配列表の説明
SEQ ID NO:1 ヒトMAp19 cDNA
SEQ ID NO:2 ヒトMAp19タンパク質(リーダーあり)
SEQ ID NO:3 ヒトMAp19タンパク質(成熟)
SEQ ID NO:4 ヒトMASP-2 cDNA
SEQ ID NO:5 ヒトMASP-2タンパク質(リーダーあり)
SEQ ID NO:6 ヒトMASP-2タンパク質(成熟)
SEQ ID NO:7 ヒトMASP-3 cDNA
SEQ ID NO:8 ヒトMASP-3タンパク質(リーダーあり)
SEQ ID NO:9 ヒトMASP-1 cDNA
SEQ ID NO:10 ヒトMASP-1タンパク質(リーダーあり)
SEQ ID NO:11 ヒトMAp44タンパク質(リーダーあり)
SEQ ID NO:12 ラットMASP-2 cDNA
SEQ ID NO:13 ラットMASP-2タンパク質(リーダーあり)
SEQ ID NO:14 17D20_dc35VH21N11VL(OMS646)重鎖可変領域(VH)をコードするDNA(シグナルペプチドなし)
SEQ ID NO:15 17D20_dc35VH21N11VL(OMS646)重鎖可変領域(VH)ポリペプチド
SEQ ID NO:16 17N16mc重鎖可変領域(VH)ポリペプチド
SEQ ID NO:17 17D20_dc21N11VL(OMS644)軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:18 17N16_dc17N9(OMS641)軽鎖可変領域(VL)をコードするDNA(シグナルペプチドなし)
SEQ ID NO:19 17N16_dc17N9(OMS641)軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:20 scFv娘クローン17N16m_d17N9完全長ポリペプチド
SEQ ID NO:21 scFv娘クローン17D20m_d3521N11完全長ポリペプチド
SEQ ID NO:22 完全長ポリペプチドをコードするscFv娘クローン17N16m_d17N9 DNA(シグナルペプチドなし)
SEQ ID NO:23 完全長ポリペプチドをコードするscFv娘クローン17D20m_d3521N11 DNA(シグナルペプチドなし)
SEQ ID NO:24 親DTLacO重鎖可変領域(VH)ポリペプチド
SEQ ID NO:25 MASP-3特異性クローンM3J5重鎖可変領域(VH)ポリペプチド
SEQ ID NO:26 MASP-3特異性クローンM3M1重鎖可変領域(VH)ポリペプチド
SEQ ID NO:27 親DTLacO軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:28 MASP-3特異性クローンM3J5軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:29 MASP-3特異性クローンM3M1軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:30 MASP-3クローンD14重鎖可変領域(VH)ポリペプチド
SEQ ID NO:31 MASP-3クローンD14軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:32 MASP-1クローン1E10重鎖可変領域(VH)ポリペプチド
SEQ ID NO:33 MASP-1クローン1E10軽鎖可変領域(VL)ポリペプチド
SEQ ID NO:34 SGMI-1ペプチド
SEQ ID NO:35 SGMI-2ペプチド
SEQ ID NO:36 ヒトIgG1-Fcポリペプチド
SEQ ID NO:37 ペプチドリンカー#1(12aa)
SEQ ID NO:38 ペプチドリンカー#2(10aa)
SEQ ID NO:39 ヒトIL-2-シグナル配列、SGMI-1、リンカー#1およびヒトIgG1-Fcを含むポリペプチド融合体をコードする核酸
SEQ ID NO:40 SGMI-1、リンカー#1およびヒトIgG1-Fcを含む成熟ポリペプチド融合体(SGMI-1Fc)
SEQ ID NO:41 ヒトIL-2-シグナル配列、SGMI-2、リンカー#1およびヒトIgG1-Fcを含むポリペプチド融合体をコードする核酸
SEQ ID NO:42 SGMI-2、リンカー#1およびヒトIgG1-Fcを含む成熟ポリペプチド融合体(SGMI-2Fc)
詳細な説明
I. 定義
本明細書において特に定義されない限り、本明細書において使用される全ての用語は、本発明の当業者によって理解されるものと同じ意味を有する。本発明を説明するために明細書および特許請求の範囲において使用される用語を明確にするために、以下の定義を提供する。
本明細書で使用するレクチン経路エフェクターアーム1(「LEA-1」)は、MASP-3によるB因子およびD因子のレクチン依存性活性化を指す。
本明細書で使用するレクチン経路エフェクターアーム2(「LEA-2」)は、MASP-2依存性補体活性化を指す。
本明細書で使用する「MASP-3依存性補体活性化」という用語は、2つの部分:(i)Ca++の存在において起こり、一般にC3bBからC3bBbへの転換およびプロD因子からD因子への転換を生じさせる、LEA-1媒介性補体活性化に包含されるB因子およびD因子のレクチンMASP-3依存性活性化;および(ii)Ca++の非存在において起こることができ、一般に、C3bBからC3bBbへの転換およびプロD因子からD因子への転換を生じさせる、B因子およびD因子のレクチン非依存性転換を含む。LEA-1媒介性補体活性化ならびにB因子およびD因子のレクチン非依存性転換は、オプソニン化および/または溶解を生じさせることがわかった。任意の特定の理論によって拘束されることを望まないが、複数のC3b分子が関連し、近接して結合する場合のみ、C3bBb C3コンバターゼがその基質特異性を変化させ、かつC5を、C3bBb(C3b)nと呼ばれる第二経路C5コンバターゼとして切断すると考えられる。
本明細書ではLEA-2媒介性補体活性化とも呼ばれる、本明細書で使用する「MASP-2依存性補体活性化」という用語は、Ca++の存在において起こり、レクチン経路C3コンバターゼC4b2aの形成を生じさせ、その後、C3切断産物C3bが蓄積すると、オプソニン化および/または溶解を生じさせることがわかっているC5コンバターゼC4b2a(C3b)nを生じさせる、MASP-2レクチン依存性活性化を含む。
「従来の第二経路」とも呼ばれる、本明細書で使用する「第二経路の従来の理解」という用語は、従来は補体因子C3からのC3bの自然発生的タンパク質分解生成から生じると考えられていた、本明細書に記載される発見以前の第二経路、すなわち、例えば真菌および酵母細胞壁からのザイモサン、グラム陰性外膜からのリポ多糖(LPS)およびウサギ赤血球ならびに多くの純粋な多糖、ウイルス、細菌、動物腫瘍細胞、寄生生物および損傷した細胞によって誘発される補体活性化を指す。本明細書で使用する、「第二経路」とも呼ばれる「従来の第二経路」の活性化は、Mg++/EGTA緩衝液中で(すなわち、Ca++の非存在において)測定される。
本明細書で使用される「レクチン経路」という用語は、マンナン結合レクチン(MBL)、CL-11およびフィコリン(H-フィコリン、M-フィコリンまたはL-フィコリン)を含む血清および非血清糖質結合タンパク質の特異的結合を介して起こる補体活性化を指す。本明細書に記載されるように、本発明者らは、レクチン経路が2つのエフェクターアーム、すなわち、今やMASP-3依存性であることが知られているレクチン経路エフェクターアーム1(LEA-1)およびMASP-2依存性であるレクチン経路エフェクターアーム2(LEA-2)によって駆動されることを見いだした。本明細書で使用されるレクチン経路の活性化は、Ca++含有緩衝液を使用して評価される。
本明細書で使用する「古典経路」という用語は、外来粒子に結合している抗体によって誘発され、かつ認識分子C1qの結合を必要とする補体活性化を指す。
本明細書で使用する「HTRA-1」という用語は、セリンペプチダーゼ高温要件セリンプロテアーゼA1を指す。
本明細書で使用する「MASP-3阻害物質」という用語は、MASP-3抗体およびそのMASP-3結合断片、天然および合成ペプチド、競合基質、小分子、発現阻害因子ならびに単離された天然阻害因子を含む、MASP-3に結合するかまたはそれと直接相互作用する作用物質を含む、MASP-3依存性補体活性化を直接的または間接的に阻害する任意の作用物質を指し、また、レクチン経路中の別の認識分子(例えば、MBL、CL-11、H-フィコリン、M-フィコリンまたはL-フィコリン)との結合に関してMASP-3と競合するペプチドも包含する。一態様において、MASP-3阻害物質はMASP-3に特異的であり、かつMASP-1またはMASP-2には結合しない。MASP-3を直接阻害する阻害物質は、直接的MASP-3阻害物質(例えばMASP-3抗体)と呼ぶことができ、一方、MASP-3を間接的に阻害する阻害物質は、間接的MASP-3阻害物質(例えば、MASP-3活性化を阻害するMASP-1抗体)と呼ぶことができる。直接的MASP-3阻害物質の一例が、MASP-3特異性阻害物質、例えば、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-3(SEQ ID NO:8)の一部に特異的に結合するMASP-3阻害物質である。一態様において、MASP-3阻害物質は、MASP-3活性、例えば、MASP-1媒介性MASP-3活性化の阻害因子を含むMASP-3活性化の阻害因子を間接的に阻害する(例えば、MASP-1抗体またはそのMASP-1結合断片、天然および合成ペプチド、小分子、発現阻害因子ならびに単離された天然阻害因子、また、MASP-3への結合に関してMASP-1と競合するペプチドを包含する)。別の態様において、MASP-3阻害物質はD因子のMASP-3媒介性成熟を阻害する。別の態様において、MASP-3阻害物質はB因子のMASP-3媒介性活性化を阻害する。本発明の方法において有用であるMASP-3阻害物質は、MASP-3依存性補体活性化を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させ得る。一態様において、MASP-3阻害物質はMASP-3依存性補体活性化を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-3補体活性化しか生じさせない)。MASP-3阻害は、LEA-1関連の溶解およびオプソニン化ならびにB因子およびD因子関連の溶解およびオプソニン化のレクチン非依存性転換を完全または部分的に阻止すると予想される。
本明細書で使用する「MASP-1阻害物質」という用語は、MASP-1に結合するかまたはそれと直接相互作用し、かつ(i)MASP-3依存性補体活性化および/または(ii)MASP-2依存性補体活性化および/または(iii)D因子のレクチン非依存性もしくはレクチン依存性MASP-1媒介性成熟の少なくとも1つを阻害する、任意の作用物質を指し、D因子のレクチン依存性MASP-1媒介性成熟は、MASP-1抗体およびそのMASP-1結合断片、天然および合成ペプチド、小分子、発現阻害因子ならびに単離された天然阻害因子を含むD因子の直接的活性化を含み、また、レクチン経路中の別の認識分子(例えば、MBL、CL-11、H-フィコリン、M-フィコリンまたはL-フィコリン)への結合に関してMASP-1と競合するペプチドも包含する。一態様において、本発明の方法において有用であるMASP-1阻害物質は、MASP-3依存性補体活性化を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させる。一態様において、MASP-1阻害物質はMASP-3依存性補体活性化を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-3補体活性化しか生じさせない)。別の態様において、本発明の方法において有用であるMASP-1阻害物質は、MASP-2依存性補体活性化を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させる。一態様において、MASP-1阻害物質はMASP-2依存性補体活性化を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-2補体活性化しか生じさせない)。
別の態様において、本発明の方法において有用であるMASP-1阻害物質は、MASP-3依存性補体活性化(LEA-1)、レクチン非依存性B因子およびD因子転換ならびにMASP-2依存性補体活性化(LEA-2)を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させる。一態様において、MASP-1阻害物質は、MASP-3依存性補体活性化(LEA-1)、レクチン非依存性B因子およびD因子転換ならびにMASP-2依存性補体活性化(LEA-2)を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-3補体活性化およびわずか10%またはそれ未満のMASP-2補体活性化しか生じさせない)。
直接的MASP-1阻害物質の一例が、MASP-1特異性阻害物質、例えば、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-1(SEQ ID NO:10)の一部に特異的に結合するMASP-1阻害物質である。多くの場合、MASP-1がMASP-3を活性化することができ、MASP-1がMASP-2を活性化することができるという条件で、MASP-1の阻害は、MASP-3および/またはMASP-2を阻害するのに有効であると予想されると考えられる。しかし、一部の場合、MASP-1またはMASP-3またはMASP-2の阻害が、他のMASP標的の阻害よりも好ましい態様であり得る。例えば、黄色ブドウ球菌(S. aureus)感染の状況においては、MASP-3が活性化され、MASP-1の非存在において黄色ブドウ球菌オプソニン化を担うことが示されている(Iwaki D. et al., J Immunol 187(7):3751-8 (2011)を参照されたい)。したがって、例えば発作性夜間血色素尿症(PNH)の治療においては、PNHのLEA-1阻害治療中、MASP-3ではなくMASP-1を直接阻害し、それにより、黄色ブドウ球菌への潜在的感受性を低下させることが有利であり得る。
本明細書で使用する「MASP-2阻害物質」という用語は、MASP-2に結合するか、またはそれと直接相互作用し、かつ(i)MASP-2依存性補体活性化および/または(ii)MASP-1依存性補体活性化の少なくとも1つを阻害する任意の作用物質を指し、MASP-2抗体およびそのMASP-2結合断片、天然および合成ペプチド、小分子、発現阻害因子ならびに単離された天然阻害因子を含み、また、レクチン経路中の別の認識分子(例えば、MBL、CL-11、H-フィコリン、M-フィコリンまたはL-フィコリン)への結合に関してMASP-2と競合するペプチドも包含する。本発明の方法において有用であるMASP-2阻害物質は、MASP-2依存性補体活性化を10%より多く、例えば20%より多く、50%より多く、または90%より多く低下させ得る。一態様において、MASP-2阻害物質はMASP-2依存性補体活性化を90%より多く低下させる(すなわち、わずか10%またはそれ未満のMASP-2補体活性化しか生じさせない)。直接的MASP-2阻害物質の一例が、MASP-2特異性阻害物質、例えば、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-2(SEQ ID NO:5)の一部に特異的に結合するMASP-2阻害物質である。
本明細書で使用する「抗体」という用語は、標的ポリペプチド、例えば、MASP-1、MASP-2、またはMASP-3のポリペプチドまたはその一部に特異的に結合する、任意の抗体産生哺乳動物(例えば、マウス、ラット、ウサギ、およびヒトを含む霊長類)に由来する、あるいはハイブリドーマ、ファージセレクション、組換え発現、またはトランスジェニック動物(または抗体もしくは抗体断片を産生する他の方法)に由来する抗体およびその抗体断片を包含する。「抗体」という用語は、抗体源、または抗体が作られるやり方の点で(例えば、ハイブリドーマ、ファージセレクション、組換え発現、トランスジェニック動物、ペプチド合成などによって)限定されることが意図されない。例示的な抗体は、ポリクローナル抗体、モノクローナル抗体、および組換え抗体;汎(pan)特異性抗体、多重特異性抗体(例えば、二重特異性抗体、三重特異性抗体);ヒト化抗体:マウス抗体;キメラ、マウス-ヒト、マウス-霊長類、霊長類-ヒトモノクローナル抗体;および抗イディオタイプ抗体を含み、任意のインタクトな抗体またはその断片でもよい。本明細書で使用する「抗体」という用語は、インタクトなポリクローナル抗体またはモノクローナル抗体だけでなく、その断片(例えば、dAb、Fab、Fab'、F(ab') 2、Fv)、単鎖(ScFv)、その合成変種、天然変種、抗体部分と、必要とされる特異性の抗原結合断片を含む融合タンパク質、ヒト化抗体、キメラ抗体、および必要とされる特異性の抗原結合部位または断片(エピトープ認識部位)を含む免疫グロブリン分子の他の任意の改変された構成も包含する。
「モノクローナル抗体」は均質な抗体集団を指す。ここで、モノクローナル抗体は、エピトープの選択的結合に関与するアミノ酸(天然および非天然)からなる。モノクローナル抗体は標的抗原に対して高度に特異的である。「モノクローナル抗体」という用語は、インタクトなモノクローナル抗体および完全長モノクローナル抗体だけでなく、その断片(例えば、Fab、Fab'、F(ab') 2、Fv)、単鎖(ScFv)、その変種、抗原結合部分を含む融合タンパク質、ヒト化モノクローナル抗体、キメラモノクローナル抗体、ならびに必要とされる特異性およびエピトープに結合する能力の抗原結合断片(エピトープ認識部位)を含む免疫グロブリン分子の他の任意の改変された構成も包含する。この用語は、抗体源、または抗体が作られるやり方の点で(例えば、ハイブリドーマ、ファージセレクション、組換え発現、トランスジェニック動物などによって)限定されることが意図されない。この用語は、「抗体」の定義で前述された免疫グロブリン全体および断片などを含む。
本明細書で使用する「抗体断片」という用語は、完全長抗体、例えば、MASP-1、MASP-2、もしくはMASP-3の抗体に由来するかまたはこれに関連する、一般的には、その抗原結合領域または可変領域を含む、部分を指す。抗体断片の例示的な例には、Fab、Fab'、F(ab) 2、F(ab') 2、およびFv断片、scFv断片、ダイアボディ、直鎖抗体、単鎖抗体分子、ならびに抗体断片から形成された多重特異性抗体が含まれる。
本明細書で使用する「単鎖Fv」または「scFv」抗体断片は、抗体のVHドメインまたはVLドメインを含む。これらのドメインは1本のポリペプチド鎖で存在する。一般的に、Fvポリペプチドは、VHドメインとVLドメインとの間にポリペプチドリンカーをさらに含み、このためにscFvは抗原結合のために望ましい構造を形成することができる。
本明細書で使用する「キメラ抗体」は、非ヒト種(例えば、げっ歯類)抗体に由来する可変ドメインおよび相補性決定領域を含有するが、抗体分子の残りはヒト抗体に由来する、組換えタンパク質である。
本明細書で使用する「ヒト化抗体」は、ヒト抗体フレームワークに移植された、非ヒト免疫グロブリンに由来する特異的な相補性決定領域に一致する最小配列を含むキメラ抗体である。ヒト化抗体は、典型的には、抗体相補性決定領域のみが非ヒトに由来する(ファージディスプレイまたは酵母から作製された抗体を含む)組換えタンパク質である。
本明細書で使用する「マンナン結合レクチン」(「MBL」)という用語は、マンナン結合タンパク質(「MBP」)と同義である。
本明細書で使用する「膜侵襲複合体」(「MAC」)は、膜に入り込み、膜を破壊する、5種類の終末補体成分の複合体(C5bとC6、C7、C8、およびC9との組み合わせ)(C5b-9とも呼ばれる)を指す。
本明細書で使用する「対象」は、ヒト、非ヒト霊長類、イヌ、ネコ、ウマ、ヒツジ、ヤギ、ウシ、ウサギ、ブタ、およびげっ歯類を含むが、それに限定されるわけではない、全ての哺乳動物を含む。
本明細書で使用するアミノ酸残基の略語は以下の通りである:アラニン(Ala;A)、アスパラギン(Asn;N)、アスパラギン酸(Asp;D)、アルギニン(Arg;R)、システイン(Cys;C)、グルタミン酸(Glu;E)、グルタミン(Gln;Q)、グリシン(Gly;G)、ヒスチジン(His;H)、イソロイシン(Ile;I)、ロイシン(Leu;L)、リジン(Lys;K)、メチオニン(Met;M)、フェニルアラニン(Phe;F)、プロリン(Pro;P)、セリン(Ser;S)、スレオニン(Thr;T)、トリプトファン(Trp;W)、チロシン(Tyr;Y)、およびバリン(Val;V)。
最も広い意味では、天然アミノ酸は、それぞれのアミノ酸の側鎖の化学特性に基づいてグループに分けることができる。「疎水性」アミノ酸とは、Ile、Leu、Met、Phe、Trp、Tyr、Val、Ala、CysまたはProを意味する。「親水性」アミノ酸とは、Gly、Asn、Gln、Ser、Thr、Asp、Glu、Lys、Arg、またはHisを意味する。このアミノ酸グループは、以下のように、さらにサブグループに分けることができる。「無電荷親水性」アミノ酸とは、Ser、Thr、Asn、またはGlnを意味する。「酸性」アミノ酸とはGluまたはAspを意味する。「塩基性」アミノ酸とはLys、Arg、またはHisを意味する。
本明細書で使用する「保存的アミノ酸置換」という用語は、以下のグループ:(1)グリシン、アラニン、バリン、ロイシン、およびイソロイシン、(2)フェニルアラニン、チロシン、およびトリプトファン、(3)セリンおよびスレオニン、(4)アスパラギン酸およびグルタミン酸、(5)グルタミンおよびアスパラギン、ならびに(6)リジン、アルギニンおよびヒスチジンのそれぞれの中でのアミノ酸間の置換によって例示される。
本明細書で使用する「オリゴヌクレオチド」という用語は、リボ核酸(RNA)もしくはデオキシリボ核酸(DNA)またはその模倣物のオリゴマーまたはポリマーを指す。この用語は、天然のヌクレオチド、糖、およびヌクレオシド間(バックボーン)共有結合からなるオリゴヌクレオ塩基(oligonucleobase)、ならびに非天然改変を有するオリゴヌクレオチドもカバーする。
本明細書で使用する「エピトープ」は、抗体が結合する、タンパク質(例えば、ヒトMASP-3タンパク質)上の部位を指す。「重複エピトープ」は、直鎖エピトープおよび非直鎖エピトープを含む、少なくとも1個(例えば、2個、3個、4個、5個、または6個)の共通アミノ酸残基を含む。
本明細書で使用する「ポリペプチド」、「ペプチド」、および「タンパク質」という用語は同義に用いられ、長さにも翻訳後修飾に関係なく任意のペプチド結合アミノ酸鎖を意味する。本明細書に記載のMASPタンパク質(MASP-1、MASP-2、またはMASP-3)は野生型タンパク質を含有してもよく、野生型タンパク質でもよく、50個以下(例えば、1個以下、2個以下、3個以下、4個以下、5個以下、6個以下、7個以下、8個以下、9個以下、10個以下、12個以下、15個以下、20個以下、25個以下、30個以下、35個以下、40個以下、または50個以下)の保存的アミノ酸置換を有する変種でもよい。保存的置換は、典型的には、以下のグループ;グリシンおよびアラニン;バリン、イソロイシン、およびロイシン;アスパラギン酸およびグルタミン酸;アスパラギン、グルタミン、セリン、およびスレオニン;リジン、ヒスチジン、およびアルギニン;ならびにフェニルアラニンおよびチロシンの中での置換を含む。
本明細書に記載されるヒトMASP-1タンパク質(SEQ ID NO:10と表記される)、ヒトMASP-2タンパク質(SEQ ID NO:5と表記される)およびヒトMASP-3タンパク質(SEQ ID NO:8と表記される)はまた、タンパク質の末端および内部欠失変異体を含むMASPタンパク質のペプチド断片を含む、完全長および/または未成熟(pre-pro)MASPタンパク質よりも短いタンパク質の「ペプチド断片」を含む。欠失変異体は、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19または20個のアミノ酸セグメント(2個またはそれ以上のアミノ酸の)または非隣接単一アミノ酸を欠失していることができる。一部の態様において、ヒトMASP-1タンパク質は、SEQ ID NO:10に記載されたアミノ酸配列を有するヒトMASP-1タンパク質と70(例えば71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99または100)%またはそれ以上同一であるアミノ酸配列を有することができる。
一部の態様において、ヒトMASP-3タンパク質は、SEQ ID NO:8に記載されたアミノ酸配列を有するヒトMASP-3タンパク質と70(例えば71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99または100)%またはそれ以上同一であるアミノ酸配列を有することができる。
一部の態様において、ヒトMASP-2タンパク質は、SEQ ID NO:5に記載されたアミノ酸配列を有するヒトMASP-2タンパク質と70(例えば71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99または100)%またはそれ以上同一であるアミノ酸配列を有することができる。
一部の態様において、ペプチド断片は、長さが少なくとも6(例えば、少なくとも7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、55、60、65、70、75、80、85、90、95、100、110、120、130、140、150、160、170、180、190、200、250、300、350、400、450、500または600個またはそれ以上の)アミノ酸残基(例えば、SEQ ID NO:5、8または10のいずれか1つの少なくとも6個の連続したアミノ酸残基)であることができる。一部の態様において、ヒトMASPタンパク質の抗原性ペプチド断片は、長さが500個未満(例えば、450個未満、400個未満、350個未満、325個未満、300個未満、275個未満、250個未満、225個未満、200個未満、190個未満、180個未満、170個未満、160個未満、150個未満、140個未満、130個未満、120個未満、110個未満、100個未満、95個未満、90個未満、85個未満、80個未満、75個未満、70個未満、65個未満、60個未満、55個未満、50個未満、49個未満、48個未満、47個未満、46個未満、45個未満、44個未満、43個未満、42個未満、41個未満、40個未満、39個未満、38個未満、37個未満、36個未満、35個未満、34個未満、33個未満、32個未満、31個未満、30個未満、29個未満、28個未満、27個未満、26個未満、25個未満、24個未満、23個未満、22個未満、21個未満、20個未満、19個未満、18個未満、17個未満、16個未満、15個未満、14個未満、13個未満、12個未満、11個未満、10個未満、9個未満、8個未満、7個未満または6個未満)のアミノ酸残基(例えば、SEQ ID NO:5、8または10のいずれか1つの500個未満の連続したアミノ酸残基)である。
一部の態様においては、MASP-1、MASP-2および/またはMASP-3に結合する抗体を生成することに関して、ペプチド断片は抗原性であり、完全長タンパク質が哺乳動物において抗原応答を誘発する能力の少なくとも10%(例えば、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも35%、少なくとも40%、少なくとも50%、少なくとも55%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%、少なくとも99%、少なくとも99.5%または100%もしくはそれ以上)を保持する(下記の「抗体を製造するための方法」を参照されたい)。
アミノ酸配列同一性パーセント(%)は、最大の配列同一性%を達成するために配列をアラインメントし、必要であればギャップを導入した後の、参照配列中のアミノ酸と同一である候補配列中のアミノ酸の割合と定義される。配列同一性%を決定するためのアライメントは、当技術分野における技術の範囲内の様々なやり方で、例えば、公的に利用可能なコンピューターソフトウェア、例えば、BLAST、BLAST-2、ALIGN、ALIGN-2、またはMegalign(DNASTAR)ソフトウェアを使用して達成することができる。比較される配列の完全長にわたって最大アラインメントを達成するために必要な任意のアルゴリズムを含む、アラインメントを測定するための適切なパラメータは公知の方法によって決定することができる。
代表的な態様において、ヒトMASP-1タンパク質(SEQ ID NO:10)は、SEQ ID NO:9と表記されるcDNA配列によってコードされ、ヒトMASP-2タンパク質(SEQ ID NO:5)は、SEQ ID NO:4と表記されるcDNA配列によってコードされ、ヒトMASP-3タンパク質(SEQ ID NO:8)は、SEQ ID NO:7と表記されるcDNA配列によってコードされる。当業者は、SEQ ID NO:9、SEQ ID NO:4、およびSEQ ID NO:7に開示されたcDNA配列が、それぞれヒトMASP-1、MASP-2、およびMASP-3の単一アレルを表し、アレル変異および選択的スプライシングが起こることが予想されることを認識すると考えられる。SEQ ID NO:9、SEQ ID NO:4およびSEQ ID NO:7に示すヌクレオチド配列のアレル変異は、沈黙突然変異を含むもの、および突然変異がアミノ酸配列変化を生じさせるもの含め、本発明の範囲内である。MASP-1、MASP-2またはMASP-3配列のアレル変異は、標準的手法に従って異なる個体からのcDNAまたはゲノムライブラリーを探索することによってクローニングすることもできるし、あるいはそのような情報を含むデータベースの相同性比較サーチ(例えばBLASTサーチ)によって同定し得る。
II. レクチン経路:新たな理解
i. 概略;レクチン経路は定義し直された
本明細書に記載されるように、本発明者らは、補体のレクチン経路が、いずれも糖質認識成分(MBL、CL-11およびフィコリン)で形成されたレクチン経路活性化複合体によって駆動される、補体を活性化するための2つのエフェクターアーム:(i)「レクチン経路エフェクターアーム1」または「LEA-1」と呼ばれる、レクチン経路関連セリンプロテアーゼMASP-1およびMASP-3によって形成されたエフェクターアーム;ならびに(ii)本明細書では「レクチン経路エフェクターアーム2」または「LEA-2」と呼ばれるMASP-2駆動型活性化エフェクターアームを有するという驚くべき発見を達成した。LEA-1およびLEA-2はいずれも溶解および/またはオプソニン化を実施することができる。
また、いずれもCa++の非存在において起こることができる、MASP-3によるレクチン非依存性B因子転換ならびにHTRA-1、MASP-1およびMASP-3によるレクチン非依存性D因子転換が一般に、C3bBからC3bBbへの転換およびプロD因子からD因子への転換を生じさせるということがわかった。したがって、MASP-3を阻害することは、LEA-1ならびにレクチン非依存性B因子および/またはD因子活性化の両方を阻害することができ、それが、溶解および/またはオプソニン化の阻害を生じさせることができる。
図1は、補体活性化の経路のこの新たな理解を示す。図1に示すように、LEA-1はレクチン結合MASP-3によって駆動され、このレクチン結合MASP-3がD因子の酵素前駆体をその活性形態へと活性化する、および/またはC3b-もしくはC3b(H2O)結合B因子を切断して、C3bB酵素前駆体複合体をその酵素的に活性な形態C3bBbへと転換することができる。MASP-3によって生成される活性化D因子はまた、C3bBまたはC3b(H2O)酵素前駆体複合体をその酵素的に活性な形態へと転換することができる。MASP-1は迅速に自己活性化することができるが、一方、MASP-3はそれができない。多くの場合、MASP-1はMASP-3のアクチベーターである。
多くの例において、レクチン(すなわち、MBL、CL-11またはフィコリン)は活性を細胞面に向けることができるが、図1はまた、B因子活性化および/またはD因子成熟におけるMASP-3、MASP-1およびHTRA-1のレクチン非依存性機能を概説する。LEA-1中のMASP-3のレクチン関連形態と同様に、MASP-3のレクチン非依存形態は、C3bBまたはC3b(H20)のC3bBbへの転換(図36および37も参照されたい)およびプロD因子のD因子への転換(図39を参照されたい)を媒介することができる。MASP-1(図39も参照されたい)および非MASP関連タンパク質HTRA-1はまた、レクチン成分を必要としないやり方でD因子を活性化することもできる(Stanton et al., Evidence That the HTRA1 Interactome Influences Susceptibility to Age-Related Macular Degeneration, presented at The Association for Research in Vision and Ophthalmology 2011 conference on May 4, 2011)。
したがって、MASP-1(LEA-1およびレクチン非依存形態を経て)、MASP-3(LEA-1およびレクチン非依存形態を経て)およびHTRA-1(レクチン非依存性のみ)は、MASP-3-D因子-B因子軸の沿う1つまたは複数の地点における直接的または間接的のいずれかの活性化が可能である。その際、それらは、C3bBb、すなわち第二経路のC3コンバターゼを生成し、微生物表面におけるC3bの産生および沈着を刺激する。C3b沈着はオプソニン化において重要な役割を果たし、マクロファージのような宿主食細胞による破壊に備えて微生物の表面を標識する。本明細書における一例として(図35)、MASP-3は、黄色ブドウ球菌のオプソニン化において重要である。C3b沈着は、ヒト血清に曝露された黄色ブドウ球菌においてMASP-3依存的に速やかに起こる(図35)。
しかし、LEA-1の寄与およびMASP-3、MASP-1またはHTRA-1のレクチン非依存性機能はオプソニン化に限定されない。図1に示すように、これら3つの成分はまた、間接的または直接的なB因子活性化による細胞溶解およびC3bの産生を生じさせることができる。これらの成分は、第二経路C5コンバターゼ、すなわちC3bBb(C3b)nを生成する複合体を形成する。本明細書にさらに記載されるように、髄膜炎菌の溶解における、MASP-2ではなく(したがって、この例ではLEA-2でもない)MASP-3およびMBLの必要性(図13、14、および15を参照されたい)は、溶解におけるLEA-1の役割を実証する。要約すると、黄色ブドウ球菌研究から得られたオプソニン化結果および髄膜炎菌研究において認められた溶解結果は、両プロセスにおけるLEA-1の役割を裏付ける(図1に示すように)。さらに、これらの研究は、オプソニン化および溶解の両方がC3bBもしくはC3b(H20)の転換および/またはプロD因子のD因子への転換から生じることができることを実証する。したがって、両プロセスは、MASP-3、MASP-1またはHTRA-1のレクチン非依存性役割の結果であることができる。したがって、本発明者らによって開発された図1のモデルは、オプソニン化および/または溶解を阻止し、かつこれらのプロセスの調節不全によって生じる疾病を治療するための、主にMASP-3の阻害因子ならびにMASP-1および/またはHTRA-1の阻害因子の使用を裏付ける。
1. レクチン経路エフェクターアーム(LEA-1)
レクチン経路の第一のエフェクターアーム、すなわちLEA-1は、レクチン経路関連セリンプロテアーゼMASP-1およびMASP-3によって形成される。本明細書に記載されるように、本発明者らはこれまでのところ、MASP-3の非存在かつMASP-1の存在において、第二経路が面構造上で実質的に活性化されないことを示した。これらの結果は、MASP-3が、第二経路を開始させる上で、これまで開示されたことがない役割を果たすことを実証し、これは、MASP-3のセリンプロテアーゼドメインを機能不全にする突然変異を有する珍しい3MC常染色体劣性障害の患者から採取されたMASP-3欠損3MC血清を使用して確認されている(Rooryck C, et al., Nat Genet. 43(3):197-203 (2011))。これらの新規な発見に基づき、従来から定義されるような第二経路を伴う補体活性化はMASP-3依存性であると予想される。事実、MASP-3、およびそのLEA-1活性化は、これまでわかりにくかった第二経路のイニシエーターということになり得る。
本明細書の実施例1〜4にさらに記載されるように、本発明者らは、MASP-2欠損血清中、髄膜炎菌に対してより高い殺菌活性(すなわち溶解活性)を生じさせるレクチン依存性第二経路活性化のより高い活性を認めた。任意の特定の理論によって拘束されることを望まないが、MASP-2の非存在において、MASP-1を有する糖質認識複合体は、MASP-3を有する糖質認識複合体と密に結合して、MASP-3を活性化する可能性が高いと考えられる。多くの場合、MASP-3は自己活性化酵素ではなく、非常に多くの場合、その酵素前駆体形態からその酵素的に活性な形態へと転換されるためにMASP-1の活性を必要とするため、MASP-3の活性化はMASP-1活性に依存することが知られている。MASP-1は(MASP-2と同様)自己活性化酵素であるが、MASP-3は自己活性化せず、多くの場合、その酵素的に活性な形態へと転換されるためにはMASP-1の酵素活性を必要とする。Zundel S, et al., J. Immunol., 172(7):4342-50 (2004)を参照されたい。MASP-2の非存在において、すべてのレクチン経路認識複合体はMASP-1またはMASP-3のいずれかを付加される。したがって、MASP-2の非存在は、MASP-3からその酵素的に活性な形態へのMASP-1媒介性転換を促進する。MASP-3が活性化されたら、活性化されたMASP-3は、C3bBからC3bBbへのおよび/またはプロD因子からD因子へのMASP-3媒介性転換を介して、今や「LEA-1」活性化と呼ばれる第二経路活性化を開始する。第二経路C3コンバターゼとも呼ばれるC3bBbは、さらなるC3分子を切断して、オプソニンC3b分子の沈着を生じさせる。いくつかのC3b断片がC3bBbコンバターゼ複合体に近接して結合するならば、その結果、第二経路C5コンバターゼC3bBb(C3b)nが形成し、それがMACの形成を促進する。加えて、表面に沈着したC3b分子がB因子結合のための新たな部位を形成し、それが今度はD因子および/またはMASP-3によって切断されて、第二経路C3およびC5コンバターゼ複合体が形成することができるさらなる部位を形成する。この後者のプロセスは、効果的な溶解のために必要であり、初期のC3b沈着が起こったらレクチンを必要としない。近年の刊行物(Iwaki D. et al., J Immunol 187(7):3751-8 (2011))および本発明者らから生成されたデータ(図37)は、活性化されたMASP-3によって第二経路C3コンバターゼ酵素前駆体複合体C3bBがその酵素的に活性な形態へと転換されることを実証する。本発明者らはこれまでのところ、B因子のMASP-3媒介性切断が、第二経路C3コンバターゼC3bBbのレクチン依存性形成を促進する、新たに記載されたLEA-1のサブコンポーネントを表すことを見いだした。
2. レクチン経路エフェクターアーム(LEA-2)
レクチン経路の第二のエフェクターアーム、すなわちLEA-2は、レクチン経路関連セリンプロテアーゼMASP-2によって形成される。MASP-2は、認識成分がそれぞれのパターンに結合した場合に活性化され、かつ、またMASP-1によっても活性化され得、その後、補体成分C4をC4aおよびC4bへと切断する。切断産物C4bが血漿C2に結合したのち、C4b結合C2は、C4b結合C2を酵素的に活性な複合体C4bC2aおよび小さなC2b切断断片へと転換する第二のMASP-2媒介性切断工程の基質になる。C4b2aは、豊富な血漿成分C3をC3aおよびC3bへと転換する、レクチン経路のC3転換C3コンバターゼである。C3bは、チオエステル結合を介して、近接する任意の面に結合する。いくつかのC3b断片がC3コンバターゼ複合体C4b2aに近接して結合するならば、このコンバターゼは、C5をC5bおよびC5aへと転換するようにその特異性を変化させて、C5コンバターゼ複合体C4b2a(C3b)nを形成する。このC5コンバターゼはMACの形成を開始することができるが、このプロセスは、それだけで溶解を促進するのには効果が不十分であると考えられる。むしろ、LEA-2によって産生される初期のC3bオプソニンが新たな第二経路C3コンバターゼおよびC5コンバターゼ部位の形成のための核を形成し、それが最終的に豊富なMAC形成および溶解を生じさせる。後者の事象は、LEA-2形成C3bと関連するB因子のD因子活性化によって媒介され、したがって、D因子の成熟におけるMASP-1の本質的役割のおかげでLEA-1に依存する。また、C4欠損マウスは虚血再灌流障害から保護されないが、一方、MASP-2欠損マウスは保護されることから(前記Schwaeble et al., PNAS, 2011)、虚血再灌流障害の病態生理学において重要な役割を果たす、C4の非存在においてC3を活性化するためのMASP-2依存性C4バイパス活性化経路がある。LEA-2はまた、プロトロンビンからトロンビンへの切断(共通経路)およびXII因子(ハーゲマン因子)をその酵素的に活性な形態XIIaへと転換するための切断を含む凝固経路に結び付いている。XIIa因子は他方でXI因子をXIaに切断する(内因性経路)。凝固カスケードの内因性経路活性化は、血栓形成にとってきわめて重要であるフィブリン形成を生じさせる。
図1は、本明細書に提供される結果に基づくレクチン経路および第二経路の新たな理解を示す。図1は、オプソニン化および溶解の両方におけるLEA-2の役割を詳細に記載する。MASP-2は、生理学的に、複数のレクチン依存性状況における「下流側」C3b沈着(および結果的なオプソニン化)のイニシエーターであるが(図20A、20B、20C)、また、血清感受性菌の溶解においても役割を果たす。図1に示すように、髄膜炎菌のような血清感受性病原体に関するMASP-2欠損またはMASP-2枯渇血清/血漿の殺菌活性の増大を担う提案される分子機構は、細菌の溶解の場合、MASP-1およびMASP-3と関連したレクチン経路認識複合体が互いに近接した状態で細菌表面に結合し、それにより、MASP-1がMASP-3を切断することを可能にしなければならないということである。MASP-1およびMASP-2とは対照的に、MASP-3は自己活性化酵素ではないが、多くの場合、その酵素的に活性な形態へと転換されるためにはMASP-1による活性化/切断を必要とする。
図1にさらに示すように、その後、活性化されたMASP-3は、病原体表面上のC3b結合B因子を切断して、酵素的に活性な第二経路C3およびC5コンバターゼそれぞれC3bBbおよびC3bBb(C3b)nの形成により、第二活性化カスケードを開始させることができる。MASP-2を有するレクチン経路活性化複合体はMASP-3の活性化には役割を果たし、MASP-2の非存在において、またはMASP-2の枯渇ののち、すべてのレクチン経路活性化複合体はMASP-1またはMASP-3のいずれかを付加される。したがって、MASP-2の非存在において、微生物表面上でMASP-1およびMASP-3を有するレクチン経路活性化複合体が互いに近接して位置するようになり、より多くのMASP-3が活性化され、それにより、より高速のC3b結合B因子のMASP-3媒介性切断を生じさせて、微生物表面上に第二経路C3およびC5コンバターゼC3bBbおよびC3bBb(C3b)nを形成する可能性が顕著に増大する。これが、C6と関連した表面結合C5b、C7と関連したC5bC6、C8と関連したC5bC6C7およびC5bC6C7C8で構成され、C9の重合を生じさせる、膜侵襲複合体を形成する終末活性化カスケードC5b〜C9の活性化を生じさせ、このC9が細菌表面構造に入り込み、かつ細菌壁中に孔を形成し、それが、補体標的化細菌の浸透圧性死滅を生じさせる。
この新規な概念の核は、本明細書に提供されるデータが、レクチン経路活性化複合体が、図1に示すような、以下の2つの別個の活性化経路を駆動することを明らかに示すということである。
(i)LEA-1:アクチベーター表面上のB因子の初期切断および活性化を通して第二経路コンバターゼC3bBbを生成することによって補体の活性化を開始し、かつ駆動し、次いで、それがC3b沈着および第二経路コンバターゼC3bBbの形成を触媒するMASP-3依存性活性化経路。MASP-3駆動型活性化経路は、微生物のオプソニン化および溶解において本質的な役割を果たし、細菌の表面上で第二経路を駆動して、膜侵襲複合体を生成するのに最適な活性化速度を生じさせる。
(ii)LEA-2:レクチン経路C3コンバターゼC4b2aの形成を生じさせ、C3切断産物C3bが蓄積すると、その後、C5コンバターゼC4b2a(C3b)nを生じさせるMASP-2依存性活性化経路。補体C4の非存在において、MASP-2は、C2および凝固因子XIを含む第二C3コンバターゼ複合体を形成することができる。
溶解におけるその役割に加えて、MASP-2駆動型活性化ルートは、微生物が共有結合C3bおよびその切断産物(すなわちiC3bおよびC3dg)でコーティングされることにつながる細菌オプソニン化において重要な役割を果たし、それは、C3レセプターを有する食細胞、例えば顆粒球、マクロファージ、単球、小グリア細胞および細網内皮系による取込みおよび死滅のために標的化される。これは、補体溶解に耐性である細菌および微生物のクリアランスに最も効果的なルートである。これらはグラム陽性細菌の大部分を含む。
LEA-1およびLEA-2に加えて、MASP-3、MASP-1および/またはHTRA-1によるD因子のレクチン非依存性活性化の可能性があり、また、MASP-3によるB因子のレクチン非依存性活性化の可能性がある。
任意の特定の理論によって拘束されることを望まないが、(i)LEA-1、(ii)LEA-2、ならびに(iii)レクチン非依存性B因子および/またはD因子活性化のそれぞれが、オプソニン化および/またはMACの形成、ならびにその結果としての溶解を生じさせると考えられる。
ii. MASP-1、MASP-2、およびMASP-3の背景
現在、3つのマンナン結合レクチン関連セリンプロテアーゼ(MASP-1、MASP-2、およびMASP-3)がヒト血清中でマンナン結合レクチン(MBL)と関連していることが公知である。マンナン結合レクチンはまた、最近の文献においては、「マンノース結合タンパク質」または「マンノース結合レクチン」とも呼ばれている。MBL-MASP複合体は、多様な微生物上に存在する糖質構造へのMBLの結合のおかげで、先天性免疫において重要な役割を果たす。MBLと糖質構造の特定のアレイとの相互作用がMASP酵素前駆体の活性化を生じさせ、それが他方で、補体成分C4およびC2を切断してC3コンバターゼC4b2bを形成することによって補体を活性化する(Kawasaki et al., J. Biochem 106:483-489 (1989); Matsushita & Fujita, J. Exp Med. 176:1497-1502 (1992); Ji et al., J. Immunol. 150:571-578 (1993))。
MBL-MASP酵素前駆体複合体は、最近まで、1つのタイプのプロテアーゼ(MASP-1)しか含まないと考えられていたが、今や、MBLと関連する他2つの別々のプロテアーゼ(すなわち、MASP-2およびMASP-3)(Thiel et al., Nature 386:506-510 (1997); Dahl et al., Immunity 15:127-135 (2001))および「MAp19」または「sMAP」と呼ばれる19kDaのさらなる血清タンパク質(Stover et al., J. Immunol. 162:3481-3490 (1999); Stover et al., J. Immunol. 163:6848-6859 (1999); Takahashi et al., Int. Immunol 11:859-63 (1999))があることが明らかである。
MAp19は、MASP-2の構造遺伝子の選択的スプライシングされた遺伝子産物であり、かつセリンエンドペプチダーゼドメインを含むMASP-2の4つのC末端ドメインを欠く。MAp19をコードする豊富に発現した切断型mRNA転写物は、MASP-2遺伝子の選択的スプライシング/ポリアデニル化事象によって生成される。類似した機構により、MASP-1/3遺伝子は、3つの主要な遺伝子産物、すなわち2つのセリンプロテアーゼMASP-1およびMASP-3ならびに「MAp44」と呼ばれる44kDaの切断型遺伝子産物を生じさせる(Degn et al., J. Immunol 183(11):7371-8 (2009); Skjoedt et al., J Biol Chem 285:8234-43 (2010))。
MASP-1は、当初、血清Ra反応性因子のP-100プロテアーゼ成分と記載されていたが、それが今や、MBLに加えてMASPで構成された複合体であると認識されている(Matsushita et al., Collectins and Innate Immunity, (1996); Ji et al., J Immunol 150:571-578 (1993)。補体の古典経路のC1q-(C1r)2-(C1s)2複合体内のC1s酵素と明らかに同一のやり方で補体成分C4およびC2に作用するMBL-MASP複合体内のMBL関連エンドペプチダーゼの能力は、C1q-(C1r)2-(C1s)2複合体に機能的に類似するMBL-MASP複合体が存在することを示唆する。C1q-(C1r)2-(C1s)2複合体は、C1qと免疫複合体中に存在する抗体IgGまたはIgMのFc領域との相互作用によって活性化される。これがC1r酵素前駆体の自己活性化を生じさせ、それが他方でC1s酵素前駆体を活性化し、次いでC1s酵素前駆体が補体成分C4およびC2に作用する。
MBL-MASP複合体の化学量論は、様々なMBLオリゴマーがMASP-1/MAp19またはMASP-2/MASP-3の様々な割合と関連するように見える点で、C1q-(C1r)2-(C1s)2複合体に見られる化学量論とは異なる(Dahl et al., Immunity 15:127-135 (2001)。血清中に見られるMASPおよびMAp19の大部分は、MBLとは複合化しておらず(Thiel et al., J Immunol 165:878-887 (2000))、かつ部分的に、微生物面上のN-アセチルグルコサミン残基に結合することができるフィブリノゲン様ドメインを有する最近記載されたレクチンの群であるフィコリンと関連し得る(Le et al., FEBS Lett 425:367 (1998); Sugimoto et al., J. Biol Chem 273:20721 (1998))。これらのうち、ヒトL-フィコリン、H-フィコリンおよびM-フィコリンはMASPおよびMAp19と関連し、かつフィコリンによって認識される特定の糖質構造に結合すると、レクチン経路を活性化し得る(Matsushita et al., J Immunol 164:2281-2284 (2000); Matsushita et al., J Immunol 168:3502-3506 (2002))。フィコリンおよびMBLに加えて、CL-11と呼ばれるMBL様レクチンであるコレクチンがレクチン経路認識分子として同定されている(Hansen et al. J Immunol 185:6096-6104 (2010); Schwaeble et al. PNAS 108:7523-7528 (2011))。これらの代替糖質認識分子の生理学的重要性を強調する圧倒的な証拠があり、したがって、MBLがレクチン活性化経路の唯一の認識成分ではなく、MBL欠損がレクチン経路欠損と誤解されてはならないことを理解することが重要である。おそらくは、MBLに構造的に関連した代替糖質認識複合体のアレイの存在は、補体の活性化によって先天性免疫系の直接応答を開始させる微生物構造のスペクトルを広げ得る。
すべてのレクチン経路認識分子は、それらのコラーゲン相同性茎領域内の特定のMASP結合モチーフを特徴とする(Wallis et al. J. Biol Chem 279:14065-14073 (2004))。MBL、CL-11およびフィコリン中のMASP結合部位は、このドメイン内の別個のモチーフ:Hyp-Gly-Lys-Xaa-Gly-Proを特徴とし、Hypはヒドロキシプロリンであり、Xaaは概して脂肪族残基である。この配列中の点突然変異がMASP結合を分断する。
1. それぞれの構造、配列、染色体上の位置確認、およびスプライス変異
図2は、MASP-2ポリペプチド(SEQ ID NO:5)およびMAp19ポリペプチド(SEQ ID NO:2)ならびにそれらをコードするエキソンのドメイン構造を示す略図である。図3は、MASP-1ポリペプチド(SEQ ID NO:10)、MASP-3ポリペプチド(SEQ ID NO:8)およびMAp44ポリペプチド(SEQ ID NO:11)ならびにそれらをコードするエキソンのドメイン構造を示す略図である。図2および3に示すように、セリンプロテアーゼMASP-1、MASP-2、およびMASP-3は、C1rおよびC1sに見られるように配置された6つの別々ドメイン;すなわち(I)N末端C1r/C1s/ウニVEGF/骨形成タンパク質(またはCUBI)ドメイン;(II)上皮成長因子(EGF)様ドメイン;(III)第二のCUBドメイン(CUBII);(IVおよびV)2つの補体制御タンパク質(CCP1およびCCP2)ドメイン;および(VI)セリンプロテアーゼ(SP)ドメインからなる。
ヒトおよびマウスMASP-1(Sato et al., Int Immunol 6:665-669 (1994); Takada et al., Biochem Biophys Res Commun 196:1003-1009 (1993); Takayama et al., J. Immunol. 152:2308-2316 (1994))、ヒト、マウスおよびラットMASP-2(Thiel et al., Nature 386:506-510 (1997); Endo et al., J Immunol 161:4924-30 (1998); Stover et al., J. Immunol. 162:3481-3490 (1999); Stover et al., J. Immunol. 163:6848-6859 (1999))ならびにヒトMASP-3(Dahl et al., Immunity 15:127-135 (2001))のcDNA由来アミノ酸配列は、これらのプロテアーゼが、それらの推定触媒ドメイン内にHis、AspおよびSer残基の特徴的な三連構造を有するセリンペプチダーゼであることを示す(2012年2月15日にGenbankにアクセスした場合、Genbankアクセッション番号:ヒトMASP-1:BAA04477.1;マウスMASP-1:BAA03944;ラットMASP-1:AJ457084;ヒトMASP-3:AAK84071;マウスMASP-3:AB049755。それぞれ参照により本明細書に組み入れられる)。
図2および3にさらに示すように、酵素前駆体が活性形態へと転換されると、重鎖(アルファまたはA鎖)および軽鎖(ベータまたはB鎖)が分割されて、ジスルフィド結合したA鎖と、セリンプロテアーゼドメインに相当するより小さなB鎖とを生じさせる。第二のCCPドメイン(ドメインV)とセリンプロテアーゼドメイン(ドメインVI)との間に位置するArg-Ile結合の切断により、単鎖酵素前駆体MASP-1が活性化される(酵素前駆体C1rおよびC1sのように)。酵素前駆体MASP-2およびMASP-3は、MASP-1と同様なやり方で活性化されると考えられる。各MASPタンパク質がホモ二量体を形成し、かつCa++依存的にMBLおよびフィコリンと個々に関連する。
2. MASP-1/3
ヒトMASP-1ポリペプチド(SEQ ID NO:10)およびMASP-3ポリペプチド(SEQ ID NO:8)は1つの構造遺伝子から生じ(Dahl et al., Immunity 15:127-135 (2001)、その遺伝子は3番染色体の長腕の3q27〜28領域にマッピングされている(Takada et al., Genomics 25:757-759 (1995))。MASP-3およびMASP-1 mRNA転写物は一次転写物から選択的スプライシング/ポリアデニル化プロセスによって生成される。MASP-3翻訳産物は、MASP-1およびMASP-3の両方に共通であるアルファ鎖と、MASP-3に固有であるベータ鎖(セリンプロテアーゼドメイン)と構成される。図3に示すように、ヒトMASP-1遺伝子は18のエキソンを包含する。ヒトMASP-1 cDNA(SEQ ID NO:9と表記される)はエキソン2、3、4、5、6、7、8、10、11、13、14、15、16、17、および18によってコードされる。図3にさらに示すように、ヒトMASP 3遺伝子は12個のエキソンを包含する。ヒトMASP-3 cDNA(SEQ ID NO:7と表記される)はエキソン2、3、4、5、6、7、8、10、11、および12によってコードされる。選択的スプライシングが、エキソン2、3、4、5、6、7、8、および9から生じる、MBL関連タンパク質44(「MAp44」)(SEQ ID NO:11と表記される)と呼ばれるタンパク質を生じさせる。
ヒトMASP-1ポリペプチド(SEQ ID NO:10、Genbank BAA04477.1より)は699のアミノ酸残基を有し、それが19の残基のリーダーペプチドを含む。リーダーペプチドを除くと、MASP-1の算出上の分子量は76,976Daである。図3に示すように、MASP-1アミノ酸配列は4つのN結合グリコシル化部位を含む。ヒトMASP-1タンパク質(SEQ ID NO:10を参照されたい)のドメインは、図3に示され、かつ、N末端C1r/C1s/ウニVEFG/骨形成タンパク質(CUBI)ドメイン(SEQ ID NO:10のaa25〜137)、上皮成長因子様ドメイン(SEQ ID NO:10のaa139〜181)、第二のCUBドメイン(CUBII)(SEQ ID NO:10のaa185〜296)ならびに補体制御タンパク質ドメインのタンデム(SEQ ID NO:10のCCP1 aa301〜363およびCCP2 aa367〜432)、ならびにセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)を含む。
ヒトMASP-3ポリペプチド(Genbank AAK84071からのSEQ ID NO:8)は728のアミノ酸残基を有し、それが19の残基のリーダーペプチドを含む。リーダーペプチドを除くと、MASP-3の算出上の分子量は81,873Daである。図3に示すように、MASP-3中には7つのN結合グリコシル化部位がある。ヒトMASP-3タンパク質(SEQ ID NO:8を参照されたい)のドメインが図3に示され、N末端C1r/C1s/ウニVEGF/骨形成タンパク質(CUBI)ドメイン(SEQ ID NO:8のaa25〜137)、上皮成長因子様ドメイン(SEQ ID NO:8のaa139〜181)、第二のCUBドメイン(CUBII)(SEQ ID NO:8のaa185〜296)ならびに補体制御タンパク質ドメインのタンデム(SEQ ID NO:8のCCP1 aa301〜363およびCCP2 aa367〜432)およびセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)を含む。
MASP-3翻訳産物は、MASP-1およびMASP-3の両方に共通である、CUB-1-EGF-CUB-2-CCP-1-CCP-2ドメインを含むアルファ鎖(重鎖)(アルファ鎖:SEQ ID NO:8のaa1〜448)と、MASP-3およびMASP-1に固有である、セリンプロテアーゼドメインを含む軽鎖(ベータ鎖:SEQ ID NO:8のaa449〜728)と構成される。
3. MASP-2
ヒトMASP-2遺伝子は染色体1p36.3-2上に位置し(Stover et al., Cytogenet and Cell Genet. 84:148-149 (1999))、図2に示すように、12個のエキソンを包含する。MASP-2(SEQ ID NO:5)およびMAp19(SEQ ID NO:2)は、選択的スプライシング/ポリアデニル化によって生成される単一の構造遺伝子の転写物によってコードされる(Stover et al., Genes and Immunity 2:119-127 (2001))。ヒトMASP-2 cDNA(SEQ ID NO:4)はエキソン2、3、4、6、7、8、9、10、11、および12によってコードされる。(SEQ ID NO:1)によってコードされる、MBL関連タンパク質19(「MAp19」、「sMAP」とも呼ばれる)と呼ばれる20kDaタンパク質(SEQ ID NO:2)がエキソン2、3、4、および5から生じる。MAp19は、図2に示すようにエキソン5に由来する4つのさらなる残基(EQSL)を有するMASP-2のN末端CUB1-EGF領域を含む非酵素的タンパク質である。
MASP-2ポリペプチド(SEQ ID NO:5)は686個のアミノ酸残基を有し、それが15の残基のリーダーペプチドを含み、このリーダーペプチドが分泌後に切断されて、成熟形態のヒトMASP-2(SEQ ID NO:6)を生じさせる。図2に示すように、MASP-2アミノ酸配列は任意のN結合グリコシル化部位を含まない。MASP-2ポリペプチドは、MASP-1、MASP-3ならびにC1rおよびC1s、すなわちC1補体系のプロテアーゼに類似した分子構造を示す。ヒトMASP-2タンパク質(SEQ ID NO:5を参照して番号を付した)のドメインが図2に示され、かつN末端C1r/C1s/ウニVEGF/骨形成タンパク質(CUBI)ドメイン(SEQ ID NO:5のaa24〜136)、上皮成長因子様ドメイン(SEQ ID NO:5のaa138〜180)、第二のCUBドメイン(CUBII)(SEQ ID NO:5のaa184〜295)ならびに補体制御タンパク質ドメインのタンデム(SEQ ID NO:5のCCP1 aa300〜359およびCCP2 aa364〜431)およびセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)を含む。
図2に示すように、MASP-2ポリペプチドは、CUB-1-EGF-CUB-2-CCP-1-CCP-2ドメインを含むアルファ鎖(重鎖)(アルファ鎖:SEQ ID NO:5のaa1〜443)と、セリンプロテアーゼドメインを含むベータ鎖(軽鎖)(ベータ鎖:aa444〜686)とを有する。CUB-1、EGFおよびCUB-2ドメインは二量体化のために必要であり、CUB-1、EGF、CUB-2およびCCP-1ドメインはMBPのための結合部位を含む。Wallis et al., J. Biol Chem 279:14065-14073 (2004)に記載されているように、各MASP-2二量体が2つのMBLサブユニットに結合する。
4. MASP-1、MASP-2、およびMASP-3のアミノ酸配列の比較
図4は、CUBI、EGF、CUBII、CCP1、CCP2ドメインおよびセリンプロテアーゼ(SP)ドメイン中の保存された触媒三連構造残基(H、D、S)を示す、MASP-1(SEQ ID NO:10)、MASP-2(SEQ ID NO:6)およびMASP-3(SEQ ID NO:8)のタンパク質配列のアミノ酸アライメントである。「.」という記号は同一のアミノ酸配列を示す。
図5は、MASP-1(アルファ鎖:SEQ ID NO:10のaa1〜447)、MASP-2(アルファ鎖:SEQ ID NO:5のaa1〜443)およびMASP-3(アルファ鎖:SEQ ID NO:8のaa1〜448)のCUBI-EGF-CUBII-CCP1-CCP2を含むアルファ鎖配列のアミノ酸アライメントである。図5の点線ボックスによって示すように、CUBI、EGFおよびCUBIIドメイン中に数多くの同一性部分がある。CCP1およびCCP2ドメインは暗色のボックスによって示されている。ヒトMASP1/3のアルファ鎖とヒトMASP-2のアルファ鎖との間の全同一性%を以下の表1に提示する。
図6は、MASP-1(ベータ鎖:SEQ ID NO:10のaa448〜699)、MASP-2(ベータ鎖:SEQ ID NO:5のaa444〜686)およびMASP-3(ベータ鎖:SEQ ID NO:8のaa449〜728)のベータ鎖配列(セリンプロテアーゼドメインを含む)のアミノ酸アライメントである。図7Aは、MASP-1(ベータ鎖:SEQ ID NO:10のaa448〜699)のベータ鎖配列とMASP-2(ベータ鎖:SEQ ID NO:5のaa444〜686)のベータ鎖配列との間のペアワイズアミノ酸配列を示す。図7Bは、MASP-1(ベータ鎖:SEQ ID NO:10のaa448〜699)のベータ鎖配列とMASP-3(ベータ鎖:SEQ ID NO:8のaa449〜728)のベータ鎖配列との間のペアワイズアミノ酸配列を示す。図7Cは、MASP-2(ベータ鎖:SEQ ID NO:5のaa444〜686)のベータ鎖配列とMASP-3(ベータ鎖:SEQ ID NO:8のaa449〜728)のベータ鎖配列との間のペアワイズアミノ酸配列を示す。図5〜7における同一性領域は、同一のアミノ酸を包囲する点線のボックスとして示されている(「.」記号として示す)。
ヒトMASP-1、MASP-2、およびMASP-3タンパク質のアルファ鎖間およびベータ鎖間の同一性%を以下の表1に提示する。
アルファ鎖(重鎖)に関しては、上記表1に示すように、MASP-1アルファ鎖とMASP-3アルファ鎖とは同一である(3'端の15アミノ酸配列を除き)。MASP-2アルファ鎖とMASP-3アルファ鎖との間の全同一性%は45.4%であり、図5に示すように、CUBI-EGF-CUBIIドメイン中に数多くの同一性部分がある。
ベータ鎖(軽鎖)に関しては、3つのベータ鎖間の全同一性%は低く、27%〜28%の範囲である。しかし、3つのB鎖間の全同一性は低いが、図6に示すように、数多くの同一性部分がある。図7A〜Cにさらに示すように、配列の同一部分は、MASP-1とMASP-2との間またはMASP-1とMASP-3との間よりもMASP-2とMASP-3の間でより広く分布している。
MASP-2、MASP-3、C1r、およびC1sにおいて存在するすべてのシステイン残基はMASP-1中の等価残基と整列する。しかし、MASP-1は、MASP-2、MASP-3、C1rおよびC1s中には見られない2つのシステイン残基を有する(L鎖中の465位および481位)。MASP-1中のこれら2つのシステイン残基は、トリプシンおよびキモトリプシン中に見られるような「ヒスチジンループ」ジスルフィドブリッジを形成するために使用される予想位置にある。これは、MASP-2、MASP-3、C1rおよびC1sが、MASP-1からの遺伝子複製および多様化によって進化した可能性があることを暗示する(Nonaka & Miyazawa, Genome Biology 3 Reviews 1001.1-1001.5 (2001))。
5. 関連するヒト遺伝子データを含むそれぞれの生物学的な機能/活性
先天性免疫におけるMBL/フィコリン-MASP複合体の役割は、C型レクチンドメイン(MBL分子中に存在)のカルシウム依存性結合によって、または酵母、細菌、ウイルスおよび真菌において見られる糖質構造へのフィブリノゲン様ドメイン(フィコリン分子中に存在)の結合によって媒介される。この認識段階が酵素前駆体MASP-2の活性化をもたらし、その後それが、C4およびC2を切断してC3コンバターゼC4b2bを形成することにより、C1q-(C1r)2-(C1s)2複合体内の活性化されたC1の作用を模倣する。これが、標的病原体上のC4bおよびC3bの沈着を可能にし、ひいては、食作用による死滅およびクリアランスを促進する。
最近の文献における証拠は、レクチン経路活性化複合体が、C4およびC2を切断するためにMASP-2の活性のみを必要とすることを暗示している:(i)組換えMBLおよび組換え的に発現したMASP-2を使用する最小レクチン経路活性化複合体の再構成が、インビトロでC4およびC2の両方を効果的に切断するのに十分であると考えられ(Vorup-Jensen et al., J. Immunol. 165:2093-2100 (2000); Rossi et al., J Biol Chem 276:40880-40887 (2001); Ambrus et al., J Immunol 170:1374-1382 (2003); Gal et al, J Biol Chem 280:33435-33444 (2005));さらに(ii)MASP-2の遺伝子標的化欠損を有するマウスの血清は任意のレクチン経路機能活性を欠く(Schwaeble et al., PNAS 108:7523-7528 (2011))。最近、遺伝的に判定されたMASP-2の欠損が記載された(Stengaard-Pedersen et al., New Eng. J. Med. 349:554-560, (2003))。1つのヌクレオチドの突然変異がCUB1ドメイン中のAsp-Gly交換を生じさせ、MASP-2がMBLに結合することを不可能にする。
加えて、MASP-1およびMASP-3の両方を欠損したマウスの血清の機能的特性決定は、野生型マウスの血清とMASP-1/MASP-3ノックアウト(MASP-1/3-/-)マウスの血清とを生理学的条件下で比較した場合、レクチン経路活性がよりスローであるが、存在しないわけではないことを示す(Takahashi et al., J. Immunol. 180:6132-6138 (2008); Schwaeble et al., PNAS (2011))。これらの研究は、古典経路エフェクターエンドペプチダーゼC1sとは対照的に、MASP-2の活性化は、他のMBL関連セリンエンドペプチダーゼ(すなわち、MASP-1またはMASP-3)のいずれの活性も含まず、または要さず、MASP-2のタンパク質分解活性が、レクチン経路の糖質認識分子(すなわち、MBL、フィコリンまたはCL-11)の結合を補体活性化へと翻訳するのに十分であることを暗示する。しかし、より最近の研究が、MASP-2は自己活性化の能力を有するが、MASP-2酵素前駆体のMASP-1活性化の触媒速度は、それ自体の酵素前駆体形態のMASP-2切断の速度を約85,000倍超えることを実証した(Heja et al., PNAS 106:10498-503 (2011); Megyeri et al., J. Biol. Chem. 288(13):8922-34 (2013))。したがって、生理学的状況におけるMASP-2の一次アクチベーターがMASP-1である可能性は高い。生成されるC4の断片のサイズおよび生成される機能的C3コンバターゼ活性によって判断すると、活性化されたMASP-2は、活性化されたClsによって実施されるやり方と同一のやり方で、すなわち、C4のアルファ鎖内の単一のアルギニル結合(Arg76 A1a77)およびC2の酵素前駆体鎖内の単一のアルギニル結合(Arg223 Lys224)において、C4およびC2を切断する可能性が高いと考えられる。また、マウスMASP(Ra反応性因子と呼ばれるマウスMBL-MASP複合体の形態にある)が、C1sとは違い、補体成分C3のアルファ鎖を切断して生物学的に活性の断片C3aおよびC3bを生成することができることが報告されている(Ogata et al, J. Immunol. 154:2351-2357 (1995))。これがヒト系の中で起こるならば、C3のアルファ鎖内の単一のアルギニル結合(Arg77 Ser78)の切断を必要とすると考えられる。活性化されたMASP-2は、活性化されたC1sと同様、補体成分C5を切断することができない。MASP-1およびMASP-2のタンパク質分解活性はC1阻害因子によって阻害されるが(Matsushita et al., J Immunol 165:2637-2642 (2000)、一方、C1阻害因子はMASP-3とは反応しない(Dahl et al., Immunity 15:127-135 (2001); Zundel et al., J Immunol 172:4342-4350 (2004))。
MASP-1およびMASP-3の生物学的機能はゆっくりと出現するものであった。MASP-1の基質特異性および生理学的役割は、その発見以来、論議の対象であった。近年、数多くの潜在的な基質が同定されている。MASP-1は天然のC3をゆっくりと切断することができ、この直接的なC3の切断が、おそらくは第二経路の寄与によって補体カスケードを開始し得ると暗示された(Matsushita et al., J Immunol 165:2637-2642 (2000))。のちに、組換えMASP-1が、補体カスケードを開始させる点では非生産性であるC3の不活性(チオエステル加水分解)形態を切断することが示された(Ambrus et al., J Immunol 170:1374-1382 (2003))。MASP-2欠損マウスの血清希釈物中のレクチン経路活性の欠如は、MASP-1駆動型C3バイパス機構が存在しないことを疑う余地なく証明した(Schwaeble et al., PNAS 108:7523-7528 (2011))。MASP-1によってかなりの効率で切断される補体成分は、C2(Rossi et al., J Biol Chem 276:40880-40887 (2001); Ambrus et al., J Immunol 170:1374-1382 (2003))およびD因子の酵素前駆体形態(Takahashi et al., J Exp Med 207:29-37 (2010))である。したがって、C2を切断するMASP-1の能力に関しては、MASP-1が、C2切断によってMASP-2のC3コンバターゼ(C4b2a)形成能力を増強することができると考えられる。この示唆は、MASP-1枯渇ヒト血清およびMASP-1/3欠損マウスの血清中でレクチン経路の活性が減退するという観測によって裏付けされ(Takahashi et al., J Immunol 180:6132-6138 (2008))、この観測はまた、MASP-1がMASP-2の活性化において役割を有することを示唆する。そのうえ、MBL-MASP複合体によって沈着するC4bはすべてがC4b2aコンバターゼを形成することができるが、古典経路C1複合体によって沈着するC4bは、4つのうち1つしかそれを形成することができない(Rawal et al., J Biol Chem 283 (12):7853-63 (2008))。
