量100質量%に対して2~30質量%である、請求項1に記載のアルカリ水電解用隔膜の製造方法。
  3. 有機ポリマー及び無機粒子を含む多孔質層からなるアルカリ水電解用隔膜であって、
    前記多孔質層の一対の主面は前記アルカリ水電解用隔膜の表裏面をなし、
    前記多孔質層の断面を厚み方向に3等分して得られる3つの断面層において、前記表裏面を含む2つの断面層を表面層及び裏面層とし、他の断面層を内部層としたとき、
    前記内部層は前記表面層及び前記裏面層の少なくとも一方より平均孔径が大きい、アルカリ水電解用隔膜。
  4. 有機ポリマー及び無機粒子を含む多孔質層と、多孔質支持体とを備えるアルカリ水電解用隔膜であって、
    前記多孔質層は、前記多孔質支持体に含浸していない非含浸層を含み、
    前記非含浸層の断面を厚み方向に3等分して得られる3つの断面層において、前記アルカリ水電解用隔膜の表面を含む1つの断面層を表面層とし、前記表面層以外の2つの断面層をそれぞれ内部層としたとき、
    前記内部層のうち少なくとも一方は前記表面層より平均孔径が大きい、アルカリ水電解用隔膜。
  5. 有機ポリマー及び無機粒子を含む多孔質層と、多孔質支持体とを備えるアルカリ水電解用隔膜であって、
    前記多孔質層は、前記多孔質支持体に含浸した含浸層と、前記多孔質支持体に含浸していない非含浸層とを含み、
    前記非含浸層の断面を厚み方向に3等分して得られる3つの断面層において、前記アルカリ水電解用隔膜の表面を含む1つの断面層を表面層とし、該表面層以外の2つの断面層をそれぞれ内部層としたとき、
    前記内部層のうち少なくとも一方は前記含浸層より平均孔径が大きい、アルカリ水電解用隔膜。
  6. 前記内部層のうち少なくとも一方は、前記表面層より平均孔径が大きい、請求項5に記載のアルカリ水電解用隔膜。
     
PCT/JP2022/034076 2021-09-24 2022-09-12 アルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜 WO2023048006A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280064366.8A CN117999382A (zh) 2021-09-24 2022-09-12 碱性水电解用隔膜的制造方法和碱性水电解用隔膜
EP22872760.8A EP4407072A1 (en) 2021-09-24 2022-09-12 Method for producing diaphragm for alkaline water electrolysis use, and diaphragm for alkaline water electrolysis use
JP2023549485A JPWO2023048006A1 (ja) 2021-09-24 2022-09-12

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021155606 2021-09-24
JP2021-155606 2021-09-24
JP2022-021467 2022-02-15
JP2022021467 2022-02-15
JP2022-032943 2022-03-03
JP2022032943 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023048006A1 true WO2023048006A1 (ja) 2023-03-30

Family

ID=85720659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034076 WO2023048006A1 (ja) 2021-09-24 2022-09-12 アルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜

Country Status (3)

Country Link
EP (1) EP4407072A1 (ja)
JP (1) JPWO2023048006A1 (ja)
WO (1) WO2023048006A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204146A (ja) * 2012-03-29 2013-10-07 Asahi Kasei Corp アルカリ水電解用隔膜及びその製造方法
JP2017002389A (ja) * 2015-06-16 2017-01-05 川崎重工業株式会社 アルカリ水電解用隔膜及びその製造方法
WO2019021774A1 (ja) 2017-07-26 2019-01-31 株式会社日本触媒 アルカリ水電解用隔膜、その製造方法、及び無機有機複合膜の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204146A (ja) * 2012-03-29 2013-10-07 Asahi Kasei Corp アルカリ水電解用隔膜及びその製造方法
JP2017002389A (ja) * 2015-06-16 2017-01-05 川崎重工業株式会社 アルカリ水電解用隔膜及びその製造方法
WO2019021774A1 (ja) 2017-07-26 2019-01-31 株式会社日本触媒 アルカリ水電解用隔膜、その製造方法、及び無機有機複合膜の製造方法

Also Published As

Publication number Publication date
EP4407072A1 (en) 2024-07-31
JPWO2023048006A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
JP6752974B2 (ja) アルカリ水電解用隔膜、その製造方法、及び無機有機複合膜の製造方法
KR101797274B1 (ko) 레독스 플로우 이차 전지 및 레독스 플로우 이차 전지용 전해질막
KR101451634B1 (ko) 불소 수지 박막, 불소 수지 복합체 및 다공질 불소 수지 복합체, 그리고 이들의 제조 방법, 불소 수지 디스퍼젼 및 분리막 엘리먼트
TWI631144B (zh) 多孔質體、高分子電解質膜、過濾器用濾材及過濾器單元
Bagheripour et al. Preparation of mixed matrix PES-based nanofiltration membrane filled with PANI-co-MWCNT composite nanoparticles
WO2020158719A1 (ja) 電極付きアルカリ水電解用隔膜、その製造方法、及び水電解装置
EP3065209A1 (en) Polymer electrolyte film
JP6480111B2 (ja) カーボンナノチューブ複合膜
JP5274809B2 (ja) 低誘電率膜の製造方法
US11791473B2 (en) Method for producing a composite layer, electrochemical unit and use of the composite layer
Panwar et al. Low voltage actuator using ionic polymer metal nanocomposites based on a miscible polymer blend
JPWO2017130694A1 (ja) ガス拡散電極、微多孔層塗料およびその製造方法
Wang et al. Fabrication of Cu (OH) 2 nanowires blended poly (vinylidene fluoride) ultrafiltration membranes for oil-water separation
WO2023048006A1 (ja) アルカリ水電解用隔膜の製造方法、及びアルカリ水電解用隔膜
JP7284001B2 (ja) アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7232110B2 (ja) アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7129903B2 (ja) アルカリ水電解用隔膜
JP2022176792A (ja) アルカリ水電解用隔膜、及びその製造方法
CN117999382A (zh) 碱性水电解用隔膜的制造方法和碱性水电解用隔膜
Moghadassi et al. Fabrication and characterization of novel mixed matrix polyethersulfone based nanofiltration membrane modified by ilmenite
JP7284015B2 (ja) アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7273650B2 (ja) アルカリ水電解用隔膜ならびに該隔膜の製造方法
JP7365748B2 (ja) アルカリ水電解用隔膜の製造方法
WO2024048235A1 (ja) アルカリ水電解用隔膜、アルカリ水電解セル、及び、アルカリ水電解方法
JP6985159B2 (ja) 無機有機複合膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280064366.8

Country of ref document: CN

Ref document number: 2023549485

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202447032023

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022872760

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022872760

Country of ref document: EP

Effective date: 20240424