MASP-1はまた、MASP-2およびMASP-3を切断する(Megyeri M., et al, J Biol. Chem. 2013 Mar. 29;288(13):8922-34)。最近の実験が、MASP-2は自己活性化することができるが、MASP-1は酵素前駆体MASP-2の一次アクチベーターであることを示唆する。MASP-2の活性化は、MASP-1ノックアウトマウスの血清中では遅延し(Takahashi et al., J Immunol 180:6132-6138 (2008))、正常ヒト血清中の特定の阻害因子によってMASP-1の活性を遮断した場合に同様な結果が得られた(Kocsis et al., J Immunol 185(7):4169-78 (2010))。そのうえ、Degn et al.(J. Immunol. 189(8):3957-69 (2012))は、MASP-1が、ヒト血清中でMASP-2活性化およびその後のC4切断にとってきわめて重要であることを見いだした。活性MASP-2への酵素前駆体MASP-2の転換の触媒速度は、MASP-2が自己活性化することができる速度の85,000倍を超える大きさである(Megyeri et al., J. Biol. Chem. 288:8922-8934 (2013); Heja et al., J. Biol. Chem. 287(24):20290-300 (2012); Heja et al., PNAS 109:10498-503 (2012))。
また、最近の発見がMASP-1を第二経路に関連づけた。MASP-1は、酵素前駆体D因子をその酵素的に活性な形態へと転換することができる(図39;Takahashi et al., J Exp Med 207:29-37 (2010))。さらに、MASP-1はMASP-3の酵素前駆体形態を活性化し(Megyeri et al., J. Biol. Chem. 288:8922-8934 (2013); Degn et al. J. Immunol. 189(8):3957-69 (2012))、それ自体が酵素前駆体D因子を活性化することができ(図39)、また、第二経路の別の必須成分であるB因子をその活性形態へと切断することができる(Iwaki et al., J. Immunol. 187:3751-58 (2011))。しかし、プロD因子およびプロB因子の転換は、LEA-2の活性化状態に依存しない可能性が高く、かつ非複合体結合MASP-1を通して起こり得る。
いくつかの線の証拠は、MASP-1がトロンビン様酵素であり、かつ凝固経路の活性化において重要であることを示す。MASP-1は、フィブリノゲン(Hajela K. et al., Immunobiology 205(4-5):467-75 (2002))、XIII因子(Krarup et al., Biochim Biophys Acta 1784(9):1294-1300 (2008))およびプロテアーゼ活性化レセプター4(PAR4)(Megyeri et al., J Immunol 183(5):3409-16 (2009))を含む、トロンビンのいくつかの基質を切断することができる。そのうえ、ヘパリンの存在における抗トロンビンは、C1阻害因子よりもMASP-1の効率的な阻害因子である(Dobo et al., J Immunol 183:1207-1214 (2009))。補体と凝固経路との間の接続もまた、MASP-2がプロトロンビンを活性化することができるという観測によって強調される(Krarup A. et al., PLoS One 2(7):e623 (2007))。限定的な凝固は、浸入する病原体の伝播がフィブリン血餅によって防がれる場合には古代タイプの先天性免疫ということになる。放出するフィブリノペプチドBは炎症誘発活性を有する。PAR4のMASP-1媒介性切断は内皮細胞開始性炎症反応を活性化する(Megyeri et al., J Immunol 183(5):3409-16 (2009))。
MASP-3は、C4、C2またはC3基質に対してタンパク質分解活性を有しない。逆に、MASP-3は、レクチン経路の阻害因子として作用することが報告された(Dahl et al., Immunity 15:127-135 (2001))。この結論は、MASP-3が、MASP-1およびMASP-2とは対照的に、自己活性化酵素ではないことから生まれ得たものである(Zundel S. et al., J Immunol 172:4342-4350 (2004); Megyeri et al., J. Biol. Chem. 288:8922-8934 (2013)。
最近、MASP-1欠損およびMASP-3欠損を併せ持つマウス系統を使用するトランスジェニックマウス研究から、MASP-1およびMASP-3の可能な生理学的機能の証拠が出た。MASP-1/3ノックアウトマウスは機能的レクチン経路を有するが(Schwaeble et al., PNAS 108:7523-7528 (2011))、それらは第二経路活性を欠くと考えられる(Takahashi et al., JEM 207(1):29-37 (2010))。第二経路活性の欠如は、第二経路活性に必要である補体D因子の処理欠陥によるものと考えられる。MASP-1/3ノックアウトマウスにおいて、すべてのD因子はタンパク質分解的に不活性な前駆形態として循環しているが、一方、正常なマウスの血清中では、D因子の実質すべては活性形態にある。生化学的分析は、MASP-1が補体D因子をその酵素前駆体形態からその酵素的に活性な形態へと転換することができることを示唆する(図39;Takahashi et al., JEM 207(1):29-37 (2010))。MASP-3はまた、インビトロでプロD因子酵素前駆体を切断し、活性D因子を産生する(図39;Takahashi et al., JEM 207(1):29-37 (2010))。D因子は、正常な個体中で循環しながら活性酵素として存在し、MASP-1およびMASP-3ならびにHTRA-1がこの活性化を担い得る。さらに、MBL欠損とフィコリン欠損とを併せ持つマウスは、それでも、正常レベルのD因子を産生し、かつ十分に機能的な第二経路を有する。したがって、MASP-1およびMASP-3のこれらの生理学的機能は必ずしもレクチンを伴わず、したがってレクチン経路とは無関係である。組換えマウスおよびヒトMASP-3はまた、インビトロでB因子を切断し、黄色ブドウ球菌へのC3沈着を支持すると考えられる(図36;Iwaki D. et al., J Immunol 187(7):3751-8 (2011))。
3MC症候群(以前はCarnevale、Mingarelli、MalpuechおよびMichels症候群と呼ばれていた。OMIM #257920)の患者の最近の研究から、MASP-3の予想外の生理学的役割が明らかになった。これらの患者は、口蓋裂、口唇裂、頭蓋奇形および精神遅滞を含む重篤な発達異常を示す。遺伝分析が、機能不全MASP-3遺伝子に関してホモ接合性である3MC患者を特定した(Rooryck et al., Nat. Genet. 43(3):197-203 (2011))。別の3MC患者群が、機能的MASP-1およびMASP-3タンパク質の非存在を生じさせるMASP-1遺伝子における突然変異に関してホモ接合性であることがわかった。さらに別の3MC患者群が機能的CL-11遺伝子を欠損していた(Rooryck et al., Nat. Genet. 43(3):197-203 (2011))。したがって、CL-11 MASP-3軸が胚発生中に役割を果たすと考えられる。この発生経路の分子機構は不明確である。しかし、共通の補体成分C3の欠損を有する個体はこの症候群を発症しないため、従来の補体駆動型プロセスによって媒介される可能性は低い。したがって、本明細書に記載される、本発明者らの発見よりも前に、レクチン依存性補体活性化におけるMASP-3の機能的役割は予め確立されていなかった。
MASP-1およびMASP-2の触媒断片の構造はX線結晶構造解析法によって決定されている。MASP-1プロテアーゼドメインと他の補体プロテアーゼのドメインとの構造比較が、その弛緩した基質特異性の基礎を明らかにした(Dobo et al., J. Immunol. 183:1207-1214 (2009))。MASP-2の基質結合溝のアクセス可能性は表面ループによって制限されるが(Harmat et al., J Mol Biol 342:1533-1546 (2004))、MASP-1は、他の補体プロテアーゼのものよりもトリプシンのそれに似ている開口した基質結合ポケットを有する。MASP-1構造のトロンビン様性質が、基質と相互作用し得る異常に大きな60アミノ酸ループ(ループB)である。MASP-1構造の別の興味深い特徴が、S1 Asp189とArg224との間の内部塩橋である。D因子の基質結合ポケット中にも、そのプロテアーゼ活性を調節することができる類似した塩橋を見いだすことができる。C1sとMASP-2とはほぼ同一の基質特異性を有する。驚くことに、基質特異性を決定するMASP-2の8つの表面ループのいくつかは、C1sの立体配座に比べて全く異なる立体配座を有する。これは、2つの機能的に関連する酵素が同じ基質と異なるやり方で相互作用することを意味する。酵素前駆体MASP-2の構造は、分断されたオキシアニオンホールおよび基質結合ポケットを有する不活性プロテアーゼドメインを示す(Gal et al., J Biol Chem 280:33435-33444 (2005))。驚くことに、酵素前駆体MASP-2は、大きなタンパク質基質C4に対してかなりの活性を示す。酵素前駆体MASP-2の構造は非常フレキシブルであり、不活性形態と活性形態との間の遷移を可能にする可能性が高い。構造中に反映されるこのフレキシビリティが自己活性化プロセスにおいて役割を果たし得る。
ノーザンブロット分析が、肝臓がMASP-1およびMASP-2 mRNAの主要な供給源であることを示す。MASP-1の場合に5'特異性cDNAプローブを使用すると、大きなMASP-1転写物が4.8kbで見られ、小さなものが約3.4kbで見られ、いずれもヒトおよびマウス肝臓中に存在した(Stover et al., Genes Immunity 4:374-84 (2003))。MASP-2 mRNA(2.6kb)およびMAp19 mRNA(1.0kb)は肝組織中に豊富に発現する。MASP-3は、肝臓および、神経組織を含む他の多くの組織中に発現する(Lynch N. J. et al., J Immunol 174:4998-5006 (2005))。
感染症および慢性炎症性疾患の病歴を有する患者が、活性MBL-MASP複合体を形成することができない突然変異形態のMASP-2を有することがわかった(Stengaard-Pedersen et al., N Engl J Med 349:554-560 (2003))。一部の研究者は、MBLの欠損が、幼少期における頻繁な感染症の傾向(Super et al., Lancet 2:1236-1239 (1989); Garred et al., Lancet 346:941-943 (1995)およびHIV感染に対する抵抗力の低下(Nielsen et al., Clin Exp Immunol 100:219-222 (1995); Garred et al., Mol Immunol 33 (suppl 1):8 (1996))につながると判定している。しかし、他の研究は、低いMBLレベルと感染症の増大との有意な相関関係を実証していない(Egli et al., PLoS One. 8(1):e51983 (2013); Ruskamp et al., J Infect Dis. 198(11):1707-13 (2008); Israels et al., Arch Dis Child Fetal Neonatal Ed. 95(6):F452-61 (2010))。文献は意見がさまざまであるが、MASPの欠損、すなわち非利用性は、特定の病原体に対して速やかな非抗体依存性の防御を展開する個体の能力に悪影響を及ぼし得る。
iii. Ca ++ を欠く従来のアッセイ条件を強調する新たな理解のためのの裏付けデータおよびCa ++ を含むより生理学的な条件セットを使用して得られた結果
補体のレクチン経路活性化ルートが、2つの独立したエフェクター機構:(i)LEA-2:補体駆動型オプソニン化、走化性(Schwaeble et al., PNAS 108:7523-7528 (2011))および細胞溶解を媒介するMASP-2駆動型経路、ならびに(ii)LEA-1:アクチベーター表面上のB因子の切断および活性化によって第二経路コンバターゼC3bBbを生成することによって補体活性化を開始し、次いでそれがC3b沈着および第二経路コンバターゼC3bBbの形成を触媒し、それが結果として細胞溶解および微生物オプソニン化を生じさせることができる新規なMASP-3依存性活性化ルートを介して、補体を活性化するという結論を指摘する、いくつかの独立した線の強力な実験的証拠が本明細書に提供される。加えて、本明細書に記載されるように、MASP-1、MASP-3もしくはHTRA-1またはこれら3つのいずれかの組み合わせによるB因子および/またはD因子の別々のレクチン非依存性活性化が、第二経路を介する補体活性化を生じさせることもできる。
第二経路のレクチン経路依存性MASP-3駆動型活性化は、十分に確立されたD因子媒介性C3b結合B因子切断に寄与して、細胞表面上のC5b-9膜侵襲複合体(MAC)の形成によって細菌細胞を溶解するための終末活性化カスケードによる補体依存性溶解の最適な活性化速度を達成すると考えられる(図14〜15)。この律速事象は、MASP-3機能活性の非存在およびD因子機能活性の非存在においては不完全であるため、最適な協調を必要とするように考えられる。本明細書の実施例1〜4に記載されるように、本発明者らは、髄膜炎菌感染の実験マウスモデルにおいてMASP-2欠損およびMASP-2阻害の表現型を研究している場合、このMASP-3依存性レクチン経路機能を見いだした。遺伝子標的化MASP-2欠損マウスおよび抗体ベースのMASP-2阻害因子で処理された野生型マウスは実験的髄膜炎菌感染に対して対抗力が高かった(図8〜12を参照されたい)。野生型同腹子中で約60%の死亡率が得られるように感染量を調節した場合、MASP-2欠損またはMASP-2枯渇マウスのすべては感染をクリアし、生き延びた(図8および図12を参照されたい)。このきわめて高度な抵抗力は、MASP-2欠損またはMASP-2枯渇マウス血清中の血清殺菌活性の有意な増大に反映された。さらなる実験が、この殺菌活性が第二経路駆動型溶菌に依存することを示した。B因子もしくはD因子またはC3を欠損したマウス血清は髄膜炎菌に対して殺菌活性を示さず、第二経路が終末活性化カスケードの駆動にとって不可欠であることを示した。驚くべき結果は、MBL-AおよびMBL-C(いずれも髄膜炎菌を認識するレクチン経路認識分子である)を欠損しているマウス血清ならびにレクチン経路関連セリンプロテアーゼMASP-1およびMASP-3を欠損しているマウス血清が髄膜炎菌に対するすべての溶菌活性を失ったことである(図15)。最近の論文(Takahashi M. et al., JEM 207:29-37 (2010))およびその中に提示された研究(図39)が、MASP-1が酵素前駆体形態のD因子をその酵素的に活性な形態へと転換することができ、かつこれらの血清中の酵素的に活性なD因子の非存在による溶解活性の損失を部分的に説明し得ることを実証している。これは、MBL欠損マウスにおける殺菌活性の欠如を説明しない。理由は、これらのマウスが正常な酵素的に活性なD因子を有するからである(Banda et al., Mol Immunol 49(1-2):281-9 (2011))。驚いたことに、MASP-3のセリンプロテアーゼドメインを機能不全にする突然変異を有する珍しい3MC常染色体劣性障害の患者からのヒト血清を試験した場合(Rooryck C, et al., Nat. Genet. 43(3):197-203)、髄膜炎菌に対する殺菌活性は検出されなかった(注:これらの血清はMASP-1およびD因子を有するが、MASP-3を有しない)。
ヒト血清が細菌活性を発現するためにはレクチン経路媒介MASP-3依存性活性を必要とするという仮説は、MBL欠損ヒト血清が髄膜炎菌を溶解することもできないという観測によってさらに裏付けられる(図13〜14)。MBLは、この病原体に結合する唯一のヒトレクチン経路認識分子である。MASP-3は自己活性化しないため、本発明者らは、MASP-2欠損血清中のより高い溶菌活性は、MASP-1を通してのMASP-3の好都合な活性化によって説明することもできると仮説を立てる。理由は、MASP-2の非存在においては、細菌面に接合するすべてのレクチン経路活性化複合体がMASP-1またはMASP-3のいずれかを付加されるからである。活性化されたMASP-3はインビトロでD因子(図39)およびB因子の両方を切断して、それぞれの酵素的に活性な形態を生成するため(図37およびIwaki D., et al., J. Immunol. 187(7):3751-3758 (2011))、MASP-3の最も可能性の高い機能は、第二経路C3コンバターゼ(すなわちC3bBb)の形成を促進することである。
レクチン依存性役割のデータは説得力があるが、複数の実験が、MASP-3およびMASP-1は必ずしもレクチン分子との複合体において機能することを強いられるわけではないことを示唆する。図35Bに示すような実験が、レクチンとの複合体が存在しない条件下(すなわちEGTAの存在下)、第二経路を活性化するMASP-3の能力を実証する(黄色ブドウ球菌に対するC3b沈着によって実証されるように)。図35Aは、これらの条件下での沈着が、いずれも第二経路の重要成分であるB因子、D因子およびP因子に依存することを実証する。加えて、MASP-3およびMASP-1によるD因子活性化(図39)ならびにMASP-3によるB因子活性化(図37)がレクチンの非存在においてインビトロで起こることができる。最後に、ヒト血清の存在におけるマウス赤血球の溶血研究が、細胞溶解に関するMBLおよびMASP-3の明らかな役割を実証する。しかし、MBLの欠損は、すべての機能的MASP-3がMBLと複合した場合に予想されるものとは対照的に、MASP-3の欠損の重篤さを完全には再現しない。したがって、本発明者らは、本明細書に実証されるMASP-3(およびMASP-1)の役割のすべてが、レクチンと関連した機能にのみ帰されることができるという概念によって制約されることを望まない。
レクチン経路の2つのエフェクターアームの同定ならびにMASP-1、MASP-3およびHTRA-1の可能なレクチン非依存性機能は、微生物病原体または変化した宿主細胞もしくは代謝沈着物の存在における過度な補体活性化によって生じる特定のヒト疾病を効果的に治療するための治療的介入の新規な機会を表す。本明細書に記載されるように、本発明者らはこれまでのところ、MASP-3の非存在かつMASP-1の存在において、表面構造上で第二経路が活性化されないことを見いだした(図17〜18、35B、41〜42、45〜46を参照されたい)。第二経路は、溶菌および細胞溶解を生じさせる律速事象を駆動するのに重要であるため(Mathieson P W, et al., J Exp Med 177(6):1827-3 (1993))、本発明者らの結果は、活性化されたMASP-3が補体の溶解活性において重要な役割を果たすことを実証する。図14〜15、21〜23、43〜44および46-47に示すように、MASP-3を欠損しているが、MASP-1を欠損していない3MC患者の血清中、補体の溶解終末活性化カスケードは不完全である。図14および15に示すデータは、MASP-3および/またはMASP-1/MASP-3機能活性の非存在における溶菌活性の損失を実証する。同様に、MASP-3欠損ヒト血清における溶血活性の損失(図21〜23、43〜44および46〜47)が、組換えMASP-3を加えることによって溶血を再構成する能力(図46〜47)と合わさって、標的面上の第二経路の活性化(補体媒介性溶解を駆動するのに不可欠)が、活性化されたMASP-3存在に依存するという結論を強く支持する。したがって、上に詳述したレクチン経路の新たな理解に基づき、標的面の第二経路活性化は、LEA-1および/または、同じくMASP-3によって媒介されるレクチン非依存性B因子および/またはD因子活性化に依存し、したがって、MASP-3依存性補体活性化を阻止する作用物質は標的面上の第二経路活性化を防ぐ。
第二経路活性化のMASP-3依存性開始の不可欠な役割の開示は、本質的にすべての現在の医学書および補体に関する最近の評論記事に記載されているように、第二経路が独立型の補体活性化経路ではないことを暗示する。広く支持されている現在の科学的見解は、第二経路が特定の粒子状標的(微生物、ザイモサンおよびウサギ赤血球)の表面上で自発的な「チックオーバー」C3活性化の増幅によって活性化されるということである。しかし、ザイモサンコーティングされたプレートおよび2つの異なる細菌(髄膜炎菌および黄色ブドウ球菌)上のMASP-1およびMASP-3二重欠損マウスの血清およびヒト3MC患者血清中の任意の第二経路活性化の非存在ならびにヒトおよびマウスからのMASP-3欠損血清中の赤血球の溶血の減少は、これらの面上の第二経路活性化の開始が機能的MASP-3を必要とすることを示す。MASP-3に求められる役割は、レクチン依存性かレクチン非依存性であり得、第二経路C3コンバターゼおよびC5コンバターゼ複合体、すなわちそれぞれC3bBbおよびC3bBb(C3b)nの形成を生じさせる。したがって、本発明者らは、本明細書において、以前はわかりにくかった第二経路の開始ルートの存在を開示する。この開始ルートは、(i)新たに発見されたレクチン経路活性化アームであるLEA-1、および/または(ii)タンパク質MASP-3、MASP-1およびHTRA-1のレクチン非依存性役割に依存する。
III. 発作性夜間血色素尿症におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を用いた治療方法
i. PNHの概略
発作性夜間血色素尿症(PNH)は、時としてマルキアファーヴァ・ミケーリ症候群とも呼ばれ、後天的な、潜在的に命にかかわる血液疾患である。PNHは自然発症することがあり、これは「一次PNH」と呼ばれるか、または再生不良性貧血などの他の骨髄障害の状況では「二次PNH」と呼ばれる。症例の大半は一次PNHである。PNHは、補体誘導性の赤血球破壊(溶血)、少ない赤血球数(貧血)、血栓症、および骨髄機能不全を特徴とする。実験室におけるPNHの所見は、考えられる原因として自己反応性RBC結合抗体の非存在下で、血管内溶血性貧血:低ヘモグロビン、多量の乳酸デヒドロゲナーゼ、多数の網状赤血球数(破壊された細胞を交換するために未熟血球が骨髄によって放出される)、高ビリルビン(ヘモグロビンの破壊産物)と一致する変化を示す。
PNHの顕著な特徴は、循環RBC表面上での、膜侵襲複合体を含む終末補体成分の無秩序な活性化によって引き起こされる慢性的な補体媒介性溶血である。PNH RBCは、その表面上に補体制御因子CD55およびCD59が存在しないために、制御されていない補体活性化および溶血を受ける(Lindorfer, M.A., et al., Blood 115(11):2283-91(2010)、Risitano, et al., Mini-Reviews in Medicinal Chemistry, 11:528-535(2011))。CD55およびCD59は正常RBCにおいて豊富に発現しており、補体活性化を制御する。CD55は第二経路の負の制御因子として作用し、第二経路C3コンバターゼ(C3bBb)複合体の集合を阻害し、予め形成されたコンバターゼの崩壊を促進し、従って、膜侵襲複合体(MAC)の形成を遮断する。CD59は、C5b678複合体に直接結合し、C9が結合し、重合しないようにすることによって補体膜侵襲複合体を阻害する。
溶血および貧血はPNHの主な臨床特徴であるが、この疾患は、臨床所見の一部として血栓症および骨髄機能不全をさらに含む複雑な血液学的障害である(Risitano et al., Mini Reviews in Med Chem 11:528-535(2011))。分子レベルでは、PNHは、機能的PIG A 遺伝子を欠く造血幹細胞の異常なクローン増殖によって引き起こされる。PIG Aは、CD55およびCD59を含むGPIアンカー型クラスA糖タンパク質の安定な表面発現に必要とされるグリコシル-ホスファチジルイノシトールトランスフェラーゼをコードするX連鎖遺伝子である。現在、調査中の理由で、自然体細胞変異の結果として生じた機能不全PIG A遺伝子を有する造血幹細胞は、その子孫が末梢造血細胞プールのかなりの部分を構成する点までクローン増殖することができる。変異幹細胞クローンの赤血球子孫およびリンパ球子孫はいずれもCD55およびCD59を欠くが、循環に入った後にRBCだけが明らかな溶解を受ける。
PNHの現行の治療法には、貧血の場合は輸血、血栓症の場合は血液凝固阻止、および補体系を阻害することによって免疫破壊から血球を守るモノクローナル抗体エクリズマブ(Soliris(登録商標))の使用が含まれる(Hillmen P. et al., N. Engl. J. Med. 350(6):552-559(2004))。エクリズマブ(Soliris(登録商標))は、補体成分C5を標的とするヒト化モノクローナル抗体であり、C5コンバターゼによるC5切断を遮断し、それによって、C5aの産生およびMACの集合を阻止する。エクリズマブによるPNH患者の治療は、乳酸デヒドロゲナーゼ(LDH)によって測定された場合に血管内溶血を減少させ、患者の約半分におけるヘモグロビン安定化および輸血非依存性につながった(Risitano et al., Mini-Reviews in Medicinal Chemistry, 11(6)(2011))。エクリズマブ療法を受けたほぼ全員の患者においてLDHレベルが正常またはほぼ正常になったが(血管内溶血の管理のため)、患者の約1/3しか約11gr/dLのヘモグロビン値に達せず、エクリズマブを服用した残りの患者は中程度から重度の(すなわち、輸血依存性)貧血をほぼ同じ割合で示し続ける(Risitano A.M. et al., Blood 113:4094-100(2009))。Risitano et al., Mini-Reviews in Medicinal Chemistry 11:528-535(2011)に記載のように、エクリズマブを服用したPNH患者は、多量のPNH赤血球に結合したC3断片を含有する(が、未治療患者は含有しなかった)ことが証明された。この所見は、Solirisで治療されたPNH患者では、C5遮断のためにもはや溶血されなくなったPNH RBCは今や多量の膜結合C3断片を蓄積できるという認識につながっている。膜結合C3断片はオプソニンとして働き、その結果、特異的C3受容体を介して細網内皮細胞の中に捕捉され、その後に、血管外溶血が生じる。従って、エクリズマブ療法は血管内溶血および結果として生じる後遺症を阻止するが、これらのRBCの性質を単に血管内溶血から血管外溶血に変えるだけであり、その結果、多くの患者において未治療の貧血がかなり残る(Risitano A.M. et al., Blood 113:4094-100(2009))。従って、C3断片を介した血管外溶血を発症している患者は赤血球輸血を必要とし続けるので、これらの患者には、エクリズマブの使用の他に治療方針が必要とされる。このようなC3断片を標的とするアプローチは実験系において有用性を証明している(Lindorfer et al., Blood 115:2283-91, 2010)。
ii. PNHにおける補体開始機構
PNHにおける負の補体制御因子CD55およびCD59の不完全な表面発現の間の因果関係と、血管内溶血の阻止におけるエクリズマブの有効性の組み合わせから、PNHは、補体系によって媒介される状態であるとはっきりと定義される。このパラダイムは広く受け入れられているが、補体活性化を開始する事象、および関与する補体活性化経路がどういったものであるかは未解決のままである。CD55およびCD59は、全ての補体開始経路に共通する補体カスケード中の終末増幅段階を負に調節するので、補体活性化がレクチン経路によって開始されるか、古典経路によって開始されるか、第二経路の自発的代謝回転によって開始されるかに関係なく、これらの分子が欠損すると膜侵襲複合体の形成と膜組込みが悪化する。従って、PNH患者では、RBC表面上でのC3b沈着につながる、全ての補体活性化事象が、その後の増幅ならびに病理学的溶血(血管内溶血および/または血管外溶血)を誘発し、溶血発作を突然引き起こすことができる。PNH患者における溶血発作を誘発する分子事象のはっきりとした機構理解はまだなされていない。溶血発作を起こしているPNH患者における補体開始事象はまったく明らになってないので、PNHにおける補体活性化は低レベルの第二経路「チックオーバー」活性化により自然発生する可能性があり、その後に、CD55およびCD59の欠如による不適切な終末補体活性化制御によって増大するというのが主流となっている見解である。
しかしながら、PNHの自然経過において、通常、PNHは補体活性化を誘発することが示されてきたある特定の事象、例えば、感染または損傷の後に発症または悪化することに注目することが重要である(Risitano, Biologics 2:205-222(2008))。この補体活性化反応は、刺激性の病原体に対する以前の宿主免疫に依存せず、従って、古典経路が関与しない可能性が高い。もっと正確に言うと、この補体活性化反応は、微生物作用物質または損傷宿主組織の表面に発現している外来炭水化物パターンまたは「変化した自己(altered self)」炭水化物パターンとのレクチン結合によって開始すると考えられる。従って、PNHにおいて溶血発作を突然引き起こす事象は、レクチンを介して開始する補体活性化と密接に関連している。このため、レクチン活性化経路は、最終的にPNH患者における溶血につながる開始トリガーを提供する可能性が非常に高い。
活性化カスケードを分子レベルで詳細に分析するために、本発明者らは、レクチンを介して補体を活性化する十分に明確な病原体を実験モデルとして使用して、誘因微生物に依存して、LEA-2またはLEA-1のいずれかによって補体活性化を開始させ、オプソニン化および/または溶解を生じさせることができることを十分に実証する。レクチン開始事象に対するこの同じ二重応答(すなわち、オプソニン化および/または溶解)の原理は、他のタイプの感染病原体または宿主への組織損傷後のレクチンによる補体活性化またはPNHを引き起こし得る他のレクチン駆動型補体活性化事象にも当てはまる可能性が高い。レクチン経路におけるこの二重性に基づいて、本発明者らは、PNH患者におけるLEA-2および/またはLEA-1開始補体活性化が、C3bによるRBCのオプソニン化および/または溶解ならびにその後の血管外および血管内溶血を促進すると推定する。したがって、PNHの状況において、LEA-1およびLEA-2両方の阻害は、血管外溶血および血管内溶血の両方に対処し、C5阻害因子エクリズマブに対する有意な利点を提供すると期待され得る。
肺炎連鎖球菌への曝露がレクチン依存性LEA-2活性化を優先的に発動させ、それが、C3bによるこの微生物のオプソニン化を生じさせることがわかった。肺炎連鎖球菌はMAC媒介性溶解に耐性であるため、循環からのクリアランスはC3bによるオプソニン化を通して起こる。このオプソニン化およびその後の循環からの除去は、MASP-2欠損マウスおよびMASP-2モノクローナル抗体で処理されたマウスにおける損なわれた細菌抑制によって示されるように、LEA-2依存性である(PLOS Pathog., 8:e1002793. (2012))。
微生物に対する生得的宿主反応におけるLEA-2の役割を調査する際、本発明者らはさらなる病原体を試験した。髄膜炎菌をモデル生物として研究した場合、劇的に異なる結果が認められた。髄膜炎菌もまた、レクチンを介して補体を活性化し、髄膜炎菌感染をナイーブな宿主中に封じ込めるためには、補体活性化が必要である。しかし、LEA-2はこの反応において宿主保護的機能的役割を果たさない。図8および9に示すように、MASP-2の遺伝的除去によるLEA-2の遮断は髄膜炎菌感染後の生存率を低下させない。逆に、これらの研究において、MASP-2除去によるLEA-2遮断は生存率(図8および9)および疾患スコア(図11)を有意に改善した。MASP-2抗体の投与によるLEA-2遮断が同じ結果を出し(図12)、可能な原因としてのノックアウトマウス系統における二次的または代償的効果を排除した。LEA-2除去動物におけるこれらの好ましい結果は、血液からの髄膜炎菌のより迅速な除去と関連するものであった(図10)。また、本明細書に記載されるように、正常ヒト血清との髄膜炎菌のインキュベーションが髄膜炎菌を死滅させた(図13)。LEA-2を遮断するヒトMASP-2に特異的な機能的モノクローナル抗体の添加がこの死滅応答を増強し得るが、アイソタイプ対照モノクローナル抗体の投与はそれをし得ない。それにもかかわらず、MBL欠損ヒト血清または熱不活化ヒト血清は髄膜炎菌を死滅させることができなかったため、このプロセスは、レクチンおよび少なくとも部分的に機能的補体系に依存する(図13)。総合的に、これら新規な発見は、機能的補体系の存在における髄膜炎菌感染が、レクチン依存性であるがLEA-2非依存性である補体活性化経路によって抑制されることを示唆する。
3MC患者からの血清標本を使用して、LEA-1がレクチン依存性の髄膜炎菌死滅を担う補体経路であり得るという仮説を試験した。この患者は、MASP-1/3遺伝子のエキソン12中のナンセンス突然変異に関してホモ接合性であった。その結果、この患者は、機能的MASP-3タンパク質を欠損していたが、他の点では補体充分であった(エキソン12はMASP-3転写物に特異的であり、突然変異はMASP-1機能または発現レベルに対して影響を及ぼさない)(Nat Genet. 43(3):197-203 (2011)を参照されたい)。正常ヒト血清は髄膜炎菌を効率的に死滅させるが、MBL(レクチン経路の認識分子の1つ)を欠損している熱不活化血清およびMASP-3欠損血清は髄膜炎菌を死滅させることができなかった(図14)。したがって、LEA-1は髄膜炎菌死滅を媒介すると考えられる。この発見は、ノックアウトマウス系統からの血清試料を使用して確認された。正常マウス血清を含む補体は髄膜炎菌を容易に死滅させたが、MBL欠損またはMASP-1/3欠損マウス血清は、機能的補体を欠損している熱不活化血清と同じくらい無効であった(図15)。逆に、MASP-2欠損血清は髄膜炎菌の効率的な死滅を示した。
これらの発見は、レクチン依存性補体活性化の別々のLEA-2およびLEA-1経路の存在を明らかにすることにより、これまで知られていなかったレクチン経路の二重性の証拠を提供する。上述した例において、LEA-2およびLEA-1は非重複性であり、別々の機能的結果を媒介する。データは、特定のタイプのレクチン経路アクチベーター(肺炎連鎖球菌を含むが、これに限定されない)は、LEA-2を介して補体活性化を優先的に開始させてオプソニン化を生じさせるが、一方、他のもの(例えば髄膜炎菌)は、LEA-1を介して補体活性化を優先的に開始させ、かつ細胞溶解プロセスを促進することを示唆する。しかし、他の状況においては両経路がオプソニン化および/または溶解を媒介することができるため、データは必ずしも、LEA-2をオプソニン化に限定し、かつLEA-1を細胞溶解プロセスに限定するものではない。
髄膜炎菌によるレクチン依存性補体活性化という状況では、LEA-2の遮断がインビトロで生物のLEA-1依存性溶解的破壊を増強したため、LEA-2およびLEA-1アームは互いに競合すると考えられる(図15)。上述したように、この発見は、MASP-2の非存在においてレクチンMASP-1複合体がレクチンMASP-3複合体に近接して存在し、それがLEA-1活性化を増強し、ひいてはより効果的な髄膜炎菌の溶解を促進する可能性の増大によって説明することができる。髄膜炎菌の溶解はナイーブな宿主における主要な保護機構であるため、インビボでのLEA-2の遮断は髄膜炎菌クリアランスを増大し、かつ死滅の増強を生じさせる。
上述した例は、髄膜炎菌感染後の転帰に関してLEA-2とLEA-1とで反対の効果を示すが、LEA-2とLEA-1とが共に相乗効果を発揮して特定の転帰を生じさせ得る他の状況があり得る。以下に詳述するように、PNHにおいて存在するような、レクチンを介する病理学的補体活性の他の状況において、LEA-2およびLEA-1駆動型補体活性化は相乗的に協働してPNHの病態全体に寄与し得る。加えて、本明細書に記載されるように、MASP-3もまた、B因子およびD因子のレクチン非依存性転換に寄与し、それはCa++の非存在において起こることができ、一般に、C3bBからC3bBbへの転換およびプロD因子からD因子への転換を生じさせ、それがさらにPNHの病態に寄与し得る。
iii. PNHにおける生物学および予想される機能活性
このセクションは、PNHのインビトロモデルにおける溶血に対するLEA-2およびLEA-1遮断の阻害効果を記載する。この発見は、PNHの1つまたは複数の局面に罹患している患者を治療するためのLEA-2遮断物質(MASP-2に結合し、かつその機能を遮断する抗体を含むが、それに限定されない)およびLEA-1遮断物質(MASP-3、MASP-3または両方に結合し、かつそのMASP-1媒介性活性化の機能を遮断する抗体を含むが、それに限定されない)の有用性、ならびにエクリズマブのようなC5阻害因子による治療を受けるPNH患者においてC3断片媒介性血管外溶血の効果を緩和するためののLEA-2および/またはLEA-1および/またはMASP-3依存性レクチン非依存性補体活性化の阻害因子(MASP-2阻害因子、MASP-3阻害因子、およびMASP-2/MASP-3またはMASP-1/MASP-2二重または二重特異性阻害因子、ならびに、汎特異性MASP-1/MASP-2/MASP-3阻害因子を含む)の使用を裏付ける。
iv. 細網内皮系を介するPNH RBCのオプソニン化および血管外溶血を遮断するためのMASP-2阻害因子
上に詳述したように、PNH患者は、循環からのRBCクリアランスの2つの別々の機構:膜侵襲複合体(MAC)の活性化による血管内溶血、ならびにC3bによるオプソニン化後の血管外溶血およびその後の細網内皮系による補体レセプター結合および取込み後のクリアランスにより、貧血になる。血管内溶血は、患者がエクリズマブで治療された場合に概ね予防される。エクリズマブは、補体開始活性化事象およびその後のオプソニン化の両方よりも下流で起こる終末溶解エフェクター機構を遮断するため、エクリズマブは血管外溶血を遮断しない(Risitano A.M. et. al., Blood 113:4094-100(2009))。その代わり、未治療PNH患者においては溶血を起こしたと考えられるRBCが、今や、活性化されたC3bタンパク質をその表面に蓄積できることができ、それが、細網内皮系による取込みを増強し、その血管外溶血を増強する。したがって、エクリズマブ治療は、実質的に、RBCの性質を血管内溶血から潜在的な血管外溶血に変える。結果として、エクリズマブで治療される一部のPNH患者は依然として貧血のままである。したがって、上流で補体活性化を遮断し、かつPNH RBCのオプソニン化を阻止する作用物質は、エクリズマブを用いてときおり見られる血管外溶血を遮断するのに特に適していることができるということになる。
本明細書に提示される微生物データは、LEA-2が、多くの場合、レクチン依存性オプソニン化の支配的なルートであることを示唆する。さらに、レクチン依存性オプソニン化(C3b沈着として測定)を3つのプロトタイプレクチン活性化面(マンナン、図19A;ザイモサン、図19Bおよび肺炎連鎖球菌、図19C)上で評価すると、LEA-2が、生理学的条件下(すなわち、すべての補体経路が作動可能であるCa++の存在において)、レクチン依存性オプソニン化の支配的なルートであると考えられる。これらの実験条件下、MASP-2欠損血清(LEA-2を欠く)は、試験面をオプソニン化する効果がWT血清よりも実質的に低い。MASP-1/3欠損血清(LEA-1を欠く)もまた損なわれているが、この効果は、LEA-2を欠く血清に比較してはるかに目立たない。レクチン駆動型オプソニン化へのLEA-2およびLEA-1の寄与の相対的大きさが図20A〜20Cにさらに示されている。レクチン経路または古典経路の非存在において補体の第二経路がレクチン活性化面のオプソニン化を支持することが報告されているが(Selander et al., J Clin Invest 116(5):1425-1434 (2006))、単離された第二経路(Ca++フリーのアッセイ条件下で測定)は、本明細書に記載されるLEA-2およびLEA-1開始プロセスよりも実質的に効果が低いと考えられる。補外法により、これらのデータは、PNH RBCのオプソニン化が、LEA-2によって優先的に開始され得、LEA-1によっては、レクチン非依存性第二経路活性化の結果よりも低い程度にしか開始され得ないことを示唆する(おそらくは第二経路増幅ループによって増幅される)。したがって、LEA-2阻害因子は、PNHにおいてオプソニン化を抑制し、かつ血管外溶血を防止するのに最も効果的であると予想され得る。しかし、MBL以外のレクチン、例えばフィコリンが非糖質構造、例えばアセチル化タンパク質に結合し、MASP-3がH-フィコリンと優先的に関連する(Skjoedt et al., Immunobiol. 215:921-931, 2010)という事実の認識は、PNH関連のRBCオプソニン化におけるLEA-1の有意な役割の可能性を残す。したがって、LEA-1阻害因子は、さらなる抗オプソニン効果を有すると予想され、LEA-1阻害因子とLEA-2阻害因子との組み合わせが最適であり、かつPNH患者におけるオプソニン化および血管外溶血を抑制する中で最も強い治療有益性を媒介すると予想される。この概念は、図28に示すオプソニン化データによってさらに裏付けられる。D因子欠損マウス血清(流体相中で第二経路を活性化する能力を欠くが、機能的古典経路ならびに機能的LEA-1およびLEA-2経路を有する)は、WT血清に比べてオプソニン化の欠損を示さない。LEA-1を欠くB因子欠損血清はオプソニン化の低下を示すが、一方、LEA-2媒介性補体活性化を遮断するためにMASP-2モノクローナル抗体で処理されたD因子欠損血清は、より強いオプソニン化抑制を生じさせる(図28)。重要なことに、B因子欠損血清へのMASP-2モノクローナル抗体の添加は、MASP-2遮断またはD因子遮断のいずれかのみよりも効果的にオプソニン化を抑制した。したがって、LEA-2およびLEA-1は、付加的または相乗的に作用してオプソニン化を促進し、交差反応性または二重特異性LEA-1/LEA-2阻害因子は、PNHにおけるオプソニン化および血管外溶血を阻止するのに最も効果的であると予想される。
v. PNHにおけるMASP-3阻害因子の役割
PNHのインビトロモデルを使用して、本発明者らは、PNHにおける補体活性化および結果的な溶血が実際にLEA-2および/またはLEA-1活性化によって開始され、それが、第二経路の独立した機能ではないことを実証した。これらの研究は、Crry欠損マウスからのRBC(マウスにおける終末補体経路の重要な負の調節物質)およびPNH患者には存在しない同じ補体調節物質を欠くCD55/CD59欠損マウスからのRBCをはじめとする様々なマウス系統のマンナン感作RBCを使用した。マンナン感作Crry欠損RBCを補体充分なヒト血清に曝露すると、RBCは、3%の血清濃度で実質的に溶血したが(図21および22)、一方、補体欠損血清(HI:熱不活化)は溶血性ではなかった。驚いたことに、MASP-2抗体の添加によってLEA-2が遮断された補体充分な血清は溶血活性が低下しており、効果的な溶血のためには6%血清が必要であった。CD55/CD59欠損RBCを試験した場合にも同様な観察結果が得られた(図24)。MASP-2モノクローナル抗体で補充された補体充分なヒト血清(すなわち、LEA-2が抑制された血清)は、溶血の支持において未処理の血清よりも効果が約2倍の低さであった。さらに、未処理の血清に比べて未処理のWT RBCの効果的な溶血を促進するためには、より高濃度のLEA-2遮断血清(すなわち、抗MASP-2モノクローナル抗体で処理された)が必要であった(図23)。
さらに驚くことに、機能不全MASP-3タンパク質に関してホモ接合性の3MC患者からの血清(したがって、LEA-1を欠く)は、マンナン感作Crry欠損RBCを溶血することが全くできなかった(図22および図23)。非感作正常RBCを使用した場合にも同様な結果が観察された。図23に示すように、3MC患者から単離したLEA-1欠損血清は、溶血を媒介する効果を全く有しなかった。要約すると、これらのデータは、LEA-2は血管内溶血応答に有意に寄与するが、LEA-1が、溶血を生じさせる支配的な補体開始経路であることを示す。したがって、LEA-2遮断物質は、PNH患者におけるRBCの血管内溶血を有意に減少させると予想されるが、LEA-1遮断物質は、より深い効果を有し、補体駆動型溶血を概ね排除すると予想される。
この研究に使用されたLEA-1欠損3MC患者の血清は、従来の第二経路アッセイ条件下で試験した場合、減退しているが機能的である第二経路を有していたことが留意されるべきである(図17)。この発見は、LEA-1が、溶血に対し、このPNH実験状況において従来から定められている第二経路活性よりも大きな寄与を達成することを示唆する。推論すると、PNH患者における血管内溶血を予防または治療する際に、LEA-1遮断物質は、第二経路の他の局面を遮断する作用物質と少なくとも同じくらい有効であることが暗示される。
vi. PNHにおけるMASP-2阻害因子の役割
本明細書に提示されるデータは、PNHにおける貧血に関して以下の病原性機構を示唆する。主としてであるがただし排他的でなくLEA-1によって開始される、終末補体成分の調節されない活性化およびMACの形成によるRBCの溶解による血管内溶血、ならびに、主としてLEA-2によって開始されると考えられる、C3bによるRBCのオプソニン化によって生じる血管外溶血。補体活性化を開始し、MAC形成および溶血を促進することにおけるLEA-2の認められる役割は明らかであるが、このプロセスは、溶血を生じさせるLEA-1開始補体活性化よりも効果が実質的に低いと考えられる。したがって、LEA-2遮断物質は、PNH患者における血管内溶血を有意に減少させると予想されるが、この治療活性は部分的でしかないと予想される。比較により、LEA-1遮断物質の場合に、PNH患者における血管内溶血のより実質的な減少が予想される。
PNHにおいて貧血を生じさせる、それほど劇的ではないが等しく重要なRBC破壊機構である血管外溶血は、主として、主にLEA-2によって媒介されると考えられるC3bによるオプソニン化の結果である。したがって、LEA-2遮断物質は、PNHにおけるRBCオプソニン化およびその後に起こる血管外溶血を優先的に阻止すると予想され得る。この病原プロセスを体験するPNH患者のための治療は今のところ存在しないため、LEA-2遮断物質のこの特有の治療活性は、すべてのPNH患者に有意な治療有益性を提供すると予想される。
vii. LEA-1阻害因子または終末補体遮断物質に対する補助治療としてのLEA-2阻害因子
本明細書に提示されるデータは、別々のクラスの治療剤によって別々に、または組み合わせて標的化することができる、PNHにおけるRBCクリアランスおよび貧血の以下の2つの病原性機構を明示する:主としてであるがただし排他的でなくLEA-1によって開始され、したがって、LEA-1遮断物質によって効果的に予防されると予想される血管内溶血;および、主としてLEA-2によって駆動され、したがってLEA-2遮断物質によって効果的に予防されるC3bオプソニン化による血管外溶血。
溶血の血管内機構および血管外機構の両方がPNH患者における貧血を生じさせることは十分に文献で立証されている(Risitano et al., Blood 113:4094-4100 (2009))。したがって、血管内溶血を防ぐLEA-1遮断物質が、主に血管外溶血を防ぐLEA-2遮断物質と組み合わさると、PNH患者において発症する貧血を防ぐのにいずれかの作用物質単独よりも効果的であると予想される。事実、LEA-1遮断物質とLEA-2遮断物質との組み合わせは、PNHにおける補体開始の関連するすべての機構を防ぎ、ひいてはPNHにおける貧血のすべての症候を阻止すると予想される。
また、C5遮断物質(例えばエクリズマブ)は、血管内溶血を効果的に阻止するが、オプソニン化を妨害しないことも公知である。これは、一部の抗C5治療PNH患者を、治療されないままであるLEA-2によって媒介される血管外溶血による実質的な残留貧血を抱える状態に放置する。したがって、血管内溶血を防ぐC5遮断物質(例えばエクリズマブ)が、血管外溶血を減少させるLEA-2遮断物質と組み合わさると、PNH患者において発症する貧血を防ぐのにいずれかの作用物質単独よりも効果的であると予想される。
C5活性化およびMAC沈着を生じさせる補体系の終末増幅ループを遮断する他の作用物質(プロパージン、B因子、もしくはD因子を遮断するかまたはI因子、H因子もしくは他の補体阻害因子の阻害活性を増強する、作用物質を含むが、これらに限定されない)もまた、血管内溶血を阻害すると予想される。しかし、これらの作用物質は、PNH患者におけるLEA-2媒介性オプソニン化を妨害するとは予想されない。これは、そのような作用物質で治療される一部のPNH患者を、治療されないままであるLEA-2によって媒介される血管外溶血による実質的な残留貧血を抱える状態に放置する。したがって、血管内溶血を防ぐそのような作用物質による治療が、血管外溶血を最小限にするLEA-2遮断物質と組み合わさると、PNH患者において発症する貧血を防ぐのにいずれかの作用物質単独よりも効果的であると予想される。事実、そのような作用物質とLEA-2遮断物質との組み合わせは、PNHにおけるRBC破壊の関連するすべての機構を防ぎ、ひいてはPNHにおける貧血のすべての症候を阻止すると予想される。
viii. PNHを治療するためのLEA-1およびLEA-2多重特異性、二重特異性、または汎特異性抗体の使用
上に詳述したように、個々にLEA-1およびLEA-2を遮断し、ひいては組み合わさって、血管内溶血および血管外溶血を媒介するすべての補体活性化事象を遮断する薬理学的物質の組み合わせの使用は、PNH患者にとって最良の臨床転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、LEA-1およびLEA-2複合遮断活性を有するそのような実体は、血管内溶血および血管外溶血を効果的に阻止し、PNHにおける貧血を予防する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、LEA-1を遮断し、LEA-2を減少させ、第二の抗原結合部位がMASP-2を特異的に認識し、さらにLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。あるいはまた、そのような実体は二重特異性モノクローナル抗体からなり得、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、第二の抗原結合部位がMASP-2を特異的に認識し、LEA-2を遮断する。そのような実体は最適には二重特異性モノクローナル抗体からなり得、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、LEA-2を減少させ、その上、第二の抗原結合部位がMASP-2を特異的に認識し、さらにLEA-2を遮断する。また、タンパク質配列およびアーキテクチャ全体の類似性に基づき、機能的にMASP-1、MASP-2、およびMASP-3に特異的に結合し、ひいてはLEA-1およびLEA-2の機能的遮断を達成する、2つの同一の結合部位を有する従来の抗体を開発することができると考えることができる。汎MASP阻害活性を有するそのような抗体は、血管内溶血および血管外溶血の両方を阻止し、ひいてはPNH患者における貧血を効果的に治療すると予想される。
IV. 加齢黄斑変性症におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
加齢黄斑変性症(AMD)は、高齢者における視力損傷および失明の主要な原因であり、先進国における失明症例の50%までを占める。成人におけるAMD罹患率は約3%であり、年齢とともに増加して、80歳超の人口のほぼ2/3が何らかの徴候を有する。米国においては175万超の個人が進行AMDを有し、人口高齢化とともに罹患率は高まり、2020年までにはほぼ300万に達すると予想されている(Friedman, D.S., et al., Arch. Ophthalmol. 122:564-572, 2004)。AMDは、表面を覆う中央網膜、すなわち黄斑の光受容体の変性および中心視力の損失を生じさせる網膜色素上皮(RPE)の異常である。AMDの早期および中期形態は、RPEに隣接する網膜下空間中のドルーゼン、すなわち脂質、タンパク質、リポタンパク質および壊死細胞片を含む黄色を帯びた物質の漸増的沈着ならびに網膜中の色素不規則性を特徴とする。進行AMDは、2つの臨床サブタイプ;非新生血管形成性地理的萎縮性(「ドライ型」)AMDおよび新生血管形成性滲出性(「ウェット型」)AMDからなる。ドライ型AMDが進行AMDの80〜90%を占めるが、突然かつ重篤な視覚損失の大部分はウェット型AMDの患者に起こる。2つのタイプのAMDが、類似した病態から生じる異なる表現型を表すのか、または2つの異なる状態を表すのかは不明である。現在、ドライ型AMDを治療するための治療法は米国薬品医薬品局(United States Food and Drug Administraion)(FDA)によって承認されていない。ウェット型AMDのためのFDA承認治療選択肢は、抗血管形成薬(ラニビズマブ、ペガプタニブナトリウム、アフリベルセプト)の硝子体内注射、レーザー療法、光力学的レーザー療法および埋め込み型望遠鏡を含む。
AMDの病因および病態生理は複雑であり、完全には理解されていない。いくつかの証拠がAMDの病原における補体系の調節不全の役割を裏付けている。遺伝子関連研究が、一定範囲の補体タンパク質、因子および調節物質をコードする遺伝子を含む、AMDと関連する複数の遺伝子座を同定した。最も強い関連は補体因子H(CFH)遺伝子中の多型との関連であり、非リスク遺伝子型に比べ、Y402H変異体ホモ接合体が約6倍増のAMD発症リスクを有し、ヘテロ接合体が約2.5倍増のAMD発症リスクを有する(Khandhadia, S., et al., Immunobiol. 217:127-146, 2012)。また、補体因子B(CFB)、C2、C3、I因子ならびにCFH関連タンパク質1および3を含む他の補体経路コード性遺伝子における突然変異がAMDリスクの増加または減少と関連付けられている(Khandhadia et al.)。AMD患者からのドナーの眼における免疫組織化学的およびプロテオミクス研究が、補体カスケードのタンパク質がドルーゼン中で増加し、限局化することを示した(Issa, P.C., et al., Graefes. Arch. Clin. Exp. Ophthalmol. 249:163-174, 2011)。さらには、AMD患者は、末梢血中で測定される、増大した全身性補体活性化を有する(前記Issa et al., 2011)。
AMDの病原においては、補体の第二経路が古典経路よりも関連性があると考えられる。古典経路の活性化のための必須認識成分C1qが免疫組織化学的分析によってドルーゼン中に検出されなかった(Mullins et al., FASEB J. 14:835-846, 2000; Johnson et al., Exp. Eye Res. 70:441-449, 2000)。遺伝関連研究がCFHおよびCFB遺伝子の関与を示唆した。これらのタンパク質は第二経路増幅ループに関与しており、CFHが流体相阻害因子であり、CFBが第二経路の活性化性プロテアーゼ成分である。CFHのY402H変異体は、C反応性タンパク質、ヘパリン、Mタンパク質およびグリコサミノグリカンとの結合を含む、配位子結合との相互作用に影響する。この変化した配位子への結合が細胞表面への結合を減少させ得、それが他方で、C3b活性化断片のI因子媒介性変性の減少および第二C3コンバターゼの調節の減損を招き、第二経路の過剰活性化を生じさせ得る(前記Khandhadia et al., 2012)。CFB遺伝子の変化がAMD発現に対する保護効果と関連している。機能変異体fB32Qは、リスク変異体fB32Rよりも4倍の低さのC3bへの結合親和性を有し、結果としてC3コンバターゼ形成の減少を生じさせた(Montes, T. et al., Proc. Natl. Acad. Sci. U.S.A. 106:4366-4371, 2009)。
AMDにおける補体開始機構
上述したヒトの遺伝的連鎖研究はAMD病原における補体系の重要な役割を示唆する。さらに、補体活性化産物は、ウェット型およびドライ型の両AMDにおける特徴的な病理学的病変であるドルーゼン中に豊富に存在する(Issa, P.C., et al., Graefes. Arch. Clin. Exp. Ophthalmol. 249:163-174, 2011)。しかし、補体活性化を開始する事象の性質および関与する補体活性化経路は不完全にしか理解されないままである。
ドルーゼン沈着物は、眼の老化とともにRPEの下に蓄積する、網膜由来の壊死細胞片および酸化老廃物で構成されていることに留意することが重要である。加えて、酸化ストレスが重要な役割を果たすと考えられ(Cai et al; Front Biosci., 17:1976-95, 2012)、RPEにおいて補体活性化を生じさせることが示されている(J Biol. Chem., 284(25):16939-47, 2009)。酸化ストレスおよび細胞または組織損傷の両方が補体系レクチンを活性化することが広く理解されている。例えば、Collardらは、酸化ストレスに曝露された内皮細胞が、レクチンによって媒介される豊富な補体沈着を誘発すること(Collard CD et al., Mol Immunol., 36(13-14):941-8, 1999; Collard C.D. et al., Am J Pathol., 156(5):1549-56, 2000)およびレクチン結合性およびレクチン依存補体活性化の遮断が酸化ストレス損傷の実験モデルにおいて転帰を改善すること(Collard C.D. et al., Am J Pathol., 156(5):1549-56, 2000)を実証した。したがって、ドルーゼン中に存在する酸化老廃物もまた、レクチンを介して補体を活性化する可能性が高いと考えられる。推論により、レクチン依存性補体活性化はAMD病原において中枢的な役割を果たし得る。
補体系の役割はAMDのマウスモデルにおいて評価されている。酸化ストレス媒介性光受容体変性の実験モデルである光損傷マウスモデルにおいて、古典経路を排除したノックアウトマウス(C57BL/6バックグラウンド上のC1qα-/-)が、野生型同腹子と比較して、光損傷に対する同じ感受性を有したが、第二経路の補体D因子の排除(CFD-/-)は光損傷からの保護を生じさせた(Rohrer, B. et al., Invest. Ophthalmol. Vis. Sci. 48:5282-5289, 2007)。ブルック膜のレーザー光凝固によって誘発された脈絡膜新生血管(CNV)のマウスモデルにおいて、補体因子Bなしノックアウトマウス(CFB-/-)が、野生型マウスと比較して、CNVに対して保護された(Rohrer, B. et al., Invest. Ophthalmol. Vis. Sci. 50:3056-3064, 2009)。同じモデルにおいて、補体活性化の部位に標的化した補体H因子の組換え形態(CR2-fH)の静脈内投与がCNVの範囲を減少させた。この保護効果は、CR2-fHがレーザー損傷時に投与された場合でも、または治療的に(レーザー損傷後に)投与された場合でも認められた。また、CR2-fHのヒト治療バージョン(TT30)がマウスCNVモデルにおいて有効であった(Rohrer, B. et al. J. Ocul. Pharmacol. Ther., 28:402-409, 2012)。fBはLEA-1によって活性化されるため、また、MASP-1およびMASP-3はD因子の成熟に寄与するため、これらの発見は、LEA-1阻害因子がAMD患者において治療上の有益性を有し得ることを暗示する。
MBL欠損マウスを使用するAMDのげっ歯類モデルにおける初期実験研究は病原性補体活性化におけるレクチン経路の重要な役割を裏付けなかった(Rohrer et al., Mol. Immunol. 48:e1-8, 2011)。しかし、MBLはいくつかのレクチンの1つに過ぎず、MBL以外のレクチンがAMDにおいて補体活性化を誘発する場合がある。事実、本発明者らの以前の研究は、レクチン経路機能のために決定的に必要とされる律速性セリンプロテアーゼであるMASP-2がAMDにおいて重要な役割を果たすことを示した。参照により本明細書に組み入れられる米国特許第7,919,094号(Omeros Corporationに譲渡)ならびに本明細書の実施例20および21に記載されているように、MASP-2欠損マウスおよびMASP-2抗体で処置されたマウスは、ウェット型AMDの確証済み前臨床モデルであるレーザー誘発CNVのマウスモデルにおいて保護された(Ryan et al., Tr Am Opth Soc LXXVII:707-745, 1979)。したがって、LEA-2の阻害因子は、AMD患者においてCNVを効果的に予防し、転帰を改善すると予想される。
したがって、上記を考慮して、LEA-1阻害因子およびLEA-2阻害因子は、AMDにおいて独立した治療上の有益性を有すると予想される。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、治療有効量のMASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを薬学的担体中に含む組成物を、そのような状態に罹患している対象に投与する工程により、加齢黄斑変性症(ウェットおよびドライ形態)を治療するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3、またはMASP-1/3阻害組成物は、潅注、硝子体内投与、またはゲル、軟膏もしくはドロップの形態にある組成物の適用によって眼に局所投与され得る。または、MASP-1、MASP-3、またはMASP-1/3阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって、対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
一態様において、本発明のこの局面の方法は、加齢黄斑変性症に罹患している対象におけるLEA-2依存性補体活性化を阻害する工程をさらに含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、それを必要とする対象に投与する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、AMD患者において改善された臨床転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害組成物は、潅注、硝子体内注射またはゲル、軟膏もしくはドロップの形態にある組成物の局所適用などによって眼に局所投与され得る。または、MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および任意のMASP-2阻害組成物の適用は、AMD治療の場合、組成物(例えば、MASP-2およびMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、AMD治療の場合、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
V.虚血再灌流障害におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
組織虚血は広範囲の臨床障害の基礎である。血流の適時回復が虚血組織の保存に不可欠であるが、自然発生的に、または治療的介入によって起こることができる再灌流が、虚血再灌流(I/R)障害と呼ばれる現象である、さらなる組織損傷を招き得ることが長らく認識されている(Eltzschig, H. K. and Tobias, E., Nat. Med. 17:1391-1401, 2011)。I/R障害は、心臓(急性冠症候群)、腎臓(急性腎損傷)、腸(腸I/R)および脳(卒中)のように、単一の臓器を侵襲し得る。I/R障害はまた、大きな外傷および蘇生(多臓器不全)、循環停止(低酸素性脳障害、急性腎損傷)、末梢血管疾患および鎌状赤血球症(急性胸部症候群、急性腎損傷)ののちなど、複数の臓器を冒す場合もある。心臓手術(心肺バイパス後の急性心不全)、胸部手術(急性肺損傷)、末梢血管手術(コンパートメント症候群)、血管手術(急性腎損傷)および固形臓器移植(急性移植片不全)を含む大きな手術がI/R障害と関連する場合もある。現在、I/R障害を標的化する具体的な治療法は存在せず、虚血ゾーンにおける組織のサルベージを最大化し、これらの一般的状況における機能的転帰を改善するために有効な治療の必要性がある。
I/R障害の病態生理は複雑であり、再灌流後の強い炎症反応を特徴とする。補体系の活性化がI/R障害の重要な成分として関与を示唆されており、補体活性の阻害が多様な動物モデルにおいて有効であった(Diepenhorst, G.M.P., et al., Ann. Surg. 249:889-899, 2009)。I/R障害における古典経路、レクチン経路および第二経路の相対的重要性は概ね未決着であり、冒される臓器に依存して異なり得る。最近、特定の補体タンパク質を欠くノックアウトマウスおよび経路特異的阻害因子の可用性が、I/R障害におけるレクチン経路および第二経路の関与を示唆するデータを生成した。
D因子欠損(-/-)マウスおよびヘテロ接合性(+/-)マウスを使用して、胃腸I/R障害における第二経路の役割が研究されている(Stahl, G.L., et al. Am. J. Pathol. 162:449-455, 2003)。一過性胃腸虚血ののち、腸および肺の損傷は、ヘテロ接合性マウスと比較して、D因子欠損マウスにおいて減少したが、予防はされず、-/-マウスへのヒトD因子の添加がIR損傷を回復させた。同じモデルをC1q欠損マウスおよびMBL-A/C欠損マウスにおいて評価すると、結果は、胃腸I/R障害がC1qおよび古典経路の活性化からは独立しているが、腸損傷にはMBLおよびレクチン経路活性化が必要とされることを示した(Hart, M.L., et al. J. Immunol. 174:6373-6380, 2005)。逆に、古典経路のC1q認識分子は腸I/R後の肺損傷の原因であった(Hart, M.L., et al. J. Immunol. 174:6373-6380, 2005)。1つの仮説は、I/R障害中の補体の活性化が、虚血(ただし正常ではない)組織の表面に存在する自己抗原、例えば非筋肉ミオシン重鎖II型への自然なIgM結合を通して起こるということである。マウス胃腸I/R障害モデルにおいて、腸組織からの免疫複合体が、古典(C1q)経路、レクチン(MBL)経路または第二(B因子)経路中の開始因子の存在に関して評価されている(Lee, H., et al., Mol. Immunol. 47:972-981, 2010)。結果は、これらの免疫複合体中、C1qおよびMBLは検出されるが、B因子は検出されないことを示し、古典経路およびレクチン経路の関与を示したが、第二経路の関与を示さなかった。同じモデルにおいて、B因子欠損マウスは局所的組織損傷から保護されず、第二経路の関与の欠如のさらなる裏付けを提供した。胃腸I/R障害におけるレクチン経路の役割がMASP-2欠損マウスにおいて直接評価され、結果は、野生型対照と比較して、これらのマウスにおいて胃腸損傷が減少することを示した。MASP-2モノクローナル抗体による処置も同様に保護的であった(Schwaeble, W.J., et al., Proc. Natl. Acad. Sci. 108:7523-7528, 2011)。また、本明細書の実施例23を参照されたい。要約すると、これらの結果は、胃腸I/R障害におけるレクチン経路の関与の裏付けを提供するが、第二経路の関与に関しては矛盾するデータがある。
マウス心筋I/R障害モデルにおいて、MBL欠損マウスが心筋損傷から保護されるが、C1q欠損およびC2/fB欠損マウスは保護されなかった場合、レクチン経路の病原的役割が実証された(Walsh, M.C. et al., J. Immunol. 175:541-546, 2005)。また、MASP-2欠損マウスにおいても心筋I/R障害からの保護が認められた(Schwaeble, W.J., et al., Proc. Natl. Acad. Sci. 108:7523-7528, 2011)。また、本明細書の実施例22および23を参照されたい。ラットMBLに対するモノクローナル抗体による心筋I/Rモデルにおけるラットの処置が虚血後再灌流障害の減少を生じさせた(Jordan, J.E., et al., Circulation 104:1413-18, 2001)。血管形成術によって治療された心筋梗塞患者の研究においては、MBL欠損が、MBL充分な対応例と比較して低下した90日死亡率と関連づけられている(M Trendelenburg et al., Eur Heart J. 31:1181, 2010)。さらに、血管形成術後に心機能不全を発症する心筋梗塞患者は、機能回復した患者に比べ、約3倍の高さのMBLレベルを有する(Haahr-Pedersen S., et al., J Inv Cardiology, 21:13, 2009)。また、MBL抗体が、酸化ストレス後、インビトロで内皮細胞上の補体沈着を減少させ、心筋I/R障害におけるレクチン経路の役割を示した(Collard, C.D., et al., Am. J. Pathol. 156:1549-56, 2000)。I/R障害のマウス異所性同系心臓移植モデルにおいては、経路特異的融合タンパク質CR2-fHを使用して第二経路の役割が研究されている(Atkinson, C., et al., J. Immunol. 185:7007-7013, 2010)。移植直後のCR2-fHの全身投与が、心筋I/R障害を、全補体経路を阻害するCR2-Crryによる処置に匹敵し得る程度にまで減少させ、このモデルにおいて第二経路が決定的に重要であることを示した。
腎I/R障害のマウスモデルにおいて、野生型マウスと比較してB因子欠損マウスが腎機能の低下および尿細管損傷から保護された場合、第二経路の関与が示唆された(Thurman, J.M., et al., J. Immunol. 170:1517-1523, 2003)。B因子に対する阻害性モノクローナル抗体による処置が補体活性化を防ぎ、マウス腎I/R障害を低下させた(Thurman, J.M., et al., J. Am. Soc. Nephrol. 17:707-715, 2006)。両側性腎I/R障害モデルにおいては、MBL-A/C欠損マウスが野生型マウスと比較して腎損傷から保護され、組換えヒトMBLがMBL-A/C欠損マウスにおける保護効果を逆転させ、このモデルにおけるMBLの役割の関与を示唆した(Moller-Kristensen, M., et al., Scand. J. Immunol. 61:426-434, 2005)。ラット両側性腎I/R障害モデルにおいては、MBL-Aに対するモノクローナル抗体によるMBLの阻害がI/R後の腎機能を保存した(van der Pol, P., et al., Am. J. Transplant. 12:877-887, 2010)。興味深いことに、C5抗体による処置は腎損傷を防ぐ効果を示さなかったため、このモデルにおけるMBLの役割は終末補体成分の活性化を伴うとは考えられなかった。むしろ、インビトロでMBLとともにインキュベートされたヒト近位尿細管細胞がMBLを内在化し、その後、細胞死が起こったため、MBLは、尿細管細胞に対して直接的な毒性効果を有すると考えられた。Castellano G.ら(Am J Pathol, 176(4):1648-59, 2010)は、腎I/R障害のブタモデルにおいて、古典経路中のC1rおよびC1sプロテアーゼならびにレクチン経路のMBL複合体中のMASP-1およびMASP-2プロテアーゼを不可逆的に不活化するC1阻害因子を試験し、C1阻害因子が管周囲毛管および糸球体中の補体沈着を減少させ、尿細管損傷を減少させることを見いだした。
B因子欠損マウスが、野生型マウスと比較して、血清C5aレベルによって測定された全身性補体活性化の低下および外傷後神経細胞死の減少を示したため、第二経路は実験的外傷性脳障害に関与すると考えられる(Leinhase, I., et al., BMC Neurosci. 7:55-67, 2006)。ヒト卒中において、虚血病変における免疫組織化学的染色によって補体成分C1q、C3cおよびC4dが検出され、古典経路を介する活性化を示唆した(Pedersen, E.D., et al., Scand. J. Immunol. 69:555-562, 2009)。脳虚血の動物モデルにおける古典経路の標的化は入り交じった結果を出し、一部の研究は保護を実証したが、他の研究は有益性を示さなかった(Arumugam, T.V., et al., Neuroscience 158:1074-1089, 2009)。実験および治験がレクチン経路関与の強力な証拠を提供した。実験的卒中モデルにおいて、MBLまたはMASP-2いずれかの欠損が、野生型マウスに比べて梗塞サイズの減少を生じさせる(Cervera A, et al.; PLoS One 3;5(2):e8433, 2010; Osthoff M. et al., PLoS One, 6(6):e21338, 2011および本明細書の実施例26)。さらに、MBLレベルが低い卒中患者は、MBL充分な対応患者に比べ、より良好な予後を示す(Osthoff M. et al., PLoS One, 6(6):e21338, 2011)。
心肺バイパスのヒヒモデルにおいて、D因子モノクローナル抗体による処置は、C3a、sC5b-9およびIL-6の血漿レベルによって測定される全身性炎症を阻害し、心筋組織損傷を減少させ、このモデルにおける第二経路の関与を示した(Undar, A., et al., Ann. Thorac. Surg. 74:355-362, 2002)。
したがって、I/Rによって冒される臓器に依存して、3つの補体経路すべてが病原および有害な転帰に寄与することができる。上述の実験および臨床所見に基づき、LEA-2阻害因子は、大部分のI/R状況において保護的であると予想される。LEA-1のレクチン依存性活性化は、少なくともいくつかの状況において第二経路を介する補体活性化を生じさせ得る。加えて、LEA-2開始補体活性化は第二経路増幅ループによってさらに増幅され得、ひいてはI/R関連組織損傷を悪化させ得る。したがって、LEA-1阻害因子は、虚血関連状態に罹患している患者においてさらなる、または補足的な治療上の有益性を提供すると予想される。
上記を考慮して、LEA-1阻害因子およびLEA-2阻害因子は、虚血-再灌流関連状態を治療する際に、虚血-再灌流関連状態を予防する際に、または虚血-再灌流関連状態の重篤度を軽減する際に独立した治療上の有益性を有すると予想される。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べてさらなる治療上の有益性を達成し得る。したがって、I/R関連状態のための最適に有効な治療は、単独で、または組み合わされてLEA-1およびLEA-2の両方を遮断する薬学的有効成分を含む。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質とLEA-2遮断物質との同時投与によって達成され得る。優先的に、LEA-1およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異性結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、虚血再灌流を経験している対象に投与する工程により、虚血再灌流障害を治療するため、虚血再灌流障害を予防するため、または虚血再灌流障害の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3、またはMASP-1/3阻害組成物は、動脈内、静脈内、頭蓋内、筋肉内、皮下、または他の非経口投与によって、また、非ペプチド作動性阻害因子の場合には潜在的に経口的に、最も好適には動脈内または静脈内投与によって対象に投与され得る。本発明のLEA-1阻害組成物の投与は、好適には、虚血再灌流事象の直後またはその後できる限り速やかに開始される。制御された環境内で再灌流が起こる場合(例えば、大動脈瘤修復、臓器移植または切断もしくは損傷した四肢もしくは指の再付着ののち)、LEA-1阻害物質は再灌流の前および/または最中および/または後で投与され得る。投与は、最適な治療効果を得るために、医師による決定に従って定期的に繰り返されてもよい。
一部の態様において、方法は、大動脈瘤修復、心肺バイパス、臓器移植および/または四肢/指再移植に関連する血管再吻合、卒中、心筋梗塞ならびにショックおよび/または外科的処置後の血行力学的蘇生の少なくとも1つと関連する虚血-再灌流障害を治療または予防するために使用される。
一部の態様において、方法は、臓器移植を受ける予定であるか、受けているか、または受けた対象における虚血-再灌流障害を治療または予防するために使用される。一部の態様において、方法は、臓器移植が腎臓移植ではないという条件で、臓器移植を受ける予定であるか、受けているか、または受けた対象における虚血-再灌流障害を治療または予防するために使用される。
一態様において、本発明のこの局面の方法は、虚血再灌流障害を経験している対象におけるLEA-2依存性補体活性化を阻害する工程をさらに含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を対象に投与する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、虚血再灌流障害を治療する際、虚血再灌流障害を予防する際、または虚血再灌流障害の重篤度を軽減する際に、改善された臨床転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害組成物は、動脈内、静脈内、頭蓋内、筋肉内、皮下、または他の非経口投与によって、および、非ペプチド作動性阻害因子の場合には潜在的に経口的に、最も好適には動脈内または静脈内投与によって、それを必要とする対象に投与され得る。本発明のMASP-2阻害組成物の投与は、好適には、虚血再灌流事象の直後またはその後できる限り速やかに開始される。制御された環境内で再灌流が起こる場合(例えば、大動脈瘤修復、臓器移植または切断もしくは損傷した四肢もしくは指の再付着ののち)、MASP-2阻害物質は再灌流の前および/または最中および/または後で投与され得る。投与は、最適な治療効果を得るために、医師による決定に従って定期的に繰り返されてもよい。
本発明のMASP-3阻害組成物および任意のMASP-2阻害組成物の適用は、虚血再灌流障害の治療または予防の場合、組成物(例えば、MASP-2およびMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、虚血再灌流障害を経験している対象の治療の場合、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
VI.炎症性および非炎症性関節炎におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
関節リウマチ(RA)は、全身的な症状発現も有し得る滑膜関節の慢性炎症性疾患である。RAは全世界人口の約1%を冒し、女性の方が2〜3倍かかりやすい。関節の炎症は、腫れ、痛みおよびこわばりとして現れる。疾患が進行するにつれ、関節の侵食および破壊が起こり得、その結果、可動域の障害および変形が生じる。RAの治療目標は、関節損傷の予防および抑制、関節機能損失および疾病進行の予防、症候の軽減および生活の質の改善ならびにドラッグフリー寛解の達成を含む。RAの薬理学的治療は、疾患修飾性抗リウマチ薬(DMARD)、鎮痛薬および抗炎症剤(糖質コルチコイドおよび非ステロイド系抗炎症薬)を含む。DMARDは、長期寛解を誘発し、不可逆性である関節破壊の進行を遅延または停止させることができるため、最も重要な治療である。旧来のDMARDの例は、小分子、例えばメトトレキサート、スルファサラジン、ヒドロキシクロロキン、金塩、レフルノミド、D-ペニシラミン、シクロスポリンおよびアザチオプリンを含む。旧来のDMARDが疾病を抑制するのに不十分であるならば、腫瘍壊死因子阻害因子(エタネルセプト、インフリキシマブ、アダリムマブ、セルトリズマブペゴルおよびゴリムマブ)、サイトカインアンタゴニスト(アナキンラおよびトシリズマブ)、リツキシマブおよびアバタセプトのような、炎症細胞または媒介物を標的化するいくつかの生物学的剤が利用可能な治療選択肢である。
T細胞活性化遺伝子との遺伝的関連および自己抗体の存在によって証明されるように、適応免疫がRA病原の中心にあることは明らかであるが、先天免疫機序の関与が示唆されている(McInnes, I.B. and Schett, G. New Engl. J. Med. 365:2205-2219, 2011)。ヒトRAにおいて、第二経路切断断片Bbの滑液レベルは、結晶誘発性関節炎または変形性関節症の患者からの試料の数倍の高さであり、RA患者における第二経路の優先的活性化の関与を示唆した(Brodeur, J.P., et al., Arthritis Rheum. 34:1531-1537, 1991)。関節炎の実験的抗II型コラーゲン抗体受動伝達モデルにおいて、B因子欠損マウスは、野生型マウスと比較して減少した炎症および関節損傷を示したが、一方、C4欠損マウスは、野生型マウスと類似した疾患活性を有し、このモデルにおける、古典経路ではなく第二経路の必要性を示した(Banda, N.K. et al., J. Immunol. 177:1904-1912, 2006)。コラーゲン抗体誘発性関節炎(CAIA)の同じ実験モデルにおいて、古典経路のみが活性またはレクチン経路のみが活性であるマウスは関節炎を発症することができなかった(Banda, N.K. et al., Clin. Exp. Immunol. 159:100-108, 2010)。この研究からのデータは、古典経路またはレクチン経路のいずれかがインビトロで低いレベルのC3を活性化することができることを示唆した。しかし、第二経路増幅ループの非存在において、C3の関節沈着のレベルは、臨床疾患を生じさせるには不十分であった。第二経路の活性化における重要な工程は、MASP-1および/またはMASP-3(Takahashi, M., et al., J. Exp. Med. 207:29-37, 2010)および/またはHTRA1(Stanton et al., Evidence That the HTRA1 Interactome Influences Susceptibility to Age-Related Macular Degeneration、The Association for Research in Vision and Ophthalmology 2011 conference on May 4, 2011において発表)によって媒介される、D因子のチモーゲン(プロ因子D)の成熟因子Dへの転換である。MASP-1/3の役割はマウスCAIAにおいて評価され、結果は、MASP-1/3欠損マウスが、野生型マウスと比較して、関節炎から保護されることを示した(Banda, N.K., et al., J. Immunol. 185:5598-5606, 2010)。MASP-1/3欠損マウスにおいて、CAIAの進化中、血清中にプロD因子は検出されたが、成熟D因子は検出されず、ヒトD因子の添加が、これらのマウスからの血清を使用するC3活性化およびC5a生成をインビトロで再構成した。対照的に、関節炎のエフェクター相のマウスモデルにおいて、C3欠損マウスは、WTマウスに比べて非常に軽度の関節炎を発症したが、一方、B因子欠損マウスはなおも関節炎を発症し、古典/レクチン経路および第二経路両方の独立した寄与を示した(Hietala, M.A. et al., Eur. J. Immunol. 34:1208-1216, 2004)。炎症性関節炎のK/BxN T細胞受容体トランスジェニックマウスモデルにおいて、C4またはC1qを欠くマウスは、野生型マウスと同様に関節炎を発症したが、一方、B因子を欠くマウスは、関節炎を発症しなかった、または軽度の関節炎を示し、このモデルにおける、古典経路ではなく第二経路の必要性を実証した(Ji H. et al., Immunity 16:157-168, 2002)。K/BxNモデルにおいて、MBL-Aを欠くマウスは血清誘発性関節炎から保護されなかったが、MBL-Cの役割を研究しなかったため、レクチン経路の潜在的な役割を排除することはできなかった(前記Ji et al., 2002)。
2つの研究グループが、独立して、レクチン依存性補体活性化が、MBLと特異的IgGグリコフォームとの相互作用を介してRA患者における炎症を促進すると提唱している(Malhotra et al., Nat. Med. 1:237-243, 1995; Cuchacovich et al., J. Rheumatol. 23:44-51, 1996)。リウマチ状態が、分子のFc領域における、ガラクトースを欠くのIgGグリコフォーム(IgG0グリコフォームと呼ばれる)の顕著な増加と関連することが記されている(Rudd et al., Trends Biotechnology 22:524-30, 2004)。IgG0グリコフォームの割合は、リウマチ状態の疾病進行とともに増加し、患者が寛解に入ると正常に戻る。インビボで、IgG0は滑膜組織に沈着し、MBLはRAの個体中の滑液中に増大したレベルで存在する。RAと関連する凝集アガラクトシルIgG(IgG0)がMBLと結合することができ、したがって、LEA-1および/またはLEA-2を介してレクチン依存性補体活性化を開始させることができる。さらには、RA患者におけるMBLのアレル変異体を調べた臨床研究からの結果が、MBLはこの疾患において炎症増強的役割を有し得ることを示唆する(Garred et al., J. Rheumatol. 27:26-34, 2000)。したがって、LEA-1および/またはLEA-2を介するレクチン依存性補体活性化はRAの病原において重要な役割を果たし得る。
補体活性化はまた、若年性関節リウマチにおいても重要な役割を果たす(Mollnes, T.E., et al., Arthritis Rheum. 29:1359-64, 1986)。成人RAと同様に、若年性関節リウマチにおいて、C4d(古典またはLEA-2活性化のマーカー)に比べて上昇した、第二経路補体活性化産物Bbの血清および滑液レベルは、補体活性化が主にLEA-1によって媒介されることを示す(El-Ghobarey, A.F. et al., J. Rheumatology 7:453-460, 1980; Agarwal, A., et al., Rheumatology 39:189-192, 2000)。
同様に、補体活性化は、乾癬性関節炎においても重要な役割を果たす。この状態を有する患者は、循環中に増加した補体活性化産物を有し、患者の赤血球は、より低いレベルの補体調節物質CD59を有すると考えられる(Triolo., Clin Exp Rheumatol., 21(2):225-8, 2003)。補体レベルは、疾患活性と関連し、かつ治療転帰を決定するための高い予測値を有する(Chimenti at al., Clin Exp Rheumatol., 30(1):23-30, 2012)。事実、最近の研究が、この状態のための抗TNF療法の効果が補体モジュレーションに起因することを示唆している(Ballanti et al., Autoimmun Rev., 10(10):617-23, 2011)。乾癬性関節炎における補体の正確な役割は決定されていないが、これらの患者の循環中のC4dおよびBb補体活性化産物の存在が病原における重要な役割を示唆する。観察された産物に基づくと、LEA-1およびおそらくはまたLEA-2がこれらの患者における病理的補体活性化の原因であると考えられる。
変形性関節症(OA)は、米国において2500万を超える人々を冒す、最も一般的な形態の関節炎である。OAは、関節軟骨の破壊および最終的な損失を特徴とし、新たな骨形成および滑膜増殖を伴い、痛み、こわばり、関節機能の損失および身体障害を招く。OAによって冒されることが多い関節は、手、首、腰、膝および股関節である。この疾患は進行性であり、現在の治療は症候性疼痛の緩和のための治療であり、疾患の自然経過を変化させるものではない。OAの病原は不明であるが、補体の役割の関与が示唆されている。OA患者からの滑液のプロテオームおよびトランスクリプトーム解析においては、健康な個体からの試料に比べて、古典(C1sおよびC4A)および第二(B因子)経路ならびにC3、C5、C7およびC9を含む補体のいくつかの成分が異常に発現した(Wang, Q., et al., Nat. Med. 17:1674-1679, 2011)。そのうえ、内側半月板切除によって誘発させたOAのマウスモデルにおいては、C5欠損マウスがC5陽性マウスよりも少ない軟骨損失、骨棘形成および滑膜炎を示し、第二経路を阻害する融合タンパク質CR2-fHによる野生型マウスの処置がOAの発症を減らした(前記Wang et al., 2011)。
ロスリバーウイルス(RRV)およびチクングニヤウイルス(CHIKV)は、ヒトにおける急性および持続性関節炎および筋炎を引き起こすことができる蚊媒介性ウイルスの群に属する。風土病を引き起こすことに加えて、これらのウイルスは、何百万もの感染個体を伴う伝染病を引き起こすことができる。関節炎は、関節におけるウイルス複製および宿主炎症反応の誘発によって開始されると考えられ、補体系がこのプロセスにおける重要な成分として起動されている。RRV誘発性多発性関節炎のヒトからの滑液は、OAのヒトからの滑液よりも高いレベルのC3aを含有する(Morrison, T.E., et al., J. Virol. 81:5132-5143, 2007)。RRV感染のマウスモデルにおいて、C3欠損マウスは、野生型マウスと比較して低い重篤度の関節炎を発症し、補体の役割の関与を示唆した(前記Morrison et al., 2007)。関与する特定の補体経路が研究され、不活化レクチン経路を有するマウス(MBL-A-/-およびMBL-C-/-)が、野生型マウスと比較して関節炎を減らした。対照的に、不活化古典経路(C1q-/-)または第二経路(B因子-/-)を有するマウスは重篤な関節炎を発症し、MBLによって開始されたレクチン経路がこのモデルにおいて不可欠な役割を有することを示した(Gunn, B.M., et al., PLoS Pathog. 8:e1002586, 2012)。関節炎は関節への損傷を伴うため、様々な病因によって生じる初期関節損傷がLEA-2を介する補体活性化の二次波を誘発し得る。この概念の裏付けとして、本発明者らの研究は、本明細書の実施例27に記載されるように、MASP-2 KOマウスが、RAのコラーゲン誘発モデルにおいて、WTマウスに比べて減少した関節損傷を有することを実証した。
上述した証拠の主体を考慮して、LEA-1阻害因子およびLEA-2阻害因子は、単独で、または組み合わされて、関節炎の治療に治療的に有用であると予想される。したがって、関節炎に最適に有効な治療は、単独で、または組み合わされてLEA-1およびLEA-2の両方を遮断することができる薬学的有効成分を含み得る。組み合わせLEA-1およびLEA-2の阻害は、LEA-1遮断物質とLEA-2遮断物質との同時投与によって達成され得る。優先的に、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、炎症性関節炎もしくは非炎症性関節炎に罹患している対象または炎症性関節炎もしくは非炎症性関節炎を発症する危険のある対象に投与する工程により、変形性関節症、関節リウマチ、若年性関節リウマチ、および乾癬性関節炎を含む炎症性関節炎もしくは非炎症性関節炎を治療するため、炎症性関節炎もしくは非炎症性関節炎を予防するため、または炎症性関節炎もしくたは非炎症性関節炎の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3またはMASP-1/3阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、皮下、もしくは他の非経口投与または経口投与によって対象に投与され得る。または、投与は、例えば関節内注射による局所送達による投与であってもよい。LEA-1阻害物質は、慢性状態の治療もしくは抑制のために長期間にわたって定期的に投与されてもよいか、あるいは関節に対して実施される外科的処置を含む急性外傷または傷害の前、最中、および/または後の期間に単回または反復投与によって投与されてもよい。
一態様において、本発明のこの局面の方法は、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を対象に投与することにより、炎症性関節炎もしくは非炎症性関節炎(変形性関節症、関節リウマチ、若年性関節リウマチ、および乾癬性関節炎を含む)に罹患している対象または炎症性関節炎もしくは非炎症性関節炎を発症する危険のある対象におけるLEA-2依存性補体活性化を阻害する工程をさらに含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、関節炎を治療または予防する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、皮下もしくは他の非経口投与によって、または非ペプチド作動性阻害因子の場合には潜在的に経口投与によって、それを必要とする対象に投与され得る。または、投与は、関節内注射などによる局所送達による投与であってもよい。MASP-2阻害物質は、慢性状態の治療もしくは抑制のために長期間にわたって定期的に投与されてもよいか、あるいは関節に対して実施される外科的処置を含む急性外傷または傷害の前、最中、および/または後の期間に単回または反復投与によって投与されてもよい。
本発明のMASP-3阻害組成物および任意のMASP-2阻害組成物の適用は、炎症性関節炎もしくは非炎症性関節炎を治療するため、炎症性関節炎もしくは非炎症性関節炎を予防するため、または炎症性関節炎もしくは非炎症性関節炎の重篤度を軽減するために、組成物(例えば、MASP-2およびMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、炎症性または非炎症性関節炎に罹患している対象の治療の場合、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
VII. 播種性血管内凝固(DIC)におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
播種性血管内凝固(DIC)は、出血および/または血栓症として臨床的に現れることができる凝固系の病理的過剰刺激の症候群である。DICは原発性状態としては起こらず、むしろ、組織損傷(外傷、火傷、熱中症、輸血反応、急性移植拒絶反応)、新生物、感染症、産科的状態(前置胎盤、羊水塞栓症、妊娠中毒症)ならびに雑多な状態、例えば心原性ショック、溺水、脂肪塞栓症、大動脈瘤を含む多様な疾患プロセスと関連して起こる。血小板減少症は、集中治療室中の患者において35%〜44%の発生率で頻繁に起こる異常であるが、DICはこれらの症例の約25%の病因である。すなわち、DICは重症患者の約10%において発症する(Levi, M. and Opal, S.M. Crit. Care 10:222-231, 2006)。DICの病態生理は、基礎にある疾患プロセスが生理学的凝固反応を開始させるということである。しかし、血栓症形成促進物質が正常な反対平衡機序を圧倒すると、微小循環中にフィブリンおよび血小板の不適切な沈着が起こり、臓器虚血、低フィブリノゲン血症および血小板減少を招くようになる。DICの診断は、検査値(プロトロンビン時間、部分トロンボプラスチン時間、フィブリン分解産物、Dダイマーまたは血小板数)の異常と共に、適切な基礎疾患またはプロセスにおける臨床所見に基づく。DICの一次治療は、誘因である基礎疾患に対処することである。臨床合併症を治療または予防するために、赤血球、血小板、新鮮な凍結血漿およびクリオプレシピテートの形態の血液製剤サポートが必要になる場合もある。
DICにおける補体経路の役割がいくつかの研究において研究されている。補体活性化が、髄膜炎菌感染の小児患者において、臨床経過をMBL遺伝子型に関して比較することで評価されている(Sprong, T. et al., Clin. Infect. Dis. 49:1380-1386, 2009)。入院時、MBL欠損患者は、MBL充分な患者よりも低いC3bc、終末補体複合体、C4bcおよびC3bBbPの循環レベルを示し、より低い程度の通常補体、終末補体および第二経路活性化を示した。さらに、DICおよびMBL欠損患者の疾患重篤度およびパラメータと相関させた全身補体活性化の程度がMBL十分な患者よりも緩やか臨床経過を示した。したがって、MBL欠損は感染に対する感受性の危険因子であるが、敗血症性ショック時のMBL欠損はより低い疾患重篤度と関連し得る。
本明細書の実施例1〜4に実証されるように、実験的研究が、髄膜炎菌感染症の病因物質である髄膜炎菌に対する先天免疫反応におけるMBLおよびMASP-1/3の重要な寄与を強調している。マウスまたはヒトからのMBL欠損血清、MASP-3欠損ヒト血清またはMASP-1/3ノックアウトマウスからの血清は、野生型血清に比べて、インビトロで補体を活性化し、髄膜炎菌を溶解する効果が劣る。同様に、ナイーブなMASP-1/3ノックアウトマウスは、その野生型対応種よりもナイセリア感染を受けやすい。したがって、適応免疫の非存在において、LEA-1経路はナイセリア感染に対する先天宿主耐性に寄与する。逆に、LEA-1は、DICを含む有害な宿主反応を誘発する病理的補体活性化を増強する。
動脈血栓症のマウスモデルにおいて、MBLヌルおよびMASP-1/-3ノックアウトマウスは、野生型またはC2/B因子ヌルマウスと比較して減少したFeCl3誘発性血栓形成を示し、欠損は組換えヒトMBLによって再構成された(La Bonte, L.R., et al., J. Immunol. 188:885-891, 2012)。インビトロで、MBLヌルまたはMASP-1/-3ノックアウトマウス血清は、野生型またはC2/B因子ヌルマウス血清と比較して減少したトロンビン基質切断を示した。組換えヒトMASP-1の添加がMASP-1/-3ノックアウトマウス血清中のトロンビン基質切断を回復させた(前記La Bonte et al., 2012)。これらの結果は、MBL/MASP複合体、特にMASP-1が血栓形成において重要な役割を果たし得ることを示す。したがって、LEA-1は、DICを含む病理的血栓症において重要な役割を果たし得る。
実験的研究は、病理的血栓症におけるLEA-2の同等に重要な役割を立証した。本明細書の実施例30に記載されるように、限局性DICのマウスモデルにおいて、本発明者らは、MASP-2ノックアウトマウスが野生型マウスよりもLPS誘発性微小血管凝固への感受性がずっと低いことを実証した。インビトロ研究はさらに、LEA-2が補体系と凝固系との間の分子リンクを提供することを実証する。本明細書の実施例29および31に記載されるように、MASP-2は、第Xa因子様活性を有し、切断によってプロトロンビンを活性化してトロンビンを形成し、それがその後、フィブリノゲンを掃去し、フィブリン血餅形成を促進することができる(Krarup et al., PLoS One, 18:2(7):e623, 2007も参照されたい)。
別々の研究は、レクチン-MASP複合体がMASP-2依存性プロセスにおいて血餅形成、フィブリン沈着およびフィブリノペプチド放出を促進することができることを示した(Gulla et al., Immunology, 129(4):482-95, 2010)。したがって、LEA-2は、補体系および凝固系のレクチン依存性活性化を同時に促進する。
さらに、インビトロ研究は、MASP-1がトロンビン様活性を有し(Presanis J. S., et al., Mol Immunol, 40(13):921-9, 2004)、フィブリノゲンおよび第XIII因子を切断する(Gulla K. C. et la., Immunology, 129(4):482-95, 2010)ことを示し、LEA-1が、LEA-2から独立して、またはそれと同調して、凝固経路を活性化し得ることを示唆している。
上述したデータは、LEA-1およびLEA-2が、レクチン依存性補体活性化と凝固との間に独立したリンクを提供することを示唆する。したがって、上記を考慮すると、LEA-1阻害因子およびLEA-2阻害因子は、播種性血管内凝固に罹患している対象を治療する際に、独立した治療上の有益性を有すると予想される。一部の態様において、対象は、敗血症、外傷、感染症(細菌、ウイルス、真菌、寄生虫)、悪性腫瘍、移植拒絶反応、輸血反応、分娩合併症、血管動脈瘤、肝不全、熱射病、熱傷、放射線被曝、ショックまたは重篤な中毒反応(例えばヘビ咬傷、虫刺され、輸血反応)に続発する播種性血管内凝固に罹患している。一部の態様において、外傷は神経学的外傷である。一部の態様において、感染症は、髄膜炎菌感染のような細菌感染である。
加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得る。LEA-1およびLEA-2はいずれも、DICを生じさせる状態(例えば感染症または外傷など)によって活性化されることが知られているため、LEA-1遮断物質およびLEA-2遮断物質は、別々に、または組み合わせのいずれかで、DICの治療において治療有用性を有すると予想される。LEA-1遮断物質およびLEA-2遮断物質は、補体と凝固との間で異なるクロストーク機序を予防し得る。したがって、LEA-1遮断物質およびLEA-2遮断物質は、DICおよび他の血栓性障害を予防する際に、相補的、付加的、または相乗的効果を有し得る。
加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断する、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、それを必要とする対象における播種性血管内凝固を治療するため、播種性血管内凝固を予防するため、または播種性血管内凝固の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法であって、MASP-1阻害物質、MASP-3阻害物質またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、播種性血管内凝固を経験している対象または播種性血管内凝固を発症する危険のある対象に投与する工程を含む、方法を提供する。MASP-1、MASP-3またはMASP-1/3阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。外傷または他の急性事象に続発するDICの治療または予防の場合、LEA-1阻害組成物は、DICの危険にあると考えられる患者において、外傷性障害の直後に、または予防的に、外傷誘発性傷害もしくは手術のような状況の前、その最中、その直後、もしくはその1〜7日もしくはそれより長い日数内に、例えば24時間〜72時間以内に投与されてもよい。一部の態様において、LEA-1阻害組成物は、好適には、即効性剤形で、例えばLEA-1阻害物質組成物を含有する溶液のボーラスの静脈内または動脈内送達によって投与され得る。
一態様において、本発明のこの局面の方法は、それを必要とする対象における播種性血管内凝固を治療するため、播種性血管内凝固を予防するため、または播種性血管内凝固の重篤度を軽減するためにLEA-2依存性補体活性化を阻害する工程をさらに含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を対象に投与する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、播種性血管内凝固を治療または予防する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって、それを必要とする対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。外傷または他の急性事象に続発するDICの場合、MASP-2阻害組成物は、DICの危険にあると考えられる患者において、外傷性障害の直後に、または予防的に、外傷誘発性傷害もしくは手術のような状況の前、その最中、その直後、もしくはその1〜7日もしくはそれより長い日数内に、例えば24時間〜72時間以内に投与されてもよい。一部の態様において、MASP-2阻害組成物は、好適には、即効性剤形で、例えばMASP-2阻害物質組成物を含有する溶液のボーラスの静脈内または動脈内送達によって投与され得る。
本発明のMASP-3阻害組成物および任意のMASP-2阻害組成物の適用は、それを必要とする対象における播種性血管内凝固を治療するため、播種性血管内凝固を予防するため、または播種性血管内凝固の重篤度を軽減するために、組成物(例えば、MASP-2およびMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、播種性血管内凝固を経験している対象または播種性血管内凝固を発症する危険のある対象の治療の場合、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
VIII. 溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、および血栓性血小板減少性紫斑病(TTP)を含む血栓性微小血管症(TMA)におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
血栓性微小血管症(TMA)とは、血小板減少症、微小血管症性溶血性貧血および可変性臓器虚血を臨床的特徴とする障害の群をいう。TMAの特徴的な病理学的特徴は、血小板活性化ならびに小細動脈および細静脈中の微小血栓の形成である。古典的TMAは、溶血性尿毒症症候群(HUS)および血栓性血小板減少性紫斑病(TTP)である。HUSは、急性腎不全の存在によってTTPから区別される。HUSは、2つの形態:下痢関連(D+)または典型HUSおよび下痢を伴わない(D-)または非定型HUS(aHUS)で起こる。
HUS
D+HUSは、通常は大腸菌O157または別の志賀毒素産生性細菌株によって生じる前駆的下痢性疾患を伴い、子供におけるHUS症例の90%超を占め、子供における急性腎不全の最も一般的な原因である。大腸菌(Escherichia coli)O157によるヒト感染は相対的によくあるが、D+HUSまで進行する血性下痢の割合は、散発的症例においては3%〜7%の範囲であり、いくつかの大発生においては20%〜30%であった(Zheng, X.L. and Sadler, J. E., Annu. Rev. Pathol. 3:249-277, 2008)。HUSは通常、下痢発症後4〜6日で発症し、子供の約2/3は疾患の急性期において透析を必要とする。有効であることが示されている特定の治療法がないため、D+HUSの治療は支持的である。D+HUSの予後は良好であり、大多数の患者が腎機能を取り戻す。
D+HUSの病原は、微小血管内皮細胞、単球および血小板上の膜に結合する細菌生産志賀毒素を含む。腎臓の微小血管系が最も頻繁に冒される。結合後、毒素は内在化されて、炎症誘発性媒介物の放出および最終的な細胞死を招く。内皮細胞損傷が、凝固カスケードの活性化を促進することにより、腎微小血管血栓症を誘発すると考えられている。D+HUSにおける補体系の活性化の証拠がある。D+HUSの子供において、BbおよびSC5b-9の血漿レベルが、入院時、正常な対照と比較して増大しており、退院後28日で正常化していた(Thurman, J.M. et al., Clin. J. Am. Soc. Nephrol. 4:1920-1924, 2009)。古典経路を遮断するエチレングリコール四酢酸の存在において活性化が進行する場合、志賀毒素2(Stx2)がインビトロで主に第二経路を介して流体相中のヒト補体を活性化することが見いだされた(Orth, D. et al., J. Immunol. 182:6394-6400, 2009)。さらには、Stx2は、結合H因子を結合させ、I因子を結合させず、かつ、細胞表面上のH因子の補因子活性を遅延させた(前記Orth, D. et al, 2009)。これらの結果は、志賀毒素が、直接的な毒性効果を含む複数の潜在的機序を通して、また、補体の活性化または補体調節物質の阻害を通して間接的に、腎障害を生じさせ得ることを示唆する。本明細書の実施例21〜23に実証されるように、様々な血管床における補体媒介性再灌流障害の予防におけるMASP-2遮断の有効性によって証明されるように、血管内皮細胞に対する毒性効果がLEA-2を介して補体を活性化すると予想される。また、Schwaeble, W.J., et al., Proc. Natl. Acad. Sci. 108:7523-7528, 2011を参照されたい。
志賀毒素およびリポ多糖の同時注射によって誘発したHUSのマウスモデルにおいて、B因子欠損マウスは、野生型マウスと比較して少ない血小板減少を示し、かつ、腎機能障害から保護され、微小血管血栓症における第二経路のLEA-1依存性活性化の関与を示唆した(Morigi, M. et al., J. Immunol. 187:172-180, 2011)。本明細書の実施例33に記載されるように、同じモデルにおいて、MASP-2抗体の投与が同じく有効であり、STXチャレンジ後の生存率を増加させて、微小血管血栓症におけるLEA-2依存性補体経路の関与を示唆した。
前記に基づいて、LEA-1阻害因子およびLEA-2阻害因子は、HUSの治療または予防において独立した治療上の有益性を有すると予想される。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。
aHUS
非定型HUSは奇病であり、米国においては100万人あたり2人の推定発生率である(Loirat, C. and Fremeaux-Bacchi, V. Orphanet J. Rare Dis. 6:60-90, 2011)。非定型HUSは任意の年齢で発症することができるが、大多数の患者は小児期に発症を示す。非定型HUSは不均一である。いくつかの症例は家族性であり、いくつかは再発性であり、いくつかは感染症、一般的に上気道または胃腸炎によって誘発される。通常、aHUSの発症は突然であり、大部分の患者は入院時に透析を必要とする。さらなる腎症状発現が患者の約20%に見られ、中枢神経系、心筋梗塞、虚血性遠位壊疽または多臓器不全を含み得る。aHUSの治療は、臓器不全の場合の支持療法、血漿注入または血漿交換、および、エクリズマブ、最近米国および欧州連合において使用を承認された、C5を標的化するヒト化モノクローナル抗体、を含む。aHUSにおける予後はD+HUSにおける予後ほど良くなく、約25%が急性期に死亡し、大部分の生存者は末期腎疾患を発症する。
非定型HUSは、患者の約50%が補体調節タンパク質をコードする遺伝子中に突然変異を有するという点で、補体調節不全の疾患として特徴決定されている(前記Zheng and Sadler, 2008)。大部分の突然変異はH因子(FH)に見られる。他の突然変異は、膜補因子タンパク質(MCP)、I因子(FI)、B因子およびC3を含む。機能研究が、FH、MCPおよびFIの突然変異は機能の損失、ひいてはより多くの補体活性化を招くが、一方、B因子の突然変異は機能獲得型であることを示した。これらの突然変異の効果は主として第二経路に影響する。突然変異を有する家族の約50%が45歳までに疾患を呈しないため、これらの遺伝的異常は、疾患の唯一の原因というよりも危険因子である(前記Loirat and Fremeaux-Bacchi, 2011)。
H因子は、第二経路補体攻撃から宿主組織を保護する補体制御タンパク質である。FHは第二経路増幅ループを3つの方法で調節する。FHは、C3bを切断するFIの補因子であり、第二経路のC3コンバターゼC3bBbの形成を阻害し、細胞表面および組織マトリックス上のポリアニオンに結合し、C3bの沈着を遮断する(Atkinson, J.P. and Goodship, T. H. J., J. Exp. Med. 6:1245-1248, 2007)。aHUS患者におけるFH突然変異の大多数は、タンパク質のC末端ショートコンセンサスリピートドメインで起こり、ヘパリン、C3bおよび内皮へのFHの不完全な結合を生じさせるが、N末端ドメイン間に存在する血漿C3調節を変化させない(Pickering, M.C. et al., J. Exp. Med. 204:1249-1256, 2007)。FH欠損マウスは、制御されない血漿C3活性化を示し、かつ膜性増殖性糸球体腎炎II型を自然発症するが、aHUSを自然発症しない。しかし、aHUS関連ヒトFH突然変異体に機能的に等しいマウスFHタンパク質をトランスジェニック的に発現したFH欠損マウスはHUSを自然発症するが、膜性増殖性糸球体腎炎II型を自然発症せず、腎臓内皮における第二経路活性化の不完全な制御がFH関連aHUSの病原における重要な事象であるこというインビボ証拠を提供した(前記Pickering et al., 2007)。別の形態のFH関連aHUSが、抗FH自己抗体を有する患者において生じて、FH機能活性の損失を生じさせる。これらの患者の大部分は、5つのFH関連タンパク質をコードする遺伝子に欠失を有する(前記Loirat and Fremeaux-Bacchi, 2011)。
FHと同様に、MCPは、標的細胞上のC3b沈着を調節することにより、補体活性化を阻害する。MCP突然変異は、低いC3b結合および補因子活性を有するタンパク質を生じさせ、したより、調節不全の第二経路活性化を可能にする。FIは、FHおよびMCPのような補因子の存在においてC3bおよびC4bを切断し、それにより、C3およびC5コンバターゼの形成を防ぎ、第二補体経路および古典補体経路の両方を阻害するセリンプロテアーゼである。FI関連aHUS突然変異の大部分は、C3bおよびC4bの分解のための低下したFI活性を生じさせる(前記Zheng and Stadler, 2008)。FBは、第二経路コンバターゼC3bBbの触媒部位を有するチモーゲンである。機能分析は、aHUS関連FB突然変異が第二経路活性化の増大を招くことを示した(前記Loirat and Fremeaux-Bacchi, 2011)。C3におけるヘテロ接合性突然変異がaHUSと関連している。大部分のC3突然変異は、MCPに結合するためのC3の欠損を誘発して、C3bに結合するFBの能力の増大およびC3転換コンバターゼ形成の増加を招く(前記Loirat and Fremeaux-Bacchi, 2011)。したがって、aHUSは、第二経路増幅ループの不十分な制御を招く補体遺伝子における突然変異と密接に関連する疾患である。第二経路増幅ループはB因子タンパク質分解活性に依存するため、かつB因子活性化(MASP-3依存性切断またはMASP-1がD因子の成熟に寄与するD因子媒介性切断のいずれかによる)にはLEA-1が必要であるため、LEA-1遮断物質は、感受性個体における制御されない補体活性化を防ぐと予想される。その結果、LEA-1遮断物質はaHUSを効果的に治療すると予想される。
aHUSにおける調節解除された第二経路増幅ループの中心的役割は広く受け入れられているが、補体活性化を開始するトリガーおよび関与する分子経路は未解明である。上記突然変異を有するすべての個体がaHUSを発症するわけではない。事実、家族研究が、aHUSの浸透率は約50%でしかないことを示唆した(Sullivan M. et al., Ann Hum Genet 74:17-26 2010)。疾患の自然経過は、aHUSが、感染エピソードまたは傷害のような開始事象の後で最も頻繁に発症することを示唆する。感染物質が補体系を活性化することは周知である。既存の適応免疫の非存在において、感染物質による補体活性化は主としてLEA-1またはLEA-2を介して開始され得る。したがって、感染によって誘発されるレクチン依存性補体活性化は、aHUSの素因を有する個体におけるその後の補体活性化の病理的増幅の開始トリガーとなり得、それが最終的に疾患進行を招き得る。したがって、本発明の別の局面は、有効量のLEA-1またはLEA-2阻害物質を投与することにより、感染症に続発するaHUSに罹患している患者を治療することを含む。
宿主組織への損傷の他の形態、特に血管内皮の損傷が、LEA-2を介して補体を活性化する。酸化ストレスを受けたヒト血管内皮細胞は、例えば、レクチンに結合し、かつ補体のLEA-2経路を活性化する表面部分を発現することによって応答する(Collard et al., Am J. Pathol 156(5):1549-56, 2000)。虚血/再灌流後の血管損傷もまた、インビボでLEA-2を介して補体を活性化する(Moller-Kristensen et al., Scand J Immunol 61(5):426-34, 2005)。この状況におけるレクチン経路活性化は、宿主にとって病理的な結果を有し、実施例22および23に示されるように、MASP-2を遮断することによるLEA-2の阻害がさらなる宿主組織損傷および有害な転帰を防ぐ(また、前記Schwaeble PNAS, 2011を参照されたい)。
したがって、aHUSを引き起こす他のプロセスもまた、LEA-1またはLEA-2を活性化することが公知である。したがって、LEA-1および/またはLEA-2経路が、遺伝的にaHUSの素因を有する個体において調節解除的に不適切に増幅される初期補体活性化機序となり得、それによってaHUS病原を開始させる可能性が高い。推論により、LEA-1および/またはLEA-2を介して補体の活性化を遮断する作用物質は、aHUS感受性個体における疾患進行を防ぐ、または悪化を軽減すると予想される。
この概念のさらなる裏付けとして、最近の研究は、aHUSの小児症例において肺炎連鎖球菌(Streptococcus pneumoniae)を重大な病因物質と同定した(Lee, C. S. et al, Nephrology, 17(1):48-52 (2012); Banerjee R. et al., Pediatr Infect Dis J., 30(9):736-9 (2011))。この特定の病因は、有意な死亡率および長期罹患率をはじめとして、好ましくない予後を有するように考えられる。注目すべきことに、これらの症例は、aHUSの素因をつくることが知られる補体遺伝子における同時発生的突然変異の証拠なしに、微小血管症、尿毒症および溶血の症状発現を招く非腸管感染症を伴った。肺炎連鎖球菌が補体を活性化し、しかも主としてLEA-2を介して補体を活性化するのに特に有効であることに注目することが重要である。したがって、肺炎連鎖球菌感染と関連する非腸管HUSの症例においては、微小血管症、尿毒症および溶血の症状発現は主としてLEA-2の活性化によって駆動されると予想され、MASP-2抗体を含む、LEA-2を遮断する作用物質は、これらの患者におけるaHUSの進行を防ぐ、または疾患重篤度を低下させると予想される。したがって、本発明の別の局面は、有効量のMASP-2阻害物質を投与することにより、肺炎連鎖球菌感染と関連する非腸管aHUSに罹患している患者を治療することを含む。
TTP
血栓性血小板減少性紫斑病(TTP)は、凝固カスケードまたは補体系を活性化する自己免疫または遺伝性機能不全によって生じる、生命を脅かす血液凝固系の障害である(George, JN, N Engl J Med; 354:1927-35, 2006)。これは体中の小さな血管中に多数の微細な血餅、すなわち血栓を生じさせ、これがTMAの特徴である。赤血球が剪断応力を受け、それが膜を損傷し、血管内溶血を招く。その結果として生じる血流の減少および内皮損傷が、脳、心臓および腎臓を含む臓器の損傷を生じさせる。TTPは、臨床的には血小板減少症、微小血管症性溶血性貧血、神経学的変化、腎不全および発熱を特徴とする。血漿交換の前の時代には、急性エピソード時の致死率は90%であった。血漿交換を実施してさえ、6ヶ月生存率は約80%である。
TTPは、酵素ADAMTS-13、フォンヴィルブランド(von Willebrand)因子(vWF)の大きな多量体をより小さな単位に切断する役割を負うメタロプロテアーゼの遺伝的または後天的阻害から生じ得る。ADAMTS-13阻害または欠損は最終的に凝固の増大を生じさせる(Tsai, H. J Am Soc Nephrol 14:1072-1081, 2003)。ADAMTS-13はvWFの活性を調節する。ADAMTS-13の非存在において、vWFは、より血小板と結合しやすい大きな多量体を形成し、微小血管系中の血小板凝集および血栓症への患者の素因をつくる。
TTPの個体においては、ADAMTS13の突然変異が数多く同定されている。この疾患はまた、ADAMTS-13に対する自己抗体によって発症することができる。加えて、TTPは、乳房、胃腸管または前立腺の癌中(George JN., Oncology (Williston Park). 25:908-14, 2011)、妊娠(第二期または分娩後)中(George JN., Curr Opin Hematol 10:339-344, 2003)に発症することができるか、またはHIVもしくは全身性エリテマトーデスのような自己免疫疾患と関連している(Hamasaki K, et al., Clin Rheumatol. 22:355-8, 2003)。TTPはまた、ヘパリン、キニーネ、免疫媒介性成分、癌化学療法剤(ブレオマイシン、シスプラチン、シトシンアラビノシド、ダウノマイシンゲムシタビン、マイトマイシンCおよびタモキシフェン)、シクロスポリンA、経口避妊薬、ペニシリン、リファンピンならびにチクロピジンおよびクロピドグレルを含む抗血小板薬を含む特定の薬物療法によって生じることもできる(Azarm, T. et al., J Res Med. Sci., 16:353-357, 2011)。TTPと関連する他の因子または条件は、毒素、例えばハチ毒、敗血症、脾臓隔離、移植、血管炎、血管手術ならびに肺炎連鎖球菌およびサイトメガロウイルスなどの感染症である(Moake JL., N Engl J. Med., 347:589-600, 2002)。肺炎連鎖球菌感染に関連する内皮細胞損傷の結果として一過性の機能的ADAMTS-13欠損によるTTPが起こることができる(Pediatr Nephrol, 26:631-5, 2011)。
血漿交換がTTPの標準的治療である(Rock GA, et al., N Engl J Med 325:393-397, 1991)。血漿交換は、遺伝的欠陥を有する患者におけるADAMTS-13活性を交換し、後天性自己免疫性TTP患者中のADAMTS-13自己抗体を除去する(Tsai, H-M, Hematol Oncol Clin North Am., 21(4):609-v, 2007)。免疫抑制薬のようなさらなる剤が日常的に治療に追加される(George, JN, N Engl J Med, 354:1927-35, 2006)。しかし、血漿交換は患者の約20%では成功せず、患者の1/3超で再発が起こり、プラズマフェレーシスは費用を要し、かつ技術的に要求が厳しい。さらに、多くの患者は血漿交換に耐えることができない。その結果、TTPのためのさらなるより良い治療の危急の必要性が残る。
TTPは血液凝固カスケードの障害であるため、補体系のアンタゴニストによる処置が、疾病を安定化して治すことを支援し得る。第二補体経路の病理的活性化がaHUSに関連しているが、TTPにおける補体活性化の役割はそれほど明確ではない。ADAMTS13の機能欠損がTTPへの感受性にとって重要であるが、それは急性エピソードを生じさせるのに十分ではない。環境要因および/または他の遺伝的変異がTTPの症状発現に寄与し得る。例えば、凝固カスケードの調節に関与するタンパク質をコードする遺伝子、vWF、血小板機能、内皮血管表面の成分または補体系が、急性血栓性微小血管症の発症に関与し得る(Galbusera, M. et al., Haematologica, 94:166-170, 2009)。特に、補体活性化が重要な役割を果たすことが示されている。ADAMTS-13欠損に関連した血栓性微小血管症からの血清が、C3およびMAC沈着ならびにその後の好中球活性化を生じさせることが示されており、それを補体不活性化によって抑止することができた(Ruiz-Torres MP, et al., Thromb Haemost, 93:443-52, 2005)。加えて、最近、TTPの急性エピソードの間、古典、レクチンおよび第二経路の活性化と合致する、C4d、C3bBbPおよびC3aのレベルの増加があることが示された(M. Reti et al., J Thromb Haemost. 10(5):791-798, 2012)。急性エピソードにおける補体活性化のこの増量が、終末経路活性化を開始し得、かつTTPのさらなる悪化の原因であり得る。
TTPにおけるADAMTS-13およびvWFの役割が、明らかに、血小板の活性化および凝集ならびに微小血管症における剪断応力および沈着におけるそれらのその後の役割の原因である。活性化された血小板は、補体の古典経路および第二経路の両方と相互作用し、それらを誘発する。血小板媒介性補体活性化が炎症媒介物C3aおよびC5aを増加させる(Peerschke E. et al., Mol Immunol, 47:2170-5 (2010))。したがって、血小板は、遺伝性または自己免疫性TTPにおける古典補体活性化の標的として働き得る。
上記のように、MASP-1のトロンビン様活性およびLEA-2媒介性プロトロンビン活性化のせいで起こる補体のレクチン依存性活性化が、HUSにおいて起こる凝固および微小血管血栓症に内皮損傷を関連させる支配的な分子経路である。同様に、LEA-1およびLEA-2の活性化がTTPにおいて凝固系を直接駆動し得る。LEA-1およびLEA-2経路活性化は、TTPにおけるADAMTS-13欠損によって生じる初期内皮損傷に応答して開始され得る。したがって、MASP-2機能、MASP-1機能、MASP-3機能またはMASP-1およびMASP-3機能を遮断する抗体を含むがこれらに限定されることがないLEA-1阻害因子およびLEA-2阻害因子が、TTPに罹患している患者における微小血管凝固、血栓症および溶血と関連する微小血管症を緩和すると予想される。
TTPに罹患している患者は通常、緊急治療室中、紫斑病、腎不全、低血小板、貧血および/または卒中を含む血栓症の1つまたは複数を呈する。TTPの現在の標準治療は、2週間またはそれより長い期間の、一般的に週3回〜毎日の交換プラズマフェレーシスのカテーテル内送達(例えば、静脈内または他の形態のカテーテル)を含む。対象がADAMTS13の阻害因子(すなわち、ADAMTS13に対する内在性抗体)の存在に関して陽性の検査結果を出すならば、プラズマフェレーシスは、免疫抑制療法(例えばコルチコステロイド、リツキサンまたはシクロスポリン)と組み合わせて実施されてもよい。難治性TTP(TTP患者の約20%)の対象は、少なくとも2週間はプラズマフェレーシス治療に応答しない。
前記に従って、一態様において、TTPの初期診断の状況において、またはTTPの診断と合致する1つまたは複数の症候(例えば、中枢神経系合併症、重篤な血小板減少(アスピリンオフならば5000個/μL未満または5000個/μL、アスピリンオンならば20,000個/μL未満または20,000個/μLの血小板計数値)、重篤な心臓合併症、重篤な肺合併症、胃腸梗塞または壊疽)を示す対象において、プラズマフェレーシスの非存在における、またはプラズマフェレーシスと併用される第一の療法として、有効量のLEA-2阻害物質(例えばMASP-2抗体)またはLEA-1阻害物質(例えばMASP-1またはMASP-3抗体)によって対象を治療する方法が提供される。第一の療法として、LEA-1阻害物質および/またはLEA-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下または他の非経口投与によって対象に投与され得る。一部の態様において、LEA-1阻害物質および/またはLEA-2阻害物質は、プラズマフェレーシスの潜在的な合併症、例えば出血、感染症ならびに血漿ドナーに固有の障害および/またはアレルギーへの曝露を避けるために、または他の点でプラズマフェレーシスを嫌がる対象において、またはプラズマフェレーシスが利用できない状況において、プラズマフェレーシスの非存在における第一の療法として対象に投与され得る。一部の態様において、LEA-1阻害物質および/またはLEA-2阻害物質は、免疫抑制剤(例えばコルチコステロイド、リツキサンまたはシクロスポリン)と組み合わせて(同時投与を含む)および/または濃縮ADAMTS-13と組み合わせて、TTPに罹患している対象に投与される。
一部の態様において、方法は、第一の期間(例えば、少なくとも1日〜1週または2週にわたる急性期)中、LEA-1および/またはLEA-2阻害物質をカテーテルによって(例えば静脈内で)TTPに罹患している対象に投与したのち、第二の期間(例えば少なくとも2週またはそれより長い慢性期)中、LEA-1および/またはLEA-2阻害物質を対象に皮下に投与する工程を含む。一部の態様において、第一および/または第二の期間の投与はプラズマフェレーシスの非存在において実施される。一部の態様において、方法は、対象がTTPに関連する1つまたは複数の症候に罹患していることを防ぐように維持するために使用される。
別の態様において、TTPの1つまたは複数の症候を軽減するのに有効な量のLEA-1および/またはLEA-2阻害因子を投与する工程により、難治性TTPに罹患している対象(すなわち、少なくとも2週間のプラズマフェレーシス治療に応答していない対象)を治療する方法が提供される。一態様において、LEA-1および/またはLEA-2阻害因子は、少なくとも2週間またはそれより長い期間にわたり長期的に、皮下投与または他の非経口投与によって難治性TTPの対象に投与される。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
一部の態様において、方法はさらに、治療の前および任意で治療中に対象中の少なくとも1つの補体因子(例えばC3、C5)のレベルを測定する工程を含み、基準値または健康な対照対象に比べた場合の少なくとも1つの補体因子のレベルの低下の測定がLEA-1および/またはLEA-2阻害物質による治療継続の必要性を示す。
一部の態様において、方法は、TTPに罹患している対象またはTTPを発症する危険のある対象にLEA-1および/またはLEA-2阻害物質を皮下にまたは静脈に投与する工程を含む。治療は、好ましくは毎日であるが、月1回の頻度であることもできる。治療は、少なくとも連続2日間、対象の血小板計数値が150,000個/mlを超えるまで継続される。
要約すると、LEA-1阻害因子およびLEA-2阻害因子は、HUS、aHUSおよびTTPを含むTMAの治療において独立した治療上の有益性を有すると予想される。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成するか、または様々な形態のTMAに罹患しているより広い範囲の患者サブセットに有効な治療を提供し得ると予想される。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3またはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、血栓性微小血管症に罹患している対象または血栓性微小血管症を発症する危険のある対象に投与する工程を含む、溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)などの血栓性微小血管症を治療するため、該血栓性微小血管症を予防するため、または該血栓性微小血管症の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3またはMASP-1/3阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
一態様において、本発明のこの局面の方法は、溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)などの血栓性微小血管症を治療するため、該血栓性微小血管症を予防するため、または該血栓性微小血管症の重篤度を軽減するためにLEA-2依存性補体活性化を阻害する工程をさらに含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、血栓性微小血管症に罹患している対象または血栓性微小血管症を発症する危険のある対象に投与する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、血栓性微小血管症を治療する際に、血栓性微小血管症を予防する際に、または血栓性微小血管症の重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
IX.本発明のMASP-3阻害組成物および任意のMASP-2阻害組成物の適用は、血栓性微小血管症に罹患している対象または血栓性微小血管症を発症する危険のある対象における血栓性微小血管症を治療するため、血栓性微小血管症を予防するため、または血栓性微小血管症の重篤度を軽減するために、組成物の単回投与(例えば、MASP-2およびMASP-3阻害物質または二重特異性阻害物質もしくは二重阻害物質を含む単一の組成物、または別々の組成物の同時投与)または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回などの定期的間隔で投与され得る。喘息におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
喘息は一般的な慢性炎症性気道疾患である。米国においては、18歳未満の子供700万人を含む約2500万人が喘息を有し、半分超が年に少なくとも一度は喘息発作を経験し、毎年170万を超える救急外来訪問数および450,000件の入院をもたらしている(ワールドワイドウェブ、gov/health/prof/lung/asthma/naci/asthma-info/index.htm.、2012年5月4日アクセス時点)。この疾患は不均一であり、複数の臨床表現型を有する。最も一般的な表現型はアレルギー性喘息である。他の表現型は、非アレルギー性喘息、アスピリン悪化呼吸器疾患、感染後喘息、職業性喘息、空気中の刺激物誘発性喘息および運動誘発性喘息を含む。アレルギー性喘息の主要な特徴は、多様な特定および不特定刺激への気道過敏性(AHR)、過度の気道粘液産生、肺好酸球増加および血清IgE濃度上昇を含む。喘息の症候は、咳、喘鳴、胸苦しさおよび息切れを含む。喘息治療の目標は、疾患を制御し、悪化、日常的な症候を最小限にし、患者が肉体的に活動的であることを可能にすることである。現在の治療指針は、喘息抑制が達成されるまでの段階的治療を奨励している。最初の治療ステップは、必要に応じて、速効性吸入β2アゴニストののち、長期管理薬、例えば吸入コルチコステロイド、長時間作用性吸入β2アゴニスト、ロイコトリエン修飾薬、テオフィリン、経口糖質コルチコステロイドおよび抗IgEモノクローナル抗体である。
喘息は病原的に多因子性であるが、概して、遺伝的に感受性の個体における一般的な環境抗原に対する不適切な免疫反応の結果として生じることが認められている。喘息は補体活性化と関連し、アナフィラトキシン(AT)C3aおよびC5aが、アレルギー反応の発生およびモジュレーションに関連する炎症誘発性および免疫調節性を有する(Zhang, X. and Kohl, J. Expert. Rev. Clin. Immunol., 6:269-277, 2010)。しかし、喘息における補体の古典、第二およびレクチン経路の相対的関与は十分には理解されていない。第二経路はアレルゲンの表面上で活性化され得、レクチン経路はアレルゲンの多糖構造の認識によって活性化され得、両プロセスがATの生成を招く。補体は、関与する原因アレルゲンに依存して異なる経路によって活性化され得る。例えばParietaria科の高度にアレルギー性の花粉は、C4のMBL依存性活性化を促進するのに非常に有効であり、LEA-2の関与が示唆される。逆に、チリダニアレルゲンは補体活性化のためにMBLを必要としない(Varga et al. Mol Immunol., 39(14):839-46, 2003)。
喘息の環境トリガーが第二経路によって補体を活性化し得る。例えば、タバコの煙またはディーゼル排気粒子へのヒト血清のインビトロ曝露が補体の活性化をもたらし、その効果はEDTAの存在によって影響を受けず、活性化が、古典経路を介するものではなく、第二経路を介するものであることを示唆した(Robbins, R.A. et al, Am. J. Physiol. 260:L254-L259, 1991; Kanemitsu, H., et al., Biol. Pharm. Bull. 21:129-132, 1998)。アレルギー性気道炎症における補体経路の役割が、マウスオボアルブミン感作およびチャレンジモデルにおいて評価された。野生型マウスは、空気アレルゲンチャレンジに応答してAHRおよび気道炎症を発症した。補体活性化のすべての経路を阻害するCrry-Ig融合タンパク質が、アレルギー性肺炎症のマウスオボアルブミンモデルにおいて吸入によって全身または局所投与された場合、AHRおよび肺炎症を防ぐのに有効であった(Taube et al., Am J Respir Crit Care Med., 168(11):1333-41, 2003)。
B因子欠損マウスは、野生型マウスに比べて少ないAHRおよび気道炎症を示したが、一方、C4欠損マウスは野生型マウスと同様な効果を示した(Taube, C., et al., Proc. Natl. Acad. Sci. USA 103:8084-8089, 2006)。これらの結果は、マウス空気アレルゲンチャレンジモデルにおける、古典経路関与ではなく第二経路関与の役割を裏付ける。第二経路の重要性のさらなる証拠が、同じマウスモデルを使用するH因子(FH)の研究において提供された(Takeda, K., et al., J. Immunol. 188:661-667, 2012)。FHは、第二経路の負の調節物質であり、自己組織の自家性損傷を防ぐように働く。内在性FHは、アレルゲンチャレンジ中に気道中に存在することが見いだされ、組換え競合的アンタゴニストによるFHの阻害がAHRおよび気道炎症の程度を増大させた(前記Takeda et al., 2012)。CR2-fH、fHの補体調節活性を既存の補体活性化の部位に標的化するFHの補体調節領域にCR2のiC3b/C3d結合領域をリンクするキメラタンパク質の治療的送達が、アレルゲンチャレンジ後、AHRの発症および気道への好酸球浸潤を防いだ(前記Takeda et al., 2012)。保護効果は、オボアルブミンと、ヒトにおける関連アレルゲンであるブタクサアレルゲンとを使用して実証された。
喘息におけるレクチン依存性補体活性化の役割が真菌喘息のマウスモデルにおいて評価された(Hogaboam et al., J. Leukocyte Biol. 75:805-814, 2004)。これらの研究は、レクチン補体経路の活性化のための認識成分として機能する糖質結合タンパク質であるマンナン結合レクチンA(MBL-A)を遺伝的に欠くマウスを使用した。MBL-A(+/+)およびMBL-A(-/-)アスペルギルス・フミガーツス(Aspergillus fumigatus)感作マウスが、A.フミガーツス分生子によるi.t.チャレンジののち4日目および28日目に試験された。感作MBL-A(-/-)マウスにおけるAHRは、感作MBL-A(+/+)群と比較して、分生子チャレンジ後の両時点で有意に減衰していた。分生子後4日目、肺TH2サイトカインレベル(IL-4、IL-5およびIL-13)は、野生型群と比較して、A.フミガーツス感作MBL-A(-/-)において有意に低かった。これらの結果は、MBL-Aおよびレクチン経路が慢性真菌喘息中のAHRの発症および維持において重要な役割を有することを示す。
上述された発見は、喘息の病原におけるレクチン依存性補体活性化の関与を示唆する。実験データは、B因子活性化が中枢的役割を果たすことを示唆する。レクチン依存性B因子活性化およびその後の第二経路活性化におけるLEA-1の基本的な役割を鑑みると、LEA-1遮断物質が、第二経路によって媒介される特定の形態の喘息の治療に有益であると予想される。したがって、このような処置は、チリダニ誘発性喘息またはタバコの煙もしくはディーゼル排気のような環境トリガーによって生じる喘息において特に有用であり得る。他方、花粉によって誘発される喘息反応は、LEA-2依存性補体活性化を生じさせる可能性が高い。したがって、LEA-2遮断物質は、患者のこのサブセットにおける喘息状態を治療するのに特に有用であると予想される。
上述されたデータを考慮して、本発明者らは、LEA-1およびLEA-2が喘息における病理的補体活性化を媒介すると考える。誘因性アレルギー物質に依存して、LEA-1またはLEA-2が優先的に関与し得る。したがって、LEA-2遮断物質と組み合わせたLEA-1遮断物質は、基礎にある病因にかかわらず、複数の形態の喘息の治療に有用性を有し得る。LEA-1遮断物質およびLEA-2遮断物質は、肺の炎症および喘息の症候を予防する際、治療する際、または好転させる際に、相補的、付加的、または相乗的効果を有し得る。
組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、喘息に罹患している対象または喘息を発症する危険のある対象に投与する工程を含む、喘息を治療するため、喘息を予防するため、または喘息の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3またはMASP-1/3阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
一態様において、本発明のこの局面の方法は、喘息を治療するため、喘息を予防するため、または喘息の重篤度を軽減するためにLEA-2依存性補体活性化を阻害する工程をさらに含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、喘息に罹患している対象または喘息を発症する危険のある対象に投与する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、喘息を治療する際、または喘息を予防する際、または喘息の重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および任意のMASP-2阻害組成物の適用は、喘息に罹患している対象または喘息を発症する危険のある対象における喘息を治療するため、喘息を予防するため、または喘息の重篤度を軽減するために、組成物(例えば、MASP-2およびMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
X. デンスデポジット病におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
膜性増殖性糸球体腎炎(MPGN)は、メサンギウム細胞増殖と、メサンギウムの内皮下延長による糸球体毛細血管壁の肥厚とを形態学的特徴とする腎障害である。MPGNは原発性(特発性とも呼ばれる)または続発性に分類され、感染症、全身性免疫複合体疾患、新生物、慢性肝疾患などのような基礎疾患を有する。特発性MPGNは3つの形態学的タイプを含む。I型、すなわち古典的MPGNは、免疫複合体の内皮下沈着物および古典補体経路の活性化を特徴とする。II型、すなわちデンスデポジット病(DDD)は、さらなる膜内高密度沈着物を特徴とする。III型はさらなる上皮下沈着物を特徴とする。特発性MPGNは希であり、ネフローゼ症候群の原発性腎原因の約4〜7%しか占めない(Alchi, B. and Jayne, D. Pediatr. Nephrol. 25:1409-1418, 2010)。MPGNは、主として子供および若年成人を冒し、ネフローゼ症候群、急性腎炎症候群、無症候性タンパク尿および血尿または再発性肉眼的血尿として現れ得る。腎機能不全が大多数の患者において起こり、疾患は、ゆっくり進行する経過をたどり、患者の約40%が診断から10年以内に末期腎疾患を発症する(前記Alchi and Jayne, 2010)。現在の治療選択肢は、コルチコステロイド、免疫抑制剤、抗血小板レジメンおよび血漿交換を含む。
DDDは、腎生検材料の免疫蛍光染色により、免疫グロブリンの非存在およびC3の存在によって診断され、電子顕微鏡検査が、糸球体基底膜に沿って特徴的な高密度オスミン酸親和性沈着物を示す。DDDは、多くの異なる機序から生じることができる補体の第二経路の調節不全によって生じる(Sethi et al, Clin J Am Soc Nephrol. 6(5):1009-17, 2011)。DDDにおける最も一般的な補体系異常は、その半減期、ひいては経路の活性化を増大させる第二経路C3コンバターゼ(C3bBb)に対する自己抗体であるC3腎炎因子の存在である(Smith, R.J.H. et al., Mol. Immunol. 48:1604-1610, 2011)。他の第二経路異常は、H因子の機能を遮断するH因子自己抗体、機能C3突然変異の増加およびH因子の遺伝的欠損を含む(前記Smith et al., 2011)。最近の症例報告が、エクリズマブ(抗C5モノクローナル抗体)治療が2名のDDD患者における腎機能の改善と関連したことを示し(Daina, E. et al., New Engl. J. Med. 366:1161-1163, 2012; Vivarelli, M. et al., New Engl. J. Med. 366:1163-1165, 2012)、腎転帰における補体活性化の原因的役割を示唆している。
上記の遺伝的、機能的および免疫組織化学的および逸話的臨床データを考慮すると、DDDの病原における補体の中心的役割は十分に立証される。したがって、補体活性化の疾患原因機序またはその後の補体活性化産物を遮断する処置がこの状態を治療するのに治療的に有用であると予想される。
ヒト遺伝データが、第二経路増幅ループの不適切な制御または過度の活性化が重要な役割を果たすことを示唆するが、補体開始事象は特定されていない。腎生検材料の免疫組織化学的研究が患部組織におけるMBL沈着の証拠を示し、DDDにおける病理的補体活性化の開始におけるレクチン経路の関与を示唆している(Lhotta et al, Nephrol Dial Transplant., 14(4):881-6, 1999)。第二経路の重要性はさらに実験モデルにおいて確証されている。H因子欠損マウスは、進行性の蛋白尿と、ヒト状態に特徴的な腎病理的病変とを発症する(Pickering et al., Nat Genet., 31(4):424, 2002)。Pickeringらはさらに、第二経路のLEA-1依存性活性化を媒介するB因子の消失がH因子欠損マウスをDDDから完全に保護することを実証した(Pickering et al., Nat Genet., 31(4):424, 2002)。
したがって、LEA-1を遮断する作用物質は第二経路のレクチン依存性活性化を効果的に遮断し、それにより、DDDのための有効な治療を提供すると予想される。第二経路増幅ループがDDD患者において調節不全であることを考慮すると、増幅ループを遮断する作用物質が有効であるとさらに予想することができる。MASP-1またはMASP-1およびMASP-3を遮断するLEA-1標的化作用物質はD因子の成熟を阻害するため、そのような作用物質は第二経路増幅ループを効果的に遮断すると予測される。
上述したように、顕著なMBL沈着が患部腎標本中に発見されて、DDD病原におけるレクチン駆動型活性化事象の考えられる関与を強調した。ひとたび糸球体毛細血管の初期組織損傷が立証されるならば、損傷した糸球体内皮および下層にあるメサンギウム構造へのさらなるMBL結合が起こる可能性は高い。このような組織損傷がLEA-2の活性化を招き、それがひいてはさらなる補体活性化を生じさせることができることは周知である。したがって、LEA-2遮断物質はまた、損傷した糸球体構造におけるさらなる補体活性化を防ぐのに有用性を有し、ひいては、末期腎不全に向かうさらなる疾病進行を阻止すると予想される。
上述したデータは、LEA-1およびLEA-2がDDDにおいて別々の病理的補体活性化プロセスを促進することを示唆する。したがって、LEA-1遮断物質およびLEA-2遮断物質は、単独で、または組み合わされてのいずれかで、DDDを治療するのに有用であると予想される。
併用されると、LEA-1遮断物質およびLEA-2遮断物質は、いずれか単独の場合よりも高い有効性を示す、または様々な病期の疾患を治療するのに有用であると予想される。したがって、LEA-1遮断物質およびLEA-2遮断物質は、DDD関連腎機能不全を予防する際、治療する際、または好転させる際に、相補的、付加的、または相乗的効果を有し得る。
組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA2遮断物質の同時投与によって達成され得る。最適には、阻害機能を有するLEA-1およびLEA-2遮断物質は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、デンスデポジット病に罹患している対象またはデンスデポジット病を発症する危険のある対象に投与する工程を含む、デンスデポジット病を治療するため、デンスデポジット病を予防するため、またはデンスデポジット病の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3、またはMASP-1/3阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
別の局面において、治療有効量のMASP-2阻害物質を、デンスデポジット病に罹患している対象またはデンスデポジット病を発症する危険のある対象に投与する工程を含む、デンスデポジット病を治療するため、デンスデポジット病を予防するため、またはデンスデポジット病の重篤度を軽減するためにLEA-2依存性補体活性化を阻害する方法が提供される。別の局面において、デンスデポジット病を治療するため、デンスデポジット病を予防するため、またはデンスデポジット病の重篤度を軽減するためにLEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、デンスデポジット病に罹患している対象またはデンスデポジット病を発症する危険のある対象に投与する工程を含む方法が提供される。
一部の態様において、方法は、LEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、デンスデポジット病を治療する際、デンスデポジット病を予防する際、またはデンスデポジット病の重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
LEA-1阻害物質および/またはLEA-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および/またはMASP-2阻害組成物の適用は、それを必要とする対象におけるデンスデポジット病を治療するため、デンスデポジット病を予防するため、またはデンスデポジット病の重篤度を軽減するために、組成物(例えば、MASP-2および/またはMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
XI. 微量免疫型壊死性半月体形成性糸球体腎炎におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
微量免疫型壊死性半月体形成性糸球体腎炎(NCGN)は、糸球体毛細血管壁が炎症の徴候を示すが、糸球体基底膜に対する微量の検出可能な免疫複合体沈着または抗体を有する急速進行性糸球体腎炎の一形態である。状態は腎機能の急速な低下を伴う。大部分のNCGN患者が、抗好中球細胞質自己抗体(ANCA)を有することがわかっており、したがって、ANCA関連血管炎と呼ばれる疾患の群に属する。血管炎は、血管壁の炎症およびフィブリノイド壊死を特徴とする血管の障害である。全身性血管炎は、血管サイズ:大、中、小に基づいて分類される。小血管血管炎のいくつかの形態は、ANCAの存在、すなわちヴェーゲナー肉芽腫症、顕微鏡的多発血管炎、チャーグ・ストラウス症候群および腎限定的血管炎(NCGN)を伴う。それらはまた、全身性エリテマトーデスのような基礎疾患の症状発現であることもできる。ANCAの標的抗原はプロテイナーゼ-3(PR3)およびミエロペルオキシダーゼ(MPO)を含む。微量免疫型NCGNは奇病であり、英国ウェセックス(Wessex)において100万人あたり約4人の発生率が報告されている(Hedger, N. et al., Nephrol. Dial. Transplant. 15:1593-1599, 2000)。微量免疫型NCGN患者128名のウェセックス群においては、73%がANCA陽性であり、患者の59%が初期透析を必要とし、36%が長期透析を必要とした。微量免疫型NCGNの治療は、コルチコステロイドならびにシクロホスファミドおよびアザチオプリンのような免疫抑制剤を含む。ANCA関連血管炎のさらなる治療選択肢はリツキシマブおよび血漿交換を含む(Chen, M. and Kallenberg, C.G.M. Nat. Rev. Rheumatol. 6:653-664, 2010)。
NCGNは微量の補体沈着を特徴とするが、補体の第二経路がその病原における関与を示唆されている。MPO-ANCA関連微量免疫型NCGN患者7名の腎生検材料評価が、膜攻撃複合体、C3d、B因子およびP因子の存在を検出したが(正常な対照または微小変化疾患の患者からの生検材料中には検出されなかった)、一方、C4dおよびマンノース結合レクチンは検出されず、第二経路の選択的活性化を示唆した(Xing, G. Q. et al. J. Clin. Immunol. 29:282-291, 2009)。実験的NCGNは、抗MPO IgGを野生型マウスに移入すること、または抗MPO脾細胞を免疫欠損マウスに移入することによって誘発することができる(Xiao, H. et al. J. Clin. Invest. 110:955-963, 2002)。NCGNのこのマウスモデルにおいては、ノックアウトマウスを使用して特定の補体活性化経路の役割が研究されている。抗MPO IgGの注射後、C4-/-マウスは、野生型マウスに匹敵する腎疾患を発症したが、一方、C5-/-およびB因子-/-マウスは腎疾患を発症せず、第二経路がこのモデルに関与していたが、古典およびレクチン経路は関与していなかったことを示した(Xiao, H. et al. Am. J. Pathol. 170:52-64, 2007)。そのうえ、TNF-αでプライミングされたヒト好中球を有する患者からのMPO-ANCAまたはPR3-ANCA IgGのインキュベーションが、C3aの生成によって検出されるような正常ヒト血清中の補体活性化を生じさせる因子の放出を生じさせた。この効果は、健康な対象からのIgGでは観察されず、好中球および補体活性化におけるANCAの潜在的な病原的役割を示唆した(前記Xiao et al., 2007)。
この状態における第二経路に関して上記に概説した役割に基づくと、第二経路の活性化を遮断することがANCA陽性NCGNの治療において有用性を有すると予想される。病原のためのfB活性化の要件を考慮すると、LEA-1の阻害因子は、この症状を治療し、これらの患者における腎機能のさらなる低下を防ぐのに特に有用であると予想される。
さらに別の患者サブセットが、ANCAの非存在において腎機能の急速な低下を伴う半月体形成を示す進行性腎血管炎を発症する。この形態の状態はANCA陰性NCGNと呼ばれ、微量免疫型NCGNの全患者の約1/3を構成する(Chen et al, JASN 18(2):599-605, 2007)。これらの患者は比較的若い傾向にあり、腎転帰は特に重篤になる傾向にある(Chen et al., Nat Rev Nephrol., 5(6):313-8, 2009)。これらの患者の弁別的な病理学的特徴は腎病変中のMBLおよびC4dの沈着である(Xing et al., J Clin Immunol. 30(1):144-56, 2010)。腎生検材料におけるMBLおよびC4d染色強度は腎機能と負に相関した(前記Xing et al., 2010)。これらの発見は、病原におけるレクチン依存性補体活性化の重要な役割を示唆している。患部組織標本中にB因子ではなくC4dが一般に見いだされるという事実がLEA-2関与を示す。
上記のANCA陰性NCGNにおけるレクチン依存性補体活性化の役割に基づくと、LEA-2経路の活性化を遮断することがANCA陰性NCGNの治療において有用性を有するとが予想される。
上述されたデータは、LEA-1およびLEA-2が、それぞれANCA陽性NCGNおよびANCA陰性NCGNにおいて病理的補体活性化を媒介することを示唆する。したがって、LEA-2遮断物質と組み合わせたLEA-1遮断物質は、基礎にある病因にかかわらず、すべての形態の微量免疫型NCGNの治療に有用性を有すると予想される。したがって、LEA-1遮断物質およびLEA-2遮断物質は、NCGN関連腎機能不全を予防する際、治療する際、または好転させる際に、相補的、付加的、または相乗的効果を有し得る。
LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、微量免疫型壊死性半月体形成性糸球体腎炎に罹患している対象または微量免疫型壊死性半月体形成性糸球体腎炎を発症する危険のある対象に投与する工程を含む、微量免疫型壊死性半月体形成性糸球体腎炎を治療するため、微量免疫型壊死性半月体形成性糸球体腎炎を予防するため、または微量免疫型壊死性半月体形成性糸球体腎炎の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3またはMASP-1/3阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
別の局面において、治療有効量のMASP-2阻害物質を、微量免疫型壊死性半月体形成性糸球体腎炎に罹患している対象または微量免疫型壊死性半月体形成性糸球体腎炎を発症する危険のある対象に投与する工程を含む、微量免疫型壊死性半月体形成性糸球体腎炎を治療するため、微量免疫型壊死性半月体形成性糸球体腎炎を予防するため、または微量免疫型壊死性半月体形成性糸球体腎炎の重篤度を軽減するためにLEA-2依存性補体活性化を阻害する方法が提供される。別の局面において、微量免疫型壊死性半月体形成性糸球体腎炎を治療するため、微量免疫型壊死性半月体形成性糸球体腎炎を予防するため、または微量免疫型壊死性半月体形成性糸球体腎炎の重篤度を軽減するためにLEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、それを必要とする対象に投与する工程を含む方法が提供される。
一部の態様において、方法は、LEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、微量免疫型壊死性半月体形成性糸球体腎炎を治療する際、または微量免疫型壊死性半月体形成性糸球体腎炎を予防する際、または微量免疫型壊死性半月体形成性糸球体腎炎の重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および/またはMASP-2阻害組成物の適用は、微量免疫型壊死性半月体形成性糸球体腎炎を治療するため、微量免疫型壊死性半月体形成性糸球体腎炎を予防するため、または微量免疫型壊死性半月体形成性糸球体腎炎の重篤度を軽減するために、組成物(例えば、MASP-2および/またはMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
XII.外傷性脳障害におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
外傷性脳障害(TBI)は、毎年少なくとも1000万人の死亡または入院をもたらす主要な全世界的健康問題である(Langlois, J.A. et al., J. Head Trauma Rehabil. 21:375-378, 2006)。2003年、米国においては、120万件の救急外来訪問、29万件の入院および51,000件の死亡を含め、推定160万件のTBIがあった(Rutland-Brown, W. et al., J. Head Trauma Rehabil. 21:544-548, 2006)。米国におけるTBIの大多数は転倒および交通事故によって生じる。TBIは長期または一生涯の身体的、認知的、行動的および情動的後遺症をもたらす可能性がある。500万を超える米国人がTBI関連の長期または一生涯の身体障害とともに生きている(前記Langlois et al., 2006)。
TBIは、脳実質の穿通(「穿通性」損傷)または脳を穿通しない損傷(「閉鎖性」損傷)を含み得る。損傷プロファイルおよび関連する神経行動的後遺症は、穿通性TBIと閉鎖性TBIとの間でかなり異なることができる。各損傷が独特であるが、前頭葉および前頭蓋底白質、大脳基底核および間脳、吻側脳幹ならびに海馬を含む側頭葉を含む特定の脳領域が外傷誘発性損傷に対して特に脆弱である(McAllister, T. W. Dialogues Clin. Neurosci. 13:287-300, 2011)。TBIは、神経行動的障害を伴い得る、急性期におけるグルタミン酸および他の興奮性アミノ酸の放出ならびにカテコールアミン作動系およびコリン作動系における慢性的変化を含む、いくつかの神経伝達物質系の変化を招くことができる(前記McAllister, 2011)。重大なTBIからの生存者は、多くの場合、認知障害、人格変化および精神障害の増大、特にうつ、不安、心的外傷後ストレス障害に罹患している。熱心な研究にもかかわらず、死亡率および罹患率を低下させ、かつ機能的転帰を改善することができる、TBIのための臨床的に有効な治療は未だ見いだされていない。
補体因子およびTBI
多くの研究が、補体タンパク質と、アルツハイマー病、多発性硬化症、重症筋無力症、ギラン・バレー症候群、脳ループスおよび卒中を含む神経学的障害との関係を特定している(Wagner, E., et al., Nature Rev Drug Disc. 9:43-56, 2010において概説されている)。最近、シナプス除去におけるC1qおよびC3の役割が実証され、したがって、補体因子が正常なCNS機能および神経変性疾患の両方に関与する可能性が高い(Stevens, B. et al., Cell 131:1164-1178, 2007)。MASP-1およびMASP-3の遺伝子は脳および神経膠腫細胞株T98G中で広く発現し(Kuraya, M. et al., Int Immunol., 15:109-17, 2003)、CNSにおけるレクチン経路の役割と合致している。
MASP-1およびMASP-3は、病原体および変化した自己細胞に対する即座の防御への鍵であるが、レクチン経路はまた、卒中、心臓発作、および他の虚血再灌流障害後の重篤な組織損傷の原因である。同様に、MASP-1およびMASP-3は、TBIによって生じる組織損傷における考えられる媒介物である。2つのマウスモデルにおいて第二経路中のB因子の阻害がTBIを軽減することが示された。B因子ノックアウトマウスは、TBI後の補体媒介性神経炎症および神経病理から保護される(Leinhase I, et al., BMC Neurosci. 7:55, 2006)。加えて、抗B因子抗体が、TBI誘発マウスにおける脳組織損傷および神経細胞死を減少させた(Leinhase I, et al., J Neuroinflammation 4:13, 2007)。MASP-3はB因子を直接活性化し(Iwaki, D. et al., J. Immunol. 187:3751-8, 2011)、したがって、同じくTBIにおける考えられる媒介物である。B因子の阻害と同様に、MASP-3に対する抗体のようなLEA-1阻害因子は、TBIにおける組織損傷および後遺症を治療するための有望な戦略を提供すると予想される。
したがって、LEA-1阻害因子およびLEA-2阻害因子は、TBIにおいて独立した治療上の有益性を有し得る。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断することができる、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、外傷性脳障害に罹患している対象に投与する工程を含む、外傷性脳障害を治療するため、または外傷性脳障害の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3またはMASP-1/3阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
別の局面において、治療有効量のMASP-2阻害物質を、外傷性脳障害に罹患している対象に投与する工程を含む、外傷性脳障害を治療するためまたは外傷性脳障害の重篤度を軽減するためにLEA-2依存性補体活性化を阻害する方法が提供される。別の局面において、外傷性脳障害を治療するためまたはその重篤度を軽減するためにLEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、外傷性脳障害に罹患している対象に投与する工程を含む方法が提供される。
一部の態様において、方法は、LEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、外傷性脳障害を治療する際、または外傷性脳障害の重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および/またはMASP-2阻害組成物の適用は、外傷性脳障害を治療するため、または外傷性脳障害の重篤度を軽減するために、組成物(例えば、MASP-2および/またはMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
XIII. 誤嚥性肺炎におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
誤嚥とは、口咽頭または胃いずれかの内容物の下気道への吸入と定義される。誤嚥は、誤嚥性(化学性)肺炎、原発性細菌性誤嚥性肺炎または化学性肺炎の続発性細菌感染の合併症を生じさせ得る。誤嚥の危険因子は、意識レベルの低下(例えば、頭部外傷、感覚中枢におけるアルコールまたは薬物誘発性の変化、卒中)、様々な胃腸および食道の異常ならびに神経筋疾患を含む。450万の市中肺炎症例の5〜15%が誤嚥性肺炎によるものであると推定される(Marik, P.E. New Engl. J. Med. 344:665-671, 2001)。化学性肺炎の治療は主として支持的であり、経験的抗生物質使用は議論の余地がある。細菌性誤嚥性肺炎の治療は、適切な抗生物質による治療であり、細菌性誤嚥性肺炎の治療は、誤嚥が市中で起こったのかまたは院内で起こったのかに基づき、というのはこれらの状況の間では考えられる原因生物が異なるからである。高リスク患者、例えば咽頭反射障害を有する介護施設中の高齢患者における誤嚥を防ぐための措置が講じられるべきである。有効な予防法であることが示されている措置は、摂食中にベッドの頭部を高くすること、歯科予防および良好な口腔衛生を含む。予防的抗生物質は有効性が示されておらず、耐性菌の出現を招き得ることから、推奨されない。
補体成分のモジュレーションが、感染症-敗血症、ウイルス、細菌、および真菌感染、ならびに、肺状態-呼吸窮迫症候群、慢性閉塞性肺疾患、および嚢胞性線維症を含む多数の臨床適応のために提案されている(Wagner, E., et al., Nature Rev Drug Disc. 9:43-56, 2010において概説されている)。この提案の裏付けが数多くの臨床的および遺伝的研究によって提供されている。例えば、低いMBLレベルの患者には臨床結核の頻度の有意な低下が見られ(Soborg et al., Journal of Infectious Diseases 188:777-82, 2003)、低いMBLレベルが疾患からの保護と関連することを示唆する。
Weiser MRら、J. Appl. Physiol. 83(4):1090-1095, 1997は、酸誤嚥傷害のマウスモデルにおいて、C3ノックアウトマウスが深刻な傷害から保護されるが、一方、C4ノックアウトマウスは保護されないことを実証して、補体の活性化が第二経路によって媒介されることを示した。その結果、LEA-1阻害因子によって第二代替経路を遮断することが、誤嚥性肺炎において治療上の有益性を提供すると予想される。
したがって、LEA-1阻害因子およびLEA-2阻害因子は、誤嚥性肺炎において独立した治療上の有益性を有し得る。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えばMASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断する、二重特異性の抗体に包含され得る。
したがって、本発明の局面は、治療有効量のMASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを薬学的担体中に含む組成物を、そのような状態または他の補体媒介性肺炎に罹患している対象に投与する工程により、誤嚥性肺炎を治療するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3、またはMASP-1/3阻害組成物は、吸入器などによって肺に局所投与され得る。あるいは、MASP-1、MASP-3、またはMASP-1/3阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与または潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、誤嚥性肺炎に罹患している対象または誤嚥性肺炎を発症する危険のある対象に投与する工程を含む、誤嚥性肺炎を治療するため、誤嚥性肺炎を予防するため、または誤嚥性肺炎の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3またはMASP-1/3阻害組成物は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
別の局面において、治療有効量のMASP-2阻害物質を、誤嚥性肺炎に罹患している対象または誤嚥性肺炎を発症する危険のある対象に投与する工程を含む、誤嚥性肺炎を治療するため、誤嚥性肺炎を予防するため、または誤嚥性肺炎の重篤度を軽減するためにLEA-2依存性補体活性化を阻害する方法が提供される。別の局面において、誤嚥性肺炎を治療するためまたは誤嚥性肺炎の重篤度を軽減するためにLEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、誤嚥性肺炎に罹患している対象に投与する工程を含む方法が提供される。一部の態様において、方法は、LEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、誤嚥性肺炎を治療する際、または誤嚥性肺炎の重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および/またはMASP-2阻害組成物の適用は、それを必要とする対象における誤嚥性肺炎を治療するため、誤嚥性肺炎を予防するため、または誤嚥性肺炎の重篤度を軽減するために、組成物(例えば、MASP-2および/またはMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
XIV. 眼内炎におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
眼内炎は、眼窩洞の炎症状態であり、通常、感染によって生じる。眼内炎は、遠い感染源(例えば心内膜炎)からの生物の血行性伝播から生じる内因性眼内炎でもあり得るし、または眼科手術、異物および/もしくは鈍的もしくは穿通性眼部外傷の合併症として外部からの生物の直接接種から生じる外因性眼内炎でもあり得る。外因性眼内炎は内因性眼内炎よりもはるかに一般的であり、外因性眼内炎の大部分の症例は眼科手術ののち起こる。米国においては、白内障手術が眼内炎の主要な原因であり、この処置の0.1〜0.3%において発生し、過去10年間、発生率の明らかな増加が見られる(Taban, M. et al., Arch. Ophthalmol. 123:613-620, 2005)。術後眼内炎は、手術から2週以内に急性に出る場合もあるし、または手術から数ヶ月後に遅発的に出る場合もある。急性眼内炎は一般に痛み、発赤、眼瞼の腫れおよび視力低下を呈する。遅発性眼内炎は急性型ほど一般的ではなく、患者は軽度の痛みおよびまぶしさしか訴えない場合もある。眼内炎の治療は、基礎にある原因に依存し、全身的および/または硝子体内抗生物質を含み得る。眼内炎は視力低下または失明を招く場合もある。
AMDに関して先に記載したように、複数の補体経路遺伝子が眼科障害と関連しており、これらの遺伝子は具体的にはレクチン経路の遺伝子を含む。例えば、MBL2がAMDのサブタイプで同定されている(Dinu V, et al., Genet Epidemiol 31:224-37, 2007)。LEA-1およびLEA-2経路は眼内炎のような眼の炎症状態に関与している可能性が高い(Chow SP et al., Clin Experiment Ophthalmol. 39:871-7, 2011)。Chowらは、眼内炎患者のMBLレベルを検査し、MBLレベルおよび機能的レクチン経路活性の両方が、炎症のある人の眼において有意に上昇するが、炎症のない対照眼においては実質的に検出不可能であることを実証した。これは、視力を脅かす眼の炎症状態、特に眼内炎におけるMBLおよびレクチン経路の役割を示唆する。さらに、真菌性角膜炎のマウスモデルにおいて、MBL-A遺伝子が、5つの上方制御される炎症経路遺伝子の1つであった(Wang Y., et al., Mol Vis 13:1226-33, 2007)。
したがって、LEA-1阻害因子およびLEA-2阻害因子は、眼内炎治療において独立した治療上の有益性を有すると予想される。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断する、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、眼内炎に罹患している対象、または眼内炎を発症する危険のある対象に投与する工程を含む、眼内炎を治療するため、眼内炎を予防するため、または眼内炎の重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3、またはMASP-1/3阻害組成物は、局所ゲル、軟膏、もしくはドロップの形態にある組成物の灌注もしくは適用または硝子体内投与などによって眼に局所投与され得る。または、MASP-1、MASP-3またはMASP-1/3阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
別の局面において、治療有効量のMASP-2阻害物質を、眼内炎に罹患している対象または眼内炎を発症する危険のある対象に投与する工程を含む、眼内炎を治療するため、眼内炎を予防するため、または眼内炎の重篤度を軽減するためにLEA-2依存性補体活性化を阻害する方法が提供される。別の局面において、眼内炎を治療するためまたは眼内炎の重篤度を軽減するためにLEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、眼内炎に罹患している対象に投与する工程を含む方法が提供される。
一部の態様において、方法は、LEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、眼内炎を治療する際、または眼内炎を予防する際、または眼内炎の重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、一方、第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害組成物は、局所ゲル、軟膏もしくはドロップの形態にある組成物の灌注もしくは適用または硝子体内投与などによって眼に局所投与され得る。または、MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および/またはMASP-2阻害組成物の適用は、それを必要とする対象における眼内炎を治療するため、眼内炎を予防するため、または眼内炎の重篤度を軽減するために、組成物(例えば、MASP-2および/またはMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
XV. 視神経脊髄炎におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
視神経脊髄炎(NMO)は、視神経および脊髄を標的化する自己免疫疾患である。これは、視神経炎として知られる視神経の炎症および脊髄炎として知られる脊髄の炎症をもたらす。NMOにおける脊髄病変は、脚または腕の衰弱または麻痺、失明、膀胱および腸の機能不全ならびに感覚機能不全を招き得る。
NMOは多発性硬化症(MS)といくつかの類似点を共有する。理由は、いずれもCNS標的の免疫攻撃によるものであり、いずれも結果的に脱髄を生じさせるからである(Papadopoulos and Verkman, Lancet Neurol., 11(6):535-44, 2013)。しかし、NMOの分子標的、治療および病変はMSのそれらとは異なる。MSは主にT細胞によって媒介されるが、NMO患者は一般に、血液脳関門を包囲する星状細胞中に見られるタンパク質である水チャネルタンパク質アクアポリン4(AQP4)を標的化する抗体を有する。インターフェロンベータがMSに最も一般的に使用される治療法であるが、NMOにおいては有害であることが概して認められている。NMOの炎症病変は脊髄および視神経に見られ、白質および白灰質を含む脳に進行し得る。NMO病変において起こる脱髄は補体によって媒介される(Papadopoulos and Verkman, Lancet Neurol., 11(6):535-44, 2013)。
補体依存性細胞毒性が、NMO発症を生じさせる主要な機序であると考えられる。NMO患者の90%超がAQP4に対するIgG抗体を有する(Jarius and Wildemann, Jarius S, Wildemann B., Nat Rev Neurol. 2010 Jul;6(7):383-92)。これらの抗体は血液脳関門における病変の形成を開始させる。星状細胞表面上の初期抗原-抗体複合体、AQP4/AQP4-IgGが補体の古典経路を活性化する。これが、星状細胞表面上の膜攻撃複合体の形成を生じさせ、顆粒球浸潤、脱髄ならびに最終的には星状細胞、乏突起膠細胞および神経細胞の壊死を招く(Misu et al., Acta Neuropathol 125(6):815-27, 2013)。これらの細胞事象は組織破壊および嚢胞性壊死性病変の形成に反映される。
補体の古典経路がNMO病原に決定的であることは明らかである。NMO病変は、免疫グロブリンの血管中心性沈着および活性化された補体成分を示す(Jarius et al., Nat Clin Pract Neurol. 4(4):202-14, 2008)。加えて、C5aのような補体タンパク質がNMO患者の脳脊髄液から単離されている(Kuroda et al., J. Neuroimmunol., 254(1-2):178-82, 2013)。さらに、NMO患者から採取された血清IgGは、マウスNMOモデルにおいて補体依存性細胞毒性を生じさせることができる(Saadoun et al., Brain, 133(Pt 2):349-61, 2010)。C1qに対するモノクローナル抗体がNMOのマウスモデルにおいて補体媒介性星状細胞破壊および病変を防ぐ(Phuan et al., Acta Neuropathol, 125(6):829-40, 2013)。
補体の第二経路は、全体的補体活性を増幅させるように働く。Harboeら(2004)は、第二経路の選択的遮断が、古典経路によって誘発される膜攻撃複合体形成の80%超を阻害することを実証した(Harboe et al., Clin Exp Immunol 138(3):439-46, 2004)。Tuzunら(2013)はNMO患者において古典経路産物および第二経路産物の両方を検査した(Tuzun E, et al., J. Neuroimmunol. 233(1-2):211-5, 2011)。古典経路活性を評価するためにC4の分解産物C4dを測定すると、対照に比べてNMO患者血清中で増加していた(2.14倍増)。加えて、第二経路B因子の分解産物Bb因子の増加が、MS患者または正常な対照個体に比べてNMO患者において認められた(1.33倍増)。これは、第二経路機能がNMOにおいても増大することを示唆する。この活性化は、全体的補体活性化を増大させると予想され、事実、補体カスケードの最終産物sC5b-9が有意に増加した(4.14倍増)。
MASP-3の特異的阻害因子は、NMOに罹患している患者の治療において有益性を提供すると予想される。実施例17および18に実証されるように、MASP-3を欠く血清は、C5コンバターゼの必須成分であるB因子または第二経路の中心的アクチベーターであるD因子を活性化することができない。したがって、抗体または小分子のような阻害物質によってMASP-3活性を遮断することはまた、B因子およびD因子の活性化を阻害すると予想されよう。これら2つの因子の阻害は、第二経路の増幅を阻止して、結果として全体的補体活性の低下を生じさせる。したがって、MASP-3阻害はNMOにおける治療転帰を有意に改善するはずである。
したがって、LEA-1阻害因子および/またはLEA-2阻害因子は、NMOの治療において独立した治療上の有益性を有すると予想される。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断する、二重特異性の抗体に包含され得る。
このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、NMOに罹患している対象またはNMOを発症する危険のある対象に投与する工程を含む、NMOを治療するため、NMOを予防するため、またはNMOの重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3、またはMASP-1/3阻害組成物は、局所ゲル、軟膏もしくはドロップの形態にある組成物の灌注もしくは適用または硝子体内投与などによって眼に局所投与され得る。または、MASP-1、MASP-、3またはMASP-1/3阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
別の局面において、治療有効量のMASP-2阻害物質を、NMOに罹患している対象またはNMOを発症する危険のある対象に投与する工程を含む、NMOを治療するため、NMOを予防するため、またはNMOの重篤度を軽減するためにLEA-2依存性補体活性化を阻害する方法が提供される。別の局面において、NMOを治療するためまたはNMOの重篤度を軽減するためにLEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含み、治療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、NMOに罹患している対象に投与する工程を含むむ方法が提供される。
一部の態様において、方法は、LEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、NMOを治療する際、またはNMOを予防する際、またはNMOの重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害組成物は、局所ゲル、軟膏もしくはドロップの形態にある組成物の灌注もしくは適用または硝子体内注射などによって眼に局所投与され得る。または、MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および/またはMASP-2阻害組成物の適用は、それを必要とする対象におけるNMOを治療するため、NMOを予防するため、またはNMOの重篤度を軽減するために、組成物(例えば、MASP-2および/またはMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
XVI. ベーチェット病におけるMASP-2およびMASP-3の役割ならびにMASP-2およびMASP-3阻害物質を使用する治療法
ベーチェット病またはベーチェット症候群は、しばしば粘膜潰瘍および眼の障害を呈する稀な免疫媒介性小血管全身性血管炎である。ベーチェット病(BD)は、再発性口腔潰瘍、性器潰瘍およびブドウ膜炎の三症候複合体を最初に記載したトルコ人皮膚科医Hulusi Behcetの名をとって1937年に命名された。BDは原因不明の全身性再発性炎症障害である。BDの炎症性血管周囲炎は、胃腸管系、肺系、筋骨格系、心血管系および神経系を巻き込み得る。BDは、血管動脈瘤の破裂または重篤な神経学的合併症のせいで致命的になる可能性がある。視神経に血液を供給する血管の血管炎および閉塞から視神経症および萎縮が生じる場合もある。Al-Araji A, et al., Lancet Neurol., 8(2):192-204, 2009を参照されたい。
BDの最高発生率は中東および極東地域であり、ヨーロッパおよび北米においては稀である。BDは、多くの場合、はじめにコルチコステロイドおよび免疫抑制剤を使用して抑制されるが、多くの場合、難治性であり、深刻な罹患率および死亡率を伴う。インターフェロンアルファ、IVIG、抗TNF、抗IL-6および抗CD20を含む生物学的剤が場合によっては有益性を示しているが、最良の治療に関する意見の一致はない。
BDは明らかに炎症性障害であるが、その病理生物学は明らかではない。HLA抗原との遺伝的関連があり、全ゲノム的な関連研究が数多くのサイトカイン遺伝子の関与を示唆している(Kirino et al., Nat Genet, 45(2):202-7, 2013)。免疫系の機能亢進が補体系によって調節されると考えられる。C3レベルの増加がBD患者の血清中で認められ(Bardak and Aridogan, Ocul Immunol Inflamm 12(1):53-8, 2004)、脳脊髄液中のC3およびC4の上昇が疾患と相関する(Jongen et al., Arch Neurol, 49(10):1075-8, 1992)。
Tuzunら(2013)は、BD患者の血清中の古典経路産物および第二経路産物の両方を検査した(Tuzun E, et al., J Neuroimmunol, 233(1-2):211-5, 2011)。C4の分解産物4dが第二経路よりも上流で生成され、それを測定して初期古典経路活性を評価した。C4dは、対照に比べて、BD患者の血清中で増加していた(2.18倍増)。Bb因子はB因子の分解産物であり、それを測定して第二経路活性を測定した。BD患者は、正常対照個体と比較してBb因子の増加を示し(2.19倍増)、BD第二経路機能の増大と合致していた。補体の第二経路は全体的補体活性を増幅するように働くため、この活性化は、全体的補体活性化を増大させると予想されよう。Harboeら(2004)は、第二経路の選択的遮断が、古典経路によって誘発される膜攻撃複合体形成の80%超を阻害することを実証した(Harboe M, et al., Clin Exp Immunol, 138(3):439-46, 2004)。事実、補体カスケードの最終産物sC5b-9はBD患者において有意に増加した(5.46倍増)。MASP-3の特異的阻害因子がBDにおいて有益性を提供するはずである。MASP-3を遮断することはB因子およびD因子の活性化を阻害するはずである。これは、第二経路の増幅を停止させて、結果として全体的補体活性の応答低下を生じさせる。したがって、MASP-3阻害はBDにおける治療転帰を有意に改善するはずである。したがって、LEA-1阻害因子および/またはLEA-2阻害因子は、BDの治療において独立した治療上の有益性を有すると予想される。加えて、LEA-1阻害因子およびLEA-2阻害因子は、併用されると、いずれか単独の場合に比べて、さらなる治療上の有益性を達成し得るか、またはより広い範囲の患者サブセットに有効な治療を提供し得る。組み合わせLEA-1およびLEA-2阻害は、LEA-1遮断物質およびLEA-2遮断物質の同時投与によって達成され得る。最適には、LEA-1阻害機能およびLEA-2阻害機能は、単一の分子実体に、例えば、MASP-1/3およびMASP-2特異的結合部位で構成された二重特異性抗体、または、各結合部位がMASP-1/3もしくはMASP-2に結合してそれを遮断する、二重特異性の抗体に包含され得る。このように、前記に従って、本発明の局面は、MASP-1阻害物質、MASP-3阻害物質、またはMASP-1/3阻害物質の組み合わせを含む治療有効量のLEA-1阻害物質を薬学的担体中に含む組成物を、BDに罹患している対象またはBDを発症する危険のある対象に投与する工程を含む、BDを治療するため、BDを予防するため、またはBDの重篤度を軽減するためにLEA-1依存性補体活性化を阻害する方法を提供する。MASP-1、MASP-3、またはMASP-1/3阻害組成物は、局所ゲル、軟膏、もしくはドロップの形態にある組成物の灌注もしくは適用または硝子体内投与などによって眼に局所投与され得る。または、MASP-1、MASP-3、またはMASP-1/3阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下、もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。別の局面において、治療有効量のMASP-2阻害物質を、BDに罹患している対象またはBDを発症する危険のある対象に投与する工程を含む、BDを治療するため、BDを予防するため、またはBDの重篤度を軽減するためにLEA-2依存性補体活性化を阻害する方法が提供される。別の局面において、治BDを治療するためまたはその重篤度を軽減するためにLEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含み、療有効量のMASP-2阻害物質およびMASP-1、MASP-3、またはMASP-1/3阻害物質を、BDに罹患している対象に投与する工程を含む方法が提供される。
一部の態様において、方法は、LEA-1依存性補体活性化およびLEA-2依存性補体活性化の両方を阻害する工程を含む。上述したように、個々にLEA-1およびLEA-2を遮断する薬理学的物質の組み合わせの使用は、LEA-1単独の阻害に比べて、BDを治療する際、またはBDを予防する際、またはBDの重篤度を軽減する際に、改善された治療転帰を提供すると予想される。この転帰は、例えば、LEA-1遮断活性を有する抗体と、LEA-2遮断活性を有する抗体との同時投与によって達成することができる。一部の態様において、LEA-1遮断活性およびLEA-2遮断活性が単一の分子実体に組み合わされ、そのような実体は組み合わせLEA-1およびLEA-2遮断活性を有する。そのような実体は、1つの抗原結合部位がMASP-1を特異的に認識し、かつLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性抗体を含み得るか、またはそれからなり得る。または、そのような実体は、1つの抗原結合部位がMASP-3を特異的に認識し、ひいてはLEA-1を遮断し、および第二の抗原結合部位がMASP-2を特異的に認識し、かつLEA-2を遮断する二重特異性モノクローナル抗体からなり得る。そのような実体は、最適には、1つの抗原結合部位がMASP-1およびMASP-3の両方を特異的に認識し、ひいてはLEA-1を遮断し、第二の抗原結合部位がMASP-2を特異的に認識し、LEA-2を遮断する二重特異性モノクローナル抗体からなり得る。
MASP-2阻害物質は、局所ゲル、軟膏もしくはドロップの形態にある組成物の灌注もしくは適用または硝子体内注射などによって眼に局所投与され得る。または、MASP-2阻害物質は、全身的に、例えば動脈内、静脈内、筋肉内、吸入、経鼻、皮下もしくは他の非経口投与によって、または非ペプチド作動性物質の場合には潜在的に経口投与によって対象に投与され得る。投与は、状態が解消するかまたは抑制されるまで、医師による決定に従って繰り返され得る。
本発明のMASP-3阻害組成物および/またはMASP-2阻害組成物の適用は、それを必要とする対象におけるBDを治療するため、BDを予防するため、またはBDの重篤度を軽減するために、組成物(例えば、MASP-2および/またはMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、それを必要とする対象の治療のために、長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回または2か月に1回のような定期的間隔で投与されてもよい。
XVII. MASP阻害物質
補体のレクチン経路が2つの主要な補体活性化アームLEA-1およびLEA-2で構成され、また、レクチン非依存性補体活性化アームがあるという認識をもって、補体の免疫防御能力を完全に停止させることなく(すなわち、古典経路をインタクトなままにしておく)、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、および血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、またはベーチェット病の少なくとも1つと関連する病態を生じさせるこれらのエフェクターアームの1つまたは複数を特異的に阻害することが非常に望ましいということが理解されよう。これは、免疫複合体処置を取り扱い、かつ感染に対する宿主防御を支援するために、C1q依存性補体活性化系をインタクトなままにしておくと考えられる。
i. LEA-1媒介性補体活性化を阻害するための組成物
本明細書に記載されるように、本発明者らは、溶解を生じさせるLEA-1の活性化がMASP-3依存性であることを予想外に発見した。本明細書にさらに記載されるように、生理学的条件下、MASP-3依存性LEA-1活性化はオプソニン化にも寄与し、それにより、LEA-2媒介性補体活性化との付加的効果を提供する。実施例7に実証されるように、Ca++の存在においては、MASP-3がD因子-/-血清中でLEA-1の活性化を駆動することができるため、D因子は必要とされない。MASP-3、MASP-1およびHTRA-1は、プロD因子を活性D因子へと転換することができる。同様に、MASP-3(MASP-1およびMASP-2とは対照的に)は、自己活性化酵素ではなく、MASP-1の支援なしにはその活性形態へと転換されることができないため、MASP-3活性化は、多くの場合、MASP-1に依存すると考えられる(Zundel, S. et al., J. Immunol. 172:4342-4350 (2004); Megyeri et al., J. Biol. Chem. 288:8922-8934 (2013)。MASP-3は自己活性化せず、多くの場合、MASP-1の活性がその酵素的に活性な形態へと転換されることを必要とするため、第二経路C3コンバターゼC3BbのMASP-3媒介性活性化は、MASP-3酵素前駆体もしくはすでに活性化されたMASP-3を標的化すること、またはMASP-3のMASP-1媒介性活性化を標的化すること、またはその両方により、阻害することができる。理由は、多くの場合、MASP-1機能活性の非存在においては、MASP-3はその酵素前駆体形態にとどまり、第二経路C3コンバターゼ(C3bBb)の直接形成を通してLEA-1を駆動することができないからである。
したがって、本発明の一局面において、LEA-1を特異的に阻害するための治療剤の開発において標的化するのに好ましいタンパク質成分はMASP-3の阻害因子(MASP-1媒介性MASP-3活性化の阻害因子(例えばMASP-3活性化を阻害するMASP-1阻害因子)を含む)である。
前記に従って、一局面において、本発明は、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、および血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患もしくは障害に罹患している対象または該疾患もしくは該障害を発症する危険のある対象においてLEA-1の有害作用(すなわち溶血およびオプソニン化)を阻害する方法であって、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-3阻害物質と、薬学的に許容される担体とを含む薬学的組成物を該対象に投与する工程を含む、方法を提供する。
MASP-3阻害物質は、以下に罹患している対象または以下を発症する危険のある生きている対象においてMASP-3依存性補体活性化を阻害するのに有効な量で投与される:発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、またはベーチェット病。本発明のこの局面の実施において、代表的なMASP-3阻害物質としては、B因子のレクチンMASP-3依存性活性化、プロD因子のレクチンMASP-3依存性活性化、B因子のMASP-3依存性レクチン非依存性活性化およびプロD因子のMASP-3依存性レクチン非依存性活性化の少なくとも1つまたは複数を阻害する分子(例えば小分子阻害因子、MASP-3抗体およびその断片、または、MASP-3と相互作用するかまたはタンパク質-タンパク質相互作用を妨害する遮断性ペプチド)ならびにMASP-3の発現を低下させる分子(例えばMASP-3アンチセンス核酸分子、MASP-3特異性RNAi分子、およびMASP-3リボザイム)を含む、MASP-3の生物学的活性を阻害する分子が挙げられる。MASP-3阻害物質は、MASP-3タンパク質-タンパク質相互作用を効果的に遮断し、MASP-3二量体化またはアセンブリを妨害し、Ca++結合を阻止し、MASP-3セリンプロテアーゼ活性部位を妨害し、またはMASP-3タンパク質発現を低下させて、それによりMASP-3がLEA-1媒介性またはレクチン非依存性補体活性化を活性化することを防ぎ得る。MASP-3阻害物質は、一次療法として単独で使用することもできるし、または本明細書にさらに記載されるように、他の医学的治療の治療有益性を高めるために、他の治療と組み合わせて補助療法として使用することもできる。
一態様において、MASP-3阻害物質は、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-3(SEQ ID NO:8)の一部に特異的に結合する。別の態様において、MASP-3阻害物質は、補体系中の他の成分に対する場合よりも少なくとも100倍大きい結合親和性でMASP-3(SEQ ID NO:8)の一部に特異的に結合する。一態様において、MASP-3阻害物質は、MASP-3のセリンプロテアーゼドメイン(SEQ ID NO:8のaa450〜711)に特異的に結合し、かつMASP-3依存性補体活性化を阻害するが、ただし、MASP-3阻害物質は、MASP-1(SEQ ID NO:10)のセリンプロテアーゼドメインに結合せず、MASP-2(SEQ ID NO:5)のセリンプロテアーゼドメインにも結合しない。一態様において、MASP-3阻害物質は、MASP-3モノクローナル抗体またはその断片であり、その断片はMASP-3に特異的に結合する。
別の態様において、MASP-3阻害物質は、補体系中の他の成分に対する場合よりも少なくとも10倍大きい結合親和性でMASP-1(SEQ ID NO:10)の一部に特異的に結合し、かつ、MASP-3のMASP-1媒介性活性化を阻害する。別の態様において、MASP-3阻害物質は、補体系中の他の成分(すなわち、ポリペプチドまたはその断片)に対する場合よりも少なくとも100倍大きい結合親和性でMASP-1(SEQ ID NO:10)の一部に特異的に結合し、かつ、MASP-3のMASP-1媒介性活性化を阻害する。一部の態様において、MASP-3阻害物質は、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に特異的に結合し、かつ、MASP-3のMASP-1媒介性活性化を阻害する。ただし、この阻害物質は、MASP-2(SEQ ID NO:5)のセリンプロテアーゼドメインに結合せず、これはMASP-3(SEQ ID NO:8)のセリンプロテアーゼドメインに結合しない。一態様において、MASP-3阻害物質は、MASP-1モノクローナル抗体またはその断片であり、その断片はMASP-1に特異的に結合し、かつ、MASP-3のMASP-1媒介性活性化を阻害する。一部の態様において、MASP-1に結合するMASP-3阻害物質は、MASP-3のMASP-1媒介性活性化を阻害し、かつ、D因子のMASP-1媒介性成熟をさらに阻害する。
別の態様において、MASP-3阻害物質は、MASP-3(SEQ ID NO:8)の一部に結合し、かつMASP-1(SEQ ID NO:10)の一部にも結合する。ただし、この阻害物質は、MASP-2(SEQ ID NO:5)またはMAp19(SEQ ID NO:3)には結合しない。一態様において、MASP-3阻害物質は、MASP-3(SEQ ID NO:8)の一部に結合し、かつMASP-1(SEQ ID NO:10)の一部にも結合する。ただし、この阻害物質は、MASP-2(SEQ ID NO:5)またはMAp19(SEQ ID NO:3)には結合しない。一態様において、MASP-3阻害物質は、MASP-3(SEQ ID NO:8)の一部に結合し、かつMASP-1(SEQ ID NO:10)の一部にも結合する。ただし、MASP-2(SEQ ID NO:5)、MAp19(SEQ ID NO:3)またはMAp44(SEQ ID NO:11)には結合せず、それにより、ヒト血清中に高濃度で存在するMAp44への結合の欠如のせいで、MASP-3依存性補体活性化を阻害するための有効用量を低下させることができる。
一態様において、MASP-3阻害物質は、図3〜5に示すような、MASP-1とMASP-3との間で保存されているアミノ酸領域、例えばCUBI-CCP2ドメイン(SEQ ID NO:10のaa25〜432)内のエピトープに結合するMASP-1/MASP-3二重阻害物質である。一態様において、MASP-3阻害物質は、MASP-1とMASP-3との間で保存されているアミノ酸領域内のエピトープに結合するが、ただし、MAp44、例えばCCPドメイン(SEQ ID NO:10のaa367〜432)には結合しない、MASP-1/MASP-3二重阻害物質である。別の態様において、MASP-3阻害物質は、MASP-3タンパク質(SEQ ID NO:8)上のエピトープおよびMASP-1タンパク質(SEQ ID NO:10)上のエピトープに特異的に結合する二重特異性阻害物質、例えば二重特異性モノクローナル抗体である。一部の態様において、MASP-3阻害物質は二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体は、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、かつMASP-3のセリンプロテアーゼ中のドメイン(SEQ ID NO:8のaa450〜711)にも結合する。
MASP-3阻害物質の結合親和性は、適切な結合アッセイ法を使用して測定することができる。
MASP-3依存性補体活性化の阻害は、本発明の方法によるMASP-3阻害物質の投与の結果として起こる補体系の成分における以下の変化の少なくとも1つを特徴とする:LEA-1媒介性補体活性化の阻害(溶血および/またはオプソニン化の阻害);B因子のレクチン非依存性転換の阻害;D因子のレクチン非依存性転換の阻害、MASP-3セリンプロテアーゼ基質特異性切断の阻害、溶血の減少(例えば実施例5に記載されるように測定)またはC3切断およびC3b沈着の減少(例えば実施例4および11に記載されるように測定)。
一部の態様において、MASP-3阻害物質はMASP-3依存性補体活性化(すなわち、LEA-1媒介性補体活性および/またはB因子のレクチン非依存性転換および/またはD因子のレクチン非依存性転換)を選択的に阻害して、C1q依存性補体活性化系を機能的にインタクトな状態のままにしておく。
一部の態様において、MASP-3阻害物質は、抗体またはその断片、例えばMASP-3抗体およびそのMASP-3結合断片、MASP-1抗体およびその断片、天然および合成ペプチドまたは小分子である。一部の態様において、MASP-3阻害物質は、MASP-1に関して選択的またはMASP-3に関して選択的またはMASP-1およびMASP-3に関して選択的である小分子プロテアーゼ阻害因子である。
ii. LEA-2の活性化を阻害するための組成物
本明細書に記載されるように、LEA-2媒介性補体活性化はMASP-2依存性であり、オプソニン化および/または溶解を生じさせる。したがって、LEA-2レクチン依存性補体系を特異的に阻害するための治療剤の開発において標的化するのに好ましいタンパク質成分はMASP-2である。いくつかのタンパク質が、タンパク質-タンパク質相互作用を介してMASP-2に結合またはMASP-2と相互作用することが示されている。例えば、MASP-2は、レクチンタンパク質MBL、H-フィコリンおよびL-フィコリンならびにコレクチン-11に結合し、それらと一緒にカルシウム依存性複合体を形成することが知られている。Ma Y., et al., J Innate Immun. Epub Dec. 4 (2012)。各MASP-2/レクチン複合体は、タンパク質C4およびC2のMASP-2依存性切断によって補体を活性化することが示されている(Ikeda, K., et al., J. Biol. Chem. 262:7451-7454, (1987); Matsushita, M., et al., J. Exp. Med. 176:1497-2284, (2000); Matsushita, M., et al., J. Immunol. 168:3502-3506, (2002))。研究は、MASP-2のCUB1-EGFドメインがMBLとのMASP-2の関連に不可欠であることを示している(Thielens, N. M., et al., J. Immunol. 166:5068, (2001))。また、CUB1EGFCUBIIドメインが、活性MBL複合体の形成に必要であるMASP-2の二量体化を媒介することが示されている(Wallis, R., et al., J. Biol. Chem. 275:30962-30969, 2000)。したがって、MASP-2依存性補体活性化にとって重要であることが知られているMASP-2標的領域に結合するかまたはそれを妨害するMASP-2阻害物質を同定することができる。
前記に従って、一局面において、本発明は、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患もしくは障害に罹患している対象または該疾患もしくは該障害を発症する危険のある対象においてLEA-2媒介性補体活性化の有害作用を阻害する方法であって、MASP-2依存性補体活性化を阻害するのに有効な量のMASP-2阻害物質と、薬学的に許容される担体とを含む薬学的組成物を該対象に投与する工程を含む、方法を提供する。
一部の態様において、本発明は、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患もしくは障害に罹患している対象または該疾患もしくは該障害を発症する危険のある対象においてLEA-2媒介補体活性化の有害作用を阻害する方法であって、MASP-2依存性補体活性化を阻害するのに有効な量のMASP-2阻害物質と、薬学的に許容される担体とを含む薬学的組成物を該対象に投与する工程を含む、方法を提供する。MASP-2阻害物質は、以下に罹患している対象または以下を発症する危険のある生きている対象においてMASP-2依存性LEA-2を阻害するのに有効な量で投与される:PNH、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、またはベーチェット病。本発明のこの局面の実施において、代表的なMASP-2阻害物質としては、MASP-2の生物学的活性を阻害する分子(例えば小分子阻害因子、MASP-2抗体、またはMASP-2と相互作用するかもしくはタンパク質-タンパク質相互作用を妨害する遮断性ペプチド)およびMASP-2の発現を低下させ、それにより、MASP-2がLEA-2を活性化することを防ぐ分子(例えばMASP-2アンチセンス核酸分子、MASP-2特異性RNAi分子、およびMASP-2リボザイム)が挙げられる。
MASP-2阻害物質は、MASP-2タンパク質-タンパク質相互作用を効果的に遮断し、MASP-2二量体化またはアセンブリを妨害し、Ca++結合を阻止し、MASP-2セリンプロテアーゼ活性部位を妨害し得るか、またはMASP-2タンパク質発現を低下させ得て、それによりMASP-2がLEA-2を活性化することを防ぎ得る。MASP-2阻害物質は、一次療法として単独で使用することもできるし、または本明細書にさらに記載されるように、他の医学的治療の治療有益性を高めるために、他の治療と組み合わせて補助療法として使用することもできる。
一態様において、MASP-2阻害物質は、補体系中の他の抗原に対する場合よりも少なくとも10倍大きい結合親和性でMASP-2(SEQ ID NO:5)の一部に特異的に結合する。別の態様において、MASP-2阻害物質は、補体系中の他の抗原に対する場合よりも少なくとも100倍大きい結合親和性でMASP-2(SEQ ID NO:5)の一部に特異的に結合する。一態様において、MASP-2阻害物質は、(i)CCP1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)またはMASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)の少なくとも1つに特異的に結合し、かつMASP-2依存性補体活性化を阻害する。ただし、該阻害物質は、MASP-1(SEQ ID NO:10)のセリンプロテアーゼドメインには結合せず、MASP-3(SEQ ID NO:8)のセリンプロテアーゼドメインに結合しない。一態様において、MASP-2阻害物質は、MASP-2モノクローナル抗体またはその断片であり、その断片はMASP-2に特異的に結合する。
MASP-2阻害物質の結合親和性は、適切な結合アッセイ法を使用して測定することができる。
MASP-2依存性補体活性化の阻害は、本発明の方法によるMASP-2阻害物質の投与の結果として起こる補体系の成分における以下の変化の少なくとも1つを特徴とする:MASP-2依存性補体活性化系産物C4b、C3a、C5aおよび/またはC5b-9(MAC)の生成または産生の阻害(例えば米国特許第7,919,094号の実施例2に記載されているように測定)、C4切断およびC4b沈着の減少(例えば実施例8または実施例9に記載されるように測定)またはC3切断およびC3b沈着の減少(例えば実施例11に記載されるように測定)。
一部の態様において、MASP-2阻害物質はMASP-2補体活性化(すなわちLEA-2)を選択的に阻害して、C1q依存性補体活性化系を機能的にインタクトな状態のままにしておく。
一部の態様において、MASP-2阻害物質は、抗体またはその断片、例えばMASP-2抗体およびそのMASP-2結合断片、天然および合成ペプチドまたは小分子である。一部の態様において、MASP-2阻害物質は、MASP-2に関して選択的である小分子プロテアーゼ阻害因子である。
iii. LEA-1媒介性補体活性化およびLEA-2媒介性補体活性化を阻害するための組成物
別の局面において、本発明は、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患もしくは障害に罹患している対象または該疾患もしくは該障害を発症する危険のある対象においてLEA-1の有害作用を阻害し、かつLEA-2の有害作用を阻害する方法であって、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-1阻害物質および/またはMASP-3阻害物質の少なくとも1つを含む組成物を該対象に投与する工程を含む、方法を提供する。
一態様において、組成物はMASP-1阻害物質を含む。一態様において、MASP-1阻害物質は、MASP-3媒介性補体活性化を阻害し、MASP-2媒介性補体活性化も阻害する。
一態様において、組成物はMASP-3阻害物質を含む。一態様において、MASP-3阻害物質は、B因子のレクチンMASP-3依存性活性化;D因子のレクチンMASP-3依存性活性化;B因子のMASP-3依存性レクチン非依存性活性化;および/またはD因子のMASP-3依存性レクチン非依存性活性化の少なくとも1つを阻害する。
一態様において、組成物はMASP-1阻害物質およびMASP-3阻害物質を含む。
一部の態様において、方法は、MASP-2阻害物質を含む組成物を対象に投与する工程をさらに含む。
別の態様において、本発明のこの局面は、MASP-2依存性補体活性化を阻害するのに有効な量のMASP-2阻害物質と、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-3阻害物質と、薬学的に許容される担体とを含む薬学的組成物を、PNHに罹患している対象に投与する工程を含む。
一部の態様において、組成物は、LEA-1およびLEA-2の両方を阻害する単一の作用物質(すなわち、二重MASP-2/MASP-3阻害物質、二重MASP-1/MASP-2阻害物質、二重特異性MASP-2/MASP-3阻害物質、二重特異性MASP-1/MASP-2阻害物質、または汎MASP-1/2/3阻害物質もしくは三重特異性MASP-1/2/3阻害物質)を含む。一部の態様において、組成物は、本明細書にさらに記載されるような、組み合わさってLEA-1およびLEA-2の両方を阻害する、本明細書に記載されるような、LEA-1阻害物質とLEA-2阻害物質との組み合わせ、例えば二重阻害物質と単一阻害物質との組み合わせ、二重特異性阻害物質と単一阻害物質との組み合わせまたはMASP-1、MASP-2および/またはMASP-3阻害物質のいずれかの組み合わせを含む。
一態様において、本発明は、少なくとも1つのMASP-3阻害物質と、少なくとも1つのMASP-2阻害物質と、薬学的に許容される担体とを含む、LEA-1およびLEA-2の両方を阻害するための薬学的組成物を提供する。一態様において、薬学的組成物は、MASP-3阻害物質である第一の分子と、MASP-2阻害物質である第二の分子との組み合わせを含む。別の態様において、薬学的組成物は、MASP-3阻害物質としての活性およびMASP-2阻害物質としての活性を含む単一の分子実体(すなわち、MASP-2媒介性LEA-2活性化およびMASP-3媒介性LEA-1活性化の両方を阻害する阻害物質)を含む。一態様において、阻害物質は、図4、6および7Cに示すような、MASP-2(SEQ ID NO:5)とMASP-3(SEQ ID NO:8)との間で保存されているアミノ酸領域、例えばセリンプロテアーゼドメイン、例えばベータ鎖のN末端領域(例えば、SEQ ID NO:5およびSEQ ID NO:8のベータ鎖のN末端領域の最初の150aa)内のエピトープに結合するMASP-2/MASP-3二重阻害物質である。一態様において、阻害物質は、MASP-2タンパク質(SEQ ID NO:5)上のエピトープおよびMASP-3タンパク質(SEQ ID NO:8)上のエピトープに特異的に結合する二重特異性阻害物質、例えば二重特異性モノクローナル抗体である。一部の態様において、阻害物質は二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体は、MASP-2のCCP1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)またはMASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)の少なくとも1つに結合し、かつMASP-3のセリンプロテアーゼ中のエピトープ(SEQ ID NO:8のaa450〜711)にも結合する。
別の態様において、本発明は、MASP-2媒介性LEA-2活性化およびMASP-3のMASP-1媒介性活性化の両方を阻害し、それによりMASP-3媒介性LEA-1活性化を阻害する(また任意で、D因子のMASP-1媒介性成熟も阻害する)阻害物質を含む、LEA-1およびLEA-2の両方を阻害するための組成物を提供する。一態様において、阻害物質は、図4、6および7Aに示すような、MASP-1(SEQ ID NO:10)とMASP-2(SEQ ID NO:5)との間で保存されているアミノ酸領域、例えばセリンプロテアーゼドメイン内のエピトープに結合するMASP-1/MASP-2二重阻害物質である。一態様において、阻害物質は、MASP-1タンパク質(SEQ ID NO:10)上のエピトープおよびMASP-2タンパク質(SEQ ID NO:5)上のエピトープに特異的に結合する二重特異性阻害物質、例えば二重特異性モノクローナル抗体である。一部の態様において、阻害物質は二重特異性モノクローナル抗体であり、該二重特異性モノクローナル抗体は、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、MASP-2のCCP1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)またはMASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)の少なくとも1つにも結合する。
別の態様において、本発明は、MASP-2媒介性LEA-2活性化を阻害し、MASP-3に直接結合することによってMASP-3媒介性LEA-1活性化を阻害し、かつMASP-3のMASP-1媒介性活性化も阻害し、それにより、MASP-3媒介性LEA-1活性化を阻害する(また任意で、D因子のMASP-1媒介性成熟も阻害する)阻害物質を含む、LEA-1およびLEA-2の両方を阻害するための組成物を提供する。一態様において、阻害物質は、図4および5に示すような、MASP-1(SEQ ID NO:10)とMASP-2(SEQ ID NO:5)とMASP-3(SEQ ID NO:8)との間で保存されているアミノ酸領域、例えばCUBI-EGF-CUB2ドメイン中の保存領域に結合する汎MASP阻害因子である。図4および5に示すように、CUBI-EGF-CUBIIドメイン中には、MASP-1、MASP-2、およびMASP-3の間で共有される数多くの同一性部分があり、それにより、汎特異性MASP抗体の生成を可能にする。一部の態様において、汎特異性MASP抗体は、MASP-1のCUB2ドメイン(SEQ ID NO:10のaa185〜296)、MASP-2のCUB2ドメイン(SEQ ID NO:5のaa184〜295)およびMASP-3のCUB2ドメイン(SEQ ID NO:8のaa185〜296)内のエピトープに結合することができる。MASP-1、MASP-2、およびMASP-3のCUBI-EGFに結合する汎特異性MASP阻害因子はまた、MAp19およびMAp44にも結合し、したがって、そのような阻害因子の有効治療用量は、この結合を補償するために高めのレベルに調節されることが留意される。さらに、MASP-1、MASP-2、およびMASP-3のCUBIIドメインに結合する汎特異性MASP阻害因子はまた、MAp44にも結合し、したがって、そのような阻害因子の有効治療用量は、この結合を補償するために高めのレベルに調節されることが留意される。
一態様において、阻害物質は、MASP-1タンパク質(SEQ ID NO:10)上のエピトープ、MASP-2タンパク質(SEQ ID NO:5)上のエピトープおよびMASP-3タンパク質(SEQ ID NO:8)上のエピトープに結合する三重特異性MASP-1/2/3阻害因子である。一部の態様において、阻害物質は三重特異性モノクローナル抗体であり、該三重特異性モノクローナル抗体は、MASP-1のセリンプロテアーゼドメイン(SEQ ID NO:10のaa449〜694)に結合し、MASP-2のCCP1-CCP2ドメイン(SEQ ID NO:5のaa300〜431)またはMASP-2のセリンプロテアーゼドメイン(SEQ ID NO:5のaa445〜682)の少なくとも1つに結合し、かつMASP-3のセリンプロテアーゼ(SEQ ID NO:8のaa450〜711)中のエピトープにも結合する。
LEA-1、LEA-2またはLEA-1およびLEA-2を阻害するための例示的な阻害物質を以下の表2に記載する。
(表2)MASP阻害物質
*表2に記載されている交差反応性の列に関して、指定されたMASP阻害因子は、「結合しない」と記されている他の補体成分(すなわち、ポリペプチドまたはその断片)に対する場合よりも少なくとも10倍(例えば少なくとも20倍、少なくとも50倍または少なくとも100倍)大きい結合親和性で阻害因子結合ドメインに結合する。
一部の態様において、組成物は、LEA-1阻害物質とLEA-2阻害物質との組み合わせ、例えば、上述され、かつ表2に示された単一阻害物質の組み合わせを含む。例えば、一態様において、組成物は、MASP-1抗体とMASP-2抗体との組み合わせを含む。一態様において、組成物は、MASP-1抗体とMASP-3抗体との組み合わせを含む。一態様において、組成物は、MASP-2抗体とMASP-3抗体との組み合わせを含む。一態様において、組成物は、MASP-1抗体とMASP-2抗体とMASP-3抗体との組み合わせを含む。一部の態様において、本発明の方法は、阻害物質の組み合わせを含む単一組成物の投与を含む。他の態様において、本発明の方法は、別々の組成物の同時投与を含む。
一部の態様において、組成物は、二重阻害物質と単一阻害物質との組み合わせ(すなわち、MASP-2/3二重阻害因子+MASP-1阻害因子;MASP-1/3二重阻害因子+MASP-2阻害因子またはMASP-1/2二重阻害因子+MASP-3阻害因子)を含む。他の態様において、本発明の方法は、二重阻害因子および単一阻害因子を含む別々の組成物の同時投与を含む。
一部の態様において、組成物は、二重特異性阻害物質+単一阻害物質の組み合わせ(すなわち、MASP-2/3二重特異性阻害因子+MASP-1阻害因子;MASP-1/3二重特異性阻害因子+MASP-2阻害因子;またはMASP-1/2二重特異性阻害因子+MASP-3阻害因子)を含む。他の態様において、本発明の方法は、二重特異性阻害因子および単一阻害因子を含む別々の組成物の同時投与を含む。
本発明の様々な態様に従って、MASP-3阻害物質および/またはMASP-2阻害物質および/またはMASP-1阻害物質は、作用の部位を限局化しなければならないC5抗体に比べて、標的タンパク質を血漿から掃去するために使用されることが留意される。
MASP抗体
本発明のこの局面のいくつかの態様において、MASP阻害物質は、LEA-1および/またはLEA-2補体活性化経路の少なくとも1つを阻害するMASP抗体(例えば、MASP-1、MASP-2またはMASP-3抗体)を含む。本発明のこの局面において有用なMASP抗体は、任意の抗体産生哺乳動物由来のポリクローナル、モノクローナルまたは組換え抗体を含み、かつ、多重特異性(すなわち、二重特異性または三重特異性)、キメラ、ヒト化、完全ヒト、抗イディオタイプ、および抗体断片であり得る。抗体断片としては、本明細書にさらに説明するFab、Fab'、F(ab)2、F(ab')2、Fv断片、scFv断片および単鎖抗体がある。
MASP抗体は、本明細書に記載されるアッセイ法を使用して、LEA-1またはLEA-2依存性補体活性化系を阻害する能力に関してスクリーニングすることができる。いくつかのMASP-1、MASP-2、およびMASP-3抗体が文献に記載されており、いくつかが新たに生成されており、その一部は以下の表3に記載されている。これらの例示的なMASP抗体は、本明細書に記載されるアッセイ法を使用して、LEA-1および/またはLEA-2依存性補体活性化系を阻害する能力に関してスクリーニングすることができる。例えば、本明細書の実施例11〜13に記載されるように、MASP-2依存性補体活性化を遮断する抗ラットMASP-2 Fab2抗体が同定されている。実施例14にさらに記載されるように、MASP-2依存性補体活性化を遮断する完全ヒトMASP-2 scFv抗体が同定されている。実施例15にさらに記載されるように、MASP-3抗体が生成されている。LEA-1またはLEA-2の阻害因子として機能するMASP抗体が同定されたら、それを、本明細書に記載される薬学的組成物において使用することができ、また、それを表2に記載され、かつ本明細書においてさらに記載されるような二重特異性および三重特異性阻害物質を生成するために使用することができる(例えば実施例8を参照されたい)。
(表3)MASP-1、MASP-2、およびMASP-3特異性抗体
i. エフェクター機能が低下したMASP抗体
本発明のこの局面の一部の態様において、古典的補体経路の活性化から生じ得る炎症を減少させるために、本明細書記載のMASP抗体はエフェクター機能が低下している。IgG分子が古典的補体経路を誘発する能力は、この分子のFc部分の中にあることが示されている(Duncan, A.R.. et al., Nature 332:738-740 (1988))。この分子のFc部分が酵素切断によって除去されているIgG分子には、このエフェクター機能がない(Harlow, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1988を参照されたい)。従って、エフェクター機能を最小化する遺伝子操作Fc配列を有することによって、またはヒトIgG2もしくはIgG4アイソタイプにすることによって、この分子のFc部分を欠いた結果としてエフェクター機能が低下した抗体を作製することができる。
エフェクター機能が低下した抗体は、Jolliffe et al., Int'l Rev. Immunol. 10:241-250 (1993)およびRodrigues et al., J. Immunol. 151:6954-6961 (1998)に記載のように、IgG重鎖のFc部分の標準的な分子生物学的操作によって作製することができる。エフェクター機能が低下した抗体はまた、補体を活性化する、および/またはFc受容体と相互作用する能力が低下したヒトIgG2およびIgG4アイソタイプも含む(Ravetch, J. V., et al., Annu. Rev. Immunol. 9:457-492 (1991); Isaacs, J.D., et al., J. Immunol. 148:3062-3071, 1992; van de Winkel, J.G., et al., Immunol Today 14:215-221 (1993))。IgG2またはIgG4アイソタイプからなる、ヒトMASP-1、MASP-2、またはMASP-3に特異的なヒト化抗体または完全ヒト抗体(二重抗体、汎抗体、二重特異性抗体、または三重特異性抗体を含む)は、Vaughan, T.J., et al., Nature Biotechnical 16:535-539 (1998)に記載のように当業者に公知のいくつかの方法の1つによって作製することができる。
ii. MASP抗体の作製
MASP-1、MASP-2、またはMASP-3抗体は、MASP-1、MASP-2、もしくはMASP-3ポリペプチド(例えば、完全長のMASP-1、MASP-1、もしくはMASP-3)を用いてまたは抗原性MASP-1、MASP-2、もしくはMASP-3エピトープ含有ペプチド(例えば、MASP-2ポリペプチドの一部)を用いて作製することができる。免疫原性ペプチドは5アミノ酸残基と小さくてもよい。例えば、本発明の方法において有用なMASP-2抗体を誘導するために、SEQ ID NO:5の全アミノ酸配列を含むMASP-2ポリペプチドが用いられてもよい。例えば表2に示される、タンパク質-タンパク質間相互作用に関与することが公知の特定のMASPドメイン、例えば、CUBIおよびCUBI-EGFドメイン、ならびにセリン-プロテアーゼ活性部位を含む領域が、当技術分野で周知の方法を用いて組換えポリペプチドとして発現され、抗原として用いられてもよい。さらに、MASP-1ポリペプチド(SEQ ID NO:10)またはMASP-2ポリペプチド(SEQ ID NO:5)またはMASP-3ポリペプチド(SEQ ID NO:8)の少なくとも6アミノ酸の部分を含むペプチドもまた、それぞれMASP-1、MASP-2、またはMASP-3抗体を誘導するのに有用である。抗体を産生させるのに用いられるMASPのペプチドおよびポリペプチドは、天然ポリペプチドまたは組換えペプチドもしくは合成ペプチドおよび触媒的に不活性な組換えポリペプチドとして単離されてもよい。MASP抗体の作製において有用な抗原はまた、融合ポリペプチド、例えば、MASPポリペプチドまたはその一部と免疫グロブリンポリペプチドまたはマルトース結合タンパク質との融合も含む。ポリペプチド免疫原は完全長分子またはその一部でもよい。ポリペプチド部分がハプテン様であれば、このような部分は、免疫のために、都合よく、巨大分子担体(例えば、キーホールリンペットヘモシアニン(KLH)、ウシ血清アルブミン(BSA)、または破傷風トキソイド)に接続または連結されてもよい。
iii. ポリクローナル抗体
MASP-1、MASP-2、またはMASP-3に対するポリクローナル抗体は、当業者に周知の方法を用いて、動物をMASP-1、MASP-2、またはMASP-3ポリペプチドまたはその免疫原性部分で免疫することによって調製することができる。例えば、Green et al.,「Production of Polyclonal Antisera」, Immunochemical Protocols(Manson, ed.)を参照されたい。MASPポリペプチドの免疫原性は、ミネラルゲル、例えば、水酸化アルミニウムまたはフロイントアジュバント(完全もしくは不完全)、界面活性物質、例えば、リゾレシチン、プルロニックポリオール、ポリアニオン、油エマルジョン、KLHおよびジニトロフェノールを含むアジュバントを用いて高まることができる。ポリクローナル抗体は、典型的には、動物、例えば、ウマ、ウシ、イヌ、ニワトリ、ラット、マウス、ウサギ、モルモット、ヤギ、またはヒツジにおいて産生される。または、本発明において有用なMASP抗体はまた、ヒトに近い霊長類に由来してもよい。ヒヒにおいて診断および治療に有用な抗体を産生するための一般的な技法は、例えば、Goldenberg et al.,国際特許公報WO91/11465、およびLosman, M.J., et al., Int. J. Cancer 46:310 (1990)において見られ得る。次いで、免疫学的に活性な抗体を含有する血清が、当技術分野において周知の標準的な手順を用いて、このような免疫動物の血液から生成される。
iv. モノクローナル抗体
一部の態様において、LEA-2阻害物質はMASP-2モノクローナル抗体であり、かつ/またはLEA-1阻害物質はMASP-3モノクローナル抗体またはMASP-1モノクローナル抗体である。上記のように、一部の態様において、MASP-1、MASP-2、またはMASP-3モノクローナル抗体は、単一のMASP-1、MASP-2、またはMASP-3エピトープに対して作られているので高度に特異的である。本明細書で使用する「モノクローナル」という修飾語は、抗体が実質的に均一な抗体集団から得られているという特徴を示し、特定の方法による抗体の作製を必要とすると解釈してはならない。モノクローナル抗体は、連続培養細胞株による抗体分子の作製を提供する任意の技法、例えば、Kohler, G., et al., Nature 256:495 (1975)に記載のハイブリドーマ法を用いて得ることができる。または、モノクローナル抗体は、組換えDNA法(例えば、Cabillyに対する米国特許第4,816,567号を参照されたい)によって作られてもよい。モノクローナル抗体は、Clackson, T., et al., Nature 352:624-628 (1991)、およびMarks, J.D., et al., J. Mol Biol. 222:581-597 (1991)に記載の技法を用いてファージ抗体ライブラリーから単離することもできる。このような抗体は、IgG、IgM、IgE、IgA、IgDを含む任意の免疫グロブリンクラスおよびその任意のサブクラスの抗体でよい。
例えば、モノクローナル抗体は、適切な哺乳動物(例えば、BALB/cマウス)に、MASP-1ポリペプチド、MASP-2ポリペプチド、もしくはMASP-3ポリペプチドまたはその一部を含む組成物を注射することによって得ることができる。予め決められた期間の後に、脾臓細胞をマウスから取り出し、細胞培地に懸濁する。次いで、脾臓細胞を不死細胞株と融合して、ハイブリドーマを形成する。形成されたハイブリドーマを細胞培養において増殖させ、MASP-1、MASP-2、またはMASP-3に対するモノクローナルを産生する能力についてスクリーニングする(Current Protocols in Immunology, Vol.1., John Wiley & Sons, 2.5.1-2.6.7頁, 1991も参照されたい)。
抗原曝露に反応して特異的ヒト抗体を産生するように操作されたトランスジェニックマウスを用いて、ヒトモノクローナル抗体を得ることができる。この技法では、ヒト免疫グロブリン重鎖遺伝子座および軽鎖遺伝子座の要素を、内因性免疫グロブリン重鎖遺伝子座および軽鎖遺伝子座の標的破壊を含有する胚性幹細胞株に由来するマウスの系統に導入する。このトランスジェニックマウスは、ヒト抗原、例えば、本明細書に記載のMASP-2抗原に特異的なヒト抗体を合成することができ、従来のケーラー・ミルステイン技術を用いて、このような動物に由来するB細胞を適切なミエローマ細胞株と融合することによってヒトMASP-2抗体分泌ハイブリドーマを作製するのに使用することができる。トランスジェニックマウスからヒト抗体を得るための方法は、例えば、Green, L.L., et al., Nature Genet. 7:13, 1994; Lonberg, N., et al., Nature 368:856, 1994;およびTaylor, L.D., et al., Int. Immun. 6:579, 3994によって述べられている。
モノクローナル抗体は、十分に確立した様々な技法によってハイブリドーマ培養物から単離および精製することができる。このような単離法には、プロテインA Sepharoseを用いたアフィニティークロマトグラフィー、サイズ排除クロマトグラフィー、およびイオン交換クロマトグラフィーが含まれる(例えば、Coliganの2.7.1-2.7.12頁および2.9.1-2.9.3頁; Baines et al., 「Purification of Immunoglobulin G(IgG)」, Methods in Molecular Biology, The Humana Press, Inc., Vol.10, 79-104頁, 1992を参照されたい)。
ポリクローナル、モノクローナルまたはファージ由来抗体は、製造されたら、まず、MASP-1、MASP-2、もしくはMASP-3特異的結合、または所望の場合にはMASP-1/3、MASP-2/3、もしくはMASP-1/2二重結合に関して試験される。抗体がタンパク質抗原に結合するかどうかおよび/またはタンパク質抗原に対する抗体の親和性を決定するための方法は当技術分野において公知である。例えば、タンパク質抗原への抗体の結合は、ウェスタンブロット法、ドットブロット法、表面プラズモン共鳴法(例えば、BIAcore system; Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, NJ)または酵素結合免疫吸着測定法(ELISA)を含むが、これらに限定されない多種多様な技術を使用して検出および/または定量化することができる。例えば、Harlow and Lane (1988) "Antibodies:A Laboratory Manual" Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.;Benny K. C. Lo (2004) "Antibody Engineering: Methods and Protocols," Humana Press (ISBN:1588290921); Borrebaek (1992) "Antibody Engineering, A Practical Guide," W.H. Freeman and Co., NY; Borrebaek (1995) "Antibody Engineering," 2nd Edition, Oxford University Press, NY, Oxford; Johne et al. (1993), Immunol. Meth. 160:191-198; Jonsson et al. (1993) Ann. Biol. Clin. 51:19-26;およびJonsson et al. (1991) Biotechniques 11:620-627を参照されたい。また、米国特許第6,355,245号も参照されたい。
MASPモノクローナル抗体の親和性は、当業者が容易に決定することができる(例えば、Scatchard, A., NY Acad. Sci. 51:660-672, 1949を参照されたい)。一態様において、本発明の方法に有用なMASP-1、MASP-2またはMASP-3モノクローナル抗体は、<100nM、好ましくは<10nMおよび最も好ましくは<2nMの結合親和性でMASP-1、MASP-2またはMASP-3に結合する。
MASP-1、MASP-2、またはMASP-3に特異的に結合する抗体が同定されたら、例えば表2に記載されているように、いくつかの機能アッセイ法の1つにおいて、LEA-1阻害物質またはLEA-2阻害物質として機能する能力に関してMASP-1、MASP-2またはMASP-3抗体を試験する。例えば表2に記載されているように、例えば、いくつかのアッセイ法の1つにおいて、LEA-2阻害物質として機能する能力に関して、MASP-2に特異的に結合する同定された抗体を試験する(例えば、レクチン特異性C4切断アッセイ法(例えば実施例8または実施例9に記載されるアッセイ法)またはC3b沈着アッセイ法(実施例4または実施例11に記載されるアッセイ法))。さらなる例として、例えば表2に記載されているように、いくつかのアッセイ法の1つにおいて、LEA-1阻害物質として機能する能力に関して、MASP-1またはMASP-3に特異的に結合する同定された抗体を試験する(例えば実施例5に記載されるように測定される溶血の減少または実施例4および実施例11に記載されるように測定されるC3切断およびC3b沈着の減少)。
v. キメラ/ヒト化抗体
本発明の方法において有用なモノクローナル抗体には、重鎖および/または軽鎖の一部が、特定の種に由来する抗体または特定の抗体クラスもしくはサブクラスに属する抗体の対応する配列と同一または相同であるが、鎖の残りが、別の種に由来する抗体または別の抗体クラスもしくはサブクラスに属する抗体の対応する配列と同一または相同であるキメラ抗体、ならびにこのような抗体の断片が含まれる(Cabillyに対する米国特許第4,816,567号;およびMorrison, S.L., et al., Proc. Nat'l Acad. Sci. USA 81:6851-6855, (1984))。
本発明において有用なキメラ抗体の一形態は、ヒト化モノクローナルMASP-1、MASP-2、またはMASP-3抗体である。非ヒト(例えば、マウス)抗体のヒト化型は、非ヒト免疫グロブリンに由来する最小配列を含有するキメラ抗体である。ヒト化モノクローナル抗体は、マウス免疫グロブリンの可変重鎖および可変軽鎖に由来する非ヒト(例えば、マウス)相補性決定領域(CDR)をヒト可変ドメインに導入することによって作製される。次いで、典型的に、非ヒト対応物のフレームワーク領域においてヒト抗体残基が代用される。さらに、ヒト化抗体は、レシピエント抗体にもドナー抗体にも見られない残基を含んでもよい。これらの改変は、抗体の性能にさらに磨きをかけるためになされる。一般的に、ヒト化抗体は、少なくとも1つの、および典型的には2つの可変ドメインの実質的に全てを含む。超可変ループの全てまたは実質的に全てが非ヒト免疫グロブリンの超可変ループに対応し、Fvフレームワーク領域の全てまたは実質的に全てがヒト免疫グロブリン配列のFvフレームワーク領域に対応する。ヒト化抗体はまた、任意で、免疫グロブリン定常領域(Fc)の少なくとも一部、典型的には、ヒト免疫グロブリンの免疫グロブリン定常領域(Fc)の少なくとも一部を含む。さらなる詳細については、Jones, P.T, et al., Nature 321:522-525 (1986); Reichmann, L., et al., Nature 332:323-329 (1988);およびPresta, Curr. Op. Struct. Biol. 2:593-596 (1992)を参照されたい。
本発明において有用なヒト化抗体には、少なくともMASP-1、MASP-2、またはMASP-3結合CDR3領域を含むヒトモノクローナル抗体が含まれる。さらに、IgA抗体またはIgM抗体ならびにヒトIgG抗体を作製するためにFc部分が交換されてもよい。このようなヒト化抗体は、ヒトMASP-1、MASP-2、またはMASP-3を特異的に認識するが、ヒトにおいて抗体それ自体に対する免疫応答を惹起しないので特に臨床において有用であると考えられる。その結果、このようなヒト化抗体は、ヒトでのインビボ投与に、特に、反復投与または長期投与が必要な場合により適している。
ヒト化モノクローナル抗体を作製するための技法は、例えば、Jones, P.T, et al., Nature 321:522, (1986); Carter, P., et al., Proc. Nat'l Acad. Sci. USA 89:4285, 1992; Sandhu, J.S., Crit. Rev. Biotech. 12:437, (1992); Singer, I.I., et al., J. Immun. 150:2844, (1993); Sudhir(ed.), Antibody Engineering Protocols, Humana Press, Inc., (1995); Kelley, 「Engineering Therapeutic Antibodies」, Protein Engineering:Principles and Practice, Cleland et al.(eds.), John Wiley & Sons, Inc., 399-434頁, (1996);およびQueen, (1997)に対する米国特許第5,693,762号にも記載されている。さらに、Protein Design Labs (Mountain View, CA)などの特定のマウス抗体領域からヒト化抗体を合成する事業実体がある。
vi. 組換え抗体
MASP-1、MASP-2、またはMASP-3抗体は組換え法を用いて作ることもできる。例えば、ヒト抗体断片(VH、VL、Fv、D因子、Fab、またはF(ab') 2)を作製するようにヒト免疫グロブリン発現ライブラリー(例えば、Stratagene, Corp., La Jolla, CAから入手可能)を用いてヒト抗体を作ることができる。次いで、キメラ抗体の作製法に類似した技法を用いて、これらの断片を用いてヒト抗体全体を構築する。
vii. 抗イディオタイプ抗体
望ましい阻害活性を有するMASP-1、MASP-2、またはMASP-3抗体が同定されたら、これらの抗体を用いて、当技術分野において周知の技法を用いてMASP-1、MASP-2、またはMASP-3の一部に似ている抗イディオタイプ抗体を生成することができる。例えば、Greenspan, N.S., et al., FASEB J. 7:437 (1993)を参照されたい。例えば、MASP-2に結合し、補体活性化に必要とされるMASP-2タンパク質相互作用を完全に阻害する抗体を用いて、MASP-2タンパク質上のMBL結合部位に似ている、従って、MASP-2の結合リガンド、例えば、MBLに結合し、これを中和する抗イディオタイプを生成することができる。
viii. 免疫グロブリン断片
本発明の方法において有用なMASP-2およびMASP-3阻害物質は、インタクトな免疫グロブリン分子だけでなく、抗体断片から形成された、Fab、Fab'、F(ab) 2、F(ab') 2、およびFv断片、scFv断片、ダイアボディ、直鎖抗体、単鎖抗体分子、ならびに多重特異性抗体(例えば、二重特異性抗体および三重特異性抗体)を含む周知の断片も包含する。
抗体とそのエピトープの結合には抗体分子の小さな部分であるパラトープしか関与しないことは当技術分野において周知である(例えば、Clark, W.R., The Experimental Foundations of Modern Immunology, Wiley & Sons, Inc., NY, 1986を参照されたい)。抗体のpFc'およびFc領域は古典的補体経路のエフェクターであるが、抗原結合に関与しない。pFc'領域が酵素切断されている抗体、またはpFc'領域なしで作製されている抗体はF(ab')2断片と呼ばれ、インタクトな抗体の抗原結合部位を両方とも保持する。単離されたF(ab') 2断片は、その2つの抗原結合部位のために二価モノクローナル断片と呼ばれる。同様に、Fc領域が酵素切断されている抗体、またはFc領域なしで作製されている抗体はFab断片と呼ばれ、インタクトな抗体分子の抗原結合部位のうちの1つを保持する。
抗体断片は、従来の方法による抗体全体のタンパク質加水分解、例えば、ペプシン消化またはパパイン消化によって得ることができる。例えば、抗体断片は、抗体をペプシンで酵素切断して、F(ab') 2と呼ばれる5S断片を得ることによって作製することができる。この断片は、3.5S Fab'一価断片を生じるチオール還元剤を用いてさらに切断することができる。任意で、ジスルフィド結合を切断する、スルフヒドリル基のブロック基を用いて、切断反応を行うことができる。代替として、ペプシンを用いた酵素切断によって、2つの一価Fab断片および1つのFc断片が直接、生成される。これらの方法は、例えば、Goldenbergに対する米国特許第4,331,647号; Nisonoff, A., et al., Arch. Biochem. Biophys. 89:230 (1960); Porter, R.R., Biochem, J. 73:119, (1959); Edelman, et al., Methods in Enzymology 1:422, Academic Press (1967);ならびにColiganの2.8.1-2.8.10頁および2.10.-2.10.4頁に記載されている。
一部の態様において、FcとFcγ受容体が結合すると開始する古典的補体経路の活性化を回避するためには、Fc領域の無い抗体断片を使用することが好ましい。Fcγ受容体相互作用を回避するモノクローナル抗体を作製することができる、いくつかの方法がある。例えば、モノクローナル抗体のFc領域をタンパク質分解酵素による部分消化(例えば、フィシン消化)を用いて化学的に除去し、それによって、例えば、抗原結合抗体断片、例えば、Fab断片またはF(ab) 2断片を生成することができる(Mariani, M., et al., Mol. Immunol. 28:69-71 (1991))。または、Fcγ受容体に結合しないヒトγ4 IgGアイソタイプを、本明細書に記載のようにヒト化抗体の構築中に使用することができる。Fcドメインの無い抗体、単鎖抗体、および抗原結合ドメインはまた、本明細書に記載の組換え法を用いて操作することもできる。
ix. 単鎖抗体断片
または、重鎖Fv領域および軽鎖Fv領域が連結されている、MASP-1、MASP-2、またはMASP-3に特異的なペプチド単鎖結合分子を作製することができる。Fv断片は、単鎖抗原結合タンパク質(scFv)を形成するようにペプチドリンカーで連結されてもよい。これらの単鎖抗原結合タンパク質は、オリゴヌクレオチドで連結された、VHドメインをコードするDNAおよびVLドメインをコードするDNAを含む構造遺伝子を構築することによって調製される。構造遺伝子は発現ベクターに挿入され、その後に、大腸菌などの宿主細胞に導入される。組換え宿主細胞は、2つのVドメインを架橋するリンカーペプチドを有する1本のポリペプチド 鎖を合成する。scFvを作製するための方法は、例えば、Whitlow, et al.,「Methods:A Companion to Methods in Enzymology」2:97 (1991); Bird, et al., Science 242:423 (1988); Ladnerに対する米国特許第4,946,778号; Pack, P., et al., Bio/Technology 11:1271 (1993)に記載されている。
例示的な例として、MASP-3特異的scFvは、インビトロでリンパ球をMASP-3ポリペプチドに曝露し、(例えば、固定化または標識されたMASP-3タンパク質またはペプチドを使用することによって)ファージベクターまたは類似ベクターの中にある抗体ディスプレイライブラリーを選択することによって得ることができる。潜在的なMASP-3ポリペプチド結合ドメインを有するポリペプチドをコードする遺伝子は、ファージまたは細菌、例えば、大腸菌にディスプレイされたランダムペプチドライブラリーをスクリーニングによって得ることができる。これらのランダムペプチドディスプレイライブラリーを用いて、MASP-3と相互作用するペプチドをスクリーニングすることができる。このようなランダムペプチドディスプレイライブラリーを作製し、スクリーニングするための技法は当技術分野において周知である(Lardnerに対する米国特許第5,223,409号; Ladnerに対する米国特許第4,946,778号; Ladnerに対する米国特許第5,403,484号; Ladnerに対する米国特許第5,571,698号;およびKay et al., Phage Display of Peptides and Proteins Academic Press, Inc., 1996)。このようなライブラリーをスクリーニングするためのランダムペプチドディスプレイライブラリーおよびキットは、例えば、CLONTECH Laboratories, Inc.(Palo Alto, Calif.)、Invitrogen Inc.(San Diego, Calif.)、New England Biolabs, Inc.(Beverly, Mass.)、およびPharmacia LKB Biotechnology Inc.(Piscataway, N.J.)から市販されている。
本発明のこの局面において有用なMASP-3抗体断片の別の形態が、MASP-3抗原上のエピトープに結合し、かつMASP-3依存性補体活性化(すなわちLEA-1)を阻害する単一の相補性決定領域(CDR)をコードするペプチドである。本発明のこの局面において有用なMASP-1抗体断片の別の形態が、MASP-1抗原上のエピトープに結合し、かつMASP-3依存性補体活性化(すなわちLEA-1)を阻害する単一の相補性決定領域(CDR)をコードするペプチドである。本発明のこの局面において有用なMASP-2抗体断片の別の形態が、MASP-2抗原上のエピトープに結合し、かつMASP-2依存性補体活性化(すなわちLEA-2)を阻害する単一の相補性決定領域(CDR)をコードするペプチドである。
CDRペプチド(「最小認識ユニット」)は、関心対象の抗体のCDRをコードする遺伝子を構築することによって得ることができる。このような遺伝子は、例えば、ポリメラーゼ鎖反応を用いて抗体産生細胞のRNAから可変領域を合成することによって調製される(例えば、Larrick et al., Methods; A Companion to Methods in Enzymology 2:106 (1991); Courtenay-Luck, 「Genetic Manipulation of Monoclonal Antibodies」, Monoclonal Antibodies:Production, Engineering and Clinical Application, Ritter et al., (eds.), 166頁, Cambridge University Press (1995);およびWard et al.,「Genetic Manipulation and Expression of Antibodies」, Monoclonal Antibodies:Principles and Applications, Birch et al., (eds,), 137頁, Wiley-Liss, Inc., 1995を参照されたい)。
LEA-1、LEA-2、またはLEA-1とLEA-2の組み合わせの補体活性化を阻害するために、本明細書に記載のMASP抗体は、それを必要とする対象に投与される。一部の態様において、MASP阻害物質は、エフェクター機能が低下した、高親和性ヒトまたはヒト化モノクローナルMASP-1、MASP-2、またはMASP-3抗体である。
x. 二重特異性抗体
本発明の方法において有用なMASP-2およびMASP-3阻害物質は、多重特異性(すなわち、二重特異性および三重特異性)抗体を包含する。二重特異性抗体は、少なくとも2つの異なる抗原への結合特異性を有するモノクローナル抗体、好ましくはヒトまたはヒト化抗体である。上述され、かつ表2に示されているように、一態様において、方法は、MASP-2への結合特異性(例えば、MASP-2のCCP1-CCP2またはセリンプロテアーゼドメインの少なくとも1つへの結合)およびMASP-3への結合特異性(例えば、MASP-3のセリンプロテアーゼドメインへの結合)を含む二重特異性抗体の使用を含む。別の態様において、方法は、MASP-1への結合特異性(例えば、MASP-1のセリンプロテアーゼドメインへの結合)およびMASP-2への結合特異性(例えば、MASP-2のCCP1-CCP2またはセリンプロテアーゼドメインの少なくとも1つへの結合)を含む二重特異性抗体の使用を含む。別の態様において、方法は、MASP-1への結合特異性(例えば、MASP-1のセリンプロテアーゼドメインへの結合)およびMASP-3への結合特異性(例えば、MASP-3のセリンプロテアーゼドメインへの結合)を含む二重特異性抗体の使用を含む。別の態様において、方法は、MASP-1への結合特異性(例えば、MASP-1のセリンプロテアーゼドメインへの結合)、MASP-2への結合特異性(例えば、MASP-2のCCP1-CCP2またはセリンプロテアーゼドメインの少なくとも1つへの結合)およびMASP-3への結合特異性(例えば、MASP-3のセリンプロテアーゼドメインへの結合)を含む三重特異性抗体の使用を含む。
二重特異性抗体を作製するための方法は当業者の知識の範囲内である。従来、二重特異性抗体の組換え製造は、2つの重鎖が異なる特異性を有する、2つの免疫グロブリン重鎖/軽鎖対の同時発現に基づく(Milstein and Cuello, Nature 305:537-539 (1983))。所望の結合特異性を有する抗体可変ドメイン(抗体-抗原結合部位)を免疫グロブリン定常ドメイン配列に融合させることができる。融合は、好ましくは、ヒンジ、CH2およびCH3領域の少なくとも一部を含む免疫グロブリン重鎖定常ドメインとの融合である。免疫グロブリン重鎖融合物および所望の場合には免疫グロブリン軽鎖をコードするDNAが、別々の発現ベクターに挿入され、かつ適切な宿主生物の中に同時トランスフェクトされる。二重特異性抗体を生成するための現在公知の例示的方法のさらなる詳細に関しては、例えば、Suresh et al., Methods in Enzymology 121:210 (1986); WO96/27011; Brennan et al., Science 229:81 (1985); Shalaby et al., J. Exp. Med. 175:217-225 (1992); Kostelny et al., J. Immunol. 148(5):1547-1553 (1992); Hollinger et al. Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993); Gruber et al., J. Immunol. 152:5368 (1994);およびTuft et al., J. Immunol. 147:60 (1991)を参照されたい。二重特異性抗体はまた、架橋またはヘテロコンジュゲート抗体を含む。ヘテロコンジュゲート抗体は、任意の好都合な架橋法を使用して作製し得る。適切な架橋剤は当技術分野において周知であり、いくつかの架橋技術とともに米国特許第4,676,980号に開示されている。
また組換え細胞培養から直接、二重特異性抗体断片を作製および分離するための様々な技術も記載されている。例えば、ロイシンジッパーを使用して二重特異性抗体が製造されている(例えば、Kostelny et al. J. Immunol. 148(5):1547-1553 (1992))。Hollinger et al. Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993)によって記載されている「ダイアボディ」技術が、二重特異性抗体断片を作製するための第二の機構を提供した。断片は、同じ鎖上の2つのドメイン間のペアリングを可能にするには短すぎるリンカーによって軽鎖可変ドメイン(VL)に接続された重鎖可変ドメイン(VH)を含む。したがって、1つの断片のVHおよびVLドメインが別の断片の相補的VLおよびVHドメインと対合させられ、それにより、2つの抗原結合部位を形成する。二重特異性ダイアボディはまた、大腸菌(E. coli)中で容易に構築し、かつ発現させることができるため、二重特異性完全抗体とは違って、特に有用であり得る。適切な結合特異性のダイアボディ(および抗体断片のような多くの他のポリペプチド)は、ライブラリーからのファージディスプレイ(WO94/13804)を使用して容易に選択することができる。ダイアボディの一方のアームを例えば抗原Xに対する特異性で一定に維持するのならば、他方のアームが変化するライブラリーを作製することができ、適切な特異性の抗体を選択することができる。
また、単鎖Fv(scFv)二量体の使用によって二重特異性抗体断片を作製するための別の戦略が報告されている(例えば、Gruber et al. J. Immunol., 152:5368 (1994)を参照されたい)。あるいはまた、抗体は、例えばZapata et al., Protein Eng. 8(10):1057-1062 (1995)に記載されているような「リニア抗体」であることができる。簡潔に説明するならば、これらの抗体は、抗原結合領域の対を形成するタンデムD因子セグメント(VH-CHI-VH-CHI)の対を含む。リニア抗体は二重特異性または単一特異性であることができる。本発明の方法はまた、二重特異性抗体の変異形態、例えば、Wu et al., Nat Biotechnol 25:1290-1297 (2007)に記載されているような四価二重可変ドメイン免疫グロブリン(DVD-Ig)分子の使用を包含する。DVD-Ig分子は、2つの異なる親抗体からの2つの異なる軽鎖可変ドメイン(VL)が組換えDNA技術によって直接または短いリンカーを介してタンデムにリンクされたのち、軽鎖定常ドメインがリンクされるように設計されている。2つの親抗体からDVD-Ig分子を生成するための方法は、例えば、それぞれの開示内容が全体として参照により本明細書に組み入れられるWO08/024188およびWO07/024715にさらに記載されている。
非ペプチド阻害因子
一部の態様において、MASP-3またはMASP-2阻害物質は、MASP-3もしくはMASP-2もしくはMASP-1阻害ペプチドまたはMASP-3もしくはMASP-2もしくはMASP-1の非ペプチド阻害因子である。非ペプチドMASP阻害物質は、例えば、動脈内、静脈内、筋肉内、皮下もしくは他の非経口投与または経口投与によって対象に全身投与され得る。MASP阻害物質は、慢性状態の治療または抑制のために長期にわたって定期的に投与され得るし、急性外傷または傷害の前、期間中または後の期間中に単回または反復投与され得る。
XVIII. 薬学的組成物および送達法
投薬
別の局面において、本発明は、PNHのような溶血性疾患または加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患もしくは障害に罹患している対象においてMASP-3依存性補体活性化の有害作用を阻害するための組成物であって、MASP-3依存性補体活性化を阻害するのに有効な量のMASP-3阻害物質と、薬学的に許容される担体とを含む組成物を該対象に投与することを含む、組成物を提供する。一部の態様において、方法は、MASP-2阻害物質を含む組成物を投与する工程をさらに含む。MASP-3およびMASP-2阻害物質は、MASP-3依存性補体活性化(LEA-1)とおよびまた任意でMASP-2依存性補体活性化(LEA-2)と関連する状態を治療または寛解するための治療的に有効な用量で、それを必要とする対象に投与することができる。治療的に有効な用量とは、状態の症候の寛解を生じさせるのに十分な、MASP-3阻害物質またはMASP-3阻害物質とMASP-2阻害物質との組み合わせの量を指す。
MASP-3およびMASP-2阻害物質の毒性および治療有効性は、実験動物モデルを用いる標準的な薬学的手法によって決定することができる。このような動物モデルを使用して、NOAEL(無毒性量)およびMED(最小有効量)を標準的な方法を使用して決定することができる。NOAEL効果とMED効果との用量比が治癒比であり、比NOAEL/MEDとして表される。大きな治癒比または指数を示すMASP-3阻害物質およびMASP-2阻害物質が最も好ましい。細胞培養アッセイ法および動物研究から得られたデータを、ヒトに使用する場合の範囲の投与量を処方するのに使用することができる。MASP-3阻害物質およびMASP-2阻害物質の投与量は、好ましくは、毒性がほとんどまたはまったくないMEDを含む循環濃度の範囲内にある。投与量は、用いられる剤形および利用される投与ルートに依存して、この範囲内で変化し得る。
任意の複合製剤の場合、治療有効量は、動物モデルを使用して評価することができる。例えば、MEDを含む循環血漿中濃度範囲を達成するための用量を動物モデルにおいて処方することができる。また、血漿中のMASP-3阻害物質またはMASP-2阻害物質の定量レベルを例えば高速液クロマトグラフィーによって測定し得る。
毒性研究に加えて、有効投与量はまた、生きている対象中に存在する標的MASPタンパク質の量およびMASP-3またはMASP-2阻害物質の結合親和性に基づいて推定し得る。
正常ヒト対象におけるMASP-1レベルは、血清中1.48〜12.83μg/mLの範囲のレベルで存在することが報告されている(Terai I. et al, Clin Exp Immunol 110:317-323 (1997); Theil et al., Clin. Exp. Immunol. 169:38 (2012))。正常ヒト対象における平均血清MASP-3濃度は約2.0〜12.9μg/mLの範囲であると報告されている(Skjoedt M et al., Immunobiology 215(11):921-31 (2010); Degn et al., J. Immunol. Methods, 361-37 (2010); Csuka et al., Mol. Immunol. 54:271 (2013)。正常ヒト対象におけるMASP-2レベルは、血清中500ng/mLの範囲の低いレベルで存在すると報告されており、特定の対象におけるMASP-2レベルは、Moller-Kristensen M., et al., J. Immunol. Methods 282:159-167 (2003)およびCsuka et al., Mol. Immunol. 54:271 (2013)に記載されている、MASP-2に関する定量アッセイ法を使用して測定することができる。
概して、MASP-3阻害物質またはMASP-2阻害物質を含む投与される組成物の投与量は、対象の年齢、体重、身長、性別、全般的医学的状態および既往歴のような要因に依存して異なる。例示として、MASP-3阻害物質またはMASP-2阻害物質(例えばMASP-3抗体、MASP-1抗体またはMASP-2抗体)は、約0.010〜100.0mg/kg対象体重、好ましくは0.010〜10mg/kg対象体重、好ましくは0.010〜1.0mg/kg対象体重、より好ましくは0.010〜0.1mg/kg対象体重の投与量範囲で投与することができる。一部の態様において、MASP-2阻害物質(例えばMASP-2抗体)は、約0.010〜10mg/kg対象体重、好ましくは0.010〜1.0mg/kg対象体重、より好ましくは0.010〜0.1mg/kg対象体重の投与量範囲で投与される。一部の態様において、MASP-1阻害物質(例えばMASP-1抗体)またはMASP-3阻害物質(例えばMASP-3抗体)は、約0.010〜100.0mg/kg対象体重、好ましくは0.010〜10mg/kg対象体重、好ましくは0.010〜1.0mg/kg対象体重、より好ましくは0.010〜0.1mg/kg対象体重の投与量範囲で投与される。
所与の対象における本発明の、任意でMASP-2阻害組成物と組み合わされたMASP-3阻害組成物または任意でMASP-2阻害組成物と組み合わされたMASP-1阻害組成物および方法の治療有効性ならびに適切な投与量は、当業者に周知の補体アッセイ法に従って判定することができる。補体は非常に多くの特異的産物を生成する。過去十年間に、小さな活性化断片C3a、C4aおよびC5aならびに大きな活性化断片iC3b、C4d、BbおよびsC5b-9を含む、これらの活性化産物の大部分に関して高感度の特異的アッセイ法が開発され、かつ市販されている。これらのアッセイ法の大部分は、新たな抗原(ネオ抗原)と反応するモノクローナル抗体を利用し、新たな抗原は、断片上に露出しているが、それが形成される天然タンパク質の上には露出していないものであり、このことがこれらのアッセイ法を非常に簡単かつ特異的にする。大部分はELISA技術に頼るが、C3aおよびC5aの場合、まだラジオイムノアッセイ法が使用されることもある。これらの後者のアッセイ法は、処理されていない断片、および循環中に見られる主な形態である、それらの「desArg」断片の両方を測定する。処理されていない断片およびC5adesArgは、細胞表面レセプターに結合することによって迅速に掃去され、したがって、非常に低い濃度でしか存在しないが、C3adesArgは細胞に結合せず、血漿中に蓄積する。C3aの測定は、高感度の経路非依存的な補体活性化指標を提供する。第二経路活性化は、Bb断片の測定および/またはD因子活性化の測定によって評価することができる。膜侵襲経路活性化の液相産物sC5b-9の検出が、補体が完全に活性化されているという証拠を提供する。レクチン経路および古典経路はいずれも同じ活性化産物C4aおよびC4dを生成するため、これらの2つの断片の測定は、これらの2つの経路のどちらが活性化産物を生成したかに関する任意の情報を提供しない。
MASP-3依存性補体活性化の阻害は、本発明の方法によるMASP-3阻害物質の投与の結果として生じる補体系の成分における以下の変化の少なくとも1つを特徴とする:LEA-1媒介性補体活性化の阻害(溶血およびオプソニン化の阻害);MASP-3セリンプロテアーゼ基質特異性切断の阻害、溶血の減少(例えば実施例5に記載されるように測定)またはC3切断およびC3b沈着の減少(例えば実施例4または実施例11に記載されるように測定)。
MASP-2依存性補体活性化の阻害は、本発明の方法によるMASP-2阻害物質の投与の結果として生じる補体系の成分における以下の変化の少なくとも1つを特徴とする:MASP-2依存性補体活性化系の産物C4b、C3a、C5aおよび/またはC5b-9(MAC)の生成または産生の阻害(例えば、米国特許第7,919,094号の実施例2に記載されているように測定)、C4切断およびC4b沈着の減少(例えば、実施例8または実施例9に記載されるように測定)またはC3切断およびC3b沈着の減少(例えば、実施例11に記載されるように測定)。
i. 薬学的担体および送達ビヒクル
一般的に、本発明のMASP-3阻害物質組成物およびMASP-2阻害物質組成物、または、MASP-2阻害物質とMASP-3阻害物質の組み合わせを含む組成物は、他の任意の選択された治療剤と組み合わされてもよく、適宜、薬学的に許容される担体中に含まれる。担体は、無毒で、生体適合性があり、MASP-3阻害物質またはMASP-2阻害物質(およびMASP-2阻害物質と組み合わされた他の任意の治療剤)の生物学的活性に悪影響を及ぼさないように選択される。ペプチド用の例示的な薬学的に許容される担体は、Yamadaに対する米国特許第5,211,657号に記載されている。本明細書に記載される、本発明において有用なMASP抗体は、経口投与、非経口投与、または外科的投与を可能にする、固体、半固体、ゲル、液体、または気体の形をした調製物、例えば、錠剤、カプセル、散剤、顆粒、軟膏、溶液、デポジトリ(depository)、吸入剤、および注射剤に処方されてもよい。本発明はまた、医療装置などをコーティングすることによる組成物の局所投与も意図する。
注射、注入、または灌注、および局部送達を介した非経口送達に適した担体には、蒸留水、生理的リン酸緩衝食塩水、通常のリンガー液もしくは乳酸加リンガー液、デキストロース液、ハンクス液、またはプロパンジオールが含まれる。さらに、溶媒または分散媒として滅菌不揮発性油が使用されることもある。この目的のために、合成モノグリセリドまたはジグリセリドを含む、任意の生体適合性油を使用することができる。さらに、オレイン酸などの脂肪酸が注射液の調製において有用である。担体および作用物質は、液体、懸濁液、重合可能もしくは重合不可能なゲル、ペースト、または軟膏として配合されてもよい。
担体はまた、作用物質の送達を持続(すなわち、延長、遅延、もしくは調節)するために、または治療剤の送達、取り込み、安定性、もしくは薬物動態を増強するために送達ビヒクルを含んでもよい。このような送達ビヒクルは、非限定的な例として、タンパク質、リポソーム、炭水化物、合成有機化合物、無機化合物、ポリマーまたはコポリマーのヒドロゲル、およびポリマーミセルからなる、微粒子、マイクロスフェア、ナノスフェア、またはナノ粒子を含んでもよい。適切なヒドロゲルおよびミセル送達系には、WO2004/009664A2に開示されるPEO:PHB:PEOコポリマーおよびコポリマー/シクロデキストリン複合体、ならびに米国特許出願公開第2002/0019369A1号に開示されるPEOおよびPEO/シクロデキストリン複合体が含まれる。このようなヒドロゲルは目的の作用部位に局所に注射されてもよく、持効性デポーを形成するように皮下または筋肉内に注射されてもよい。
本発明の組成物は、皮下に、筋肉内に、静脈内に、動脈内に、または吸入剤として送達されるために製剤化されてもよい。
関節内送達の場合、MASP-3阻害物質またはMASP-2阻害物質は、注射可能な前記の液体担体もしくはゲル担体、注射可能な前記の持効性送達ビヒクル、またはヒアルロン酸もしくはヒアルロン酸誘導体の中に入れて運ばれてもよい。
非ペプチド物質の経口投与の場合、MASP-3阻害物質またはMASP-2阻害物質は、スクロース、コーンスターチ、またはセルロースなどの不活性な増量剤または希釈剤の中に入れて運ばれてもよい。
局部投与の場合、MASP-3阻害物質またはMASP-2阻害物質は、軟膏、ローション剤、クリーム、ゲル、点眼薬、坐剤、スプレー、液体もしくは粉末の中に入れて運ばれてもよく、ゲルまたはマイクロカプセル送達系の中に入れて経皮パッチを介して運ばれてもよい。
エアゾール剤、定量吸入器、ドライパウダー吸入器、およびネブライザーを含む様々な鼻送達系および肺送達系が開発中であり、それぞれ、エアゾール剤、吸入剤、または噴霧送達ビヒクルの中に入れて本発明の送達用に適切に適合化させることができる。
くも膜下腔内(IT)送達または脳室内(ICV)送達の場合、適切に滅菌した送達系(例えば、液体;ゲル、懸濁液など)を用いて、本発明の組成物を投与することができる。
本発明の組成物はまた、生体適合性の賦形剤、例えば、分散剤または湿潤剤、懸濁剤、希釈剤、緩衝液、浸透促進剤、乳化剤、結合剤、増粘剤、調味料(経口投与の場合)を含んでもよい。
ii. 抗体およびペプチドのための薬学的担体
本明細書に記載されるMASP抗体に関してより具体的には、例示的な製剤を、水、油、食塩水、グリセロール、またはエタノールなどの滅菌液体でもよい薬学的担体と共に、生理学的に許容される希釈剤に溶解した化合物の注射投与量の溶液または懸濁液として非経口投与することができる。さらに、MASP抗体を含む組成物中には、補助物質、例えば、湿潤剤または乳化剤、界面活性剤、pH緩衝物質などが存在してもよい。薬学的組成物のさらなる成分には、石油(例えば、動物由来、野菜由来、または合成由来の石油)、例えば、ダイズ油および鉱油が含まれる。一般的に、グリコール、例えば、プロピレングリコールまたはポリエチレングリコールが注射液に好ましい液体担体である。
MASP抗体はまた、活性物質を徐放または拍動放出(pulsatile release)するように処方することができるデポー注射剤または移植片調製物の形で投与することができる。
XVIX. 投与の方法
MASP-3阻害物質またはMASP-2阻害物質を含む薬学的組成物は、局所投与方法または全身投与方法が、治療されている状態に最も適しているかどうかに応じて多くのやり方で投与することができる。さらに、本発明の組成物を移植可能な医療装置の表面に、または移植可能な医療装置の中にコーティングまたは組み込むことによって、本発明の組成物を送達することができる。
i. 全身送達
本明細書で使用する「全身送達」および「全身投与」という用語は、筋肉内(IM)投与経路、皮下投与経路、静脈内(IV)投与経路、動脈内投与経路、吸入投与経路、舌下投与経路、頬投与経路、局部投与経路、経皮投与経路、鼻投与経路、直腸投与経路、腟投与経路、および送達作用物質を1つまたは複数の目的の治療作用部位に効果的に分散させる他の投与経路を含む、経口経路および非経口経路を含むが、これに限定されないことが意図される。本組成物の好ましい全身送達経路には、静脈内経路、筋肉内経路、皮下経路、動脈内経路、および吸入経路が含まれる。本発明の特定の組成物において用いられる選択された作用物質の正確な全身投与経路は、一つには、ある特定の投与経路に関連した代謝変換経路に対する作用物質感受性を説明するように決定されることが理解されると考えられる。例えば、ペプチド物質は、最も適切には、経口以外の経路によって投与することができる。
本明細書に記載されるMASP阻害抗体を、それを必要とする対象に任意の適切な手段によって送達することができる。MASP抗体およびポリペプチドの送達方法は、経口投与経路、肺投与経路、非経口投与経路(例えば、筋肉内投与経路、腹腔内投与経路、静脈内(IV)投与経路、もしくは皮下注射投与経路)、吸入投与経路(例えば、細粉製剤を介した吸入投与経路)、経皮投与経路、鼻投与経路、腟投与経路、直腸投与経路、または舌下投与経路を含み、それぞれの投与経路に適した剤形で処方することができる。
代表的な例として、ポリペプチドを吸収することができる身体の膜、例えば、鼻、胃腸、および直腸の膜に適用することによって、MASP阻害抗体およびペプチドを生体内に導入することができる。ポリペプチドは典型的には浸透促進剤と共に吸収性の膜に適用される(例えば、Lee, V.H.L., Crit. Rev. Ther. Drug Carrier Sys. 5:69 (1988); Lee, V.H.L., J. Controlled Release 13:213 (1990); Lee, V.H.L,, Ed., Peptide and Protein Drug Delivery, Marcel Dekker, New York(1991); DeBoer, A.G., et al., J. Controlled Release 13:241 (1990)を参照されたい)。例えば、STDHFは、胆汁塩と構造が類似し、鼻送達用の浸透促進剤として用いられてきたステロイド性界面活性剤であるフシジン酸合成誘導体である(Lee, W.A., Biopharm. 22, Nov./Dec. 1990)。
酵素分解からポリペプチドを保護するために、本明細書に記載されるMASP阻害抗体を脂質などの別の分子と結合させて導入することができる。例えば、ある特定のタンパク質を体内の酵素加水分解から保護し、従って、半減期を延長するために、ポリマー、特にポリエチレングリコール(PEG)の共有結合が用いられてきた(Fuertges, P., et al., J. Controlled Release 11:139 (1990))。タンパク質送達のための多くのポリマー系が報告されている(Bae, Y.H., et al., J. Controlled Release 9:271 (1989); Hori, R., et al., Pharm. Res. 6:813 (1989):Yamakawa, L, et al., J. Pharm. Sci. 79:505 (1990); Yoshihiro, I., et al., Controlled Release 10:195 (1989); Asano, M., et al., J. Controlled Release 9:111 (1989); Rosenblatt, J., et al., J. Controlled Release 9:195 (1989); Makino, K., J. Controlled Release 12:235 (1990); Takakura, Y., et al., J. Pharm. Sci. 78:117 (1989); Takakura, Y., et al., J. Pharm. Sci. 78:219 (1989))。
最近、血清安定性および循環半減期が改善したリポソームが開発された(例えば、Webbに対する米国特許第5,741,516号を参照されたい)。さらに、潜在的な薬物担体としてのリポソームおよびリポソーム様調製の様々な方法が詳しく調べられている(例えば、Szokaに対する米国特許第5,567,434号;Yagiに対する米国特許第5,552,157号;Nakamoriに対する米国特許第5,565,213号;Shinkarenkoに対する米国特許第5,738,868号;およびGaoに対する米国特許第5,795,587号を参照されたい)。
経皮適用の場合、本明細書に記載されるMASP阻害抗体は担体および/またはアジュバントなどの他の適切な成分と組み合わされてもよい。目的の投与のために薬学的に許容されなければならなず、組成物の活性成分の活性を分解することができないことを除けば、このような他の成分がどういったものかには制限はない。適切なビヒクルの例には、精製コラーゲンを含む、または含まない、軟膏、クリーム、ゲル、または懸濁液が含まれる。MASP阻害抗体はまた、好ましくは、液体または半液体の形で、経皮パッチ、硬膏、および包帯に含浸されてもよい。
本発明の組成物は、望ましいレベルの治療効果を維持するよう決定された間隔で定期的に全身投与されてもよい。例えば、組成物は、例えば、皮下注射によって2〜4週間ごとにまたはそれより少ない頻度で投与されてもよい。投与計画は、作用物質の組み合わせの作用に影響を及ぼし得る様々な要因を考慮して医師によって決定されると考えられる。これらの要因は、治療されている状態の進行の程度、患者の年齢、性別、および体重、ならびに他の臨床要因を含むと考えられる。それぞれの個々の作用物質の投与量は、組成物に含まれるMASP-3阻害物質またはMASP-2阻害物質、ならびに任意の薬物送達ビヒクル(例えば、持効性送達ビヒクル)の存在および内容の関数として変化すると考えられる。さらに、送達作用物質の投与頻度および薬物動態学的挙動の変動の原因となるように投与量を調節することができる。
ii. 局所送達
本明細書で使用する「局所」という用語は、目的の限局作用の部位の中に、または目的の限局作用の部位の周囲に薬物を適用することを包含し、例えば、皮膚または他の患部組織への局部送達、眼送達、くも膜下腔内(IT)、脳室内(ICV)、関節内、洞内、頭蓋内、もしくは小胞内の投与、留置、または灌注を含んでもよい。局所投与は、低用量の投与が全身副作用を回避するために、ならびに局所送達部位に活性物質を送達および濃縮するタイミングをより正確に制御するために好ましい場合がある。局所投与は、代謝、血流などの患者間のばらつきに関係なく標的部位において既知濃度を供給する。改善された投与量制御は直接的な送達方法によっても提供される。
MASP-3阻害物質またはMASP-2阻害物質の局所送達は、疾患または状態を治療するための外科的方法の状況において、例えば、動脈バイパス外科手術、アテレクトミー、レーザー処置、超音波処置、バルーン血管形成術、およびステント留置などの処置中に実現することができる。例えば、バルーン血管形成術と共にMASP-3阻害物質またはMASP-2阻害物質を対象に投与することができる。バルーン血管形成術は、収縮したバルーンを有するカテーテルを動脈に挿入することを伴う。収縮したバルーンはアテローム性動脈硬化巣の近くに配置され、プラークが血管壁に押しつけられるように膨張される。結果として、バルーン表面は血管の表面にある血管内皮細胞の層と接触する。MASP-3阻害物質またはMASP-2阻害物質は、アテローム性動脈硬化巣の部位に該物質を放出できるようにバルーン血管形成術カテーテルに取り付けられてもよい。該物質は、当技術分野において公知の標準的な手順に従ってバルーンカテーテルに取り付けることができる。例えば、バルーンが膨張されるまで、該物質はバルーンカテーテルの一区画に保管されてもよく、膨張時に該物質は局所環境に放出される。または、バルーンが膨張された場合に、該物質は動脈壁細胞と接触するようにバルーン表面に含浸されてもよい。該物質はまた、穴のあいたバルーンカテーテル、例えば、Flugelman, M.Y., et al., Circulation 85:1110-1117 (1992)に開示される穴のあいたバルーンカテーテルの中に入れて送達されてもよい。治療用タンパク質をバルーン血管形成術カテーテルに取り付けるための例示的な手順については、公開されたPCT出願WO95/23161も参照されたい。同様に、MASP-3阻害物質またはMASP-2阻害物質は、ステントに適用されるゲルまたはポリマーコーティングの中に含まれてもよく、血管留置後にステントがMASP-3阻害物質またはMASP-2阻害物質を溶出するようにステント材料に組み込まれてもよい。
関節炎および他の筋骨格障害の治療において用いられるMASP-3阻害物質またはMASP-2阻害物質は関節内注射によって局所送達されてもよい。このような組成物は、適宜、持効性送達ビヒクルを含んでもよい。局所送達が望ましいことがある場合のさらなる例として、泌尿生殖器状態の治療において用いられるMASP-2阻害組成物は、適宜、膀胱内に、または別の泌尿生殖器構造の中に点滴注入されてもよい。
XX. 治療レジメン
予防的用途において、薬学的組成物は、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、および血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患もしくは障害に感受性である対象に、またはそうでなければ該疾患もしくは該障害の危険のある対象に、状態の症候を発症する危険を除くかまたは減少させるのに十分な量で投与される。治療的用途において、薬学的組成物は、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患もしくは障害の疑いがある対象またはすでに該疾患もしくは該障害に罹患している対象に、状態の症候を緩和させるのにまたは少なくとも部分的に軽減するのに十分な治療有効量で投与される。
一態様において、薬学的組成物は、PNHに罹患している対象またはPNHを発症する危険のある対象に投与される。これに従って、対象の赤血球は組成物の非存在においてC3の断片によってオプソニン化され、対象への組成物の投与が対象における赤血球の生存率を増加させる。一態様において、対象は、組成物の非存在において、(i)正常より低いレベルのヘモグロビン、(ii)正常より低いレベルの血小板、(iii)正常より高いレベルの網状赤血球、および(iv)正常より高いレベルのビリルビンからなる群より選択される1つまたは複数の症候を示し、対象への組成物の投与は、症候の少なくとも1つまたは複数を改善して、結果として、(i)増加した、正常な、またはほぼ正常なレベルのヘモグロビン、(ii)増加した、正常な、またはほぼ正常なレベルの血小板、(iii)低下した、正常な、またはほぼ正常なレベルの網状赤血球、および/または(iv)低下した、正常な、またはほぼ正常なレベルのビリルビンを生じさせる。
発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患または状態の治療、予防またはその重篤度の軽減のための予防レジメンおよび治療レジメンの両方において、MASP-3阻害物質および任意でMASP-2阻害物質を含む組成物は、対象において十分な治療転帰が達成されるまで、いくつかの用量において投与され得る。本発明の一態様において、MASP-3および/またはMASP-2阻害物質はMASP-1抗体、MASP-2抗体またはMASP-3抗体を含み、それが、好適には0.1mg〜10,000mg、より好適には1.0mg〜5,000mg、より好適には10.0mg〜2,000mg、より好適には10.0mg〜1,000mg、さらにより好適には50.0mg〜500mgまたは10〜200mgの用量で、成人患者(例えば体重70kgの平均的成人)に投与され得る。小児患者の場合、用量は、患者の体重に比例して調節することができる。
本発明のMASP-3阻害組成物および任意のMASP-2阻害組成物の適用は、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患または障害の治療のために、組成物(例えば、MASP-2およびMASP-3阻害物質または二重特異性もしくは二重阻害物質を含む単一の組成物または別々の組成物の同時投与)の単回投与または限られた回数の連続投与によって実施され得る。または、組成物は、最適な治療効果のために医師によって決定される長期間にわたり、1日1回、週2回、週1回、2週に1回、1か月1回、または2か月に1回のような定期的間隔で投与されてもよい。
一部の態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物が、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、およびベーチェット病からなる群より選択される疾患もしくは状態に罹患している対象または該疾患もしくは該状態を発症する危険のある対象に投与される。一態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物は同時に(すなわち、約15分以下またはそれ未満、例えば10、5、もしくは1分のいずれか以下の時間間隔内で)投与される。一態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物は順次に投与される(すなわち、第一の組成物は、第二の組成物の投与の前または後のいずれかで投与され、投与の時間間隔は15分超である)。一部の態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物は同時並行的に投与される(すなわち、第一の組成物の投与期間が第二の組成物の投与と重なり合う)。例えば、一部の態様において、第一の組成物および/または第二の組成物は、少なくとも1、2、3または4週またはより長い期間、投与される。一態様において、少なくとも1つのMASP-3阻害物質および少なくとも1つのMASP-2阻害物質は単位剤形に組み合わされる。一態様において、少なくとも1つのMASP-3阻害物質を含む第一の組成物および少なくとも1つのMASP-2阻害物質を含む第二の組成物は、発作性夜間血色素尿症(PNH)、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、またはベーチェット病の治療に使用するためのキットの中に一緒にパッケージングされる。
一部の態様において、PNH、加齢黄斑変性症(AMD)、虚血-再灌流障害、関節炎、播種性血管内凝固、血栓性微小血管症(溶血性尿毒症症候群(HUS)、非定型溶血性尿毒症症候群(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)を含む)、喘息、デンスデポジット病、微量免疫型壊死性半月体形成性糸球体腎炎、外傷性脳障害、誤嚥性肺炎、眼内炎、視神経脊髄炎、またはベーチェット病に罹患している対象は、補体タンパク質C5の切断を阻害する終末補体阻害因子による治療を以前に受けたことがあるかまたは現在受けている。一部の態様において、方法は、MASP-3阻害因子および任意でMASP-2阻害因子を含む本発明の組成物を対象に投与し、さらに、補体タンパク質C5の切断を阻害する終末補体阻害因子を対象に投与する工程を含む。一部の態様において、終末補体阻害因子はヒト化抗C5抗体またはその抗原結合断片である。一部の態様において、終末補体阻害因子はエクリズマブである。
XXI. 実施例
以下の実施例は、本発明の実施について意図された最良の態様(best mode)の単なる例示であり、本発明を限定すると解釈してはならない。本明細書中の全ての文献引用が明確に参照により組み入れられる。
実施例1
本実施例は、MASP-2欠損マウスが、髄膜炎菌血清群Aまたは髄膜炎菌血清群Bのどちらかに感染した後に髄膜炎菌誘導死から保護されることを証明する。
方法:
MASP-2ノックアウトマウス(MASP-2 KOマウス)を、本明細書に参照として組み入れられるUS 7,919,094の実施例1に記載のように生成した。100μl体積で投与量2.6×107CFUの髄膜炎菌血清群A Z2491を腹腔内(i.p.)注射することによって、10週齢MASP-2 KOマウス(n=10)および野生型(WT)C57/BL6マウス(n=10)に接種した。感染用量を、最終濃度400mg/kgの鉄デキストランと一緒にマウスに投与した。72時間の期間にわたって感染後のマウスの生存をモニタリングした。
別の実験では、100μl体積で投与量6×106CFUの髄膜炎菌血清群B MC58株をi.p.注射することによって、10週齢MASP-2 KOマウス(n=10)およびWTC57/BL6マウス(n=10)に接種した。感染用量を、最終用量400mg/kgの鉄デキストランと一緒にマウスに投与した。72時間の期間にわたって感染後のマウスの生存をモニタリングした。感染後72時間の期間中に、以下の表4に記載の疾病スコアリングパラメータに基づいて、WTマウスおよびMASP-2 KOマウスの疾病スコアも求めた。この疾病スコアリングはFransen et al., (2010)の手法に基づき、これにわずかな変更を加えた。
(表4)感染マウスにおける臨床徴候に関連した疾患スコアリング
感染を検証し、血清からの細菌クリアランスの割合を決定するために、感染後1時間おきにマウスから血液試料を採取し、分析して、髄膜炎菌の血清レベル(log cfu/mL)を求めた。
結果:
図8は、感染用量2.6×107cfuの髄膜炎菌血清群A Z2491を投与させた後のMASP-2 KOマウスおよびWTマウスの生存率(%)を図示したカプラン・マイヤープロットである。図8に示したように、感染後72時間の期間全体を通じて100%のMASP-2 KOマウスが生存した。対照的に、感染24時間後、WTマウスの80%しか生存しておらず(p=0.012)、感染72時間後、WTマウスの50%しか生存していなかった。これらの結果から、MASP-2欠損マウスは髄膜炎菌血清群A Z2491誘導死から保護されることが証明される。
図9は、感染用量6×106cfuの髄膜炎菌血清群B MC58株を投与した後のMASP-2 KOマウスおよびWTマウスの生存率(%)を図示したカプラン・マイヤープロットである。図9に示したように、感染後72時間の期間全体を通じてMASP-2 KOマウスの90%が生存した。対照的に、感染24時間後、WTマウスの20%しか生存していなかった(p=0.0022)。これらの結果から、MASP-2欠損マウスは髄膜炎菌血清群B MC58株誘導死から保護されることが証明される。
図10は、6×106cfuの髄膜炎菌血清群B MC58株にi.p.感染させた後のMASP-2 KOマウスおよびWTマウスから採取された血液試料中にある様々な時点で回収された髄膜炎菌血清群B MC58株のlog cfu/mLを図示する(両マウス群において様々な時点でn=3)。結果を平均±SEMとして表した。図10に示したように、WTマウスにおいて、血中の髄膜炎菌レベルは感染24時間後に約6.0 log cfu/mLのピークに達し、感染後36時間までに約4.0 log cfu/mLまで落ちた。対照的に、MASP-2 KOマウスにおいて、髄膜炎菌レベルは感染12時間後に約4.0 log cfu/mLのピークに達し、感染後36時間までに約1.0 log cfu/mLまで落ちた。(「*」という記号はp<0.05を示す;「**」という記号はp=0.0043を示す)。これらの結果から、MASP-2 KOマウスにWTマウスと同用量の髄膜炎菌血清群B MC58株を感染させたが、MASP-2 KOマウスはWTと比較して菌血症のクリアランスを増強したことが証明される。
図11は、6×106cfuの髄膜炎菌血清群B MC58株を感染させて3時間後、6時間後、12時間後、および24時間後のMASP-2 KOマウスおよびWTマウスの平均疾病スコアを図示する。図11に示したように、MASP-2欠損マウスは感染に対して高い耐性を示し、感染させて6時間後(「*」という記号はp=0.0411を示す)、12時間後(「**」という記号はp=0.0049を示す)、および24時間後(「***」という記号はp=0.0049を示す)の疾病スコアは非常にWTマウスと比較して非常に低かった。図11の結果を平均±SEMとして表した。
要約すると、本実施例の結果から、MASP-2欠損マウスは、髄膜炎菌血清群A感染後または髄膜炎菌血清群B感染後に髄膜炎菌誘導死から保護されることが証明される。
実施例2
本実施例は、髄膜炎菌感染後のMASP-2抗体の投与が髄膜炎菌感染マウスの生存率を増加させることを実証する。
背景/原理:
参照により本明細書に組み入れられる米国特許第7,919,094号の実施例24に記載されているように、ラットMASP-2タンパク質を使用してFabファージディスプレイライブラリーをパンニングし、そこからFab2#11を機能的に活性な抗体として同定した。ラットIgG2cおよびマウスIgG2aアイソタイプの完全長抗体をFab2#11から生成した。マウスIgG2aアイソタイプの完全長MASP-2抗体を薬力学的パラメータに関して特徴決定した(米国特許第7,919,094号の実施例38に記載されているとおり)。
本実施例においては、Fab2#11由来のマウスMASP-2完全長抗体を髄膜炎菌感染のマウスモデルにおいて分析した。
方法:
上記のように生成したFab2#11由来のマウスIgG2a完全長MASP-2抗体アイソタイプを、以下のように、髄膜炎菌感染マウスモデルにおいて試験した。
1. 感染後のマウスMASP-2モノクローナル抗体(MoAb)の投与
9週齢C57/BL6チャールズリバーマウスを、高用量(4×106cfu)の髄膜炎菌血清型B株MC58の腹腔内注射から3時間後、阻害性マウスMASP-2抗体(1.0mg/kg)(n=12)または対照アイソタイプ抗体(n=10)で処理した。
結果:
図12は、感染量4×106cfuの髄膜炎菌血清群B株MC58の投与ののち、阻害性MASP-2抗体(1.0mg/kg)または対照アイソタイプ抗体のいずれかを感染後3時間で投与したマウスの生存率%をグラフで示すカプラン・マイヤー(Kaplan-Meyer)プロットである。図12に示すように、MASP-2抗体で処理されたマウスは、90%が感染後72時間を通して生存した。対照的に、アイソタイプ抗体で処理されたマウスは、50%しか感染後72時間を通して生存しなかった。「*」という記号は、2つの生存曲線の比較によって決定されたp=0.0301を示す。
これらの結果は、MASP-2抗体の投与が、髄膜炎菌感染対象を治療し、その生存率を改善するのに有効であることを実証する。
本明細書に実証されるように、髄膜炎菌感染対象の治療におけるMASP-2抗体の使用は、感染後3時間以内に投与された場合に有効であり、感染後24時間〜48時間以内で有効であると予想される。髄膜炎菌性の疾病(髄膜炎菌血症または髄膜炎)は緊急事態であり、治療は通常、髄膜炎菌性の疾病が疑われるならばただちに(すなわち、髄膜炎菌が病原物質として陽性と特定される前に)開始される。
実施例1において実証されたMASP-2KOマウスの結果を考慮すると、髄膜炎菌感染前のMASP-2抗体の投与が、感染を予防するのにまたは感染の重篤さを軽減するのにも有効であると考えられる。
実施例3
本実施例は、ヒト血清中の髄膜炎菌の補体依存性死滅がMASP-3依存性であることを実証する。
原理:
機能的MBLの血清レベルが低下した患者は、再発性の細菌および真菌感染への罹患性の増大を示す(Kilpatrick et al., Biochim Biophys Acta 1572:401-413 (2002))。髄膜炎菌がMBLによって認識されることは公知であり、MBL欠損血清が髄膜炎菌を溶解しないことが示されている。
実施例1および2に記載された結果を考慮して、補体欠損血清および対照ヒト血清における髄膜炎菌感染を治療するためのMASP-2抗体投与の有効性を決定するための一連の実験を実施した。補体経路を保持するために、高い血清濃度(20%)で実験を実施した。
方法:
1. 様々な補体欠損ヒト血清におけるおよびヒトMASP-2抗体で処理されたヒト血清における血清殺菌活性
この実験には、以下の補体欠損ヒト血清および対照ヒト血清を使用した。
組換えヒトMASP-2Aを抗原として使用して、ヒトMASP-2に対する組換え抗体をコンビナトリアル抗体ライブラリー(Knappik, A., et al., J. Mol. Biol. 296:57-86 (2000))から単離した(Chen, C. B. and Wallis, J. Biol. Chem. 276:25894-25902 (2001))。ヒト血漿中のC4およびC3のレクチン経路媒介性活性化を強く阻害する(IC50約20nM)抗ヒトscFv断片を同定し、完全長ヒトIgG4抗体へと転換した。
髄膜炎菌血清型B-MC58を、表5に示す様々な血清とともに、それぞれ20%の血清濃度で、阻害性ヒトMASP-2抗体(全量100μl中3μg)を添加し、または添加せずに、振とうしながら37℃でインキュベートした。試料を以下の時点:0、30、60および90分間隔で採取し、平板培養したのち、生菌数を測定した。熱不活化ヒト血清を陰性対照として使用した。
結果:
図13は、表5に示すヒト血清試料中、様々な時点で回収された髄膜炎菌血清群B-MC58の生菌数のlog cfu/mLをグラフで示す。表6は、図13のスチューデントt検定の結果を提示する。
(表6)図13に関するスチューデントt検定結果(60分時点)
図13および表6に示すように、ヒトMASP-2阻害抗体の添加によってヒト20%血清中の髄膜炎菌の補体依存性死滅が有意に高められた。
2. 様々な補体欠損ヒト血清における血清殺菌活性
この実験には、以下の補体欠損ヒト血清および対照ヒト血清を使用した。
(表7)試験したヒト血清試料(図14に示す)
注記:試料DにおけるMASP-3-/-(MASP-1+)血清は、特徴が重なるCarnevale症候群、Mingarelli症候群、Malpuech症候群およびMichels症候群の統一用語である3MC症候群の対象から採取したものである。実施例4にさらに記載されるように、MASP-1/3遺伝子のエキソン12の突然変異は、MASP-3のセリンプロテアーゼドメインを機能不全にするが、MASP-1のセリンプロテアーゼドメインを機能不全にしない。実施例19に記載されるように、プロD因子は3MC血清中に優先的に存在しているが、活性化されたD因子は正常ヒト血清中に優先的に存在している。
髄膜炎菌血清型B-MC58を、様々な補体欠損ヒト血清とともに、それぞれ20%の血清濃度で、振とうしながら37℃でインキュベートした。試料を以下の時点:0、15、30、45、60、90、および120分間隔で採取し、平板培養したのち、生菌数を測定した。熱不活化ヒト血清を陰性対照として使用した。
結果:
図14は、表7に示すヒト血清試料中、様々な時点で回収された髄膜炎菌血清群B-MC58の生菌数のlog cfu/mLをグラフで示す。図14に示すように、WT(NHS)血清が、髄膜炎菌に関して最高レベルの殺菌活性を有する。対照的に、MBL-/-およびMASP-3-/-(MASP-1充分である)ヒト血清は任意の殺菌活性を有しない。これらの結果は、ヒト20%(v/v)血清中の髄膜炎菌の補体依存性死滅がMASP-3およびMBL依存性であることを示す。表8は図14のスチューデントt検定の結果を提示する。
要約すると、図14および表8に示す結果は、20%ヒト血清中の髄膜炎菌の補体依存性死滅がMASP-3-およびMBL依存性であることを実証する。
3. MASP-2、MASP-1/3、またはMBL A/Cを欠損している20%(v/v)マウス血清中の髄膜炎菌の補体依存性死滅
この実験には、以下の補体欠損マウス血清および対照マウス血清を使用した。
髄膜炎菌血清型B-MC58を、様々な補体欠損マウス血清とともに、それぞれ20%の血清濃度で、振とうしながら37℃でインキュベートした。試料を以下の時点:0、15、30、60、90、および120分間隔で採取し、平板培養したのち、生菌数を測定した。熱不活化ヒト血清を陰性対照として使用した。
結果:
図15は、表9に示すマウス血清試料中、様々な時点で回収された髄膜炎菌血清群B-MC58の生菌数のlog cfu/mLをグラフで示す。図15に示すように、MASP-2-/-マウス血清は、WTマウス血清よりも髄膜炎菌に関して高いレベルの殺菌活性を有する。対照的に、MASP-1/3-/-マウス血清は任意の殺菌活性を有しない。「**」という記号はp=0.0058を示し、「***」という記号はp=0.001を示す。表10は、図15のスチューデントt検定の結果を提示する。
要約すると、本実施例における結果は、MASP-2-/-血清が、WT血清よりも髄膜炎菌に関して高いレベルの殺菌活性を有すること、および20%血清中の髄膜炎菌の補体依存性死滅がMASP-3-およびMBL依存性であることを実証する。
実施例4
本実施例は、実施例1〜3に記載されるような、MASP-2 KOマウスにおいて認められた髄膜炎菌感染に対するMASP-3依存性抵抗の機構を決定するために実施された一連の実験を記載する。
原理:
以下のように、MASP-2 KOマウスにおいて認められた髄膜炎菌感染に対するMASP-3依存性抵抗の機構(上記実施例1〜3に記載)を決定するために一連の実験を実施した。
1. MASP-1/3欠損マウスはレクチン経路機能活性(「LEA-2」とも呼ばれる)を欠損していない
方法:
MASP-1/3欠損マウスがレクチン経路機能活性(「LEA-2」とも呼ばれる)を欠損しているかどうかを判定するために、参照により本明細書に組み入れられるSchwaeble W. et al., PNAS vol 108(18):7523-7528 (2011)に記載されているとおりに、レクチン活性化経路特異的アッセイ条件下(1%血漿)、試験される様々な補体欠損マウス系統からの血漿中のC3コンバターゼ活性の動態を測定するためのアッセイ法を実施した。
以下のように、WT、C4-/-、MASP-1/3-/-;B因子-/-およびMASP-2-/-マウスからの血漿を試験した。
C3活性化を測定するために、マイクロタイタープレートを、マンナン(1μg/ウェル)、コーティング緩衝液(15mM Na2Co3、35mM NaHCO3)中ザイモサン(1μg/ウェル)またはコーティング緩衝液中1%ヒト血清アルブミン(HSA)でコーティングすることによってインサイチューで生成した免疫複合体でコーティングし、次いで、TBS(10mM Tris、140mM NaCl、pH7.4)中ヒツジ抗HAS血清(2μg/mL)を0.05% Tween 20および5mM Ca++とともに加えた。プレートをTBS中0.1% HSAでブロッキングし、TBS/Tween 20/Ca++で3回洗浄した。血漿試料を4mMバルビタール、145mM NaCl、2mM CaCl2、1mM MgCl2、pH7.4で希釈し、プレートに加え、37℃で1.5時間インキュベートした。洗浄後、ウサギ抗ヒトC3c(Dako)、次いでアルカリホスファターゼコンジュゲート化ヤギ抗ウサギIgGおよびp-ニトロフェニルホスフェートを使用して、結合したC3bを検出した。
結果:
レクチン経路特異的条件下のC3活性化の動態(1%血清を有するマンナンコーティングされたプレート上のC3b沈着によって測定)を図16に示す。MASP-2-/-血漿中にはC3切断は見られなかった。B因子-/-(B因子-/-)血漿は、おそらくは増幅ループの損失のせいで、WT血漿の半分の速度でC3を切断した。C4-/-(T1/2=33分)およびMASP-1/3-/-欠損血漿(T1/2=49分)においてC3からC3bへのレクチン経路依存性転換の有意な遅延が見られた。MASP-1/3-/-血漿におけるC3活性化のこの遅延は、MASP-3依存性ではなくMASP-1依存性であることが示されている(Takahashi M. et al., J Immunol 180:6132-6138 (2008)を参照されたい)。これらの結果は、MASP-1/3-欠損マウスがレクチン経路機能活性(「LEA-2」とも呼ばれる)を欠損していないことを実証する。
2. 第二経路活性化に対する遺伝性MASP-3欠損の影響
原理:
MASP-3のセリンプロテアーゼをコードするエキソン中のフレームシフト突然変異によって生じる3MC症候群を有するMASP-3欠損患者の血清を試験することにより、第二経路活性化に対する遺伝性MASP-3欠損の影響を判定した。3MC症候群とは、特徴が重なるCarnevale症候群、Mingarelli症候群、Malpuech症候群およびMichels症候群の統一用語である。この珍しい常染色体劣性障害は、特徴的な顔面異形症、口唇裂および/または口蓋裂、頭蓋骨癒合症、学習障害ならびに性器、四肢および膀胱直腸異常を含む一連の発達的特徴を示す。Rooryck et al., Nature Genetics 43:197-203 (2011)は、3MC症候群の11家族を研究し、突然変異した2つの遺伝子COLEC11およびMASP-1を同定した。MASP-1遺伝子の突然変異は、MASP-3のセリンプロテアーゼドメインをコードするエキソンを機能不全にするが、MASP-1のセリンプロテアーゼドメインをコードするエキソンを機能不全にはしない。したがって、MASP-3のセリンプロテアーゼをコードするエキソン中に突然変異を有する3MC患者は、MASP-3を欠損しているが、MASP-1を充分に有する。
方法:
MASP-3欠損血清は、3MC患者、その3MC患者の母親および父親(両親とも、MASP-3セリンプロテアーゼドメインをコードするエキソンを機能不全にする突然変異を有するアレルに関してヘテロ接合性)ならびにC4欠損患者(両方のヒトC4遺伝子を欠損している)およびMBL欠損対象から得た。Bitter-Suermann et al., Eur. J. Immunol. 11:291-295 (1981))に記載されているような従来のAP特異的条件下(BBS/Mg++/EGTA、Ca++なし、ここで、BBS=スクロースを含有するバルビタール緩衝食塩水)、ザイモサンコーティングされたマイクロタイタープレート上、0.5〜25%の範囲の血清濃度で第二経路アッセイ法を実施し、時間の経過とともにC3b沈着を測定した。
結果:
図17は、ザイモサンコーティングされたマイクロタイタープレート上の第二経路駆動型C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損対象から採取された血清試料中の血清濃度の関数としてグラフで示す。図17に示すように、MASP-3欠損患者の血清は、高い血清濃度(25%、12.5%、6.25%血清濃度)で残留第二経路(AP)活性を有するが、有意に高いAP50(すなわち、最大C3沈着の50%を達成するために必要な血清の9.8%)を有する。
図18は、「従来の」第二経路特異的(AP特異的)条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)、ザイモサンコーティングされたマイクロタイタープレート上の第二経路駆動型C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損ヒト対象から採取された10%ヒト血清試料中の時間の関数としてグラフで示す。
以下の表11は、図17に示すAP50結果および図18に示すC3b沈着の半減期をまとめたものである。
(表11)図17および18に示す結果のまとめ
注記:BBS/Mg
++/EGTA緩衝液中、レクチン経路媒介効果は、この緩衝液中のCa
++の非存在のせいで失われている。
要約すると、これらのアッセイ法の条件下では、第二経路は3MC患者において有意に損なわれている。
3. MASP-2またはMASP-1/3を欠損しているマウス血清におけるマンナン、ザイモサン、および肺炎連鎖球菌D39上のC3b沈着の測定
方法:
MASP-2-/-、MASP-1/3-/-およびWTマウスから採取された0%〜20%の範囲のマウス血清濃度を使用して、マンナン、ザイモサンおよび肺炎連鎖球菌D39でコーティングされたマイクロタイタープレート上のC3b沈着を測定した。「従来の」第二経路特異的条件下(すなわちCa++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(すなわちBBS/Mg++/Ca++)、C3b沈着アッセイ法を実施した。
結果:
図19Aは、従来の第二経路特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、マンナンコーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスから採取された血清試料中の血清濃度の関数としてグラフで示す。図19Bは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、ザイモサンコーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスからの血清試料中の血清濃度の関数としてグラフで示す。図19Cは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、肺炎連鎖球菌D39コーティングされたマイクロタイタープレート上のC3b沈着のレベルを、WT、MASP-2欠損およびMASP-1/3欠損マウスからの血清試料中の血清濃度の関数としてグラフで示す。
図20Aは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、マンナンコーティングされたマイクロタイタープレート上で実施された高希釈血清中のC3b沈着アッセイ法の結果をグラフで示す。図20Bは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/EGTA/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、ザイモサンコーティングされたマイクロタイタープレート上で実施されたC3b沈着アッセイ法の結果をグラフで示す。図20Cは、従来のAP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/EGTA/Mg++/Ca++)、0%〜1.25%の範囲の血清濃度を使用して、肺炎連鎖球菌D39コーティングされたマイクロタイタープレート上で実施されたC3b沈着アッセイ法の結果をグラフで示す。
また、図20A〜Cに示すように、従来の第二経路特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)またはレクチン経路および第二経路の両方が機能することを可能にする生理学的条件下(BBS/Mg++/Ca++)、0%〜1.25%血清の範囲の高めの希釈度を使用して、マンナンコーティングされたプレート上(図20A);ザイモサンコーティングされたプレート上(図20B)および肺炎連鎖球菌D39コーティングされたプレート上(図20C)で、C3b沈着アッセイ法を実施した。第二経路は高めの血清希釈度下で次第に消失し、そのため、Ca++の存在においてMASP-1/3欠損血清中に認められた活性はMASP-2媒介性LP活性であり、Ca++の存在におけるMASP-2欠損血清中の活性はAPのMASP-1/3媒介性残留活性である。
考察:
本実施例に記載された結果は、MASP-2阻害因子(またはMASP-2 KO)が、MASP-3駆動型第二経路活性化を促進することにより、髄膜炎菌感染からの有意な保護を提供することを実証する。マウス血清溶菌アッセイ法およびヒト血清溶菌アッセイ法の結果はさらに、髄膜炎菌に対する血清殺菌活性をモニターすることにより、髄膜炎菌に対する殺菌活性がMBL欠損(マウスMBL AおよびMBL C二重欠損血清およびヒトMBL欠損血清)中には存在しないことを示す。
図1は、本明細書に提供される結果に基づくレクチン経路および第二経路の新たな理解を示す。図1は、オプソニン化および溶解の両方におけるLEA-2の役割を表す。MASP-2は、生理学的に複数のレクチン依存状況における「下流」C3b沈着(および結果的なオプソニン化)のイニシエーターであるが(図20A、20B、20C)、それは血清感受性細菌の溶解においても役割を果たす。図1に示すように、髄膜炎菌のような血清感受性病原体の場合のMASP-2欠損またはMASP-2枯渇血清/血漿の殺菌活性の増大の原因であると考えられる分子機構は、溶菌の場合、MASP-1およびMASP-3と関連したレクチン経路認識複合体が細菌表面上で互いに近接して結合し、それにより、MASP-1がMASP-3を切断することを可能にしなければならないということである。MASP-1およびMASP-2とは対照的に、MASP-3は自己活性化酵素ではなく、多くの場合、その酵素的に活性な形態へと転換されるためにはMASP-1による活性化および切断を必要とする。
図1にさらに示すように、活性化されたMASP-3はしたがって、病原体表面上のC3b結合B因子を切断して、酵素的に活性な第二経路C3およびC5コンバターゼそれぞれC3bBbおよびC3bBb(C3b)nの形成により、第二経路活性化カスケードを開始させることができる。MASP-2を有するレクチン経路活性化複合体は、MASP-3の活性化において役割を有さず、MASP-2の非存在において、またはMASP-2の枯渇後、全レクチン経路活性化複合体はMASP-1またはMASP-3のいずれかを付加される。したがって、MASP-2の非存在において、微生物表面上で、MASP-1およびMASP-3を有するレクチン経路活性化複合体が互いに近接するようになり、より多くのMASP-3が活性化され、それにより、より高速のC3b結合B因子のMASP-3媒介性切断を生じさせて、微生物表面上に第二経路C3およびC5コンバターゼC3bBbおよびC3bBb(C3b)nが形成する可能性が顕著に増大する。これが、表面結合C5bがC6と関連し、C5bC6がC7と関連し、C5bC6C7がC8と関連し、そしてC5bC6C7C8がC9を重合させる、終末活性化カスケードC5b-C9を活性化させて膜侵襲複合体を形成させ、それが細菌表面構造に入り込み、細菌壁中の孔を形成し、それが補体標的化細菌の浸透圧性死滅を生じさせる。
この新規な概念の核心は、本明細書に提供されるデータが、図1に示すように、レクチン経路活性化複合体が以下の2つの別々の活性化ルートを駆動することを明らかに示すということである。
実施例5
本実施例は、発作性夜間血色素尿症(PNH)のマウスモデルから得られた血液試料に由来する赤血球の溶解に対するMASP-2欠損および/またはMASP-3欠損の阻害作用を証明する。
原理/背景:
発作性夜間血色素尿症(PNH)はマルキアファーヴァ・ミケーリ症候群とも呼ばれ、補体誘導性の血管内溶血性貧血を特徴とする、後天的な、潜在的に命にかかわる血液疾患である。PNHの顕著な特徴は、補体制御因子CD55およびCD59がPNH赤血球上に存在しないために補体第二経路が無秩序に活性化した結果である慢性的な補体媒介性血管内溶血と、その後に起こるヘモグロビン尿症および貧血である。Lindorfer, M.A., et al., Blood 115(11)(2010)、Risitano, A.M, Mini-Reviews in Medicinal Chemistry, 11:528-535(2011)。PNHにおける貧血は血流中の赤血球の破壊が原因である。PNHの症状には、尿中のヘモグロビンの出現による赤色尿、背部痛、疲労、息切れ、および血栓症が含まれる。PNHは自然発症することがあり、これは「一次PNH」と呼ばれるか、または再生不良性貧血などの他の骨髄障害の状況では「二次PNH」と呼ばれる。PNHの治療には、貧血の場合は輸血、血栓症の場合は血液凝固阻止、および補体系を阻害することによって免疫破壊から血球を保護するモノクローナル抗体エクリズマブ(Soliris(登録商標))の使用(Hillmen P. et al., N. Engl. J. Med. 350(6) 552-9(2004))が含まれる。エクリズマブ(Soliris(登録商標))は、補体成分C5を標的とし、C5コンバターゼによるC5切断を遮断し、それによって、C5aの産生およびMACの集合を阻止するヒト化モノクローナル抗体である。エクリズマブによるPNH患者の治療は、乳酸デヒドロゲナーゼ(LDH)によって測定されるように血管内溶血を減少させ、そのため、患者の約半分におけるヘモグロビン安定化および輸血非依存性につながった(Hillmen P, et al., Mini-Reviews in Medicinal Chemistry, vol11(6)(2011))。エクリズマブ療法を受けているほぼ全員の患者においてLDHレベルが正常またはほぼ正常になったが(血管内溶血の管理のため)、患者の約1/3しかヘモグロビン値 約11gr/dLに達せず、エクリズマブを服用した残りの患者は中程度から重度の(すなわち、輸血依存性)貧血をほぼ同じ割合で示し続ける(Risitano A.M. et al., Blood 113:4094-100(2009))。Risitano et al., Mini-Reviews in Medicinal Chemistry 11:528-535(2011)に記載のように、エクリズマブを服用しているPNH患者は、PNH赤血球のかなりの部分に結合しているC3断片を含んだ(が、未治療患者は含んでいなかった)ことが証明された。このことから、膜に結合しているC3断片はPNH赤血球に対してオプソニンとして働き、その結果、特異的C3受容体を介して細網内皮細胞内に閉じ込められ、その後に、血管外溶血が起こるという結論が導かれた。従って、C3断片を介した血管外溶血を発症している患者は赤血球輸血を必要とし続けるので、これらの患者には、エクリズマブの使用の他に治療方針が必要とされる。
本実施例は、PNHのマウスモデルから採取された血液試料からの赤血球の溶解に対するMASP-2およびMASP-3欠損血清の効果を評価するための方法を記載し、PNHに罹患している対象を治療するためのMASP-2阻害および/またはMASP-3阻害の有効性を実証し、また、エクリズマブのようなC5阻害因子による治療を受けているPNH対象においてC3断片媒介性血管外溶血の影響を緩和するためのMASP-2の阻害因子および/またはMASP-3の阻害因子(二重または二重特異性MASP-2/MASP-3阻害因子を含む)の使用を裏付ける。
方法:
PNH動物モデル:
CrryおよびC3を欠損した(Crry/C3-/-)遺伝子標的化マウスおよびCD55/CD59欠損マウスから血液試料を採取した。これらのマウスは、赤血球上のそれぞれの表面補体制御因子を欠き、したがって、これらの赤血球はPNHヒト血球と同様に自発的に補体自己溶解を受けやすい。
これらの赤血球をさらに感作させるために、これらの細胞を、マンナンコーティングした状態およびマンナンコーティングされない状態で使用し、次いで、WT C56/BL6血漿、MBLヌル血漿、MASP-2-/-血漿、MASP-1/3-/-血漿、ヒトNHS、ヒトMBL-/-血漿およびヒトMASP-2抗体で処理されたNHS中での溶血に関して試験した。
1. MASP-2欠損/枯渇血清および対照におけるCrry/C3およびCD55/CD59二重欠損マウス赤血球の溶血アッセイ法
1日目、マウスRBC(±マンナンコーティング)の調製
材料は以下を含むものであった:新鮮なマウス血液、BBS/Mg++/Ca++(4.4mMバルビツール酸、1.8mMナトリウムバルビトン、145mM NaCl、pH7.4、5mM Mg++、5mM Ca++)、塩化クロム、CrCl3・6H2O(BBS/Mg++/Ca++中0.5mg/mL)、およびマンナン、BBS/Mg++/Ca++中100μg/mL。
全血(2mL)を、4℃の冷却遠心分離機中、2000×gで1〜2分間スピンダウンした。血漿およびバフィーコーティングを吸引した。次いで、RBCペレットを氷冷BBS/ゼラチン/Mg++/Ca++2mL中に再懸濁させ、遠心処理工程を繰り返すことによって試料を3回洗浄した。3回目の洗浄後、ペレットをBBS/Mg++/Ca++4mL中に再懸濁させた。RBCの2mLアリコートをコーティングなしの対照として取っておいた。残る2mLに、CrCl32mLおよびマンナン2mLを添加し、試料を穏やかに混合しながら室温で5分間インキュベートした。BBS/ゼラチン/Mg++/Ca++7.5mLを添加することによって反応を停止させた。上記のように試料をスピンダウンし、BBS/ゼラチン/Mg++/Ca++2mL中に再懸濁させ、上記のようにさらに2回洗浄したのち、4℃で貯蔵した。
2日目、溶血アッセイ法
材料は、BBS/ゼラチン/Mg++/Ca++(上記)、試験血清、96ウェル丸底および平底プレートならびに410〜414nmで96ウェルプレートを読み取る分光光度計を含むものであった。
まず、RBC濃度を測定し、細胞を109/mLに調節し、この濃度で貯蔵した。使用前、細胞をアッセイ緩衝液中で108/mLまで希釈し、次いで、1ウェルあたり100ulを使用した。410〜414nmで溶血を測定した(541nmより大きな感度を可能にする)。試験血清希釈物を氷冷BBS/ゼラチン/Mg++/Ca++中に調製した。各血清希釈物100μlをピペットで丸底プレートに入れた。適切に希釈したRBC調製物100μlを添加し(すなわち、108/mL)、37℃で約1時間インキュベートし、溶解に関して観察した(この時点でプレートの写真を撮り得る)。次いで、プレートを最大速度で5分間スピンダウンした。流体相100μlを吸引し、平底プレートに移し、410〜414nmでODを記録した。RBCペレットを保持した(その後、これらを水で溶解して逆の結果を得ることができる)。
実験#1
上記プロトコールに詳述したように、CD55/CD59二重欠損マウスおよびCrry/C3二重欠損マウスから新鮮な血液を採取し、赤血球を調製した。赤血球を分割し、赤血球の半分をマンナンでコーティングし、他方の半分を未処理のままにし、最終濃度を108/mLに調節し、そのうち100μlを、上記のように実施した溶血アッセイ法に使用した。
実験#1の結果:レクチン経路はPNH動物モデルにおける赤血球溶解に関与する
最初の実験において、コーティングなしのWTマウス赤血球が任意のマウス血清中で溶解しないことがわかった。さらに、マンナンコーティングされたCrry-/-マウス赤血球は、WTマウス血清中ではゆっくりと溶解するが(37度で3時間超)、MBLヌル血清中では溶解しないことがわかった(データ示さず)。
マンナンコーティングされたCrry-/-マウス赤血球はヒト血清中では急速に溶解するが、熱不活化NHS中では溶解しないことがわかった。重要なことに、マンナンコーティングされたCrry-/-マウス赤血球は、NHS中、1/640まで希釈されても溶解した(すなわち、1/40、1/80、1/160、1/320、および1/640希釈物が全て溶解した)(データ示さず)。この希釈度では、第二経路は作用しない(AP機能活性は血清濃度8%未満で有意に低下する)。
実験#1からの結論
マンナンコーティングされたCrry-/-マウス赤血球は、MBLを含む高希釈ヒト血清中では非常に良好に溶解するが、MBLを含まない高希釈ヒト血清中ではそうはならない。試験した各血清濃度での効率的な溶解は、第二経路がこの溶解に関与せず、または必要とされないことを暗示する。MBL欠損マウス血清およびヒト血清がマンナンコーティングされたCrry-/-マウス赤血球を溶解できないことは、古典経路もまた、観察された溶解とは関係がないことを示す。レクチン経路認識分子(すなわちMBL)が必要とされるため、この溶解はレクチン経路によって媒介される。
実験#2
Crry/C3およびCD55/CD59二重欠損マウスから新鮮な血を採取し、マンナンコーティングされたCrry-/-マウス赤血球を、上記のような溶血アッセイ法において、以下のヒト血清:MASP-3-/-;MBLヌル;WT;ヒトMASP-2抗体で前処理されたNHS;および対照としての熱不活化NHSの存在において分析した。
実験#2の結果:MASP-2阻害因子およびMASP-3欠損はPNH動物モデルにおける赤血球溶解を阻止する
マンナンコーティングされたCrry-/-マウス赤血球とともにNHSを、1/640まで(すなわち、1/40、1/80、1/160、1/320および1/640)希釈された希釈物、ヒトMBL-/-血清、ヒトMASP-3欠損血清(3MC患者からのもの)およびMASP-2mAbで前処理されたNHSおよび対照として熱不活化NHSの中でインキュベートした。
ELISAマイクロタイタープレートをスピンダウンし、非溶解赤血球をラウンドウェルプレートの底に捕集した。各ウェルの上清を捕集し、ELISAリーダーにおいてOD 415nmを読み取ることにより、溶解した赤血球から放出されたヘモグロビンの量を測定した。
MASP-3-/-血清はマンナンコーティングされたマウス赤血球をまったく溶解しないことが認められた。対照の熱不活化NHS(陰性対照)においては、予想どおり、溶解は認められなかった。MBL-/-ヒト血清は、1/8および1/16希釈度で、マンナンコーティングされたマウス赤血球を溶解した。MASP-2抗体で前処理されたNHSは、1/8および1/16希釈度で、マンナンコーティングされたマウス赤血球を溶解したが、一方、WTヒト血清は、1/32の希釈度まで、マンナンコーティングされたマウス赤血球を溶解した。
図21は、MASP-3-/-、熱不活化(HI)NHS、MBL-/-、MASP-2抗体で前処理されたNHSおよびNHS対照からの血清中、一定範囲の血清希釈度にわたり、ヒト血清によるマンナンコーティングされたマウス赤血球の溶血(上清への溶解マウス赤血球(Crry/C3-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。
図22は、MASP-3-/-、熱不活化(HI)NHS、MBL-/-、MASP-2抗体で前処理されたNHSおよびNHS対照からの血清中、一定範囲の血清濃度にわたり、ヒト血清によるマンナンコーティングされたマウス赤血球の溶血(上清への溶解マウス赤血球(Crry/C3-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。
図21および22に示す結果から、MASP-3の阻害が、自己由来の補体活性化からの保護を欠損している感作赤血球の任意の補体媒介性溶解を阻止することが実証される。MASP-2抗体によるMASP-2阻害は、CH50を有意にシフトさせ、ある程度まで保護性であったが、MASP-3阻害はより有効であった。
実験#3
Crry/C3およびCD55/CD59二重欠損マウスからの新鮮な血液から採取されたコーティングなしのCrry-/-マウス赤血球を、上記のような溶血アッセイ法において、以下の血清:MASP-3-/-;MBL-/-;WT血清;ヒトMASP-2抗体で前処理されたNHSおよび対照として熱不活化NHSの存在において分析した。
結果:
図23は、3MC(MASP-3-/-)患者、熱不活化(HI)NHS、MBL-/-、MASP-2抗体で前処理されたNHSおよびNHS対照からのヒト血清中、一定範囲の血清濃度にわたり、コーティングなしのマウス赤血球の溶血(上清への溶解WTマウス赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。図23に示し、表12にまとめているように、MASP-3の阻害が非感作WTマウス赤血球の補体媒介性溶解を阻害することが実証される。
図24は、熱不活化(HI)NHS、MBL-/-、MASP-2抗体で前処理されたNHSおよびNHS対照からのヒト血清中、一定範囲の血清濃度にわたり、ヒト血清によるコーティングなしのマウス赤血球の溶血(上清への溶解マウス赤血球(CD55/59-/-)のヘモグロビン放出を測光法によって測定)をグラフで示す。図24に示し、表12にまとめているように、MASP-2の阻害は、限られた程度まで保護的であることが実証される。
(表12)血清濃度として表されたCH
50値
注記:「CH
50」とは、補体媒介性溶血が50%に達する点である。
要約すると、本実施例における結果は、MASP-3の阻害が、自己由来補体活性化からの保護を欠損している感作および非感作赤血球の任意の補体溶解を阻止することを実証する。MASP-2阻害もまた、ある程度まで保護的である。したがって、単独のまたは組み合わされる(すなわち、同時投与され、順次に投与される)MASP-2およびMASP-3阻害因子またはMASP-2/MASP-3二重特異性または二重阻害因子は、PNHに罹患している対象を治療するために使用され得、かつエクリズマブ(Soliris(登録商標))のようなC5阻害因子による治療を受けているPNH患者における血管外溶血を緩和する(すなわち、阻害するか、予防するか、またはその重篤さを低下させる)ために使用され得る。
実施例6
本実施例は、WTまたはMASP-1/3-/-マウス血清の存在における溶解に関してマンナンコーティングされたウサギ赤血球を試験する溶血アッセイ法を記載する。
方法:
1. マウスMASP-1/3欠損血清およびWT対照血清におけるウサギRBC(マンナンコーティングされた)の溶血アッセイ法
1日目、ウサギRBCの調製
材料は以下を含むものであった:新鮮なウサギ血液、BBS/Mg++/Ca++(4.4mMバルビツール酸、1.8mMナトリウムバルビトン、145mM NaCl、pH7.4、5mM Mg++、5mM Ca++)、0.1%ゼラチンを含むBBS/Mg++/Ca++、緩衝液に含まれた塩化クロム、すなわちCrCl3.6H2O(BBS/Mg++/Ca++中0.5mg/mL)およびマンナン、BBS/Mg++/Ca++中100μg/mL。
1. ウサギ全血(2mL)を、2つの1.5mLエッペンドルフ管に分割し、4℃の冷却エッペンドルフ遠心分離機中、8000rpm(約5.9rcf)で3分間遠心処理した。氷冷BBS/Mg++/Ca++中に再懸濁させたのち、RBCペレットを3回洗浄した。3回目の洗浄後、ペレットをBBS/Mg++/Ca++4mL中に再懸濁させた。このアリコート2mLを、コーティングなし対照として使用するために、15mLファルコンチューブに加えた。残り2mLのRBCアリコートをCrC13緩衝液2mL中に希釈し、マンナン溶液2mLを添加し、懸濁液を穏やかに混合しながら室温で5分間インキュベートした。BBS/0.1%ゼラチン/Mg++/Ca++7.5mLを混合物に加えることによって反応を停止させた。上記のように赤血球をペレット化し、RBCをBBS/0.1%ゼラチン/Mg++/Ca++で2回洗浄した。RBC懸濁液をBBS/0.1%ゼラチン/Mg++/Ca++中、4℃で貯蔵した。
2. 懸濁させたRBC100μlを水1.4mLで希釈し、8000rpm(約5.9rcf)で3分間スピンダウンし、上清のODを541nmで0.7に調節した(541nmで0.7のODは赤血球約109個/mLに相当)。
3. 再懸濁させたRBCをBBS/0.1%ゼラチン/Mg++/Ca++で108個/mLの濃度まで希釈した。
4. 試験血清の希釈物を氷冷BBS/ゼラチン/Mg++/Ca++中に調製し、各血清希釈物100μlを丸底プレートの対応するウェルにピペットで移した。適切に希釈したRBC100μl(108/mL)を各ウェルに加えた。完全な溶解のための対照として、精製水(100μL)を希釈RBC(100μL)と混合して100%溶解を生じさせ、一方、血清なしのBBS/0.1%ゼラチン/Mg++/Ca++(100μL)を陰性対照として使用した。次いで、プレートを37℃で1時間インキュベートした。
5. 丸底プレートを3250rpmで5分間遠心処理した。各ウェルからの上清(100μL)を平底プレートの対応するウェルに移し、ELISAリーダー中、415〜490nmでODを読み取った。結果を、490nmでのODに対する415nmでのODの比として報告する。
結果:
図25は、MASP-1/3-/-およびWT対照からの血清中の一定範囲の血清濃度にわたり、マウス血清によるマンナンコーティングされたウサギ赤血球の溶血(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。図25に示すように、MASP-3の阻害が、マンナンコーティングされたWTウサギ赤血球の補体媒介性溶解を阻止することが実証される。これらの結果はさらに、実施例5に記載されたようなPNHの1つまたは複数の局面の治療のためのMASP-3阻害因子の使用を裏付ける。
実施例7
本実施例は、D因子欠損血清中、Ca++の存在において第二経路が活性化されることを実証する。
実験#1:第二経路特異的条件下でのC3b沈着アッセイ法
方法:
第二経路特異的条件下(BBS/EGTA/Mg++、Ca++なし)、以下のマウス血清:D因子-/-;MASP- -/-;およびWTの希釈度を高めながら使用して、ザイモサンコーティングされたマイクロタイタープレート上でC3b沈着アッセイ法を実施した。
結果:
図26は、第二経路特異的条件下で実施されたC3沈着アッセイ法におけるC3b沈着(OD 405nm)のレベルを、D因子-/-、MASP-2-/-;およびWTマウス血清からの血清試料中の血清濃度の関数としてグラフで示す。図26に示すように、これらの条件下、D因子-/-マウス血清はC3をまったく活性化せず、第二経路は作用していない。MASP-2-/-血清は、WT血清と同様な速度で第二経路活性化を示す。これらの結果は、Ca++の非存在においては、C3b沈着のためにD因子が必要とされることを確認させる。これは、MASP-1、MASP-3活性化酵素およびMASP-3とそれぞれの糖質認識成分との相互作用がCa++依存性であるため、これらの条件下ではMASP-3をその酵素的に活性な形態へと転換することができないという証拠と合致している。
実験#2:生理学的条件下でのC3b沈着アッセイ法
方法:
生理学的条件下(BBS/Ca++/Mg++)(LPおよびAPの両方が機能することを可能にする)、以下のマウス血清:D因子-/-;MASP-2-/-;およびWTの希釈度を高めながら使用して、C3b沈着アッセイ法を実施した。
結果:
図27は、生理学的条件下(Ca++の存在下)で実施されたC3b沈着アッセイ法におけるC3b沈着(OD 405nm)のレベルを、D因子-/-;MASP-2-/-;およびWTマウスからの血清の試料を使用する血清濃度の関数としてグラフで示す。図27に示すように、D因子-/-マウス血清は、指示された血清希釈度を通して、WT血清に比べて差なく、レクチン経路および第二経路の両方を介してC3を活性化する。MASP- -/-血清は、第二経路(すなわちMASP-3駆動型第二経路活性化)のみによって、より低い血清希釈度でC3のターンオーバーを示す。これらの結果は、Ca++の存在においては、MASP-3が第二経路活性化を駆動することができるという条件で、D因子が必要とされないことを示す。
実験#3:MASP-2mAbの存在または非存在においてB因子またはD因子を欠損しているマウス血清を使用するC3b沈着アッセイ法
方法:
以下のとおりに、生理学的条件下(BBS/Ca++/Mg++)、マンナンコーティングされたマイクロタイタープレート上でC3b沈着アッセイ法を実施した。
1. マイクロタイターELISAプレートを、コーティング緩衝液(15mM Na2CO3、35mM NaHCo3、0.02%アジ化ナトリウム、pH9.6)中のマンナン(1μg/mL)で4℃において一晩コーティングした。
2. 翌日、BBS(4mMバルビタール、145mM NaCl、2mM CaCl2、1mM MgCl2、pH 7.4)中0.1% HSAを250μl/ウェルで用いて残留タンパク質結合部位を室温で2時間ブロッキングした。
3. プレートを洗浄緩衝液(0.05% Tween 20および5mM CaCl2を含むTBS)で3回洗浄した。
4. BBS中1:10希釈血清試料を指定の時点でウェルに加えた。緩衝液のみを入れたウェルを陰性対照として使用した。プレートを37℃で40分間インキュベートした。
5. 次いで、プレートを洗浄緩衝液で3回洗浄した。
6. 次いで、洗浄緩衝液中で1:5000に希釈したウサギ抗ヒトC3c(Dako)100μlをウェルに加え、プレートを37℃で90分間インキュベートした。
7. 洗浄緩衝液で3時間洗浄したのち、洗浄緩衝液中で1:5000に希釈したアルカリホスファターゼコンジュゲート化抗ウサギ100μlをウェルに加え、その後、室温で90分間インキュベートした。
8. 洗浄後、基質溶液100μlを加えることによってアルカリホスファターゼを検出した。
9. 15分間インキュベートしたのち、光学密度をOD 405nmで測定した。
結果:
図28は、MASP-2 mAbの存在または非存在におけるD因子-/-またはB因子-/-マウスから採取されたマウス血清中、生理学的条件下(Ca++の存在下)で実施されたC3b沈着アッセイ法におけるC3b沈着(OD 405nm)のレベルを血清インキュベーション時間(分)の関数としてグラフで示す。図28に示すように、WTおよびD因子-/-血清におけるC3b沈着の量に差はなく、D因子の非存在でさえ、MASP-3が第二経路活性化を開始させることができるという結論の強力な支持を提供する。観察されたシグナルは、レクチン経路活性化および第二経路活性化の両方によるものと考えられる。図28にさらに示すように、D因子-/-+MASP-2 mAbはMASP-3-媒介性第二経路活性化のみを示す。B因子-/-+MASP-2 mAbはバックグラウンドのみであった(データ示さず)。熱不活化血清をバックグラウンド対照値として使用すると、それは、MASP-2とのD因子-/-およびB因子-/-と同一であった(データ示さず)。
要約すると、本実施例の結果は、非生理学的条件下では(すなわち、BBS/EGTA/Mg++中、Ca++の非存在において第二経路活性化を試験する場合)D因子のみが不可欠であることを実証する。対照的に、第二経路がMASP-3を介して活性化されることを可能にする生理学的条件下(Ca++の存在において)第二経路活性化を試験する場合、D因子欠損血清は、WT対照に比較して第二経路活性を全く欠損していない。したがって、生理学的条件下、第二経路活性化の開始がMASP-3によって駆動されるという点で、D因子は冗長である。これらの結果は、レクチン経路がMASP-3依存性活性化事象を通してAP活性化を指図するという結論を裏付ける。
実施例8
本実施例は、ヒトMASP-1、MASP-2またはMASP-3ポリペプチドに対するマウスモノクローナル抗体を製造し、二重、二重特異性、または汎特異性MASP抗体を生成する例示的方法を記載する。
1. MASP抗体を生成するための方法
8〜12週齢のオスA/Jマウス(Harlan, Houston, Tex.)に、pH7.4のリン酸緩衝食塩水(PBS)200μl中、完全フロイントアジュバント(Difco Laboratories, Detroit, Mich.)中のヒト完全長ポリペプチド:rMASP-1(SEQ ID NO:10)、rMASP-2(SEQ ID NO:5)もしくはrMASP-3(SEQ ID NO:8)または例えば表2に記載したようなそれらの抗原断片100μgを皮下注射する。2週間後、不完全フロイントアジュバント中の同じヒトポリペプチド50μgをマウスに皮下注射する。6週目、PBS中の同じヒトポリペプチド50μgをマウスに注射し、4日後に融合させる。
融合ごとに、免疫化マウスの脾臓から単細胞懸濁液を調製し、Sp2/0ミエローマ細胞との融合に使用する。50%ポリエチレングリコール(M.W.1450)(Kodak, Rochester, N.Y.)および5%ジメチルスルホキシド(Sigma Chemical Co., St. Louis. Mo.)を含有する培地中、5×108個のSp2/0および5×108個の脾臓細胞を融合させる。次いで、10%ウシ胎児血清、100単位/mLのペニシリン、100μg/mLのストレプトマイシン、0.1mMヒポキサンチン、0.4μMアミノプテリンおよび16μMチミジンで補充したIscove培地(Gibco, Grand Island, N.Y.)中、細胞を懸濁液200μlあたり脾臓細胞1.5×105個の濃度まで調節する。細胞懸濁液200マイクロリットルを、約20の96ウェルマイクロ培養プレートに含まれた各ウェルに加える。約10日後、ELISAアッセイ法において標的精製抗原(MASP-1、MASP-2もしくはMASP-3または表2からの抗原断片)との反応性に関してスクリーニングするために培養上清を回収する。
ELISAアッセイ法(MASP-2を参照して説明):50ng/mLの精製hMASP-2 50μlを室温で一晩加えることによってImmulon 2(Dynatech Laboratories, Chantilly, Va.)マイクロテストプレートのウェルをコーティングする。コーティングに使用されるMASP-2の低い濃度が高親和性抗体の選択を可能にする。プレートを軽くたたくことによってコーティング溶液を除去したのち、非特異的部位をブロッキングするために、PBS中BLOTTO(無脂肪ドライミルク)200μlを各ウェルに1時間加える。次いで、1時間後、ウェルを緩衝液PBST(0.05% Tween20を含有するPBS)で洗浄する。各融合ウェルからの培養上清(50uL)をBLOTTO 50μlと混合したのち、マイクロテストプレートの個々のMASP-2コーティングされたウェルに加える。1時間のインキュベーションののち、ウェルをPBSTで洗浄し、西洋ワサビペルオキシダーゼ(HRP)コンジュゲート化ヤギ抗マウスIgG(Fc特異的)(Jackson ImmunoResearch Laboratories, West Grove, Pa.)を加えることによってMASP-2に結合する抗体を検出する。HRPコンジュゲート化抗マウスIgGは、適切なSN比を提供するようにBLOTTO中で適切に希釈し、各試料含有ウェルに加える。洗浄後、ペルオキシダーゼ基質溶液を用いて結合HRPコンジュゲート化抗体を検出する。発色のために、0.1% 3,3,5,5テトラメチルベンジジン(Sigma, St. Louis, Mo.)および0.0003%過酸化水素(Sigma)を含有するペルオキシダーゼ基質溶液を30分間ウェルに加える。1ウェルあたり50μlの2M H2SO4を加えることによって反応を停止させ、反応混合物の450nmでの光学密度をBioTek ELISA Reader(BioTek Instruments, Winooski, Vt.)によって測定する。
結合アッセイ法(MASP-2に関して記載):
前記のMASP-2 ELISAアッセイ法の試験において陽性と判定された培養上清を、MASP-2に対してMASP-2阻害物質が有する結合親和性を決定するために結合アッセイ法において試験することができる。阻害物質が補体系の他の抗原に結合するかどうか判定するために類似アッセイ法も使用することができる。
ポリスチレンマイクロタイタープレートウェル(96ウェル培地結合プレート, Corning Costar, Cambridge, MA)を、リン酸緩衝食塩水(PBS)pH7.4に溶解したMASP-2(20ng/100μl/ウェル, Advanced Research Technology, San Diego, CA)で4℃において一晩コーティングする。MASP-2溶液を吸引した後に、ウェルを、1%ウシ血清アルブミン(BSA; Sigma Chemical)を含有するPBSで室温において2時間ブロッキングする。MASP-2コーティングのないウェルはバックグラウンド対照として役立つ。BSA PBSブロッキング溶液に溶解した様々な濃度のハイブリドーマ上清または精製MASP-2 MoAbのアリコートをウェルに添加する。室温で2時間のインキュベーション後に、ウェルをPBSで大規模にリンスする。ブロッキング溶液に溶解したペルオキシダーゼ結合ヤギ抗マウスIgG(Sigma Chemical)を添加し、室温で1時間インキュベートすることによって、MASP-2に結合したMASP-2 MoAbを検出する。プレートをPBSで徹底的に再度リンスし、100μlの3,3',5,5'テトラメチルベンジジン(TMB)基質(Kirkegaard and Perry Laboratories, Gaithersburg, MD)を添加する。TMBの反応を、100μlの1Mリン酸を添加することによってクエンチし、プレートをマイクロプレートリーダー(SPECTRA MAX 250, Molecular Devices, Sunnyvale, CA)において450nmで読み取る。
次いで、陽性ウェルからの培養上清を、機能アッセイ法、例えば、本明細書に記載されるC4切断アッセイ法(実施例9)において補体活性化を阻害する能力について試験する。次いで、陽性ウェル中の細胞を限界希釈によってクローニングする。MoAbを、前記のようにELISAアッセイ法においてhMASP-2との反応性について再試験する。選択されたハイブリドーマをスピナーフラスコの中で増殖させ、プロテインAアフィニティークロマトグラフィーによる抗体精製のために、使用済みの培養上清を収集する。
MASP-2抗体は、例えば実施例9に記載されるようなC4切断アッセイ法において、LEA-2阻害活性に関してアッセイされ得る。
上記ELISAおよび結合アッセイ法はMASP-2を参照して説明されているが、MASP-1またはMASP-3ポリペプチドおよびそれらの抗原断片(例えば表2に記載されるような)を使用して同じELISAおよび結合アッセイ法を実施し得ることが当業者には理解されると考えられる。MASP-3抗体は、例えば実施例4に記載されるようなC3b沈着アッセイ法および実施例5に記載されるような溶血アッセイ法において、MASP-3基質のMASP-3セリンプロテアーゼ切断の阻害およびLEA-1阻害活性に関してアッセイされ得る。MASP-1抗体は、例えば実施例4に記載されるようなC3b沈着アッセイ法および実施例5に記載されるような溶血アッセイ法において、MASP-1基質のMASP-1セリンプロテアーゼ切断の阻害、MASP-3活性化の阻害およびLEA-1阻害活性に関してアッセイされ得る。
2. 二重MASP抗体を生成するための方法
MASP-2/3二重阻害抗体:図4、6、および7Cに示すように、SEQ ID NO:5およびSEQ ID NO:8のベータ鎖によってコードされた、セリンプロテアーゼドメイン中のMASP-2とMASP-3との間で保存された領域がある。したがって、二重MASP-2/3抗体は、MASP-2(またはMASP-3)のセリンプロテアーゼドメイン、例えばSEQ ID NO:5(またはSEQ ID NO:8)のベータ鎖を含む、またはそれからなる抗原を使用して、上記のようにモノクローナル抗体を生成することによって生成することもできるし、あるいはまた、これらの抗原を使用して、これらの抗原に特異的に結合するクローンに関してファージライブラリーをスクリーニングし、その後、MASP-3(またはMASP-1)への二重結合に関してスクリーニングし得る。次いで、二重MASP-2/3抗体を、例えば表2に記載されるように、機能アッセイ法において阻害活性に関してスクリーニングする。
MASP-1/3二重阻害抗体:図3〜5に示すように、MASP-1およびMASP-3は、CUBI-CCP2ドメイン(SEQ ID NO:10のaa25〜432)中に、MAp44によっても共有される同一の保存領域を共有する。図3に示すように、MAp44はCCP2ドメインを含まない。したがって、MAp44を含めた二重MASP-1/3抗体は、MASP-1(またはMASP-3)のCUBI-CCP-2ドメインを含む、またはそれからなる抗原を使用して、上記のようにモノクローナル抗体を生成することによって生成されるか、あるいはまた、この抗原を使用して、この抗原に特異的に結合するクローンに関してファージライブラリーをスクリーニングし、その後、MASP-3(またはMASP-1)への二重結合に関してスクリーニングする。MAp44を除く二重MASP-1/3抗体は、MASP-1(またはMASP-3)のCCP2ドメインを含む、またはそれからなる抗原を使用して、同様なやり方で生成される。次いで、二重MASP-1/3抗体を、例えば表2に記載されるように、機能アッセイ法において阻害活性に関してスクリーニングする。
MASP-1/2二重阻害抗体:図4、6、および7Aに示すように、MASP-1およびMASP-2のセリンプロテアーゼドメインは、保存されている領域を含む。したがって、二重MASP-1/2抗体は、MASP-1(またはMASP-2)のセリンプロテアーゼドメインを含む、またはそれからなる抗原を使用して、上記のようにモノクローナル抗体を生成することによって生成されるか、あるいはまた、この抗原を使用して、この抗原に特異的に結合するクローンに関してファージライブラリーをスクリーニングし、その後、MASP-2(またはMASP-1)への二重結合に関してスクリーニングする。次いで、二重MASP-1/2抗体を、例えば表2に記載されるように、機能アッセイ法において阻害活性に関してスクリーニングする。
3. 汎特異性MASP抗体を生成するための方法:
アルファ鎖:MASP-2とMASP-1/3との間の同一性の数多くの部分は、MASP-1/3およびMASP-2に結合するモノクローナル抗体を生成することが可能であり得ることを示唆する。特に、同一性の大部分は、図5に示すようにCUB1-EGF-CUB2ドメイン内にある。図5に示す様々なドメインは、Yongqing, et al., Biochemica et Biophysica Acta 1824:253-262 (2012); Teillet et al., J. Biol. Chem. 283:25715-25724 (2008);およびMarchler-Bauer et al., Nucleic Acids Res. 39:D225-229 (2011)に従って同定されたものである。
ベータ鎖:図6に示すような、MASP-2とMASP-1/3との間の同一性の数多くの部分は汎特異性MASP-1/2/3阻害因子の生成を可能にすると考えられる。
方法:
汎特異性MASP阻害抗体(すなわち、MASP-1、2および3活性を阻害する抗体)は以下のとおりに生成される。
1. MASP-1/3およびMASP-2アルファ鎖CUB1-EGF-CUB2ドメインに対してライブラリーをスクリーニングし、MASP-1/3およびMASP-2の両方と交差反応するクローンを選択する。
2. 例えば表2に記載されるような機能活性を阻害する能力に関してクローンをスクリーニングする。
3. DTLacO親和性/機能的成熟技術(Yabuki et al., PLoS ONE, 7(4):e36032 (2012))を使用して、3つすべてのタンパク質への結合および阻害機能を最適化する。
4. 表2に記載されるように、汎MASP阻害因子を使用してLEA-1-およびLEA-2媒介性補体活性化を阻害することができる。
4. 二重特異性MASP-2/3抗体を生成するための方法
二重特異性MASP-2/3阻害抗体は以下のとおりに生成される。
1. 実施例11〜14に記載されるように、CCP1ドメインに結合し、かつMASP-2依存性補体活性化を阻害する例示的なMASP-2特異性阻害抗体は同定されている。
2. MASP-3特異性阻害抗体は、実施例15に記載されるようにMASP-3ポリペプチドに対してライブラリーをスクリーニングし、かつMASP-3抗体を同定したのち、例えば表2に記載されるように機能アッセイ法においてLEA-1阻害活性に関して抗体をアッセイすることによって生成される。例示的なMASP-3抗体は実施例15に記載される。
3. MASP-2およびMASP-3に特異的な抗原結合領域をフレームワークにクローニングして二重特異性抗体を生成する。免疫グロブリンG様フォーマットならびに様々な融合タンパク質および単鎖可変断片構成を含む数多くの二重特異性抗体フォーマットが記載されている(Holmes, Nature Reviews, Drug Discovery 10:798-800 (2011), Muller and Kontermann, Biodrugs 24:89-98 (2010))。一例において、二重特異性抗体は、2つの別々の抗原に対する抗体を発現する2つのハイブリドーマを融合して、様々な重鎖および軽鎖対合を生じさせることによって生成することができ、該対合の一定の割合が、一方の抗原に特異的な重鎖および軽鎖と対合した他方の抗原に特異的な重鎖および軽鎖を含む(Milstein and Cuello, Nature 305:537-539 (1983))。2つの重鎖が異なる特異性を有する2つの免疫グロブリン重鎖/軽鎖対を同時発現させることにより、同様な二重特異性抗体を組換え的に生成し得る。所望の結合特異性を有する抗体可変ドメイン(抗体-抗原結合部位)(例えば、実施例11〜14に記載されるようなMASP-2抗体、実施例15に記載されるようなMASP-3抗体)を免疫グロブリン定常ドメイン配列に融合することができる。融合は、好ましくは、ヒンジ、CH2およびCH3領域の少なくとも一部を含む免疫グロブリン重鎖定常ドメインとの融合である。免疫グロブリン重鎖融合物および所望の場合には免疫グロブリン軽鎖をコードするDNAを別々の発現ベクターに挿入し、適切な宿主生物中に同時トランスフェクトする。
対合した免疫グロブリン重鎖および軽鎖に加えて、2つの異なる標的に特異的な単鎖可変断片の結合がKipriyanov et al., J. Mol. Biol. 293:41 (1999))に例示されている。この例においては、単一のポリヌクレオチド発現構築物が、リンカーペプチドによって分けられた2対の重鎖および軽鎖可変領域をコードするように設計されており、各対が別個のタンパク質標的への特異性を付与する。発現すると、ポリペプチドは、1つの標的に特異的な重鎖および軽鎖対がタンパク質の1つの抗原結合面を形成し、他方の対が別個の抗原結合面を形成して、単鎖ダイアボディと呼ばれる分子を創製する構成にアセンブルする。また、中心の重鎖および軽鎖可変領域対の間のリンカーの長さに依存して、ポリペプチドは二量体化を強いられ、その結果、タンデムダイアボディを形成することもできる。
例えば、以下の免疫グロブリンポリペプチドをコードするDNAを1つまたは複数のベクターに挿入し、適切な宿主生物中に発現させて、以下の二重特異性抗体の例示的かつ非限定的な例を生成し得る。
MASP-2/3二重特異性抗体
一態様において、二重特異性抗体が提供され、該二重特異性抗体が、ヒトMASP-2およびヒトMASP-3に結合し、かつ、
(I)以下を含む、MASP-2特異的結合領域:
(a)(i) SEQ ID NO:21の31〜35のアミノ酸配列を含む重鎖CDR1;および(ii) SEQ ID NO:21の50〜65のアミノ酸配列を含む重鎖CDR2;および(iii)SEQ ID NO:21の95〜102のアミノ酸配列を含む重鎖CDR3、を含む重鎖可変領域の少なくとも1つまたは複数、および/または、
(b)(i)SEQ ID NO:25またはSEQ ID NO:27いずれかの24〜34のアミノ酸配列を含む軽鎖CDR1;および(ii)SEQ ID NO:25またはSEQ ID NO:27いずれかの50〜56のアミノ酸配列を含む軽鎖CDR2;および(iii)SEQ ID NO:25またはSEQ ID NO:27いずれかの89〜97のアミノ酸配列を含む軽鎖CDR3、を含む軽鎖可変領域の少なくとも1つまたは複数;ならびに
(II)MASP-3特異的結合領域、任意で、以下の少なくとも1つを含むMASP-3特異的結合領域:
(a)(i)SEQ ID NO:25またはSEQ ID NO:26の31〜35のアミノ酸配列を含む重鎖CDR1;および(ii)SEQ ID NO:25またはSEQ ID NO:26の50〜65のアミノ酸配列を含む重鎖CDR2;および(iii)SEQ ID NO:25またはSEQ ID NO:26の95〜102のアミノ酸配列を含む重鎖CDR3、を含む重鎖可変領域、および
(b)(i)SEQ ID NO:28またはSEQ ID NO:29いずれかの24〜34のアミノ酸配列を含む軽鎖CDR1;および(ii)SEQ ID NO:28またはSEQ ID NO:29いずれかの50〜56のアミノ酸配列を含む軽鎖CDR2;および(iii)SEQ ID NO:28またはSEQ ID NO:29いずれかの89〜97のアミノ酸配列を含む軽鎖CDR3、を含む軽鎖可変領域
を含む。
MASP-1/2二重特異性抗体
一態様において、二重特異性抗体が提供され、該二重特異性抗体が、ヒトMASP-1およびヒトMASP-2に結合し、かつ、
(I)以下を含む、MASP-2特異的結合領域:
(a)(i)SEQ ID NO:21の31〜35のアミノ酸配列を含む重鎖CDR1;および(ii)SEQ ID NO:21の50〜65のアミノ酸配列を含む重鎖CDR2;および(iii)SEQ ID NO:21の95〜102のアミノ酸配列を含む重鎖CDR3、を含む重鎖可変領域の少なくとも1つまたは複数、ならびに/または、
(b)(i)SEQ ID NO:25またはSEQ ID NO:27いずれかの24〜34のアミノ酸配列を含む軽鎖CDR1;および(ii)SEQ ID NO:25またはSEQ ID NO:27いずれかの50〜56のアミノ酸配列を含む軽鎖CDR2;および(iii)SEQ ID NO:25またはSEQ ID NO:27いずれかの89〜97のアミノ酸配列を含む軽鎖CDR3、を含む軽鎖可変領域の少なくとも1つまたは複数;ならびに
(II)MASP-1特異的結合領域
を含む。
4. MASP-2および/またはMASP-3に対する機能阻害活性の試験は、例えば、表2に記載され、本明細書にさらに記載されるように実施される。
実施例9
本実施例は、L-フィコリン/P35、H-フィコリン、M-フィコリン、またはマンナンを介したMASP-2依存性補体活性化を遮断することができるMASP-2阻害物質を同定するための機能スクリーニングとして用いられるインビトロC4切断アッセイ法について述べる。
C4切断アッセイ法:C4切断アッセイ法は、Petersen, S.V., et al., J. Immunol. Methods 257:107, 2001によって述べられており、L-フィコリンに結合する黄色ブドウ球菌におけるリポテイコ酸(LTA)に起因するレクチン経路活性化を測定する。
試薬:ホルマリン固定黄色ブドウ球菌(DSM20233)を以下のように調製する。細菌をトリプティックソイ血液培地中で37℃において一晩増殖させ、PBSで3回洗浄し、次いで、PBS/0.5%ホルマリン中で室温において1時間固定し、PBSでさらに3回洗浄した後に、コーティング緩衝液(15mM Na2CO3、35mM NaHCO3、pH9.6)に再懸濁する。
アッセイ法:Nunc MaxiSorbマイクロタイタープレート(Nalgene Nunc International, Rochester, NY)のウェルを、コーティング緩衝液に溶解した1μgのL-フィコリンと共に、コーティング緩衝液に溶解した100μlのホルマリン固定黄色ブドウ球菌DSM20233(OD550=0.5)でコーティングする。一晩のインキュベーション後、ウェルを、TBS(10mM Tris-HCl、140mM NaCl pH7.4)に溶解した0.1%ヒト血清アルブミン(HSA)でブロッキングし、次いで、0.05%Tween20および5mM CaCl2を含有するTBS(洗浄液緩衝液)で洗浄する。ヒト血清試料を、内因性C4の活性化を阻止し、C1複合体(C1q、C1r、およびC1sからなる)を解離する、20mM Tris-HCl、1M NaCl、10mM CaCl2、0.05%Triton X-100、0.1%HSA、pH7.4で希釈する。MASP-2 MoAbを含むMASP-2阻害物質を様々な濃度で血清試料に添加する。希釈試料をプレートに添加し、4℃で一晩インキュベートする。24時間後、プレートを洗浄緩衝液で徹底的に洗浄する。次いで、100μlの4mMバルビタール、145mM NaCl、2mM CaCl2、1mM MgCl2、pH7.4に溶解した、0.1μgの精製ヒトC4(Dodds, A.W., Methods Enzymol. 223:46, 1993に記載のように入手した)を各ウェルに添加する。37℃で1.5時間後に、プレートを再洗浄し、C4b沈着をアルカリホスファターゼ結合ニワトリ抗ヒトC4c(Immunsystem, Uppsala, Swedenから入手した)を用いて検出し、比色分析基質ρ-ニトロフェニルリン酸を用いて測定する。
マンナン上でのC4アッセイ法:MBLを介したレクチン経路活性化を測定するために、プレートをLSPおよびマンナンでコーティングした後に、様々なMASP-2阻害物質と混合した血清を添加することによって、前記のアッセイ法を適合化させる。
H-フィコリン(Hakata Ag)上でのC4アッセイ法:H-フィコリンを介したレクチン経路活性化を測定するために、プレートをLSPおよびH-フィコリンでコーティングした後に、様々なMASP-2阻害物質と混合した血清を添加することによって、前記のアッセイ法を適合化させる。
実施例10
以下のアッセイ法を用いて、免疫複合体によって古典経路が開始する条件下でMASP阻害物質の効果を分析することによって、MASP阻害物質が古典経路を遮断するかどうか試験する。
方法:
免疫複合体によって古典経路が開始する補体活性化の状態に対するMASP阻害物質の効果を試験するために、90%NHSを含有する3つ組の試料50μlを、10μg/mL免疫複合体またはPBSの存在下で37℃においてインキュベートする。37℃でのインキュベーション中に、200nM抗プロペルジンモノクローナル抗体を含有する3つ組の対応する試料(+/-免疫複合体)も含める。37℃で2時間のインキュベーション後に、さらなる補体活性化を止めるために、13mM EDTAを全ての試料に添加し、すぐに、試料を5℃まで冷却する。次いで、試料を-70℃で保管した後に、ELISAキット(Quidelカタログ番号A015およびA009)を用いて製造業者の説明書に従って補体活性化産物(C3aおよびsC5b-9)をアッセイする。
実施例11
本実施例は、MASP-2活性を遮断する高親和性MASP-2 Fab2抗体断片の同定について述べる。
背景および原理:MASP-2は、MBLおよびフィコリンの結合部位、セリンプロテアーゼ触媒部位、タンパク質分解基質C2の結合部位、タンパク質分解基質C4の結合部位、MASP-2酵素前駆体自己活性化のためのMASP-2切断部位、ならびに2つのCa++結合部位を含む、多くの別個の機能ドメインを有する複合タンパク質である。高親和性でMASP-2に結合するFab2抗体断片を同定し、同定されたFab2断片がMASP-2機能活性を遮断できるかどうか判定するために機能アッセイ法において試験した。
MASP-2機能活性を遮断するためには、抗体またはFab2抗体断片は、MASP-2機能活性に必要とされるMASP-2上の構造エピトープに結合し、これを妨害しなければならない。従って、MASP-2機能活性に直接関与するMASP-2上の構造エピトープに結合しないのでなければ、高親和性結合MASP-2 Fab2の多くまたは全てがMASP-2機能活性を阻害しない可能性がある。
レクチン経路C3コンバターゼ形成の阻害を測定する機能アッセイ法を用いて、MASP-2 Fab2の「遮断活性」を評価した。レクチン経路におけるMASP-2の最も重要な生理学的役割は、レクチンによって媒介される補体経路の次の機能成分、すなわち、レクチン経路C3コンバターゼを生成することであることが公知である。レクチン経路C3コンバターゼは、C3をC3aおよびC3bにタンパク分解によって切断する重要な酵素複合体(C4bC2a)である。MASP-2はレクチン経路C3コンバターゼ(C4bC2a)の構造成分ではない。しかしながら、レクチン経路C3コンバターゼを構成する2つのタンパク質成分(C4b、C2a)を生成するために、MASP-2の機能活性が必要とされる。さらに、MASP-2がレクチン経路C3コンバターゼを生成するためには、前記で列挙されたMASP-2の別個の機能活性の全てが必要であるように見える。これらの理由で、MASP-2 Fab2の「遮断活性」の評価において使用するための好ましいアッセイ法は、レクチン経路C3コンバターゼ形成の阻害を測定する機能アッセイ法だと考えられる。
高親和性Fab2の生成:ヒト軽鎖抗体可変配列および重鎖抗体可変配列のファージディスプレイライブラリー、ならびに関心対象の選択されたリガンドと反応するFab2を同定するための自動抗体選択技術を用いて、ラットMASP-2タンパク質(SEQ ID NO:13)に対する高親和性Fab2を作製した。抗体スクリーニングのために、既知量のラットMASP-2(約1mg、>85%純粋)タンパク質を利用した。親和性が最も高い抗体を選択するために3回の増幅を利用した。ELISAスクリーニングのために、抗体断片を発現する約250個の異なるヒットを選んだ。この後に、異なる抗体のユニークさ(uniqueness)を決定するために高親和性ヒットを配列決定した。
50個のユニークなMASP-2抗体を精製し、それぞれの精製Fab2抗体250μgを、以下でさらに詳述するように、MASP-2結合親和性の特徴決定および補体経路の機能試験に使用した。
MASP-2 Fab2の阻害(遮断)活性の評価に用いられるアッセイ法
1.レクチン経路C3コンバターゼ形成の阻害を測定するためのアッセイ法:
背景:レクチン経路C3コンバターゼは、C3を2つの強力な炎症誘発断片であるアナフィラトキシンC3aおよびオプソニンC3bにタンパク分解によって切断する酵素複合体(C4bC2a)である。C3コンバターゼの形成は、炎症を媒介する点でレクチン経路の重要な段階であると考えられる。MASP-2はレクチン経路C3コンバターゼ(C4bC2a)の構造成分ではない。従って、MASP-2抗体(またはFab2)は、既にあるC3コンバターゼの活性を直接阻害しない。しかしながら、レクチン経路C3コンバターゼを構成する2つのタンパク質成分(C4b、C2a)を生成するために、MASP-2セリンプロテアーゼ活性が必要とされる。従って、MASP-2機能活性を阻害するMASP-2 Fab2(すなわち、遮断MASP-2 Fab2)はレクチン経路C3コンバターゼの新規形成を阻害する。C3は、その構造の一部として、珍しく、かつ高反応性のチオエステル基を含有する。このアッセイ法ではC3がC3コンバターゼによって切断されると、C3b上のチオエステル基は、エステル結合またはアミド結合を介してプラスチックウェルの底に固定化された巨大分子上のヒドロキシル基またはアミノ基と共有結合を形成することができ、従って、ELISAアッセイ法におけるC3bの検出が容易になる。
酵母マンナンはレクチン経路の公知の活性化因子である。C3コンバターゼ形成を測定する以下の方法では、マンナンでコーティングされたプラスチックウェルを希釈ラット血清と37℃で30分間インキュベートして、レクチン経路を活性化した。次いで、ウェルを洗浄し、標準的なELISA法を用いて、ウェル上に固定化されたC3bについてアッセイした。このアッセイ法において生成されたC3bの量は、レクチン経路C3コンバターゼの新規形成を直接反映するものである。このアッセイ法では、選択された濃度のMASP-2 Fab2がC3コンバターゼ形成を阻害し、その結果として起きるC3b生成を阻害する能力を試験した。
方法:
96ウェルCostar Medium Bindingプレートを、1μg/50μl/ウェルで、50mM炭酸緩衝液、pH9.5で希釈したマンナンと5℃で一晩インキュベートした。一晩のインキュベーション後、200μl PBSで各ウェルを3回洗浄した。次いで、ウェルを、PBSに溶解した100μl/ウェルの1%ウシ血清アルブミンでブロッキングし、穏やかに混合しながら室温で1時間インキュベートした。次いで、各ウェルを200μlのPBSで3回洗浄した。MASP-2 Fab2試料を、5℃で、Ca++およびMg++を含有するGVB緩衝液(4.0mMバルビタール、141mM NaCl、1.0mM MgCl2、2.0mM CaCl2、0.1%ゼラチン、pH7.4)で選択された濃度まで希釈した。0.5%ラット血清を5℃で前記試料に添加し、100μlを各ウェルに移した。プレートに蓋をし、補体活性化を可能にするために37℃水浴中で30分間インキュベートした。37℃水浴から、氷と水の混合物を含む容器にプレートを移すことによって、反応を止めた。各ウェルを、PBS-Tween20(0.05%Tween20を含むPBS)で200μlで5回洗浄し、次いで、200μlのPBSで2回洗浄した。2.0mg/mLウシ血清アルブミンを含有するPBSに溶解した100μl/ウェルの一次抗体(ウサギ抗ヒトC3c、DAKO A0062)1:10,000希釈液を添加し、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを5回200μlのPBSで洗浄した。2.0mg/mLウシ血清アルブミンを含有するPBSに溶解した、100μl/ウェルの二次抗体(ペルオキシダーゼ結合ヤギ抗ウサギIgG, American Qualex A102PU)1:10,000希釈液を添加し、シェーカーに載せて穏やかに混合しながら室温で1時間インキュベートした。各ウェルをPBSで200μlで5回洗浄した。100μl/ウェルのペルオキシダーゼ基質TMB(Kirkegaard & Perry Laboratories)を添加し、室温で10分間インキュベートした。100Tl/ウェルの1.0M H3PO4を添加することによってペルオキシダーゼ反応を止め、OD450を測定した。
2.MASP-2依存性C4切断の阻害を測定するためのアッセイ法:
背景:MASP-2のセリンプロテアーゼ活性は高度に特異的であり、MASP-2のタンパク質基質はC2およびC4の2種類しか同定されていない。C4の切断によってC4aおよびC4bが生成される。MASP-2 Fab2は、C4切断に直接関与するMASP-2上の構造エピトープ(例えば、C4のMASP-2結合部位;MASP-2セリンプロテアーゼ触媒部位)に結合し、それによって、MASP-2のC4切断機能活性を阻害する可能性がある。
酵母マンナンはレクチン経路の公知の活性化因子である。MASP-2のC4切断活性を測定する以下の方法では、マンナンでコーティングされたプラスチックウェルを希釈ラット血清と37℃で30分間インキュベートして、レクチン経路を活性化した。このELISA法において用いられる一次抗体はヒトC4しか認識しないので、希釈ラット血清にヒトC4(1.0μg/mL)も補充した。次いで、ウェルを洗浄し、標準的なELISA方法を用いて、ウェルに固定化されたヒトC4bについてアッセイした。このアッセイ法において生成されたC4bの量はMASP-2依存性C4切断活性の尺度である。このアッセイ法では、選択された濃度のMASP-2 Fab2がC4切断を阻害する能力を試験した。
方法:96ウェルCostar Medium Bindingプレートを、1.0Tg/50μl/ウェルで、50mM炭酸緩衝液、pH9.5で希釈したマンナンと5℃で一晩インキュベートした。200μl PBSで各ウェルを3回洗浄した。次いで、ウェルを、PBSに溶解した100μl/ウェルの1%ウシ血清アルブミンでブロッキングし、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで3回洗浄した。MASP-2 Fab2試料を、5℃で、Ca++およびMg++を含有するGVB緩衝液(4.0mMバルビタール、141mM NaCl、1.0mM MgCl2、2.0mM CaCl2、0.1%ゼラチン、pH7.4)で選択された濃度まで希釈した。これらの試料に1.0μg/mL/ヒトC4(Quidel)も含めた。前記試料に0.5%ラット血清を5℃で添加し、100μlを各ウェルに移した。プレートに蓋をし、補体を活性化するために37℃水浴中で30分間インキュベートした。37℃水浴から、氷と水の混合物を含む容器にプレートを移すことによって、反応を止めた。各ウェルを、PBS-Tween20(0.05%Tween20を含むPBS)で200μlで5回洗浄した。次いで、各ウェルを200μlのPBSで2回洗浄した。2.0mg/mLウシ血清アルブミン(BSA)を含有するPBSに溶解した、100μl/ウェルのビオチン結合ニワトリ抗ヒトC4c(Immunsystem AB, Uppsala, Sweden)1:700希釈液を添加し、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで5回洗浄した。2.0mg/mL BSAを含有するPBSに溶解した、100μl/ウェルの0.1μg/mLのペルオキシダーゼ結合ストレプトアビジン(Pierce Chemical#21126)を添加し、シェーカーに載せて穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで5回洗浄した。100μl/ウェルのペルオキシダーゼ基質TMB(Kirkegaard & Perry Laboratories)を添加し、室温で16分間インキュベートした。100μl/ウェルの1.0M H3PO4を添加することによってペルオキシダーゼ反応を止め、OD450を測定した。
3.抗ラットMASP-2 Fab2と「天然」ラットMASP-2との結合アッセイ法
背景:MASP-2は、通常、特異的レクチン分子(マンノース結合タンパク質(MBL)およびフィコリン)も含むMASP-2二量体複合体として血漿中に存在する。従って、MASP-2 Fab2と生理学的に関連する形態のMASP-2との結合の研究に興味があるのであれば、精製組換えMASP-2ではなく、Fab2と血漿中の「天然」MASP-2との相互作用が用いられる結合アッセイ法を開発することが重要である。この結合アッセイ法では、最初に、10%ラット血清に由来する「天然」MASP-2-MBL複合体をマンナンコーティングウェルに固定化した。次いで、標準的なELISA法を用いて、固定化「天然」MASP-2に対する様々なMASP-2 Fab2の結合親和性を研究した。
方法:96ウェルCostar High Bindingプレートを、1μg/50μl/ウェルで、50mM炭酸緩衝液、pH9.5で希釈したマンナンと5℃で一晩インキュベートした。200μlのPBSで各ウェルを3回洗浄した。ウェルを100μl/ウェルの、PBST(0.05%Tween20を含むPBS)に溶解した0.5%無脂肪ドライミルクでブロッキングし、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのTBS/Tween/Ca++洗浄緩衝液(5.0mM CaCl2を含有するTris緩衝食塩水、0.05%Tween20、pH7.4)で3回洗浄した。High Salt Binding Buffer(20mM Tris、1.0M NaCl、10mM CaCl2、0.05%Triton-X100、0.1%(w/v)ウシ血清アルブミン、pH7.4)に溶解した10%ラット血清を氷上で調製した。100μl/ウェルを添加し、5℃で一晩インキュベートした。ウェルを200μlのTBS/Tween/Ca++洗浄緩衝液で3回洗浄した。次いで、ウェルを200μlのPBSで2回洗浄した。Ca++およびMg++を含有するGVB緩衝液(4.0mMバルビタール、141mM NaCl、1.0mM MgCl2、2.0mM CaCl2、0.1%ゼラチン、pH7.4)で希釈した100μl/ウェルの選択された濃度のMASP-2 Fab2を添加し、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで5回洗浄した。2.0mg/mLウシ血清アルブミンを含むPBSで1:5000に希釈した100μl/ウェルのHRP結合ヤギ抗Fab2(Biogenesisカタログ番号0500-0099)を添加し、穏やかに混合しながら室温で1時間インキュベートした。各ウェルを200μlのPBSで5回洗浄した。100μl/ウェルのペルオキシダーゼ基質TMB(Kirkegaard & Perry Laboratories)を添加し、室温で70分間インキュベートした。100μl/ウェルの1.0M H3PO4を添加することによってペルオキシダーゼ反応を止め、OD450を測定した。
結果:
ELISAスクリーニングのために、高親和性でラットMASP-2タンパク質と反応した約250個の異なるFab2を選んだ。異なる抗体のユニークさを決定するために、これらの高親和性Fab2を配列決定した。さらなる分析のために、50個のユニークなMASP-2抗体を精製した。それぞれの精製Fab2抗体250μgを、MASP-2結合親和性の特徴決定および補体経路の機能試験に使用した。この分析の結果を以下の表13に示した。
(表13)レクチン経路補体活性化を遮断するMASP-2 FAB2
表13に示したように、試験した50個のMASP-2 Fab2のうち17個が、10nM Fab2に等しいかまたは10nM Fab2未満のIC50でC3コンバターゼ形成を強力に阻害するMASP-2遮断Fab2であると同定された(34%の陽性ヒット率)。17個のFab2のうち8個のIC50はnM以下の範囲である。さらに、表13に示したMASP-2遮断Fab2のうち17個全てが、レクチン経路C3コンバターゼアッセイ法においてC3コンバターゼ形成の本質的に完全な阻害を示した。それぞれのMASP-2分子がFab2に結合している場合でも、「遮断」Fab2がMASP-2機能をほんのわずかにしか阻害しない場合があるのは理論上可能なので、これは重要な考慮事項である。
マンナンはレクチン経路の公知の活性化因子であるが、ラット血清中に抗マンナン抗体が存在することでも古典経路が活性化し、古典経路C3コンバターゼを介してC3bが生成され得ることも理論上可能である。しかしながら、本実施例において列挙された17個の遮断MASP-2 Fab2はそれぞれC3b生成を強力に阻害する(>95%)。従って、このことから、レクチン経路C3コンバターゼに対する、このアッセイ法の特異性が証明される。
それぞれの遮断Fab2の見かけのKdを算出するために、17個全ての遮断Fab2を用いて結合アッセイ法も行った。遮断Fab2のうちの6個を対象にした、天然ラットMASP-2に対する抗ラットMASP-2 Fab2の結合アッセイ法の結果も表13に示した。他のFab2についても同様の結合アッセイ法を行った。この結果を表13に示した。一般的に、6個のFab2のそれぞれと「天然」MASP-2の結合について得られた見かけのKdは、C3コンバターゼ機能アッセイ法におけるFab2のIC50と妥当によく一致する。MASP-2はそのプロテアーゼ活性が活性化されると「不活性」型から「活性」型へとコンフォメーション変化を受けるという証拠がある(Feinberg et al., EMBO J 22:2348-59(2003); Gal et al., J. Biol.Chem. 250:33435-44(2005))。C3コンバターゼ形成アッセイ法において用いられる正常ラット血漿中には、MASP-2は主に「不活性な」酵素前駆体コンフォメーションの状態で存在する。対照的に、結合アッセイ法では、MASP-2は、固定化マンナンと結合したMBLとの複合体の一部として存在する。従って、MASP-2は「活性」コンフォメーション状態にあると考えられる(Petersen et al., J. Immunol Methods 257:107-16, 2001)。その結果、これらの2つの機能アッセイ法において試験された17個の遮断Fab2のそれぞれについてIC50とKdの間に厳密な対応関係が予想されるとは限らないと考えられる。なぜなら、それぞれのアッセイ法において、Fab2は異なるコンフォメーション型のMASP-2を結合するからである。にもかかわらず、Fab2#88を除いて、2つのアッセイ法において試験された他の16個のFab2のそれぞれについてIC50と見かけのKdの間に妥当に密接な対応関係があると考えられる(表13を参照されたい)。
MASP-2によって媒介されるC4切断の阻害について遮断Fab2のいくつかを評価した。図13に示したように、試験されたFab2の全てが、C3コンバターゼアッセイ法において得られたIC50とほぼ同じIC50でC4切断を阻害することが見出された。
マンナンはレクチン経路の公知の活性化因子であるが、ラット血清中に抗マンナン抗体が存在することでも古典経路が活性化し、それによって、C1sを介したC4切断によってC4bが生成され得ることも理論上可能である。しかしながら、いくつかのMASP-2 Fab2がC4b生成を強力に阻害する(>95%)ことが同定されている。従って、このことから、MASP-2によって媒介されるC4切断に対する、このアッセイ法の特異性が証明される。C4はC3と同様に、その構造の一部として、珍しく、かつ高反応性のチオエステル基を含有する。このアッセイ法においてC4がMASP-2によって切断されると、C4b上のチオエステル基は、エステル結合またはアミド結合を介してプラスチックウェルの底に固定化された巨大分子上のヒドロキシル基またはアミノ基と共有結合を形成することができ、従って、ELISA法におけるC4bの検出が容易になる。
これらの結果から、C4およびC3コンバターゼ活性を両方とも機能的に遮断する、ラットMASP-2タンパク質に対する高親和性FAB2が生成され、それによって、レクチン経路活性化が阻止されることがはっきりと証明される。
実施例12
本実施例は、実施例11に記載のように生成された遮断抗ラットMASP-2 Fab2抗体のいくつかのエピトープマッピングについて述べる。
方法:
全てN末端6XHisタグを有する以下のタンパク質を、pED4ベクターを用いてCHO細胞において発現させた:
ラットMASP-2A、活性中心にあるセリンをアラニンに変えることによって不活性化された完全長MASP-2タンパク質(S613A);
ラットMASP-2K、自己活性化を減少させるように変えられた完全長MASP-2タンパク質(R424K);
CUBI-II、CUBIドメイン、EGF様ドメイン、およびCUBIIドメインしか含まないラットMASP-2 N末端断片;ならびに
CUBI/EGF様、CUBIドメインおよびEGF様ドメインしか含まないラットMASP-2 N末端断片。
以前に述べられたように(Chen et al., J. Biol. Chem. 276:25894-02(2001))、これらのタンパク質をニッケル-アフィニティークロマトグラフィーによって培養上清から精製した。
ラットMASP-2のCCPIIおよびセリンプロテアーゼドメインを含有するC末端ポリペプチド(CCPII-SP)を、pTrxFus(Invitrogen)を用いてチオレドキシン融合タンパク質として大腸菌において発現させた。タンパク質を、Thiobondアフィニティー樹脂を用いて細胞溶解産物から精製した。チオレドキシン融合パートナーを陰性対照として空のpTrxFusから発現させた。
全ての組換えタンパク質をTBS緩衝液で透析し、280nmのODを測定することによって濃度を求めた。
ドットブロット分析:
前述した5個の組換えMASP-2ポリペプチドの段階希釈液(ならびにCCPII-セリンプロテアーゼポリペプチドの陰性対照としてチオレドキシンポリペプチド)をニトロセルロース膜上にスポットした。スポットされたタンパク質の量は5倍段階で100ng〜6.4pgであった。後の実験において、スポットされたタンパク質の量は、再度、5倍段階で50ng〜16pgであった。膜を、TBS(ブロッキング緩衝液)に溶解した5%スキムミルク粉末でブロッキングし、次いで、ブロッキング緩衝液(5.0mM Ca++を含有する)に溶解した1.0μg/mLの抗MASP-2 Fab2とインキュベートした。結合しているFab2を、HRP結合抗ヒトFab(AbD/Serotec;1/10,000に希釈した)およびECL検出キット(Amersham)を用いて検出した。1枚の膜を、陽性対照としてポリクローナルウサギ抗ヒトMASP-2 Ab(Stover et al., J Immunol 163:6848-59(1999)に記載)とインキュベートした。この場合、結合しているAbを、HRP結合ヤギ抗ウサギIgG(Dako; 1/2,000に希釈した)を用いて検出した。
MASP-2結合アッセイ法:
ELISAプレートを、炭酸緩衝液(pH9.0)に溶解した1.0μg/ウェルの組換えMASP-2AまたはCUBI-IIポリペプチドで4℃において一晩コーティングした。ウェルを、TBSに溶解した1%BSAでブロッキングし、次いで、5.0mM Ca++を含有するTBSに溶解したMASP-2 Fab2の段階希釈液を添加した。プレートをRTで1時間インキュベートした。TBS/tween/Ca++で3回洗浄した後、TBS/Ca++で1/10,000に希釈したHRP結合抗ヒトFab(AbD/Serotec)を添加し、プレートを室温でさらに1時間インキュベートした。結合している抗体を、TMBペルオキシダーゼ基質キット(Biorad)を用いて検出した。
結果:
Fab2と様々なMASP-2ポリペプチドとの反応性を証明したドットブロット分析の結果を以下の表14に示した。表14に示した数値は、ほぼ最大半量のシグナル強度を得るのに必要とされる、スポットされたタンパク質の量を示す。示したように、(チオレドキシン融合パートナー単独を除く)全てのポリペプチドが、陽性対照Ab(ポリクローナル抗ヒトMASP-2血清、ウサギにおいて産生された)によって認識された。
(表14)ドットブロットにおける様々な組換えラットMASP-2ポリペプチドとの反応性
NR=反応なし。陽性対照抗体は、ウサギにおいて産生されたポリクローナル抗ヒトMASP-2血清である。
全てのFab2がMASP-2AならびにMASP-2Kと反応した(データ示さず)。Fab2の大半はCCPII-SPポリペプチドを認識したが、N末端断片を認識しなかった。2つの例外はFab2#60およびFab2#57である。Fab2#60はMASP-2AおよびCUBI-II断片を認識するが、CUBI/EGF様ポリペプチドもCCPII-SPポリペプチドも認識しない。このことから、Fab2#60は、CUBIIにあるエピトープに、またはCUBIIとEGF様ドメインにまたがるエピトープに結合することが示唆される。Fab2#57がMASP-2Aを認識するが、試験されたいかなるMASP-2断片も認識しないことから、おそらくこのFab2がCCP1にあるエピトープを認識することを示している。Fab2#40および#49は完全なMASP-2Aにしか結合しなかった。ELISA結合アッセイ法において、Fab2#60は、わずかに低い見かけの親和性ではあるがCUBI-IIポリペプチドにも結合した(データ示さず)。
これらの知見から、MASP-2タンパク質の複数の領域に対するユニークな遮断Fab2が同定されたことが証明される。
実施例13
本実施例は、実施例11に記載のように同定された代表的な高親和性抗MASP-2 Fab2抗体の薬力学的分析について述べる。
背景/原理:
実施例11に記載のように、ラットレクチン経路を遮断する高親和性抗体を同定するために、ラットMASP-2タンパク質を用いてファージディスプレイライブラリーをパンニングした。このライブラリーは大きな免疫学的多様性を提供するように設計され、完全ヒトイムノグロビン(immunoglobin)遺伝子配列を用いて構築された。実施例11に示したように、ラットMASP-2タンパク質と高親和性で結合する約250個の個々のファージクローンをELISAスクリーニングによって同定した。これらのクローンの配列決定によって、50個のユニークなMASP-2抗体コードファージが同定された。これらのクローンからFab2タンパク質を発現させ、精製し、MASP-2結合親和性およびレクチン補体経路機能阻害について分析した。
実施例11の表13に示したように、この分析の結果として、機能遮断活性を有する17個のMASP-2 Fab2を同定した(遮断抗体については34%のヒット率)。Fab2によるレクチン補体経路の機能阻害は、MASP-2によるC4切断の直接の尺度であるC4沈着のレベルにおいて明らかであった。重要なことに、C3コンバターゼ活性を評価した場合に、阻害は同じように明らかであった。このことから、レクチン補体経路の機能遮断が証明される。実施例11に記載のように同定された17個のMASP-2遮断Fab2は、10nMに等しい、または10nM未満のIC50値でC3コンバターゼ形成を強力に阻害する。同定された17個のFab2のうち8個のIC50はnM以下の範囲である。さらに、実施例11の表13にまとめたように、MASP-2遮断Fab2のうち17個全てがレクチン経路C3コンバターゼアッセイ法においてC3コンバターゼ形成の本質的に完全な阻害を示した。さらに、表13に示した17個の遮断MASP-2 Fab2はそれぞれC3b生成を強力に阻害する(>95%)。従って、レクチン経路C3コンバターゼを対象としたこのアッセイ法の特異性が証明される。
ラットIgG2cおよびマウスIgG2a完全長抗体アイソタイプ変種はFab2#11から得られた。本実施例は、薬力学パラメータについての、これらのアイソタイプのインビボ特徴決定について述べる。
方法:
実施例11に記載のように、ラットMASP-2タンパク質を用いてFabファージディスプレイライブラリーをパンニングした。これから、Fab2#11を同定した。ラットIgG2cおよびマウスIgG2a完全長抗体アイソタイプ変種はFab2#11から得られた。ラットIgG2cおよびマウスIgG2a完全長抗体アイソタイプを、以下の通り薬力学パラメータについてインビボで特徴決定した。
マウスにおけるインビボ研究:
インビボでの血漿レクチン経路活性に対するMASP-2抗体投与の効果を調べるために、マウスにおいて薬力学的研究を行った。この研究では、0.3mg/kgまたは1.0mg/kgのマウスMASP-2 MoAb(Fab2#11に由来するマウスIgG2a完全長抗体アイソタイプ)の皮下(sc)投与後および腹腔内(ip)投与後の様々な時点で、C4沈着をレクチン経路アッセイ法においてエクスビボで測定した。
図29Aは、0.3mg/kgまたは1.0mg/kgのマウス抗MASP-2 MoAbの皮下投与後の様々な時点でマウス(n=3マウス/群)から採取された未希釈血清試料においてエクスビボで測定された、ザイモサンコーティングマイクロタイタープレートにおけるレクチン経路特異的C4b沈着を図示する。抗体投与前に収集されたマウスからの血清試料は陰性対照(100%活性)として役立ったのに対して、100nMの同じ遮断MASP-2抗体をインビトロで補充した血清を陽性対照(0%活性)として使用した。
図29Aに示した結果から、1.0mg/kg用量のマウスMASP-2 MoAbの皮下投与後に迅速かつ完全なC4b沈着阻害が証明される。0.3mg/kgのマウスMASP-2 MoAbの用量の皮下投与後にC4b沈着の部分阻害が見られた。
0.6mg/kgのマウスMASP-2 MoAbをマウスに単回ip投与した後、レクチン経路回復の時間経過が3週間続いた。図29Bに示したように、抗体投与後に、レクチン経路活性が急激に低下し、それに続いて、i.p.投与後、約7日続く完全なレクチン経路阻害が生じた。2週目および3週目にわたってレクチン経路活性のゆっくりとした回復が観察された。MASP-2 MoAb投与後17日までにマウスのレクチン経路が完全に回復した。
これらの結果から、Fab2#11に由来するマウス抗MASP-2 Moabは全身送達された場合に、マウスのレクチン経路を用量反応の様式で阻害することが証明される。
実施例14
本実施例は、ファージディスプレイを使用して、MASP-2に結合し、かつレクチン媒介性補体活性化(LEA-2)を阻害しながらも免疫系の古典(C1q依存性)経路成分をインタクトなままにしておく完全ヒトscFv抗体の同定を記載する。
概略:
ファージディスプレイライブラリーをスクリーニングすることによって完全ヒト高親和性MASP-2抗体を同定した。scFvフォーマットおよび完全長IgGフォーマットの両方において抗体の可変軽鎖および重鎖断片を単離した。ヒトMASP-2抗体は、レクチン経路媒介性第二補体経路活性化に関連する細胞傷害を阻害しながらも免疫系の古典(C1q依存性)経路成分をインタクトなままにしておく場合に有用である。一部の態様において、対象MASP-2阻害抗体は、以下の特徴を有する:(a)ヒトMASP-2に関する高い親和性(例えば10nMまたはそれ未満のKD)および(b)90%ヒト血清中のMASP-2依存性補体活性化を30nMまたはそれ未満のIC50で阻害すること。
方法:
完全長の触媒的に不活性なMASP-2の発現:
リーダー配列(SEQ ID NO:5)を有するヒトMASP-2ポリペプチドをコードするヒトMASP-2の完全長cDNA配列(SEQ ID NO:4)を、CMVエンハンサー/プロモーター領域の制御下で真核性発現を駆動する哺乳動物発現ベクターpCI-Neo(Promega)中にサブクローニングした(Kaufman R. J. et al., Nucleic Acids Research 19:4485-90, 1991; Kaufman, Methods in Enzymology, 185:537-66 (1991)に記載)。
触媒的に不活性なヒトMASP-2Aタンパク質を生成するために、参照により本明細書に組み入れられるUS2007/0172483に記載されているとおりに部位指向性変異誘発を実施した。アガロースゲル電気泳動およびバンド調製ののちPCR産物を精製し、標準的なテーリング手法を使用して単一アデノシン重複を生成した。次いで、アデノシンテールのあるMASP-2AをpGEM-T easyベクターにクローニングし、大腸菌へと形質転換した。ヒトMASP-2Aをさらに哺乳動物発現ベクターpEDまたはpCI-Neoのいずれかにサブクローニングした。
標準的なリン酸カルシウムトランスフェクション法(Maniatis et al., 1989)を使用して、上記MASP-2A発現構築物をDXB1細胞の中にトランスフェクトした。調製物が他の血清タンパク質で汚染されないことを保証するために、MASP-2Aを無血清培地中で産生した。1日おきに培地をコンフルエント細胞から収穫した(計4回)。組換えMASP-2Aレベルは、培地1リットルあたり平均で約1.5mgであった。MASP-2A(上記Ser-Ala変異体)をMBP-Aアガロースカラム上でのアフィニティークロマトグラフィーによって精製した。
パンニング/scFv転換およびフィルタースクリーニングによって同定されたScFv候補クローン上のMASP-2A ELISA
ヒト免疫グロブリン軽鎖および重鎖可変領域配列のファージディスプレイライブラリーを抗原パンニングに供したのち、自動化抗体スクリーニングおよび選択によってヒトMASP-2タンパク質に対する高親和性scFv抗体を同定した。HIS標識またはビオチン標識MASP-2Aに対して3回のscFvファージライブラリーパンニングを実施した。3回目のパンニングは、まずMBLで溶出させ、次いでTEA(アルカリ性)で溶出させた。標的MASP-2Aに対してscFv断片を表示するファージの特異的濃縮をモニターするために、固定化MASP-2Aに対するポリクローナルファージELISAを実施した。3回目のパンニングからのscFv遺伝子をpHOG発現ベクターにクローニングし、小規模フィルタースクリーニングに通して、MASP-2Aに対する特異性クローンを捜した。
3回目のパンニングからのscFv断片をコードするプラスミドを含む細菌コロニーを選択し、ニトロセルロース膜に固定化し、非誘発性培地上で一晩増殖させてマスタープレートを製造した。3回目のパンニングから合計18,000のコロニーを、半分は競合的溶出から、もう半分はその後のTEA溶出から選択し、分析した。MASP-2Aに対するscFvファージミドライブラリーのパンニング、その後のscFv転換およびフィルタースクリーニングが137の陽性クローンを生み出した。108/137クローンが、ELISAアッセイ法においてMASP-2結合に関して陽性であり(データ示さず)、そのうち45のクローンを、正常ヒト血清中のMASP-2活性を遮断する能力に関してさらに分析した。
レクチン経路C3コンバターゼ形成の阻害を測定するためのアッセイ法
レクチン経路C3コンバターゼ形成の阻害を測定する機能アッセイ法を使用して、MASP-2 scFV候補クローンの「ブロッキング活性」を評価した。レクチン経路C3コンバターゼを構成する2つのタンパク質成分(C4b、C2a)を生成するためには、MASP-2セリンプロテアーゼ活性が必要である。したがって、MASP-2機能活性を阻害するMASP-2 scFv(すなわち、遮断性MASP-2 scFv)はレクチン経路C3コンバターゼの新規形成を阻害する。C3は、異例な高反応性チオエステル基をその構造の一部として含む。このアッセイ法においてC3コンバターゼによってC3が切断されると、C3b上のチオエステル基が、プラスチックウェルの底に固定化された高分子上のヒドロキシルまたはアミノ基とエステルまたはアミド結合による共有結合を形成し、それにより、ELISAアッセイ法におけるC3bの検出を容易にすることができる。
酵母マンナンは既知のレクチン経路アクチベーターである。以下の方法においては、C3コンバターゼの形成を測定するために、マンナンでコーティングされたプラスチックウェルを希釈ヒト血清とともにインキュベートしてレクチン経路を活性化した。次いで、ウェルを洗浄し、ウェル上に固定化されたC3bに関して、標準的なELISA法を使用してアッセイした。このアッセイ法において生成されたC3bの量が、レクチン経路C3コンバターゼの新規形成を直接反映するものである。このアッセイ法においては、選択された濃度におけるMASP-2 scFvクローンを、C3コンバターゼ形成およびその後のC3b生成を阻害するそれらの能力に関して試験した。
方法:
上記のように同定した45個の候補クローンを発現させ、精製し、同じ保存濃度まで希釈し、それを、すべてのクローンが同じ量の緩衝液を有することを保証するために、Ca++およびMg++含有GVB緩衝液(4.0mMバルビタール、141mM NaCl、1.0mM MgCl2、2.0mM CaCl2、0.1%ゼラチン、pH7.4)中で再び希釈した。scFvクローンをそれぞれ2μg/mLの濃度において三つ組で試験した。陽性対照はOMS100 Fab2であり、かつ0.4μg/mLで試験した。scFv/IgGクローンの存在および非存在においてC3c形成をモニターした。
マンナンを50mM炭酸緩衝液(15mM Na2CO3+35mM NaHCO3+1.5mM NaN3)中pH9.5で20μg/mL(1μg/ウェル)の濃度まで希釈し、4℃で一晩ELISAプレートにコーティングした。翌日、マンナンコーティングされたプレートをPBS 200μlで3回洗浄した。次いで、1% HSAブロッキング溶液100μlをウェルに加え、室温で1時間インキュベートした。プレートをPBS 200μlで3回洗浄し、試料の添加まで、PBS 200μlとともに氷上に貯蔵した。
正常ヒト血清をCaMgGVB緩衝液中0.5%に希釈し、scFvクローンまたはOMS100 Fab2陽性対照を0.01μg/mL;1μg/mL(OMS100対照のみ)および10μg/mLの三つ組でこの緩衝液に加え、氷上で45分間プレインキュベートしたのち、ブロッキングされたELISAプレートに加えた。37℃で1時間のインキュベートによって反応を開始させ、プレートを氷槽に移すことによって反応を停止させた。ウサギα-マウスC3c抗体、次いでヤギα-ウサギHRPを用いてC3b沈着を検出した。陰性対照は抗体なしの緩衝液であり(抗体なし=最大C3b沈着)、陽性対照はEDTAを含む緩衝液であった(C3b沈着なし)。ウェルがマンナンフリーであったことを除き同じアッセイ法を実施することによってバックグラウンドを測定した。マンナンなしのプレートに対するバックグラウンドシグナルをマンナン含有ウェルにおけるシグナルから差し引いた。カットオフ基準は、無関係のscFvクローン(VZV)および緩衝液のみの活性の半分に設定した。
結果:カットオフ基準に基づき、合計13のクローンがMASP-2の活性を遮断することがわかった。>50%の経路抑制を生じさせた13のクローンすべてを選択し、配列決定して、10のユニークなクローンを得た。10のクローンすべてが、同じ軽鎖サブクラスλ3ならびに3つの異なる重鎖サブクラス:VH2、VH3およびVH6を有することがわかった。機能アッセイ法において、0.5%ヒト血清を使用した場合、10の候補scFvクローンのうち5つが、目標基準25nM未満のIC50nM値を出した。
改善された有効性を有する抗体を同定するために、上記のように同定した3つの母scFvクローンを軽鎖シャッフリングに供した。このプロセスは、6名の健康なドナーに由来するナイーブなヒトラムダ軽鎖(VL)のライブラリーと対合した各母クローンのVHからなるコンビナトリアルライブラリーの生成を含むものであった。次いで、このライブラリーを、改善された結合親和性および/または機能的を有するscFvクローンに関してスクリーニングした。
(表15)リード娘クローンおよびそれらのそれぞれの母クローン(すべてscFvフォーマット)のIC
50(nM)における機能有効性の比較
表15に示しかつ以下の表16A〜Fに記載する母クローンおよび娘クローンの重鎖可変領域(VH)配列を以下に提示する。
Kabat CDR(31〜35(H1)、50〜65(H2)および95〜102(H3))は太字で示し、Chothia CDR(26〜32(H1)、52〜56(H2)および95〜101(H3))は下線で示す。
17D20_35VH-21N11VL重鎖可変領域(VH)(SEQ ID NO:15、SEQ ID NO:14によってコードされる)
d17N9重鎖可変領域(VH)(SEQ ID NO:16)
重鎖可変領域
(表16A)重鎖(aa1〜20)
(表16B)重鎖(aa21〜40)
(表16C)重鎖(aa41〜60)
(表16D)重鎖(aa61〜80)
(表16E)重鎖(aa81〜100)
(表16F)重鎖(aa101〜118)
表17A〜Fに記載する母クローンおよび娘クローンの軽鎖可変領域(VL)配列を以下に提示する。
Kabat CDR(24〜34(L1)、50〜56(L2)および89〜97(L3))は太字で示し、Chothia CDR(24〜34(L1)、50〜56(L2)および89〜97(L3)は下線で示す。これらの領域は、Kabat系によって番号付けしてもChothia系によって番号付けしても同じである。
17D20m_d3521N11軽鎖可変領域(VL)(SEQ ID NO:17)
17N16m_d17N9軽鎖可変領域(VL)(SEQ ID NO:19、SEQ ID NO:18によってコードされる)
(表17A)軽鎖(aa1〜20)
(表17B)軽鎖(aa21〜40)
(表17C)軽鎖(aa41〜60)
(表17D)軽鎖(aa61〜80)
(表17E)軽鎖(aa81〜100)
(表17F)軽鎖(aa101〜120)
いずれも高い親和性でヒトMASP-2に結合し、かつ機能的補体活性を遮断する能力を有することが実証されているMASP-2抗体OMS100およびMoAb_d3521N11VLを、エピトープ結合に関してドットブロット分析によって分析した。結果は、d3521N11およびOMS100抗体がMASP-2に関して高い特異性を有し、かつMASP-1/3には結合しないことを示す。いずれの抗体も、MASP-2のCCP1ドメインを含まないMAp19またはMASP-2断片には結合せず、結合部位がCCP1を包含するという結論に至った。
したがって、一態様において、請求項に係わる発明の組成物および方法において使用するためのMASP-2阻害物質は、ヒトMASP-2(SEQ ID NO:3)からなるポリペプチドに結合するヒト抗体を含み、該抗体は、
(I)(a)(i)SEQ ID NO:21の31〜35のアミノ酸配列を含む重鎖CDR1;および(ii)SEQ ID NO:21の50〜65のアミノ酸配列を含む重鎖CDR2;および(iii)SEQ ID NO:21の95〜102のアミノ酸配列を含む重鎖CDR3を含む、重鎖可変領域;ならびに
(b)(i)SEQ ID NO:25またはSEQ ID NO:27いずれかの24〜34のアミノ酸配列を含む軽鎖CDR1;および(ii)SEQ ID NO:25またはSEQ ID NO:27いずれかの50〜56のアミノ酸配列を含む軽鎖CDR2;および(iii)SEQ ID NO:25またはSEQ ID NO:27いずれかの89〜97のアミノ酸配列を含む軽鎖CDR3を含む、軽鎖可変領域;または(II)該重鎖可変領域の該CDR領域内の合計6つまでのアミノ酸置換および該軽鎖可変領域の該CDR領域内の合計6つまでのアミノ酸置換を除く、他の点では該可変ドメインと同一であるそれらの変異体を含み、該抗体またはその変異体がMASP-2依存性補体活性化を阻害する。
実施例15
本実施例は、改変されたDT40細胞株DTLacOを使用するインビトロ系を使用する、MASP-1およびMASP-3モノクローナル抗体の生成を記載する。
背景/原理:
WO2009029315およびUS2010093033にさらに記載されているように、特定のポリペプチドの可逆性多様化誘発を可能にする改変されたDT40細胞株DTLacOを含むインビトロ系を使用して、ヒトMASP-1およびMASP-3に対する抗体を生成した。DT40は、培養中にその重鎖および軽鎖免疫グロブリン(Ig)遺伝子を構成性突然変異させることが知られているニワトリB細胞株である。他のB細胞と同様に、この構成性突然変異誘発は、Ig遺伝子のV領域への突然変異、ひいては発現した抗体分子のCDRを標的化する。DT40細胞中の構成性突然変異誘発は、各機能的V領域よりも上流に位置する非機能的V遺伝子セグメント(疑似V遺伝子;ΨV)のアレイをドナー配列として使用する遺伝子変換によって起こる。ΨV領域の欠失は、以前、ヒトB細胞において一般に認められる機構である、多様化の機構における遺伝子転換から体細胞超変異への切替えを生じさせることが知られていた。DT40ニワトリB細胞リンパ腫系が、エクスビボでの抗体進化のための有望な出発点であることが示されている(Cumbers, S. J. et al. Nat Biotechnol 20, 1129-1134 (2002); Seo, H. et al. Nat Biotechnol 23, 731-735 (2005))。DT40細胞は培養中、8〜10時間の倍加時間(ヒトB細胞系の場合の20〜24時間に比べて)で強く増殖し、非常に効率的な相同遺伝子標的化を支援する(Buerstedde, J. M. et al. Embo J 9, 921-927 (1990))。DT40細胞は、多様化のための2つの別々の生理学的経路、それぞれ鋳型化突然変異および非鋳型化突然変異を創製する遺伝子転換および体細胞超変異にアクセスすることができることを条件に、非常に大きな潜在的V領域配列多様性を命令する(Maizels, N. Annu Rev Genet. 39, 23-46 (2005))。多様化した重鎖および軽鎖免疫グロブリン(Ig)は細胞表面表示IgMの形態で発現する。表面IgMは、構造的にIgG分子に似る二価形態を有する。特定の抗原への特異性をもってIgMを表示する細胞は、抗原の固定化可溶性バージョンまたは膜表示バージョンに結合させることによって単離することができる。しかし、抗体進化のためのDT40細胞の利用は実際には限られている。理由は、他の形質転換B細胞株と同様、多様化が生理学的速度の1%未満の速度でしか起こらないからである。
本実施例において使用される系においては、WO2009029315およびUS2010093033に記載されているように、DT40細胞を操作して、さらなる遺伝子改変の能力または突然変異誘発に寄与するための遺伝子転換および体細胞超変異の潜在能力を犠牲にすることなく、Ig遺伝子多様化の速度を加速させた。多様化の速度を増加させ、その結果、本発明者らの細胞ライブラリー中の結合特異性の複雑さを増大させるために、DT40に対して2つの主要な改変を実施した。第一に、Ig遺伝子多様化を強力な大腸菌ラクトースオペレーター/レプレッサー制御ネットワーク下に置いた。強力な大腸菌ラクトースオペレーターの約100の重合リピートからなる多量体(PolyLacO)を、相同遺伝子標的化により、再構成され、発現したIgλおよびIgH遺伝子よりも上流に挿入した。次いで、ラクトースレプレッサータンパク質(LacI)に融合した制御因子をLacO制御要素につなぐと、オペレーターDNAのためのラクトースレプレッサーの高い親和性(kD=10-14M)を利用しながら多様化を制御することができる。PolyLacOがIgλだけで組み込まれたDT40 PolyLacO-λR細胞は、任意の操作の前の親DT40細胞に対して5倍増のIg遺伝子多様化速度を示した(Cummings, W. J. et al. PLoS Biol 5, e246 (2007))。多様化はさらに、IgλおよびIgHの両遺伝子に標的化されたPolyLacOを有するように操作された細胞(「DTLacO」)において増大した。DTLacO細胞は、親DT40 PolyLacO-λR LacI-HP1株に特徴的な2.8%に対して2.5〜9.2倍増の多様化速度を有することが実証された。したがって、PolyLacO要素を重鎖および軽鎖の両遺伝子に標的化することが多様化をDT40親細胞株に対して21.7倍に加速させた。制御因子をIg位置につなぐことは、突然変異誘発の頻度を変化させるだけでなく、突然変異誘発の経路を変更して、ユニークな配列変化のより大きな集合を創製することができる(Cummings et al. 2007; Cummings et al. 2008)。第二に、つながれた因子で加速されるIg遺伝子多様化のための配列出発点の多様な集合を生成した。2月齢ニワトリから単離した再構成Ig重鎖可変領域を重鎖位置に標的化することにより、これらの多様な配列出発点をDTLacOに加えた。これらの重鎖可変領域の追加が抗体多様化のための107の新たな出発点のレパートリーを創製した。これら新たな出発点をDTLacO細胞株に組み込むと、特定の標的に結合するクローンの同定および、その後、つながれた因子による迅速な親和性成熟が可能になる。親和性成熟ののち、成熟し、再構成された重鎖および軽鎖可変配列(VHおよびVλ;ニワトリフレームワーク領域および相補性決定領域またはCDRからなる)を、ヒトIgG1およびラムダ定常領域を含む発現ベクターにクローニングすることにより、完全長組換えキメラIgGを作製する。これらの組換えmAbは、インビトロおよびインビボ用途に適し、ヒト化の出発点として働く。
方法:
MASP-1およびMASP-3抗原結合についての選択
遺伝子標的化によって多様化させたDTLacO集団を、ヒトMASP-1(SEQ ID NO:10)およびMASP-3抗原(SEQ ID NO:8)と複合化したビーズに結合することによって最初の選択を実施し、その後、FACSにより、蛍光標識可溶性抗原を使用して選択した(Cumbers, S. J. et al. Nat Biotechnol 20, 1129-1134 (2002); Seo, H. et al. Nat Biotechnol 23, 731-735 (2005)。MASP-1とMASP-3との間で共有されるアルファ鎖中の保存されたアミノ酸配列(図5に示す)および別々のベータ鎖配列(図6に示す)のせいで、MASP-1およびMASP-3へのバインダのための別々の平行スクリーニングを実施して、MASP-1特異性mAb、MASP-3特異性mAbならびにMASP-1およびMASP-3の両方に結合することができる(二重特異性)mAbを同定した。2つの形態の抗原を使用して、バインダを選択し、スクリーニングした。まず、Fcドメインに融合した、完全長または断片のいずれかの組換えMASP-1またはMASP-3をDynal磁性プロテインGビーズに結合させるか、または、PECy5標識抗ヒトIgG(Fc)二次抗体を使用してFACSベースの選択に使用した。あるいはまた、MASP-1またはMASP-3タンパク質の組換えバージョンをDylight fluorで直接標識し、選択およびスクリーニングに使用した。
結合および親和性
PCR増幅V領域を293F細胞中のヒトIgG1の発現を支持するベクターにクローニングすることによって組換え抗体を生成した(Yabuki et al., PLoS ONE, 7(4):e36032 (2012))。MASP-1またはMASP-3を様々な濃度の蛍光標識可溶性抗原と結合させる抗体を発現するDTLacO細胞を染色することによって飽和結合反応速度を測定した。MASP-3依存性C3b沈着およびMASP-3依存性D因子切断を含むMASP-3特異性活性に関する機能アッセイ法を、それぞれ実施例17および18に記載するように実施した。MASP-1特異性活性、すなわちMASP-1依存性C3b沈着の阻害に関する機能アッセイ法を以下に記載するように実施した。
結果:
上記方法を使用して、数多くのMASP-1およびMASP-3結合抗体を生成した。FACS分析によって実証された結合を、MASP-3バインダのスクリーニングにおいて単離された代表的なクローンM3J5およびM3M1に関して記載する。
図30Aは、DTLacOクローンM3J5に関するMASP-3抗原/抗体結合のFACSヒストグラムである。図30Bは、DTLacOクローンM3M1に関するMASP-3抗原/抗体結合のFACSヒストグラムである。図30Aおよび30Bにおいて、グレーに塗りつぶした曲線はIgG1染色した陰性対照であり、濃い黒の曲線はMASP-3染色である。
図31は、MASP-3抗原に関するクローンM3J5(クローン5)の飽和結合曲線をグラフで示す。図31に示すように、MASP-3に関するM3J5抗体の見かけ結合親和性は約31nMである。
標準的方法を使用して、同定されたクローンの配列分析を実施した。すべてのクローンを共通の(DT40)VHおよびVL配列ならびに互いと比較した。2つの前述のクローンM3J5およびM3M1の配列は、MASP-1およびMASP-3のCCP1-CCP2-SP断片のスクリーニングにおいてそれぞれ同定された2つのさらなる代表的クローンD14および1E10とでアライメントされた状態で提供されている。D14および1E10は、MASP-1およびMASP-3の両方に共通の領域に結合する。
図32Aは、ニワトリのDT40 VH配列への、M3J5、M3M1、D14および1E10のVH領域のアミノ酸配列アライメントである。
図32Bは、ニワトリのDT40 VL配列への、M3J5、M3M1、D14および1E10のVL領域のアミノ酸配列アライメントである。
各クローンのVHおよびVLアミノ酸配列を以下に提供する。
重鎖可変領域(VH)配列
図32Aは、親DTLacO(SEQ ID NO:24)、MASP-3結合クローンM3J5(SEQ ID NO:25)およびM3M1(SEQ ID NO:26)ならびにMASP-1/MASP-3二重結合クローンD14(SEQ ID NO:30)および1E10に関する重鎖可変領域(VH)配列のアミノ酸アライメントを示す。
以下のVH配列中のKabat CDRは、以下のアミノ酸位置:H1:aa31〜35;H2:aa50〜62;およびH3:aa95〜102に位置する。
以下のVH配列中のChothia CDRは、以下のアミノ酸位置:H1:aa26〜32;H2:aa52〜56;およびH3:aa95〜101に位置する。
軽鎖可変領域(VL)配列
図32Bは、親DTLacO(SEQ ID NO:27)ならびにMASP-3結合クローンM3J5(SEQ ID NO:28)およびM3M1(SEQ ID NO:29)ならびにMASP-1/MASP-3二重結合クローンD14(SEQ ID NO:31)および1E10(SEQ ID NO:33)に関する軽鎖可変領域(VL)配列のアミノ酸アライメントを示す。
LEA-2(MASP-2依存性)機能アッセイ法
MASP-1は、MASP-2を活性化するその能力を介してLEA-2に寄与する(図1を参照されたい)。Wieslab(登録商標)補体システムスクリーニングMBLアッセイ法(Euro Diagnostica, Malmo, Sweden)は、LEA-2依存活性化(すなわち、従来のレクチン経路活性化)を単離する条件下、C5b-C9沈着を測定する。製造者の取り扱い指示に従って、代表的なクローン1E10を400nMの最終濃度で試験してアッセイ法を実施した。
図33は、mAb 1E10の阻害活性を、アッセイキットとともに提供される陽性血清およびアイソタイプ対照抗体と比較して示す棒グラフである。図33に示すように、mAb 1E10は、LEA-2依存性活性化の部分的阻害(MASP-2のMASP-1依存性活性の阻害による)を実証するが、一方、アイソタイプ対照抗体はそれを実証しない。DTLacO中のつながれた因子を使用するMASP-1結合に関するこの抗体の継続的な親和性成熟によってより強い阻害が達成されるはずである。
代表的なmAbの場合のLEA-1(MASP-3依存性)機能アッセイ法を以下、実施例17および18に記載する。
結果の要約:
上記結果は、DTLacOプラットフォームが、LEA-1(以下、図17および18に示す)およびLEA-2(本実施例に示す)に対する阻害性を有するMASP-1およびMASP-3モノクローナル抗体の迅速なエクスビボ発見を可能にすることを示した。
実施例16
本実施例はMASP-1およびMASP-2のポリペプチド阻害因子の生成を記載する。
原理:
それぞれSGMI-1およびSGMI-2と呼ばれる、MASP-1およびMASP-2の特異性阻害因子の生成が、いずれも参照により本明細書に組み入れられるHeja et al., J Biol Chem 287:20290(2012)およびHeja et al., PNAS 109:10498 (2012)に記載されている。SGMI-1およびSGMI-2は、いずれも、プロテアーゼ結合ループの8つの位置のうち6つが完全にランダム化されたサバクトビバッタ(Schistocerca gregaria)プロテアーゼ阻害因子2の変異体のファージライブラリーから選択された36アミノ酸ペプチドである。その後のインビトロ進化が、一桁nMのKI値の一特異性阻害因子を生じさせた(Heja et al., J. Biol. Chem. 287:20290, 2012)。構造的研究が、最適化されたプロテアーゼ結合ループが、2つの阻害因子の特異性を決定する一次結合部位を形成することを明らかにした。延長した二次および内部結合領域のアミノ酸配列は2つの阻害因子に共通であり、接触界面に寄与する(Heja et al., 2012. J. Biol. Chem. 287:20290)。機械的に、SGMI-1およびSGMI-2はいずれも、古典経路または第二経路に影響することなく補体活性化のレクチン経路を遮断する(Heja et al., 2012. Proc. Natl. Acad. Sci. 109:10498)。
SGMI-1およびSGMI-2阻害因子のアミノ酸配列を以下に記載する。
SGMI-1およびSGMI-2は、それぞれMASP-1およびMASP-2の高度に特異性の阻害因子である。しかし、ペプチドとして、生物学的研究における使用のためには限られた潜在能力しか有しない。これらの制限に対処するため、本発明者らは、これらの生体活性ペプチドアミノ酸配列をヒトIgG1 Fc領域のアミノ末端に移植してFc融合タンパク質を創製した。
方法:
SGMI-IgG1 Fc融合タンパク質を発現させるために、SGMI-1(SEQ ID NO:34)およびSGMI-2(SEQ ID NO:35)ペプチドをコードするポリヌクレオチドを合成し(DNA 2.0)、発現ベクターpFUSE-hIgG1-Fc2(InvivoGen)中、IL-2シグナル配列およびヒトIgG1Fc領域(SEQ ID NO:36)をコードするヌクレオチド配列の間に挿入した。フレキシブルなポリペプチドリンカー(例えば、SEQ ID NO:37またはSEQ ID NO:38)をSGMIペプチドとIgG1 Fc領域との間に含めた。
得られた構築物を以下に記載する。
ヒトIL-2シグナル配列、SGMI-1、リンカーおよびヒトIgG1-Fcを含むポリペプチド融合物(pFUSE-SGMI-1Fc)をコードするポリヌクレオチドがSEQ ID NO:39と表記され、これが、SEQ ID NO:40と表記される、SGMI-1(下線)、リンカー領域(イタリック体)およびヒトIgG1-Fcを含む成熟ポリペプチド融合物(合わせて「SGMI-1Fc」と呼ばれる)をコードする。
ヒトIL-2シグナル配列、SGMI-2、リンカーおよびヒトIgG1-Fcを含むポリペプチド融合物(pFUSE-SGMI-2Fc)をコードするポリヌクレオチドがSEQ ID NO:41と表記され、これが、SEQ ID NO:42と表記される、SGMI-2(下線)、リンカー領域(イタリック体)およびヒトIgG1-Fcを含む成熟ポリペプチド融合物(合わせて「SGMI-2Fc」と呼ばれる)をコードする。
組換えタンパク質の産生:
Freestyle 293-FまたはExpi293F細胞(Invitrogen)を、供給者のプロトコールに従って、2つの発現プラスミド(pFUSE-SGMI-1Fc(SEQ ID NO:39)およびpFUSE-SGMI-2Fc(SEQ ID NO:41)の1つと過渡的にトランスフェクトした。37℃で4日間のインキュベーションののち、培地を収穫した。プロテインAアフィニティークロマトグラフィーによってFc融合タンパク質を精製した。
レクチン経路の活性化を測定するアッセイ法
レクチン経路活性化の尺度である、1%血清からマンナンコーティングされた96ウェルプレートへのC3bの沈着を阻害する能力に関してSGMI-1FcおよびSGMI-2Fc融合タンパク質を試験した。SGMI-1FcおよびSGMI-2Fcを1%正常ヒト血清とともに氷上で1時間プレインキュベートしたのち、マンナンでコーティングされたウェルに加えた(2μg/ウェル)。Schwaeble et al. PNAS 108:7523, 2011に記載されているようにELISAによってC3b沈着を測定した。
図34は、0.15〜1000nMの濃度範囲にわたり、1%正常ヒト血清+アイソタイプ対照、SGMI-1Fc、またはSGMI-2Fcに関するC3b沈着のレベルをグラフで示す。図34に示すように、SGMI-1FcおよびSGMI-2Fcはいずれも、マンナンコーティングされたELISAウェル中で正常血清からのC3b沈着を阻害し、IC50値はそれぞれ約27nMおよび300nMであった。
これらの結果は、SGMIペプチドのMASP-1およびMASP-2阻害機能がSGMI-1FcおよびSGMI-2Fc融合タンパク質中で保持されることを実証する。
実施例17
黄色ブドウ球菌による3MC血清中の補体経路の分析
背景/原理:
MASP-3は、正常ヒト血清の存在または非存在において非固定化流体相マンナン、ザイモサンAまたはN-アセチルシステインへの曝露を経ても活性化されないことがわかった。しかし、組換えおよび天然のMASP-3は正常ヒト血清(NHS)または熱不活化ヒト血清(HIS)の存在および非存在において熱不活化黄色ブドウ球菌の表面で活性化されることがわかった(データ示さず)。また、正常ヒト血清の存在において黄色ブドウ球菌の表面でC3b沈着が起こり、フローサイトメーターを使用してその沈着をモニターすることができることがわかった。したがって、LEA-1に対するMASP-3の寄与を評価する手段として、本実施例に記載するように、黄色ブドウ球菌に対する第二経路(AP)応答を測定した。
方法:
組換えMASP-3:完全長組換えヒトMASP-3をコードするポリヌクレオチド配列、MASP-3の切断型セリンプロテアーゼ(SP)活性バージョン(CCP1-CCP2-SP)およびSP不活化形態のMASP-3(S679A)をpTriEx7哺乳動物発現ベクター(Invivogen)にクローニングした。得られた発現構築物は完全長MASP-3またはCCP1-CCP2-SP断片をアミノ末端Streptagおよびカルボキシ末端His6タグによってコードする。発現構築物を製造者によって提供されるプロトコールに従ってFreestyle 293-FまたはExpi293F細胞(Invitrogen)中にトランスフェクトした。5% CO2中37℃で3〜4日間の培養ののち、Streptactinアフィニティークロマトグラフィーを使用して組換えタンパク質を精製した。
組換えMASP-1:安定化R504Q(Dobo et al., J. Immunol. 183:1207, 2009)またはSP不活化(S646A)突然変異を有し、または有さず、アミノ末端Steptagおよびカルボキシ末端His6タグを有する完全長または切断型CCP1-CCP2-SP形態の組換えMASP-1を、上記組換えMASP-3に関して記載したように生成した。
1. 3MC(ヒト)血清中の黄色ブドウ球菌におけるC3b沈着およびB因子切断
最初の実験は、フローサイトメトリーアッセイ法がAP駆動型C3b沈着(AP-C3b)の存在または非存在を検出することができることを実証するために、以下のように実施した。以下の血清:正常ヒト血清、B因子(B因子)枯渇ヒト血清、D因子枯渇ヒト血清およびプロパージン枯渇ヒト血清(Complement Technology, Tyler, Texas., USAから入手)の5%を、Mg++/EGTA緩衝液またはEDTA中、試験抗体と4℃で一晩混合した。加熱殺菌黄色ブドウ球菌(108個/反応)を100μLの全量まで各混合物に加え、37℃で40分間回転流動させた。細菌を洗浄緩衝液中で洗浄し、細菌ペレットを洗浄緩衝液中に再懸濁させ、細菌表面のC3b沈着に関して各サンプルの80μLアリコートを分析し、それを、フローサイトメトリーを使用して、抗ヒトC3c(Dako, UK)で検出した。
C3bのフローサイトメトリー検出の結果を図35Aに示す。図35Aのパネル1に示すように、APを不活化することが知られているEDTAの存在における正常ヒト血清において、C3b沈着は認められなかった(陰性対照)。Mg++/EGTAで処理された正常ヒト血清においては、レクチン非依存性補体経路だけが機能することができる。パネル2においては、Mg++/EGTA緩衝液が使用され、したがって、APは活性であり、AP駆動型C3b沈着が認められる(陽性対照)。パネル3、4および5に示すように、それぞれB因子枯渇血清、D因子枯渇血清およびプロパージン枯渇血清においては、予想どおり第二経路駆動型C3b沈着は認められない。これらの結果は、アッセイ法がAP依存性C3b沈着を検出することができることを実証する。
MASP-3を欠損しているヒト3MC血清中でAP(LEA-1)を再構成する組換えMASP-3の能力を評価するために、上記のように黄色ブドウ球菌におけるC3b沈着アッセイ法を実施した(Rooryck C, et al., Nat. Genet. 43(3):197-203 (2011))。以下の試薬の組み合わせを試験した。
1. 5%正常ヒト血清+EDTA
2. 5%正常ヒト血清+Mg/EGTA
3. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTA
4. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTAに加えて活性完全長rMASP-3
5. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTAに加えて切断型活性rMASP-3(CCP1/CCP2/SP)
6. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTAに加えて不活性rMASP-3(S679A)
7. 5%ヒト3MC(MASP-3-/-)血清+Mg++/EGTAに加えて活性完全長rMASP-1
上に示すような5%血清と組換えタンパク質(各5μg)との様々な混合物を、指定された緩衝液条件(Mg++/EGTA緩衝液またはEDTAのいずれか)で4℃において一晩インキュベートした。一晩インキュベーションしたのち、108個の加熱殺菌黄色ブドウ球菌を100μLの全量まで各混合物に加え、37℃で40分間回転流動させた。細菌を洗浄し、洗浄緩衝液中に再懸濁させ、C3b沈着に関して各サンプルの80μLアリコートをFACSによって分析した。各サンプルの残り20μLアリコートを使用して、B因子切断を、以下に記載する抗B因子抗体を使用するウェスタンブロットによって測定した。
C3bのフローサイトメトリー検出の結果を図35Bに示す。パネル番号は、上述した各試薬組み合わせに指定した番号に対応する。陰性対照(パネル1)および陽性対照(パネル2)は、予想どおり、C3b沈着の非存在および存在を示す。パネル3は、AP駆動型C3b沈着が3MC血清中では起こらないことを示す。パネル4および5は、活性完全長rMASP-3(パネル4)および活性rMASP-3(CCP1-CCP2-SP)(パネル5)がいずれも3MC血清中でAP駆動型C3b沈着を回復させることを示す。パネル6は、不活性rMASP-3(S679A)が3MC血清中でAP駆動型C3b沈着を回復させないことを示す。パネル7は、rMASP-1が3MC血清中でAP駆動型C3b沈着を回復させないことを示す。
まとめると、これらの結果は、ヒト血清中の黄色ブドウ球菌におけるAP駆動型C3b沈着のためにはMASP-3が必要であることを実証する。
2. B因子のMASP-3依存性活性化
B因子のMASP-3依存性活性化を分析するために、5%血清(正常ヒト血清または3MC患者血清のいずれか)と組換えタンパク質との様々な混合物を上記のようにアッセイした。各反応混合物から20μLを取り出し、タンパク質試料添加緩衝液に加えた。試料を70℃で10分間加熱し、SDS-PAGEゲルに添加した。B因子ポリクローナル抗体(R&D Systems)を使用してウェスタンブロット分析を実施した。B因子の活性化は、高めの分子量のプロB因子タンパク質に由来する低めの分子量の2つの切断産物(BbおよびBa)の形成によって明らかであった。
図36は、rMASP-3の存在または非存在における3MC血清中の黄色ブドウ球菌に応答したB因子切断を判定するためのウェスタンブロット分析の結果を示す。レーン1に示すように、EDTAの存在における正常ヒト血清(陰性対照)は、レーン2(陽性対照)に示されるMg++/EGTAの存在における正常ヒト血清に対して非常にわずかなB因子切断しか実証しない。レーン3に示すように、3MC血清はMg++/EGTAの存在において非常にわずかなB因子切断しか実証しない。しかし、レーン4に示すように、B因子切断は、3MC血清への完全長組換えMASP-3タンパク質(5μg)の添加およびプレインキュベーションによって回復する。
3. B因子/C3(H2O)切断におけるプロD因子に対するrMASP-3の影響を判定するためのアッセイ法
MASP-3依存性B因子活性化/切断のための最小要件を決定するために以下のアッセイ法を実施した。
C3(H2O)(200ng)、精製血漿B因子(20μg)、組換えプロD因子(200ng)および組換えヒトMASP-3(200ng)を、BBS/Ca++/Mg++中、様々な組み合わせ(図37に示すような)で100μLの全量に混合し、30℃で30分間インキュベートした。5% 2-メルカプトエタノールを含有するSDS添加色素25uLを加えることによって反応を停止させた。振とうしながら(300rpm)95℃で10分間煮沸したのち、混合物を1400rpmで5分間スピンダウンし、上清20uLを10% SDSゲルに添加し、分離させた。ゲルをクマシーブリリアントブルーで染色した。
結果:
図37は、B因子切断が分析されるクマシー染色SDS-PAGEゲルを示す。レーン1に示すように、B因子切断はC3、MASP-3およびプロD因子の存在において最適である。レーン2に示すように、C3は絶対に必要であるが、レーン4および5に示すように、C3が存在する限り、MASP-3またはプロD因子はいずれもB因子切断を媒介することができる。
4. MASP-3依存性AP駆動型C3b沈着を阻害するためのMASP-3 mAbの能力の分析
本実施例に記載されるように、ヒト血清中の黄色ブドウ球菌におけるAP駆動型C3b沈着にはMASP-3が必要であることが実証された。したがって、実施例15に記載されるように同定された代表的なMASP-3 mAbがMASP-3の活性を阻害することができるかどうかを判定するために以下のアッセイ法を実施した。活性組換えMASP-3(CCP1-CCP2-SP)断片タンパク質(250ng)を3つの異なる濃度(0.5、2および4μM)のアイソタイプ対照mAb、mAb1A5(MASP-3またはMASP-1に結合しないDTLacOプラットフォームから得られた対照)またはmAbD14(MASP-3に結合する)とともに氷上で1時間プレインキュベートした。酵素-mAb混合物を50μLの最終反応量で5% 3MC血清(MASP-3欠損)および5×107個の加熱殺菌黄色ブドウ球菌に曝露した。反応物を37℃で30分間インキュベートしたのち、C3b沈着の検出のために染色した。染色された細菌細胞をフローサイトメーターによって分析した。
図38は、rMASP-3の存在における3MC血清中のmAb濃度の関数としてプロットされた、3つの抗体から得られたC3b染色の平均蛍光強さ(MFI)をグラフで示す。図38に示すように、mAbD14は濃度依存的なC3b沈着の阻害を実証する。対照的に、対照mAbはいずれもC3b沈着を阻害しなかった。これらの結果は、mAbD14がMASP-3依存性C3b沈着を阻害することができることを実証する。DTLacO系中のつながれた因子を使用するMASP-3結合に関するこの抗体の継続的な親和性成熟ののち、mAbD14に関する改善された阻害活性が予想される。
結果の要約:
要約すると、本実施例の結果は、MASP-3を欠損している血清中のAPの明らかな欠陥を実証する。したがって、B因子活性化およびC3b沈着を機能的終点として使用して、MASP-3がAPに対して非常に重要な寄与を成すことが実証された。さらに、MASP-3の触媒的に活性なC末端部分を含む機能的な組換えMASP-3の添加が、3MC患者からの血清中のB因子活性化およびC3b沈着における欠陥を補正する。逆に、本実施例においてさらに実証されるように、rMASP-3を有する3MC血清中のMASP-3抗体(例えばmAbD14)の添加はAP駆動型C3b沈着を阻害する。B因子活性化、ひいてはAPにおけるMASP-3の直接的な役割が、組換えMASP-3がC3とともに組換えB因子を活性化するのに十分であるという観察によって実証される。
実施例18
本実施例は、MASP-1およびMASP-3がD因子を活性化することを実証する。
方法:
プロD因子の2つの異なる組換えバージョンを切断する能力に関して、組換えMASP-1およびMASP-3を試験した。第一のバージョン(プロD因子His)はN末端タグを欠くが、C末端Hisタグを有する。したがって、プロD因子のこのバージョンは、活性化中に切断によって除去される5アミノ酸プロペプチドを含む。第二のバージョン(STプロD因子His)はN末端上にStrep-TagII配列を有し、したがって、切断されるN末端断片を15アミノ酸に増加させる。STプロD因子はまた、His6タグをC末端に含む。STプロD因子Hisのプロペプチドの長さの増大が、プロD因子HIS形態で可能である分解に比較して、SDS-PAGEによる切断形態と非切断形態との分解を改善する。
組換えMASP-1またはMASP-3タンパク質(2μg)をプロD因子-HisまたはST-プロD因子-His基質(100ng)のいずれかに加え、37℃で1時間インキュベートした。反応物を12%Bis-Trisゲル上で電気泳動させてプロD因子と活性D因子切断産物とを分解した。分解したタンパク質をPVDF膜に移し、ウェスタンブロットによってビオチン化D因子抗体(R&D Systems)を用いる検出によって分析した。
結果:
図39はプロD因子基質切断のウェスタンブロット分析を示す。
(表18)図39に示すウェスタンブロットに関するレーン説明
図39に示すように、完全長MASP-3(レーン2)およびMASP-1 CCP1-CCP2-SP)断片(レーン5)だけがST-プロD因子His6を切断した。触媒的に不活性な完全長MASP-3(S679A、レーン3)およびMASP-1(S646A、レーン3)はいずれの基質も切断できなかった。プロD因子His6ポリペプチドを用いても同一の結果が得られた(図示せず)。MASP-3に対して過剰モルのMASP-1(CCP1-CCP2-SP)の比較は、少なくとも本明細書に記載される条件下、MASP-3がMASP-1よりも有効なプロD因子切断の触媒であることを示唆する。
結論:MASP-1およびMASP-3はいずれもD因子を切断し、活性化することができる。この活性はLEA-1とAPの活性化と直接関連させる。より具体的には、MASP-1またはMASP-3によるD因子の活性化がB因子活性化、C3b沈着ならびにおそらくはオプソニン化および/または溶解を生じさせる。
1. MASP-3抗体によるプロD因子のMASP-3依存性切断の阻害に関するアッセイ法
実施例15に記載されたように同定された代表的なMASP-3およびMASP-1 mAbの、MASP-3依存性D因子切断に対する阻害効果を判定するために、以下のようにアッセイ法を実施した。活性組換えMASP-3タンパク質(80ng)を代表的なmAb D14、M3M1および対照抗体(MASP-1に特異的に結合するが、MASP-3には結合しない)1μgとともに室温で15分間プレインキュベートした。N末端Strepタグを有するプロD因子(ST-プロD因子-His、70ng)を加え、混合物を37℃で75分間インキュベートした。上記のように反応物を電気泳動させ、ブロッティングし、抗D因子で染色した。
図40は、MASP-3およびST-プロD因子-Hisのみを含む対照反応物(mAbなし、レーン1)およびMASP-1には結合するが、MASP-3には結合しない、DTLacOライブラリーから得られたmAbを含む対照反応物(レーン4)に比較した、mAb D14およびM3M1の部分的阻害活性を示すウェスタンブロットである。図40に示すように、阻害抗体の非存在において、MASP-3はプロD因子の約50%をD因子へと切断する(レーン1)。対照MASP-1特異性抗体(レーン4)はプロD因子とD因子との比率を変化させない。対照的に、レーン2および3に示すように、mAb D14およびmAb M3M1はプロD因子からD因子へのMASP-3依存性切断を阻害して、生成されるD因子を減少させる。
結論:これらの結果は、MASP-3 mAb D14およびM3M1がMASP-3依存性D因子切断を阻害することができることを実証する。DTLacO系中のつながれた因子を使用するMASP-3結合のためのこれらの抗体の継続的な親和性成熟ののち、mAb D14およびmAb M3M1に関する改善された阻害活性が予想される。
実施例19
本実施例は、MASP-3欠損がマンナンコーティングされたWTウサギ赤血球の補体媒介性溶解を防ぐことを実証する。
背景/原理:
本明細書の実施例5および6に記載されるように、PNHのマウスモデルから採取された血液試料からの赤血球の溶解に対するMASP-2およびMASP-3欠損血清の効果が、PNHに罹患している対象を治療するためのMASP-2阻害および/またはMASP-3阻害の有効性を実証し、また、エクリズマブのようなC5阻害因子による治療を受けているPNH対象においてC3断片媒介性血管外溶血の効果を緩和するためのMASP-2の阻害因子および/またはMASP-3の阻害因子(二重または二重特異性MASP-2/MASP-3阻害因子を含む)の使用を裏付ける。
本実施例に記載されるように、さらなる3MC患者からのMASP-3欠損血清中、C3b沈着実験および溶解実験を実施して、実施例5および6で得られた結果を確認した。加えて、3MC血清へのrMASP-3の添加がC3b沈着および溶血活性を再構成することができることを実証する実験を実施した。
方法:
以下のように、3名の異なる3MC患者からMASP-3欠損血清を採取した。
3MC患者1は、MASP-3セリンプロテアーゼドメインをコードするエキソンを機能不全にする突然変異を有するアレルを含み、この3MC患者の母親および父親からも提供してもらった(両親とも、MASP-3セリンプロテアーゼドメインをコードするエキソンを機能不全にする突然変異を有するアレルに関してヘテロ接合性)。
3MC患者2は、MASP-1のエキソン12、すなわち、MASP-3のセリンプロテアーゼドメインをコードするエキソンにC1489T(H497Y)突然変異を有して、非機能的MASP-3を生じさせ、機能的MASP-1タンパク質を生じさせる。
3MC患者3は、MASP-1遺伝子中に確認された欠陥を有し、非機能的MASP-3および機能的MASP-1タンパク質を生じさせる。
実験#1:C3b沈着アッセイ法
Bitter-Suermann et al., Eur. J. Immunol. 11:291-295 (1981))に記載されているような従来のAP特異的条件下(BBS/Mg++/EGTA、Ca++なし、ここで、BBS=スクロースを含有するバルビタール緩衝食塩水)、ザイモサンコーティングされたマイクロタイタープレート上、0.5〜25%の範囲の血清濃度でAPアッセイ法を実施し、時間とともにC3b沈着を測定した。
結果:
図41は、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、MASP-3欠損対象(3MC)、C4欠損対象およびMBL欠損対象から採取された血清試料中の血清濃度の関数としてグラフで示す。図41に示し、以下の表18にまとめているように、患者2および患者3からのMASP-3欠損患者血清が、高い濃度(25%、12.5%、6.25%血清濃度)での残留AP活性を有し、かつ有意に高いAP50(すなわち、最大C3沈着の50%を達成するために必要な血清の8.2%および12.3%)を有する。
図42Aは、「従来の」AP特異的条件下(すなわち、Ca++なしのBBS/EGTA/Mg++)、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、MASP-3欠損、C4欠損およびMBL欠損ヒト対象から採取された10%ヒト血清試料中の時間の関数としてグラフで示す。
以下の表19は、図41に示すAP50結果および図42Aに示すC3b沈着の半減期をまとめたものである。
(表19)図41および図42Aに示す結果のまとめ
注記:BBS/Mg
++/EGTA緩衝液中、この緩衝液中のCa
++の非存在のせいでレクチン経路媒介効果は見られない。
実験#2:ウェスタンブロットによる3MC患者血清中のプロD因子切断の分析
方法:3MC患者#2(MASP-3(-/-)、MASP-1(+/+))および3MC患者#3(MASP-3(-/-)、MASP-1(-/-))から血清を採取した。患者血清を、正常なドナーからの血清(W)とともに、SDS-ポリアクリルアミドゲルによって分離し、分解したタンパク質をポリフッ化ビニリデン膜上にブロッティングした。ヒトD因子特異的抗体によってヒトプロD因子(25,040Da)および/または成熟D因子(24,405Da)を検出した。
結果:ウェスタンブロットの結果を図42Bに示す。図42Bに示すように、正常なドナーからの血清(W)中、D因子抗体は、成熟D因子と合致するサイズ(24,405Da)のタンパク質を検出した。図42Bにさらに示すように、D因子抗体は、3MC患者#2(P2)および3MC患者#3(P3)からの血清中に、これらの3MC患者中のプロD因子(25,040Da)の存在と合致するわずかに大きめのタンパク質を検出した。
実験#3:3MC患者血清を用いるWieslab補体アッセイ法
方法:3MC患者#2(MASP-3(-/-)、MASP-1(+/+))および3MC患者#3(MASP-3(-/-)、MASP-1(-/-))から採取した血清を、Wieslab補体システムスクリーン(Euro-Diagnostica, Malmo, Sweden)を製造者の取扱い指示に従って使用して、古典、レクチンおよび第二経路活性に関しても試験した。正常ヒト血清を対照として同時並行的に試験した。
結果:図42Cは、3MC患者#2、3MC患者#3から採取された血漿および正常ヒト血清を用いたWeislab古典的、レクチンおよび第二経路アッセイ法の結果をグラフで示す。図42Cに示すように、Wieslabアッセイ法の条件下、古典、第二およびMBL(レクチン)経路はすべて正常ヒト血清中では機能性である。3MC患者#2(MASP-3(-/-)、MASP-1(+/+))からの血清中、古典経路およびレクチン経路は機能性であるが、検出可能な第二経路活性は見られない。3MC患者#3(MASP-3(-/-)、MASP-1(-/-))からの血清中、古典経路は機能性であるが、検出可能なレクチン経路活性および検出可能な第二経路活性は見られない。
図42Bおよび42Cの結果は、LEA-1およびLEA-2経路におけるMASP-1およびMASP-3の役割の本発明者らの理解をさらに裏付ける。具体的には、MASP-3のみを欠く患者2からの血清中の第二経路の非存在およびほぼ完全に機能性のレクチン経路は、第二経路の活性化にとってMASP-3が不可欠であることを確認させる。MASP-1およびMASP-3の両方を欠く患者3からの血清は、レクチン経路および第二経路を活性化する能力を失っている。この結果は、機能的LEA-2経路にとってのMASP-1の必要性を確認させ、実施例15および16ならびにMASP-1がMASP-2を活性化することを実証した文献とも合致している。両血清が明らかにプロD因子を活性することができないこともまた、MASP-3がプロD因子を切断することを実証する実施例18に記載されたデータと合致している。これらの観察結果は、図1に示すようなLEA-1およびLEA-2経路と合致している。
実験#4:マンナンコーティングされたウサギ赤血球をヒト正常または3MC血清の存在における(Ca ++ の非存在における)溶解に関して試験する溶血アッセイ法
方法:
Ca++の非存在における(すなわちEGTAを使用することによる)ウサギRBCの調製
ウサギ全血(2mL)を、2つの1.5mLエッペンドルフ管に分割し、4℃の冷却エッペンドルフ遠心分離機中、8000rpm(約5.9rcf)で3分間遠心処理した。氷冷BBS/Mg++/Ca++(4.4mMバルビツール酸、1.8mMナトリウムバルビトン、145mM NaCl、pH7.4、5mM Mg++、5mM Ca++)中に再懸濁させたのち、RBCペレットを3回洗浄した。3回目の洗浄後、ペレットをBBS/Mg++/Ca++4mL中に再懸濁させた。上記のように赤血球をペレット化し、RBCをBBS/0.1%ゼラチン/Mg++/Ca++で洗浄した。RBC懸濁液をBBS/0.1%ゼラチン/Mg++/Ca++中、4℃で貯蔵した。次いで、懸濁させたRBC100μlを水1.4mLで希釈し、8000rpm(約5.9rcf)で3分間スピンダウンし、上清のODを541nmで0.7に調節した(541nmで0.7のODは赤血球約109個/mlに相当)。その後、赤血球108個/mlの濃度を達成するために、OD 0.7で再懸濁させたRBC1mLをBBS/Mg++/EGTA 9mlに加えた。試験血清または血漿の希釈物を氷冷BBS、Mg++、EGTA中に調製し、各血清または血漿希釈物100μLを丸底プレートの対応するウェルにピペットで移した。適切に希釈したRBC 100μL(赤血球108個/ml)を各ウェルに加えた。ナノ水を使用して陽性対照(100%溶解)を製造し、血清または血漿なしのBBS/Mg++/EGTAによる希釈物を陰性対照として使用した。次いで、プレートを37℃で1時間インキュベートした。丸底プレートを3750rpmで5分間遠心処理した。次いで、各ウェルからの上清100μLを平底プレートの対応するウェルに移し、415〜490nmでODを読み取った。
結果:
図43は、Ca++の非存在下で測定した、正常な対象および2名の3MC患者(患者2および患者3)からの血清中、一定範囲の血清濃度にわたり、マンナンコーティングされたウサギ赤血球の溶血率(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。図43に示すように、MASP-3欠損が、正常ヒト血清に比べて、マンナンコーティングされた赤血球の補体媒介性溶解の割合を低下させることが実証される。正常ヒト血清からの2つの曲線と3MC患者からの2つの曲線との間の差は有意である(p=0.013、フリードマン試験)。
以下の表20が、図43に示すAP50結果をまとめている。
表20に示す血清試料をプールすると、正常ヒト血清のAP50値=7.9であり、3MC血清のAP50値=12.8であることが注目される(p=0.031、Wilcox対応対符号順位検定)。
実験#5:組換えMASP-3によるヒト3MC血清の再構成はザイモサンコーティングされたプレート上のAP駆動型C3b沈着を回復する
方法:
Bitter-Suermann et al., Eur. J. Immunol. 11:291-295 (1981))に記載されているような従来のAP特異的条件下(BBS/Mg++/EGTA、Ca++なし、ここで、BBS=スクロースを含有するバルビタール緩衝食塩水)、ザイモサンコーティングされたマイクロタイタープレート上、以下の血清試料中で、APアッセイ法を実施した:(1)完全長活性rMASP-3が0〜20μg/mlの範囲で加えられた3MC患者#2からの5%ヒト血清;(2)完全長活性rMASP-3が0〜20μg/mlの範囲で加えられた3MC患者#2からの10%ヒト血清;および(3)不活性rMASP-3A(S679A)が0〜20μg/mlの範囲で加えられた3MC患者#2からの5%ヒト血清。
結果:
図44は、ザイモサンコーティングされたマイクロタイタープレート上のAP駆動型C3b沈着のレベルを、ヒト3MC患者#2(MASP-3欠損)から採取された血清試料に加えられるrMASP-3タンパク質の濃度の関数としてグラフで示す。図44に示すように、活性組換えMASP-3タンパク質は、ザイモサンコーティングされたプレート上にAP駆動型C3b沈着を濃度依存的に再構成する。図44にさらに示すように、不活性rMASP-3(S679A)を含有する3MC血清中ではC3b沈着は認められなかった。
実験#6:組換えMASP-3によるヒト3MC血清の再構成は3MC患者血清中の溶血活性を回復させる
方法:
ウサギRBCを使用して、実験#2で上述された方法を使用して、以下の試験血清を、0〜12%の範囲で用いて溶血アッセイ法を実施した:(1)正常ヒト血清;(2)3MC患者血清;(3)3MC患者血清+活性完全長rMASP-3(20μg/ml);および(4)熱不活化ヒト血清。
結果:
図45は、Ca++の非存在において測定された、(1)正常ヒト血清;(2)3MC患者血清;(3)3MC患者血清+活性完全長rMASP-3(20μg/ml);および(4)熱不活化ヒト血清中、一定範囲の血清濃度にわたり、マンナンコーティングされたウサギ赤血球の溶血率(上清への溶解ウサギ赤血球のヘモグロビン放出を測光法によって測定)をグラフで示す。図45に示すように、rMASP-3を含む3MC血清中のウサギRBCの溶解率は、rMASP-3を含まない3MC血清中の溶解率に比べて有意に増大する(p=0.0006)。
図46は、活性rMASP-3をBBS/Mg++/EGTA中0〜110μg/mlの濃度範囲で含有する3MC患者2および3MC患者3からの7%ヒト血清中のウサギ赤血球溶解率をグラフで示す。図46に示すように、ウサギRBC溶解率はrMASP-3の量とともに濃度依存的に100%活性まで回復する。
実験#7:MASP-3欠損(3MC)患者の血清はMBLが存在する場合に機能的MASP-2を有する
方法:
3MC血清がLEA-2を欠損しているかどうかを調べるために、マンナンコーティングされたELISAプレートを使用してC3b沈着アッセイ法を実施した。クエン酸添加血漿を、BBS緩衝液中、連続希釈度(1:80から出発して1:160、1:320、1:640、1:1280、1:2560)に希釈し、マンナンコーティングされたプレート上に固定した。ニワトリ抗ヒトC3bアッセイ法を使用して、沈着したC3bを検出した。マンナンコーティングされたELISAプレート上のLEA-2駆動型C3b沈着(APおよびLEA-1が働くには血漿希釈度が高すぎる)を、正常ヒト対象(NHS)、2名の3MC患者(患者2および患者3)、患者3の両親およびMBL欠損対象からの血清中のヒト血清濃度の関数として評価した。
結果:
図47は、正常ヒト対象(NHS)、2名の3MC患者(患者2および患者3)、患者3の両親およびMBL欠損対象からの血清に関して、マンナンコーティングされたELISAプレート上のLEA-2駆動型(すなわち、MASP-2駆動型)C3b沈着のレベルを、BBS緩衝液中に希釈されたヒト血清の濃度の関数としてグラフで示す。これらのデータは患者2がMBL充分であることを示す。しかし、患者3および患者3の母親はMBL欠損であり、したがって、この人たちの血清はLEA-2を介してC3bをマンナン上に沈着させない。これらの血清中のMBLの置換は、患者3(MASP-3欠損を生じさせるSNPに関してホモ接合性である)およびその母親(突然変異MASP-3アレルに関してヘテロ接合性である)の血清中のLEA-2媒介性C3b沈着を回復させる(データ示さず)。この発見は、3MC血清がLEA-2を欠損しているのではなく、むしろ、機能的MASP-2を有すると考えられることを実証する。
総括および結論:
これらの結果は、ザイモサンコーティングされたウェル上のC3b沈着の減少およびウサギ赤血球溶解の減少によって証明されるように、ヒト血清中のMASP-3欠損がAP活性の損失を生じさせることを実証する。機能的組換えヒトMASP-3で血清を補充することにより、両アッセイ法においてAPを回復させることができる。
実施例20
本実施例は、マウス黄斑変性症モデルにおけるMASP-2-/-の結果を記載する。
背景/原理:加齢黄斑変性症(AMD)は、先進工業国における55歳以降の失明の主要な原因である。AMDは、2つの主要な形態:新生血管形成性(ウェット型)AMDおよび萎縮性(ドライ型)AMDとして起こる。AMDの個体の約20%しか新生血管形成性(ウェット型)を発症しないが、ウェット型は、AMDに関連する重篤な視力損失の90%を占める。AMDの臨床的特徴は、複数のドルーゼン、地理的萎縮および脈絡膜新生血管(CNV)を含む。2004年12月、FDAは、AMDのウェット(新生血管形成性)型の治療のための、血管内皮増殖因子(VEGF)の作用を特異的に標的化し、かつ遮断する新たなクラスの眼科用薬Macugen(ペガプタニブ)を承認した(Ng et al., Nat. Rev. Drug Discov 5:123-32 (2006))。Macugenは、AMD患者のサブグループにとって有望な新たな治療選択肢となるが、この複雑な疾患のためのさらなる治療を開発する危急の必要性が残る。複数の独立した研究が、AMDの病原における補体活性化の中心的役割の関与を示唆する。AMDの最も深刻な形態である脈絡膜新生血管(CNV)の病原は補体経路の活性化を含み得る。
25年以上前、Ryanが動物におけるCNVのレーザー誘発傷害モデルを記載した(Ryan, S. J., Tr. Am. Opth. Soc. LXXVII:707-745, 1979)。このモデルは当初、アカゲザルを使用して開発されたが、以来、この同じ技術が、マウスを含む多様な実験動物において同様なCNVモデルを開発するために使用されてきた(Tobe et al., Am. J. Pathol. 153:1641-46, 1998)。このモデルにおいては、ブルッフ膜を破るため、つまりCNV様膜の形成をもたらす行為のためレーザー光凝固術を使用する。レーザー誘発モデルはヒトの状態の重要な特徴の多くを捕捉する(最近の概説に関しては、Ambati et al., Survey Ophthalmology 48:257-293, 2003を参照されたい)。レーザー誘発マウスモデルは今や十分に確立され、多数の、およびますます多くの研究プロジェクトにおいて実験ベースとして使用されている。レーザー誘発モデルは、このモデルを使用する病原および薬物阻害の前臨床研究がヒトにおけるCNVに関連するという点で、ヒトにおけるCNVと十分な生物学的類似性を共有するということが概して受け入れられている。
方法:
実施例1に記載したようにMASP-2-/-マウスを作製し、C57Bl/6とで10世代にわたり戻し交配させた。最新の研究は、レーザー誘発CNV、新生血管形成性AMDの促進モデル、の過程において、レーザー誘発CNVの体積を重視しながら、レーザー損傷後のELISAによる組織損傷および網膜色素上皮細胞(RPE)/脈絡膜中のVEGF、CNVにおける関連が示唆される強力な血管形成因子、のレベル測定の手段として走査型共焦点レーザー顕微鏡法によってMASP-2(-/-)およびMASP-2(+/+)雄マウスを評価した場合の結果を比較した。
脈絡膜新生血管(CNV)の誘発:0日目、薬物群割当てに対して遮蔽された1個人が各マウスの両眼にレーザー光凝固(532nm、200mW、100ms、75μm;Oculight GL, Iridex, Mountain View, CA)を実施した。スリットランプ送達システムおよびコンタクトレンズとしてのカバースリップを使用して、レーザースポットを視神経の周囲に標準的に適用した。レーザー損傷の形態的終点は、ブルック膜の破裂と相関すると考えられる徴候であるキャビテーションバブルの発生であった。詳細な方法および評価した終点は以下のとおりである。
フルオレセイン血管造影法:レーザー光凝固から1週間後、カメラ画像診断システム(TRC 50 1Aカメラ;ImageNet 2.01システム:Topcon, Paramus, NJ)によってフルオレセイン血管造影法を実施した。2.5%フルオレセインナトリウム0.1mlの腹腔内注射ののち、眼底カメラレンズと接触した20-Dレンズによって写真を捕捉した。レーザー光凝固または血管造影にも関与しなかった網膜の専門家がフルオレセイン血管造影図を遮蔽的に一回だけ評価した。
脈絡膜新生血管(CNV)の体積:レーザー損傷から1週間後、眼を摘出し、4℃の4%パラホルムアルデヒドで30分間固定した。前区を取り除くことによって眼杯を採取し、PBS中で3回洗浄したのち、脱水し、メタノール系に通して再水和させた。室温で30分間、緩衝液(1%ウシ血清アルブミンおよび0.5% Triton X-100を含有するPBS)で2回ブロッキングしたのち、眼杯を、0.2% BSAおよび0.1% Triton X-100を含有するPBSで希釈した0.5% FITC-イソレクチンB4(Vector laboratories, Burlingame, CA)とともに4℃で一晩インキュベートした。FITC-イソレクチンB4は、内皮細胞の表面上で末端β-D-ガラクトース残基に結合し、マウス血管構造を選択的に標識する。0.1% Triton X-100を含有するPBSで2回洗浄したのち、網膜神経感覚上皮をやさしく引き離し、視神経から切断した。4つの弛緩放射状切開を施し、残るRPE-脈絡膜-強膜複合体を退色防止媒体(Immu-Mount Vectashield Mounting Medium; Vector Laboratories)中にフラットマウントし、カバースリップをかけた。
フラットマウントを走査型共焦点レーザー顕微鏡(TCS SP; Leica, Heidelberg, Germany)によって検査した。青色アルゴン波長(488nm)で励起し、515〜545nmの放出を捕捉することによって血管を視覚化した。40×油浸対物レンズをすべての画像診断研究に使用した。RPE-脈絡膜-強膜複合体の表面から水平光学切片(1μmステップ)を得た。病変に接続する周囲の脈絡膜血管ネットワークを識別することができる最深焦点面を病変の底であると判断した。この基準面の表面にあるレーザー標的化区域中の任意の血管をCNVと判断した。各切片の画像をデジタル式に記憶した。顕微鏡ソフトウェア(TCS SP; Leica)を用いるコンピュータ化画像解析によってCNV関連蛍光の面積を測定した。各水平切片中の全蛍光面積の合計をCNVの体積の指標として使用した。画像診断は、処置群割当てに対して遮蔽されたオペレーターが実施した。
各レーザー病変がCNVを発症する確率は、それが属する群(マウス、眼およびレーザースポット)によって影響されるため、分割区反復測度デザインの線形混合モデルを使用して平均病変体積を比較した。全区要因は、マウスが属する遺伝群であり、一方、分画区要因は眼であった。0.05レベルで統計的有意性を判定した。複数の比較に関してBonferroni調整によって平均の事後比較を構成した。
VEGF ELISA 12個のレーザースポットによる損傷から3日後、RPE-脈絡膜複合体を氷上の溶解緩衝液(20mMイミダゾ-ルHCl、10mM KCl、1mM MgCL2、10mM EGTA、1% Triton X-100、10mM NaF、1mMモリブデン酸Naおよび1mM EDTA、プロテアーゼ阻害因子を含む)中で15分間音波処置した。すべてのスプライス変異体を認識するELISAキット(R&D Systems, Minneapolis, MN)によって上清中のVEGFタンパク質レベルを450〜570nmで測定し(Emax; Molecular Devices, Sunnyvale, CA)、全タンパク質に対して正規化した。レーザー光凝固、画像診断または血管造影に関与しなかったオペレーターが二つ組の測定を遮蔽的に実施した。VEGF数を少なくとも3回の独立した実験の平均+/-SEMとして表し、マン・ホイットニーU検定法を使用して比較した。P<0.05で帰無仮説を棄却した。
結果:
VEGFレベルの評価:
図48Aは、0日目にC57Bl6野生型およびMASP-2(-/-)マウスから単離されたRPE-脈絡膜複合体中のVEGFタンパク質レベルをグラフで示す。図48Aに示すように、VEGFレベルの評価は、C57bl/6野生型対照マウスに対し、MASP-2(-/-)マウスにおけるVEGFのベースラインレベルの低下を示す。図48Bは、レーザー誘発損傷ののち3日目に測定されたVEGFタンパク質レベルをグラフで示す。図48Bに示すように、レーザー誘発損傷ののち3日で、VEGFレベルは野生型(+/+)マウスにおいて有意に増加し、公表されている研究(Nozaki et al., Proc. Natl. Acad. Sci. USA 103:2328-33 (2006))と合致していた。しかし、驚くことに、MASP-2(-/-)マウスにおいて非常に低いレベルのVEGFが見られた。
脈絡膜新生血管(CNV)の評価:
レーザー誘発黄斑変性症後のVEGFレベルの低下に加えて、レーザー損傷の前後でCNV面積を測定した。図49は、レーザー誘発損傷ののち7日目でのC57bl/6野生型マウスおよびMASP-2(-/-)マウスにおいて測定したCNV体積を示す。図49に示すように、MASP-2(-/-)マウスは、レーザー誘発損傷ののち7日目に、野生型対照マウスに比べて、CNV面積の約30%の減少を示した。
これらの発見は、野生型(+/+)対照に対してMASP(-/-)マウスにおいて見られるVEGFおよびCNVの減少を示し、阻害因子によるMASP-2の遮断が、黄斑変性症の治療において予防または治療効果を有することを示している。
実施例21
本実施例は、加齢黄斑変性症のマウスモデルにおける有効性に関するFab2#11由来のMASP-2 Moabの分析を記載する。
背景/原理:
実施例11および12に記載したように、ラットMASP-2タンパク質を利用してFabファージディスプレイライブラリーをパンニングし、そこからFab2#11を機能的に活性な抗体として同定した。ラットIgG2cおよびマウスIgG2aアイソタイプの完全長抗体をFab2#11から作製した。実施例13に記載したように、マウスIgG2aアイソタイプの完全長MASP-2抗体を薬力学的パラメータに関して特性決定した。本実施例においては、Bora P.S.ら、J Immunol 174:491-497 (2005)によって記載されているように、Fab2#11由来のマウスMASP-2完全長抗体を加齢黄斑変性症(AMD)のマウスモデルにおいて分析した。
方法:
実施例13に記載したFab2#11由来のマウスIgG2a完全長MASP-2抗体アイソタイプを、実施例20に記載したように、ただし以下の変更を加えて、加齢黄斑変性症(AMD)のマウスモデルにおいて試験した。
マウスMASP-2 MoAbの投与
CNV誘発の16時間前、2つの異なる用量(0.3mg/kgおよび1.0mg/kg)のマウスMASP-2 MoAbを、アイソタイプ対照MoAb治療とともに、WT(+/+)マウス(1群あたりn=8)に腹腔内注射した。
脈絡膜新生血管(CNV)の誘発
実施例20に記載したように、レーザー光凝固を使用して、脈絡膜新生血管(CNV)の誘発およびCNVの体積測定を実施した。
結果:
図50は、アイソタイプ対照MoAbまたはマウスMASP-2 MoAb(0.3mg/kgまたは1.0mg/kg)のいずれかで処置されたマウスにおける、レーザー損傷ののち7日目に測定されたCNV面積をグラフで示す。図50に示すように、1.0mg/kg MASP-2 MoAbで前処置されたマウスにおいて、レーザー処置後7日目でCNVにおける統計的に有意な(p<0.01)約50%の減少が認められた。図50にさらに示すように、0.3mg/kg用量のMASP-2 MoAbはCNVを減少させる有効性を有しないことが認められた。実施例13に記載し、図29Aに示すように、0.3mg/kg用量のMASP-2 MoAbは、皮下投与ののち、C4b沈着の部分的および一過性の阻害を有することが示されたことが注目される。
本実施例に記載された結果は、MASP-2 MoAbのような阻害因子によるMASP-2の遮断が黄斑変性症の治療において予防および/または治療効果を有することを実証する。これらの結果は、レーザー処置後7日目に、野生型対照マウスに比べてMASP-2(-/-)マウスにおいてCNVの30%減少が認められた実施例20に記載された、MASP-2(-/-)マウスで実施された実験において認められた結果と合致することが注目される。そのうえ、本実施例における結果はさらに、全身的に送達されたMASP-2抗体が眼において局所的な治療上の有益性を提供することを実証し、それにより、AMD患者を治療するための全身投与経路の可能性を強調する。要約すると、これらの結果は、AMDの治療におけるMASP-2 MoAbの使用を裏付ける証拠を提供する。
実施例22
本実施例は、マウス心筋虚血/再灌流モデルにおけるMASP-2(-/-)マウスの分析を記載する。
背景/原理:
マンノース結合レクチン(MBL)は、広い範囲の糖質構造に応答して、免疫複合体非依存的に補体活性化を開始させる循環分子である。これらの構造は、特に壊死、腫脹またはアポトーシス細胞内の感染作用物質または改変された内因性糖質残基の成分であることができる。これらの形態の細胞死は、補体の活性化が、おそらくは、再灌流によって虚血が終わる瞬間に存在する境界を超えるまで損傷を拡張させる再灌流心筋中で起こる。補体活性化が心筋再灌流を悪化させるという有力な証拠があるが、そのような活性化の機序は十分には理解されておらず、すべての既知の経路の阻害は、耐容し得ない副作用を及ぼす可能性が高い。最近の研究は、活性化が、古典経路または第二増幅ループ(本発明において定義する)ではなくMBLを含み得ることを示唆している。理由は、梗塞がMBL(A/C)ヌルマウスにおいて減少したが、C1qヌルマウスにおいては減少しなかったからである(Walsh M. C. et al., Jour of Immunol. 175:541-546 (2005))。しかし、有望であるが、これらのマウスは、レクチン経路を介して補体を活性化することができる、フィコリンAのような循環成分をなおも保有する。
この研究は、MASP-2(-/-)マウスと野生型(+/+)対照とを研究して、MASP-2(-/-)が心筋虚血および再灌流障害に対してより低い感受性を有するかどうかを判定した。MASP-2(-/-)マウスを局所虚血に供し、梗塞サイズをそれらの野生型同腹仔に比べた。
方法:以下のプロトコールは、Marberら、J. Clin Invest. 95:1446-1456 (1995)によって以前に記載されている、虚血/再灌流障害を誘発する手順に基づくものであった。
実施例1に記載したようにMASP-2(-/-)マウスを作製し、C57Bl/6とで少なくとも10世代にわたり戻し交配させた。MASP-2(-/-)マウス7匹および野生型(+/+)マウス7匹をケタミン/メデトミジン(それぞれ100mg/kgおよび0.2mg/kg)で麻酔し、サーモスタット制御された加熱パッド上に仰向けに配置して、直腸温度を37±0.3℃に維持した。直接視下、マウスに挿管し、110/分の呼吸速度および225μl/分の1回呼吸量で室内気で人工呼吸させた(Ventilator-Hugo Sachs Elektronic MiniVent Type 845, Germany)。
毛を剃り、左腋窩から剣状突起まで前外側皮膚切開を施した。大胸筋をその胸骨縁から切り込み、腋窩まで切り進めた。小胸筋をその頭側縁から切り込み、尾方向に切り進めた。この筋肉は、のちに、冠動脈閉塞中に心臓を覆うための筋肉フラップとして使用した。第5肋間腔および壁側胸膜の筋肉の、左肺の縁よりわずかに内側の点をピンセットで穿通し、それによって肺または心臓の損傷を回避した。胸膜の穿通ののち、注意深く、心臓に触れさせることなくピンセットを胸膜よりも先から胸骨に向けて進め、胸膜および肋間筋をバッテリ駆動型焼灼装置(Harvard Apparatus, UK)によって切開した。出血させないよう特に注意を払った。同じ技法を使用して、開胸部を腋窩中央線まで延ばした。第4肋骨の胸骨側縁を切断したのち、心臓全体が心底から心尖まで露出するまで肋間腔を広げた。2つの小さな動脈鉗子を使用して、心膜を開き、心膜離被架を変形させて心臓をわずかに前に移動させた。左前下行冠動脈(LAD)を露出させたのち、丸針を備えた8-0単糸をLADの下に通した。LADの結紮の部位は、左心房の先端のすぐ尾側、房室の頂部から左心室の心尖まで延びる線の約1/4に位置する。
すべての実験は、研究者が各マウスの遺伝型を知らないうえで盲検的に実施した。機器計測および外科的処置の完了ののち、マウスに15分の平衡化期間を与えた。その後、マウスを30分間の冠動脈閉塞および120分間の再灌流に供した。
冠動脈閉塞および再灌流モデル
以前に記載されているようなハンギングウエイトシステム(Eckle et al., Am J Physiol Heart Circ Physiol 291:H2533-H2540, 2006)を使用して冠動脈閉塞を達成した。単糸結紮の両端を長さ2mmのポリエチレンPE-10管に通し、シアノアクリレート接着剤を使用して5-0縫合糸に取り付けた。次いで、縫合糸を、水平に取り付けた2本の可動金属ロッドにわたし、各1gの塊を縫合糸の両端に取り付けた。ロッドの上昇により、塊は吊り下げられ、縫合糸は制御された張力下に配されて、LADを規定かつ一定の圧で閉塞させた。LAD閉塞は、虚血域が青ざめ、LAD灌流ゾーンの色が明るい赤色から紫色に変わり、血流の停止を示すことによって立証された。塊が手術パッドに載り、結紮糸の張りが解放されるまでロッドを下げることにより、再灌流を達成した。閉塞を立証するために使用された同じ3つの基準によって再灌流を立証した。それぞれ冠動脈閉塞の開始時または再灌流から15分以内に3つ基準すべてが満たされないならば、マウスをさらなる分析から除外した。冠動脈閉塞中、心臓を小胸筋のフラップで覆い、開胸部を0.9%食塩水含浸ガーゼで封止することによって心臓表面の温度および湿度を維持した。
心筋梗塞サイズの測定:
梗塞サイズ(INF)および虚血域(AAR)をプラノメトリーによって測定した。500 I.U.ヘパリンを静脈内注射したのち、LADを再び閉塞させ、5%(w/vol)エバンスブルー(Sigma-Aldrich, Poole, UK)300μlをゆっくりと頚静脈に注射して虚血域(AAR)を画定した。この戦略は、色素を左心室の非虚血領域に入らせ、虚血AARを未染色のままにする。頚椎脱臼によってマウスを安楽死させたのち、心臓を速やかに摘出した。心臓を氷冷し、5%アガロースのブロックに取り付けたのち、厚さ800μmの8枚の横方向スライスに切断した。すべてのスライスを、pH7.4に調節された0.1M Na2HPO4/NaH2PO4緩衝液中に溶解した3% 2,3,5-トリフェニルテトラゾリウムクロリド(SigmaAldrich, Poole, UK)とともに、37℃で20分間インキュベートした。スライスを10%ホルムアルデヒド中で一晩固定した。スライスを2枚のカバーガラスの間に配置し、高解像度光学スキャナーを使用して各スライスの側面をデジタル的に画像処置した。次いで、デジタル画像をSigmaScanソフトウェア(SPSS, US)の使用によって解析した。梗塞領域(淡色)、左心室(LV)虚血域(赤)および正常に灌流されたLVゾーン(青)のサイズを、それらの色の外観および色の境界の識別により、各切片中に輪郭で表した。研究者が各スライスの両側で面積を数値化し、平均した。梗塞サイズを各マウスの虚血域の%として算出した。
結果:図51Aは、上記冠動脈閉塞および再灌流技法を受けた後のWT(+/+)マウス7匹およびMASP-2(-/-)マウス7匹の梗塞サイズの測定に関する評価を示す。図51Aに示すように、MASP-2(-/-)マウスは、野生型(+/+)マウスに対し、梗塞サイズの統計的に有意な減少(p<0.05)を示し、虚血再灌流障害モデルにおける損傷からの保護的心筋効果を示す。図51Bは、試験された個々のマウスの分布を示し、MASP-2(-/-)マウスの場合の明らかな保護効果を示す。
実施例23
本実施例は、マウス心筋虚血/再灌流モデルにおけるMASP-2(-/-)マウスの分析を記載する。
背景/理論:
冠動脈に対する虚血侵襲後の炎症性再灌流傷害へのMASP-2の寄与を評価するために、Marberら、J. Clin Invest. 95:1446-1456 (1995)によって記載されているマウス虚血/再灌流(MIRP)モデルおよびランゲンドルフ単離灌流マウス心臓モデルにおいてMASP-2(-/-)およびMASP-2(+/+)マウスを比較した。
方法:
実施例1に記載したように、この実験に使用されるMASP-2(-/-)マウスを作製した。実施例22に記載された方法を使用して、WT(MASP-2(+/+)マウス8匹およびMASP-2(-/-)マウス11匹において左心室に対する虚血侵襲を実施した。実施例22に記載したように、プラノメトリーによって梗塞サイズ(INF)および虚血域(AAR)を測定した。
ランゲンドルフ単離灌流マウス心臓モデル:F. J. Sutherlandら、Pharmacol Res 41:613 (2000)に記載されているとおりに、ランゲンドルフ単離灌流マウス心臓モデルのためにマウスから心臓を標本作製する方法を実施した。また、A.M. Kabirら、Am J Physiol Heart Circ Physiol 291:H1893 (2006); Y. Nishinoら、Circ Res 103:307 (2008)およびI. G. Webbら、Cardiovasc Res (2010)を参照されたい。
簡潔に説明すると、WT(+/+)およびMASP-2(-/-)マウスをペントバルビタール(300mg/kg)およびヘパリン(150単位)によって腹腔内的に麻酔した。速やかに心臓を単離し、氷冷改変クレブスヘンゼライト緩衝液(KH、118.5mmol/l NaCl、25.0mmol/l NaHCO3、4.75mmol KCl、KH2PO4 1.18、MgSO4 1.19、D-グルコース11.0およびCaCl2 1.41に入れた。切除した心臓を、ウェータージャケットを備えたランゲンドルフ装置に取り付け、95% O2および5% CO2で平衡化させたKH緩衝液によって80mmHgの定圧で逆行性灌流を実施した。灌流液の温度を37℃に維持した。左心室に挿入された流体充填バルーンが収縮機能をモニターした。拡張末期圧が1〜7mmHgになるまでバルーンを徐々に膨らませた。0.075mmの銀ワイヤ(Advent)によって580bpmで心房調律を実施した。定時的灌流液回収によって冠動脈血流を測定した。
インビトロ梗塞評価
逆行性灌流を開始したのち、心臓を30分間安定化させた。評価に含めるためには、すべての心臓は以下の基準を満たさなければならなかった:冠動脈血流1.5〜4.5mL/分、心拍数>300bpm(非調律)、左心室発生圧>55mmHg、開胸術から大動脈カニューレ挿入までの時間<3分および安定化中に持続性律動異常の非存在。次いで、血清の非存在において全虚血および再灌流を実施した。次いで、大動脈流入管をクランプで締めることによってすべての心臓を30分間の全虚血に供したのち、2時間の再灌流を実施した。
虚血中に収縮が停止したところで電気的調律を停止し、再灌流への30分、再開した。2時間の再灌流後、KH中1%トリフェニルテトラゾリウムクロリド(TTC)5mlで心臓を1分間灌流し、次いで、37℃の同一の溶液に10分間入れた。次いで、心房を摘出し、心臓を吸い取り乾燥させ、秤量し、-20℃で1週間貯蔵した。
次いで、心臓を解凍し、2.5%グルタルアルデヒド中に1分間入れ、5%アガロース中に固定した。次いで、ビブラトーム(Agar Scientific)を使用して、アガロース心臓ブロックを心尖から心底まで0.7mmスライスに切断した。切断後、スライスを室温の10%ホルムアルデヒド中に一晩入れたのち、PBSに移して4℃でさらに1日おいた。次いで、切片をパースペックスプレート(0.57mm間隔)の間で圧縮し、スキャナー(EpsonモデルG850A)を使用して画像処置した。拡大後、画像解析ソフトウェア(SigmaScan Pro 5.0、SPSS)を使用してプラニメトリーを実施し、全体およびTTC陰性左心室心筋層の表面積を組織厚さとの乗算によって体積に変換した。各心臓内で、個々のスライスを合計したのち、TTC陰性梗塞体積を、左心室体積の割合として表すか、左心室の体積に対してプロットするかした。
結果:
梗塞区域(淡色)、左心室(LV)虚血域(赤)および正常に灌流されたLVゾーン(青)のサイズを、それらの色の外観および色の境界の識別により、各切片中に輪郭で表した。研究者が各スライスの両側で面積を数値化し、平均した。梗塞サイズを各マウスの虚血域の%(RZ%)として算出した。
図52Aは、上記冠動脈閉塞および再灌流技法を受けた後のWT(+/+)マウス8匹およびMASP-2(-/-)マウス11匹の梗塞サイズの測定に関する評価を示す。図52Aは、平均虚血域(AAR、虚血による影響を受けた面積の測度)および梗塞体積(INF、心筋層への損傷の測度)を全心筋体積の割合としてグラフで示す。図52Aに示すように、2群間でAARの差はないが、INF体積は、WT同腹仔と比較して、MASP-2(-/-)マウスにおいて有意に減少し、したがって、このMIRPモデルにおいてMASP-2の非存在における心筋損傷からの保護効果が示された。
図52Bは、AARに対してプロットされたINFと左心室(LV)心筋体積の%との関係をグラフで示す。図52Bに示すように、任意の所与のAARの場合、MASP-2(-/-)マウスは、WT同腹仔と比較して、梗塞サイズにおける非常に有意な減少を示した。
図52Cおよび52Dは、血清の非存在において全虚血および再灌流を実施したランゲンドルフ単離灌流マウス心臓モデルに従って作製されたWT(+/+)およびMASP-2(-/-)マウスの緩衝液灌流心における心筋梗塞の結果を示す。図52Cおよび52Dに示すように、MASP-2(-/-)マウスの心臓とWT(+/+)マウスの心臓との間では、結果的な梗塞体積(INF)における差は認められず、図52Aおよび52Bに示す梗塞サイズの差が、虚血損傷に対するMASP-2(-/-)マウスの心筋組織のより低い感受性ではなく、血漿因子によって生じることを示唆する。
総合すると、これらの結果は、MASP-2欠損が、マウス心筋虚血/再灌流モデルにおいて虚血心の再灌流時の心筋損傷を有意に減少させることを実証し、虚血/再灌流障害を治療および予防するためのMASP-2阻害因子の使用を裏付ける。
実施例24
本実施例は、補体C3の、新規なレクチン経路媒介性およびMASP-2依存性C4バイパス活性化の発見を記載する。
理論:
補体活性化の阻害因子を利用して心筋虚血/再灌流障害(MIRI)を抑制する主要な治療上の有益性は20年前に心筋梗塞の実験的ラットモデルにおいて確信的に実証されている。MIRIのラットインビボモデルにおいて、細胞表面補体受容体1型(CR1)の可溶性切断型誘導体である組換えsCR1が静脈内に投与され、その効果が評価されている。sCR1による治療は梗塞体積を40%超も減少させた(Weisman, H.F., et al., Science 249:146-151 (1990))。この組換え体阻害因子の治療能力は、のちに、MI患者におけるsCR1の投与が虚血後心臓における収縮障害を防ぐことを示す臨床試験において実証された(Shandelya, S., et al., Circulation 87:536-546 (1993))。しかし、虚血組織中の補体の活性化をもたらす主要な機序は、主として適切な実験モデルの欠如、酸素欠乏細胞上での補体活性化を招く分子プロセスの限られた理解ならびに異なる補体活性化経路間のクロストークおよび相乗作用のせいで、最終的には確定されていない。
免疫応答の基本成分として、補体系は、抗体依存性機序および抗体非依存性機序の両方を介して、侵入する微生物に対する保護を提供する。これは、走化性、食作用、細胞接着およびB細胞分化を含む、免疫応答内の多くの細胞性および体液性の相互作用を司る。3つの異なる経路:古典経路、第二経路およびレクチン経路が補体カスケードを開始させる。古典経路認識サブコンポーネントC1qは、多様な標的、最も顕著には免疫複合体、に結合して、関連するセリンプロテアーゼC1rおよびC1sの段階的活性化を開始させて、適応免疫系による関与ののち、病原体および免疫複合体の掃去のための主要な機序を提供する。免疫複合体へのC1qの結合がC1rチモーゲンダイマーをその活性形態に転換させて、C1sを切断し、それによってC1sを活性化する。C1sは、2つの切断工程においてC1q結合を補体活性化に変換する。まず、C4をC4aおよびC4bに転換し、次いで、C4b結合C2を切断してC3コンバターゼC4b2aを形成する。この複合体が豊富な血漿成分C3をC3aおよびC3bに転換する。C4b2a複合体に近接したC3bの蓄積が、C3に対する基質特異性をC5にシフトしてC5コンバターゼC4b2a(C3b)nを形成する。古典経路活性化を介して生成されたC3およびC5コンバターゼ複合体は、レクチン経路活性化ルートを介して生成されたものと同一である。第二経路においては、成分C3の自発的な低レベル加水分解が細胞表面へのタンパク質断片の沈着を生じさせて外来細胞上の補体活性化を誘発するが、一方、宿主組織上の細胞関連調節タンパク質は活性化を回避し、それによって自己損傷を防ぐ。第二経路と同様に、レクチン経路は免疫複合体の非存在において活性化され得る。活性化は、病原体関連分子パターン(PAMP)、主として細菌、真菌もしくはウイルス病原体上に存在する糖質構造またはアポトーシス、壊死、悪性もしくは酸素欠乏細胞上の異常なグリコシル化パターンへの多分子レクチン経路活性化複合体の結合によって開始される(Collard, C.D., et al., Am. J. Pathol. 156:1549-1556 (2000); Walport, M.J., N. Engl. J. Med. 344:1058-1066 (2001); Schwaeble, W., et al., Immunobiology 205:455-466 (2002)およびFujita, T., Nat. Rev. Immunol. 2:346-353 (2002))。
マンナン結合レクチン(MBL)は、MBL関連セリンプロテアーゼ(MASP)と名付けられ、かつそれらの発見の順序に従って番号付けされた新規なセリンプロテアーゼ(すなわちMASP-1、MASP-2およびMASP-3)の群と一緒に複合体を形成することが示された最初の糖質認識サブコンポーネントであった。ヒトにおいて、レクチン経路活性化複合体は、異なる糖質結合特異性を有する4つの代替糖質認識サブコンポーネント、すなわちMBL2ならびに3つの異なるフィコリンファミリーメンバー、すなわちLフィコリン、HフィコリンおよびMフィコリンならびにMASPと一緒に形成されることができる。2つの形態のMBL、すなわちMBL AおよびMBL CならびにフィコリンAがマウスおよびラット血漿中でMASPと一緒にレクチン活性化経路複合体を形成する。本発明者らは、以前に、ヒト、マウスおよびラットにおいて、MAp19またはsMAPと呼ばれる、MASP-2および19kDaのさらなる切断型MASP-2遺伝子産物をクローニングし、特性決定した(Thiel, S., et al., Nature 386:506-510 (1997); Stover, C.M., et al., J. Immunol. 162:3481-3490 (1999); Takahashi, M., et al., Int. Immunol. 11:859-863 (1999)およびStover, C.M., et al., J. Immunol. 163:6848-6859 (1999))。MAp19/sMAPはプロテアーゼ活性を欠くが、糖質認識複合体へのMASPの結合に関して競合することによってレクチン経路活性化を調節し得る(Iwaki, D. et al., J. Immunol. 177:8626-8632 (2006))。
3つのMASPのうち、MASP-2だけが、レクチン経路認識複合体の結合を補体活性化に変換するために必要であることを示す強力な証拠がある(Thiel, S., et al. (1997); Vorup-Jensen, T., et al., J. Immunol. 165:2093-2100 (2000); Thiel, S., et al., J. Immunol. 165:878-887 (2000); Rossi, V., et al., J. Biol. Chem. 276:40880-40887 (2001))。この結論は、MASP-1およびMASP-3を欠く、最近に記載されたマウス系統の表現型によって強調される。インビトロでのレクチン経路媒介性補体活性化の開始の遅延は別として、MASP-1/3欠損マウスはレクチン経路機能活性を保持する。組換えMASP-1によるMASP-1およびMASP-3欠損血清の再構成がレクチン経路活性化におけるこの遅延を解消して、MASP-1がMASP-2活性化を促進し得ることを暗示する(Takahashi, M., et al., J. Immunol. 180:6132-6138 (2008))。最近の研究は、MASP-1(およびおそらくはMASP-3)が、第二経路活性化酵素D因子をそのチモーゲン形態からその酵素的に活性な形態へと転換するために必要とされることを示した(Takahashi, M., et al., J. Exp. Med. 207:29-37 (2010))。このプロセスの生理学的重要性は、MASP-1/3欠損マウスの血漿中の第二経路機能活性の非存在によって強調される。
最近作製された、レクチン経路糖質認識サブコンポーネントMBL AおよびMBL Cの組み合わせ標的化欠損を有するマウス系統は、なおも、残存するマウスレクチン経路認識サブコンポーネントフィコリンAを介してレクチン経路活性化を開始し得る(Takahashi, K., et al., Microbes Infect. 4:773-784 (2002))。MASP-2欠損マウス中の任意の残留レクチン経路機能活性の非存在は、健康および疾病における先天体液性免疫のこのエフェクターアームの役割を研究するための決定的なモデルを提供する。
C4およびMASP-2欠損マウス系統の利用可能性は、補体C3の、新規なレクチン経路特異的であるが、MASP-2依存性のC4バイパス活性化ルートを決定することを可能にした。虚血後組織損失に向かうこの新規なレクチン経路媒介性C4バイパス活性化ルートの本質的な寄与は、MIRIにおけるMASP-2欠損の顕著な保護的表現型によって強調されるが、一方、同じモデルで試験されたC4欠損マウスは保護を示さない。
この例において、本発明者らは、補体C3の新規なレクチン経路媒介性かつMASP-2依存性のC4バイパス活性化を記載する。この新たな活性化ルートの生理学的関連性は、C4欠損マウスが保護されなかった心筋虚血/再灌流障害(MIRI)の実験モデルにおけるMASP-2欠損の保護表現型によって立証される。
方法:
MASP-2欠損マウスは肉眼的異常を示さない。実施例1に記載のとおりにMASP-2欠損マウスを作製した。ヘテロ接合性(+/-)およびホモ接合性(-/-)両方のMASP-2欠損マウスは健康かつ繁殖可能であり、肉眼的異常を示さない。それらの期待寿命はWT同腹仔の期待寿命と同程度である(>18ヶ月)。疾患の実験モデルにおいてこれらのマウスの表現型を研究する前に、本発明者らのMASP-2(-/-)系統をC57BL/6バックグラウンドと11世代にわたり戻し交配させた。MASP-2 mRNAの完全な非存在がポリA+選択肝RNA試料のノーザンブロッティングによって確認されたが、一方、MAp19またはsMAP(MASP2遺伝子の切断型選択的スプライシング産物)をコードする1.2kb mRNAは豊富に発現する。
MASP-2のセリンプロテアーゼドメイン(B鎖)のコード配列またはA鎖のコード配列の残り部分のいずれかに特異的なプライマー対を使用するqRT-PCR分析は、mRNAをコードするB鎖がMASP-2(-/-)マウス中に検出されないが、一方、分断されたA鎖mRNA転写物の存在度が有意に増すことを示した。同様に、mRNAをコードするMAp19/sMAPの存在度がMASP-2(+/-)およびMASP-2(-/-)マウスにおいて増す。各遺伝型のマウス5匹に関してELISAによって測定された血漿MASP-2レベルは、WT対照の場合で300ng/ml(範囲260〜330ng/ml)であり、ヘテロ接合性マウスの場合で360ng/ml(範囲330〜395ng/ml)であり、MASP-2(-/-)マウスにおいて検出不可能であった。qRT-PCRを使用して、MASP-2-/-マウスが、MASP-2充分な同腹仔と同様な存在度でMBL A、MBL C、フィコリンA、MASP-1、MASP-3、C1q、C1rA、C1sA、B因子、D因子、C4およびC3のmRNAを発現することを実証するmRNA発現プロファイルを確立した(データ示さず)。
市販のマウスC3 ELISAキット(Kamiya, Biomedical, Seattle, WA)を使用してMASP-2(-/-)(n=8)およびMASP-2(+/+)(n=7)同腹仔の血漿C3レベルを測定した。MASP-2欠損マウスのC3レベル(平均0.84mg/ml、+/-0.34)はWT対照のC3レベル(平均0.92、+/-0.37)と同程度であった。
結果:
MASP-2はレクチン経路機能活性に不可欠である
本明細書および米国特許第7,919,094号に記載されているように、MASP-2-/-血漿のインビトロ分析は、C4およびC3両方の活性化のためにマンナンコーティングされた面およびザイモサンコーティングされた面を活性化する場合のレクチン経路機能活性の完全な非存在を示した。同様に、MBL A、MBL CおよびフィコリンAを介して結合し、活性化を誘発するN-アセチルグルコサミンコーティングされた表面上のMASP-2(-/-)血漿中でレクチン経路依存性のC4またはC3の切断はいずれも検出されなかった(データ示さず)。
MASP-2(-/-)マウスの血清および血漿の分析は、レクチン経路を介して補体を活性化するためにはMASP-2が不可欠に必要であり、およびMASP-1またはMASP-3のいずれも、MASP-2欠損状態においてはレクチン経路活性を維持または回復することができないことを明らかに実証した(データ示さず)。
しかし、レクチン経路機能活性の完全な欠損は他の補体活性化経路を完全ままにしておく。MASP-2-/-血漿はなおも古典経路(図53A)および第二経路(図53B)を介して補体を活性化することができる。図53Aおよび53Bにおいて、「*」という記号はWT(MASP-2(+/+))からの血清を示し、「●」という記号はWT(C1q枯渇)からの血清を示し、「□」という記号はMASP-2(-/-)からの血清を示し、「△」という記号はMASP-2(-/-)(C1q枯渇)からの血清を示す。
図53Aは、MASP-2(-/-)マウスが機能的古典経路を保持することをグラフで示す。免疫複合体(BSAでコーティングし、次いでヤギ抗BSA IgGを加えることによってインサイチューで生成)でコーティングされたマイクロタイタープレート上でC3b沈着をアッセイした。図53Bは、MASP-2欠損マウスが機能的第二経路を保持することをグラフで示す。第二経路活性化のみを可能にする条件下(緩衝液がMg2+およびEGTAを含有する)、ザイモサンコーティングされたマイクロタイタープレート上でC3b沈着をアッセイした。図53Aおよび図53Bに示す結果は、二つ組の平均であり、3つの独立した実験を代表する。全体を通して血清ソースからの記号と同じ記号を使用した。これらの結果は、図53Bに示す結果に証明されるように、第二経路を直接誘発するが、一方、古典経路およびレクチン経路の両方を不活化するように設計された実験条件下、MASP-2欠損マウス中に機能的第二経路が存在することを示す。
補体活性化のレクチン経路は心筋虚血/再灌流障害(MIRI)における炎症性組織損失に決定的に寄与する
実施例23に記載したように、MIRIへのレクチン経路機能活性の寄与を研究するために、本発明者らは、冠動脈の左前下行枝(LAD)の一過性結紮および再灌流後のMIRIモデルにおいてMASP-2(-/-)マウスとWT同腹仔対照とを比較した。実施例23に記載された結果は、MASP-2欠損マウスが、レクチン経路充分な同腹仔に比べて有意に減少した梗塞サイズ(p<0.01)で、有意な程度の保護を示すことを明らかに実証する。
補体C4の存在または非存在は、MIRIにおける虚血性組織損失の程度に影響を及ぼさない。実施例23に記載された同じ手順を使用して、本発明者らは、実験的MIRI後の梗塞サイズに対するC4欠損の影響を評価した。図54Aおよび図54Bに示すように、C4欠損マウスおよびそれらのWT同腹仔の両方でほぼ同一の梗塞サイズが認められた。図54Aは、C4(-/-)マウス(n=6)および対応するWT同腹子対照(n=7)における、LAD結紮および再灌流後のMIRI誘発組織損失をグラフで示す。虚血域(AAR)および梗塞サイズ(INF)は、図52に記載されるように測定した。図54BはINFをAARの関数としてグラフで示し、C4(-/-)マウスがそれらのWT対照(破線)と同じくらいMIRIに対して感受性であることを明らかに実証する。
これらの結果は、C4欠損マウスがMIRIから保護されないことを実証する。この結果は、主要なC4活性化断片C4bが古典経路およびレクチン経路C3コンバターゼC4b2aの必須成分であるという広く受け入れられた見解とは矛盾するため、予想外であった。したがって、本発明者らは、C4欠損マウスおよびヒト血漿中に補体C3の残留レクチン経路特異的活性化を検出することができるかどうかを評価した。
レクチン経路はC4の非存在において新規なMASP-2依存性C4バイパス活性化ルートを介して補体C3を活性化することができる
C4欠損モルモット血清中のC4バイパス活性化ルートの存在を示す学史的に有名な報告(May, J.E., and M. Frank, J. Immunol. 111:1671-1677 (1973))によって励まされて、本発明者らは、C4欠損マウスが残留古典またはレクチン経路機能活性を有し得るかどうかを分析し、第二経路の寄与を排除する経路特異的アッセイ条件下、C3の活性化をモニターした。
マンナンコーティングされたマイクロタイタープレート上、カルシウム再沈着血漿を、第二経路活性化を禁じる血漿濃度(1.25%またはそれ未満)で使用して、C3b沈着をアッセイした。古典経路活性化に関して試験されたC4欠損血漿中にはC3の切断は検出されなかったが(データ示さず)、レクチン経路を介して補体活性化を開始する場合、C4欠損マウス血漿中には強い残留C3切断活性が認められた。レクチン経路依存性は、可溶性マンナンとのC4欠損血漿希釈物のプレインキュベーションののちC3切断の競合的阻害によって実証される(図55Aを参照されたい)。図55A〜Dに示すように、C4の非存在においてC3のMASP-2依存性活性化が認められた。図55Aは、C4(+/+)(米印)およびC4(-/-)(白丸)マウス血漿によるC3b沈着をグラフで示す。アッセイ法の前にC4(-/-)血漿を過剰な(1μg/ml)流体相マンナンとともにプレインキュベートすることがC3沈着を完全に阻害する(黒丸)。結果は3つの独立した実験を代表する。図55Bは、WT(米印)、MASP-2欠損(白四角)およびC4(-/-)(白丸)マウス血漿(1%)を様々な濃度のラットMASP-2 mAbM11(横軸)と混合し、マンナンコーティングされたプレート上でC3b沈着をアッセイした実験の結果をグラフで示す。結果は、4回のアッセイ法(各タイプの血漿2つの二つ組)の平均(±SD)である。
図55Cは、正常ヒト血漿:プールされたNHS(米印)、C4(-/-)血漿(白丸)および1μg/mlマンナンとともにプレインキュベートされたC4(-/-)血漿(黒丸)をマンナンコーティングされたウェル中でインキュベートし、C3b沈着を測定した実験の結果をグラフで示す。結果は3つの独立した実験を代表する。
図55Dは、ヒトMASP-2 mAbH3によるC4充分およびC4欠損ヒト血漿(1%)中のC3b沈着の阻害をグラフで示す(三つ組の平均±SD)。
図55Bに示すように、同時並行的にアッセイされたMASP-2(-/-)血漿中ではレクチン経路依存性C3活性化は検出されず、C3のこのC4バイパス活性化ルートがMASP-2依存性であることを暗示した。
これらの発見をさらに確証するために、本発明者らは、組換えヒトおよびラットMASP-2A(抗原の自己分解を防ぐために、活性プロテアーゼドメインのセリン残基が部位特異的突然変異誘発によってアラニン残基に置換されたもの)に対するアフィニティースクリーニングによってファージディスプレイ抗体ライブラリーから単離した一連の組換え阻害性mAbを確立した。組換えヒトおよびラットMASP-2Aを抗原として使用して(Chen, C.B. and Wallis, J. Biol. Chem. 276:25894-25902 (2001))、MASP-2に対する組換え抗体(ABH3およびAbM11)をコンビナトリアル抗体ライブラリーから単離した(Knappik, A., et al., J. Mol. Biol. 296:57-86 (2000))。マウス血漿中のC4およびC3(IC50約1nM)のレクチン経路媒介性活性化を強力に阻害する抗ラットFab2断片を完全長IgG2a抗体に転換した。ポリクローナル抗マウスMASP-2A抗血清をラット中で産生した。以下でさらに記載するように、これらのツールが、本発明者らにこの新規なC3のレクチン経路特異的C4バイパス活性化ルートのMASP-2依存性を確認することを可能にした。
図55Bに示すように、マウスおよびラットMASP-2に選択的に結合する阻害性モノクロナール抗体M211は、C4欠損マウスにおけるC3のC4バイパス活性化およびレクチン経路を介するWTマウス血漿のC3活性化を同程度のIC50値で濃度依存的に阻害した。すべてのアッセイ法は、第二経路活性化ルートを機能不全にする高い血漿希釈度で実施した(最高血漿濃度は1.25%)。
ヒトにおけるC3の同様なレクチン経路特異的C4バイパス活性化の存在を研究するために、本発明者らは、両方のヒトC4遺伝子(すなわちC4AおよびC4B)の遺伝的欠損を有するドナーの血漿を分析して、C4の完全な非存在を確認した(Yang, Y., et al., J. Immunol. 173:2803-2814 (2004))。図55Cは、この患者の血漿が高い血漿希釈度(第二活性化経路を機能不全にする)でC3を効率的に活性化することを示す。マンナンコーティングされたプレート上のレクチン経路特異的C3活性化モードは、過剰な濃度の流体相マンナンを加えることにより、マウスC4欠損血漿(図55A)およびヒトC4欠損血漿(図55C)において実証される。ヒトC4欠損血漿におけるC3のこの活性化機序のMASP-2依存性を、ヒトMASP-2に特異的に結合し、かつMASP-2機能活性を消失させるモノクローナル抗体AbH3を使用して評価した。図55Dに示すように、ABH3は、匹敵する効力を有するC4充分およびC4欠損ヒト血漿中でC3b(およびC3dg)の沈着を阻害した。
C3のC4バイパス活性化における他の補体成分の可能な役割を評価するために、本発明者らは、レクチン経路特異的アッセイ条件および古典経路特異的アッセイ条件の両方の下でMASP-1/3(-/-)およびBf/C2(-/-)マウスの血漿ならびにMASP-2(-/-)、C4(-/-)およびC1q(-/-)血漿(対照として)を試験した。WT血漿を使用した場合、沈着したC3の量に対してC3切断の相対量をプロットした。
図56Aは、レクチン活性化経路特異的アッセイ条件または古典活性化経路特異的アッセイ条件のいずれかの下で試験した様々な補体欠損マウス系統からの血漿中のC3コンバターゼ活性の比較分析をグラフで示す。WTマウス(n=6)、MASP-2(-/-)マウス(n=4)、MASP-1/3(-/-)マウス(n=2)、C4(-/-)マウス(n=8)、C4/MASP-1/3(-/-)マウス(n=8)、Bf/C2(-/-)(n=2)およびC1q(-/-)マウス(n=2)の希釈血漿試料(1%)を同時並行的に試験した。2.5μg/ml組換えラットC2(Bf/C2(-/-)+C2)によるBf/C2(-/-)血漿の再構成がC3b沈着を回復させた。結果は平均(±SD)である。**p<0.01(WT血漿との比較)。図56Aに示すように、レクチン経路特異的アッセイ条件下で試験されたC4(-/-)血漿中には実質的なC3沈着が見られるが、古典経路特異的条件下では見られない。ここでもまた、レクチン経路活性化ルートを介する場合、MASP-2欠損血漿中にはC3沈着は見られなかったが、古典経路を介する場合、同じ血漿がC3を沈着させた。MASP-1/3(-/-)血漿中、C3沈着はレクチン経路特異的アッセイ条件および古典経路特異的アッセイ条件の両方で起こった。レクチン経路特異的条件または古典経路特異的条件のいずれを使用しても、C4およびMASP-1/3の組み合わせ欠損を有する血漿中ではC3沈着は見られなかった。レクチン経路または古典経路のいずれを介してもBf/C2(-/-)血漿中ではC3沈着は検出不可能である。しかし、組換えC2によるC2/Bf-/-マウス血漿の再構成がレクチン経路媒介性C3切断および古典経路媒介性C3切断の両方を回復させた。C1q(-/-)血漿を使用してアッセイ条件を確認した。図56Bは、レクチン活性化経路特異的アッセイ条件下で試験した様々な補体欠損マウス系統からの血漿、WT、fB(-/-)、C4(-/-)、MASP-1/3(-/-)およびMASP-2(-/-)血漿中のC3コンバターゼ活性の時間分解動態をグラフで示す(1%血漿、結果は3つの独立した実験を代表する)。図56Bに示すように、MASP-2(-/-)血漿中ではC3切断は見られなかったが、fB(-/-)血漿は、WT血漿と同様な速度でC3を切断した。C4(-/-)血漿およびMASP-1/3欠損血漿中、C3からC3b(およびC3dg)へのレクチン経路依存性転換の有意な遅延が見られた。最近、MASP-1/3(-/-)血漿中のC3活性化のこの遅延は、MASP-3依存性ではなく、MASP-1依存性であることが示された(Takahashi, M., et al., J. Immunol. 180:6132-6138 (2008))。
考察:
本実施例に記載された結果は、MASP-2機能活性が、C4の存在および非存在の両方において、レクチン経路を介するC3の活性化に不可欠であることを強く示唆する。さらには、この新規なC3のレクチン経路特異的C4バイパス活性化ルートが作動するためにはC2およびMASP-1が必要である。MASP-2(-/-)およびC4(-/-)血漿中のレクチン経路機能活性の比較分析は、これまで認識されていなかったC4非依存性であるが、MASP-2依存性の補体C3活性化ルートの存在を明らかにし、C4の完全な非存在においてC3がレクチン経路依存モードで活性化されることができることを示した。この新規なMASP-2依存性C3コンバターゼの詳細な分子組成および活性化事象の順序はまだ解明されていないが、本発明者らの結果は、このC4バイパス活性化ルートがMASP-1だけでなく補体C2の存在をさらに必要とすることを暗示する。C4欠損およびMASP-1/3欠損を合わせもつマウスの血漿中のレクチン経路媒介性C3切断活性の損失は、ごく最近記載された、MASP-2の直接切断および活性化によってMASP-2依存性補体活性化を増強するためのMASP-1の役割によって説明され得る(Takahashi, M., et al., J. Immunol. 180:6132-6138 (2008))。同様に、MASP-1は、C2を切断するその能力を通してMASP-2機能活性を支援し得る(Moller-Kristensen, et al., Int. Immunol. 19:141-149 (2007))。両活性は、MASP-1/3欠損血漿がレクチン活性化経路を介してC3を切断する場合の速度の低下およびC4バイパス活性化ルートを介するC3転換を維持するためにMASP-1が必要とされ得る理由を説明し得る。
C2/fB(-/-)血漿への組換えラットC2の添加が、マンナンコーティングされたプレート上でC3を活性化する再構成血漿の能力を回復させたため、C2/fB(-/-)血漿がレクチン経路を介してC3を活性化する能力の欠如はC2依存性であることが示された。
レクチン経路がMASP-2依存性C4バイパス活性化ルートを介して生理学的に重要なレベルのC3コンバターゼ活性を保持する一方で、C4欠損が古典補体活性化経路を特異的に分断するという発見は、実験的肺炎連鎖球菌感染(Brown, J. S., et al., Proc. Natl. Acad. Sci. U.S.A. 99:16969-16974 (2002))、実験的アレルギー性脳脊髄炎(Boos, L.A., et al., Glia 49:158-160 (2005))およびC3依存性マウス肝再生モデル(Clark, A., et al., Mol. Immunol. 45:3125-3132 (2008))を含む様々な疾患モデルにおけるレクチン経路の役割の再評価を要求する。後者のグループは、B因子機能活性の抗体媒介性枯渇による第二経路のインビボ阻害がC4(-/-)マウスにおけるC3切断依存性肝再生に影響しなかったため、C4欠損マウスが第二経路非依存的にC3を活性化することができることを実証した(Clark, A., et al. (2008))。このC3のレクチン経路媒介性C4バイパス活性化ルートはまた、本発明者らのMIRIモデルおよび以前に記載されている腎同種移植片拒絶反応モデルにおけるC4欠損の保護的表現型の欠如を説明し得る(Lin, T., et al., Am. J. Pathol. 168:1241-1248 (2006))。対照的に、本発明者らの最近の結果は、独立して、腎移植モデルにおいてMASP-2(-/-)マウスにおける有意な保護的表現型を実証した(Farrar, C.A., et al., Mol. Immunol. 46:2832 (2009))。
要約すると、本実施例の結果は、C3のMASP-2依存性C4バイパス活性化が、C4の有用性がC3活性化を制限する条件の下で重要となり得る生理学的に関連のある機序であるという見解を裏付ける。
実施例25
本実施例は、MASP-2機能活性の非存在が胃腸虚血/再灌流障害(GIRI)からの有意な程度の保護を生じさせることを実証する。
理論:
本発明者らは、確立されたマウスモデルを使用してGIRIにおけるMASP-2の役割を調査した(Zhang, M. et al. Proc. Natl. Acad. Sci. U.S.A. 101, 3886-3891 (2004); Zhang, M. et al. J. Exp. Med. 203, 141-152 (2006))。
方法:
実施例1に記載したとおりにMASP-2欠損マウスを作製した。上腸間膜動脈を外科的に40分間クランプで締めたのち3時間再灌流することにより、MASP-2(-/-)マウスおよびWT同腹仔対照を急性腸虚血に供した。以前に記載されているように(Zhang, M., et al., Proc. Natl. Acad. Sci. U.S.A. 101:3886-3891 (2004))GIRIの外科的プロトコールを実施した。麻酔ののち、開腹術を実施し、外科マイクロクリップを上腸間膜動脈(SMA)に適用した。40分間の虚血ののち、マイクロクリップを取り外し、虚血組織を3時間再灌流させた。偽対照には、SMAをクランプで締めることなく開腹術を施した。再灌流後、マウスを屠殺し、遠位空腸の対応区分を収穫した。
腸損傷を、空腸の組織切片あたり4cmの画定区域における絨毛200〜400本の半定量的病態スコアリングによって評価した。クリオスタット切片をヘマトキシリンおよびエオシンで染色し、ブラインドコード化し、光学顕微鏡下で検査した。記載されているとおりに(前記Zhang, et al., 2004)病態スコアを評価した。最初の実験セットは、8週齢雌MASP-2(-/-)およびそれらのMASP-2(+/+)同腹子対照におけるGIRIを評価した。第二の実験セットにおいては、8週齢雌WT C57BL/6マウスの6つの群:食塩水またはアイソタイプ対照抗体またはMASP-2抗体mAbM11のいずれかで前処置された偽手術マウスおよびI/R手術マウスを研究した。抗体(それぞれ1mg/kgで投与)または食塩水は手術の18時間前に腹腔内注射した。
結果:
図57Aは、MASP-2(-/-)マウスが、腸間膜動脈の一過性(40分)閉塞および虚血腸組織の再灌流(3時間)ののち、重篤なGIRI損傷からの有意な程度の保護を示すことをグラフで示す(スチューデント検定による判定で*p<0.05)。図57Aに示すように、MASP-2(-/-)マウスは、WT同腹仔と比較してI/R組織損傷の有意な減少を示した(MASP-2(-/-)I/R群の病態スコア:4±1、n=6、MASP-2(+/+)I/R群の病態スコア:11±3、n=7、P<0.05)。
選択的抗体ベースのMASP-2阻害因子を適用することによってMASP-2機能活性の一過性阻害をインビボで達成することができるかどうかを評価するために、本発明者らは、0.6mg/kg体重の用量での腹腔内注射ののち、マウス特異的MASP-2阻害因子mAbM11のレクチン経路阻害活性の程度および持続時間を評価した。ボーラス注射ののち0時間、6時間、12時間、24時間、48時間、72時間、7日、10日、14日および17日の時点で心穿刺によって血液を採取し、参照により本明細書に組み入れられるPetersen, et al., J. Immunol. Methods 257:107-116 (2001)に記載されている方法に従ってレクチン経路媒介性C4活性化に関して血漿をアッセイした。
図57Bは、組換え抗マウスMASP-2抗体mAbM11(0.6mg/kg体重)の腹腔内単回ボーラス注射によって達成されたレクチン経路機能活性のインビボ消失に関して経時的に得られた結果を示す。表記の時点で、マウスの群(n=3)を屠殺し、血清を調製し、LP依存性C4活性化に関してアッセイした。相対LP機能活性を、100nMブロッキング抗体の非存在(100%)または存在(0%)のいずれかで測定されたナイーブなマウスからプールされた血清中のLP活性に対して正規化した。結果は、各時点での3匹の異なるマウスの血漿試料からの平均(±SEM)である。
図57Bに示す結果は、レクチン経路依存性C4活性化の相対的消失を、抗体投与前のレクチン経路媒介性C4活性化の相対的割合として示す。結果は、抗体処置が抗体投与後6時間以内にレクチン経路機能活性の完全な消失を生じさせることを示す。レクチン経路機能活性は、投与後48時間は完全に欠失しており、7日間は有意に回復しない(抗体処置前の活性レベルの10%未満)。
MASP-2機能活性の治療的枯渇がマウスをGIRIから保護することができるかどうかを試験するために、腸I/Rまたは偽手術の18時間前に、mAbM11(腹腔内、1mg/kg体重)または同一量の無関係なアイソタイプ対照抗体(腹腔内、1mg/kg体重)または食塩水をWTマウス(雄C57BL/6J、8〜10週齢)に注射した。
図57Cは、GIRI病態の重篤度に対するMASP-2 mAb処置の保護効果をグラフで示す。マウスに1mg/kgのmAbM11(n=10)または無関係のアイソタイプ対照抗体(n=10)を投与し、または食塩水のみ(n=10)を注射し、24時間後、40分間のGI虚血に供し、その後3時間の再灌流を施した(MASP-2阻害抗体で処置されたマウスを無関係のアイソタイプ対照抗体または食塩水のいずれかで処置されたマウスに比べた場合、*p<0.05)。腸間膜動脈にクランプを適用しなかったことを除き、偽マウス(群あたりn=5)を同一のやり方で処置した。
図57Dは、GIRIの誘発の12時間前に等張食塩水、アイソタイプ対照抗体(1mg/kg体重)または組換えマウスMASP-2抗体mAbM11(1mg/kg体重)のいずれかの単回腹腔内注射で前処置されたWTC57BL/6マウスおよびそれぞれの偽対照における小腸のGIRI媒介性病態の組織学的提示を示す。矢印は、GIRI病態の典型的な特徴として、絨毛管腔部中の上皮下空間(連続する上皮層の下の細胞内容物の欠如を特徴とする)を示す(倍率×100)。
図57Cおよび57Dに示すように、食塩水処置マウスを腸I/R手術に供すると、それらのマウスは、偽手術対照と比較して有意な組織損傷を示した(25±7、n=10対1±0、n=5、P<0.01)。アイソタイプ対照抗体による前処置は、食塩水対照と比較してI/R障害からの保護を提供しなかった(17±2対25±7、n=10/群、p>0.05)。対照的に、mAbM11による前処置は、アイソタイプ対照抗体によって処置されたマウスと比較して、組織I/R損傷を2倍超の有意性で減少させた(8±2対17±2、n=10/群、p<0.01)。MASP-2 mAbによって処置されたGIRI群における虚血腸損傷は、偽対照群において見られるベースラインレベルまでは低下しなかったが(8±2、n=10対2±1、n=5、p<0.01)、MASP-2(-/-)およびMASP-2 mAb処置マウスの両方において組織損傷が有意に免れたことは明白であった。MASP-2 mAb結果はさらに、虚血再灌流障害においてレクチン経路が果たす有害な役割を確認する。
考察:
多くの最近の報告が、酸素欠乏細胞上で補体活性化を招く機序および経路を解明しようとした。補体依存性GIRIにおけるIgM抗体の関与は十分に立証されている(Zhang, M., et al., Proc. Natl. Acad. Sci. U.S.A. 101I3886-3891 (2004); Zhang, M., et al., J. Exp. Med. 203:141-152 (2006))。IgMは古典経路の強力なアクチベーターであるため、古典経路を欠くマウス(例えばC1qa(-/-)マウス)は補体依存性GIRIおよびMIRIから保護されると仮定された(実施例24に記載)。驚くべきことに、最近の2つの研究は、C1qa(-/-)マウスがGIRIまたはMIRIのいずれにおいても保護されないが、一方、レクチン経路認識分子MBL AおよびMBL Cを欠くマウスがGIRIおよびMIRIの両方の有意な軽減を示すことを実証した(Hart, M.L., et al., J. Immunol. 174:6373-6380 (2005); Walsh, M.C. et al. J. Immunol. 175:541-546 (2005))。これらの発見は、IgM依存性補体活性化の決定的な炎症誘発性寄与が、古典経路活性の非存在において、自己反応性IgMとMBLとの間の直接的相互作用を介するレクチン活性化経路を用いて起こることを特定した2つの後のGIRI研究において確認された(Zhang, M., et al., J. Immunol. 177:4727-4734 (2006); McMullen, M.E., et al., Immunobiology 211:759-766 (2006))。対照的に、同じMBLヌル系統(すなわち、MBLヌルマウスはフィコリンAを通して残留レクチン経路機能活性を保持する)を腎臓IRIモデルにおいて試験すると、組織損傷からの中程度の保護しか示されなかった(Moller-Kristensen, M., et al., Scand. J. Immunol. 61:426-434 (2005))。
まとめると、残るレクチン経路認識分子フィコリンAのIRI媒介における役割がまだ理解されていないため、これらの研究は、MBLヌルマウスにおける保護の程度が異なるIRI実験モデルの間で変化し得ることを示唆する。ヒトにおいて、本発明者らは最近、腹部動脈瘤修復手術中に外科的に誘発される虚血後の再灌流段階において血漿MBLが急速に消費されることを示した(Norwood, M.G., et al., Eur. J. Vasc. Endovasc. Surg. 31:239-243 (2006))。ヒトにおいては、MBLに加えて、3つの異なるフィコリンがレクチン経路認識サブコンポーネントとして働き得るため、状況はより複雑であり得る。
本発明者らは、MASP-2(-/-)マウスをMIRIモデルにおいて用いて、レクチン経路機能活性が心筋組織の大きな損失を招く炎症プロセスの必須成分であることを実証した。MASP-2(-/-)マウスはそれでも古典経路または第二経路のいずれかを介して補体を活性化し得るが、血漿中に存在する3つのマウスレクチン経路パターン認識分子MBL A、MBL CおよびフィコリンAのすべてを有しながらも、任意の残留レクチン経路機能活性を欠く。そのうえ、MASP-2(-/-)およびMASP-2(+/+)マウスにおけるGIRI媒介性組織損傷のスコアリングを通してモニターしたところ、MASP-2機能活性は、GIRIモデルにおいて虚血後炎症性病態を駆動する際の必須成分でもあることが示された。本発明者らの結果は、古典経路補体活性化ルートまたは第二経路補体活性化ルートのいずれも、レクチン経路機能活性の非存在において虚血後組織損傷の炎症病態を開始させるのに十分ではないことを疑う余地なく示す。それにもかかわらず、第二経路が他の組織において補体活性化の増強に二次的に寄与し得るということは妥当と考えられる。これは、虚血性急性腎不全モデルにおいてB因子の欠損が虚血後炎症性組織損失を改善し得る理由を説明すると考えられる(Thurman, J.M., et al., J. Immunol. 170:1517-1523 (2003))。
最後に、MASP-2欠損の表現型および治療的介入の含意に関して、本発明者らの結果は、阻害性MASP-2特異的モノクローナル抗体の全身投与によってMASP-2およびレクチン経路機能活性の一過性および長期持続性遮断をインビボで達成することができることを実証する。インビボで相対的に低用量の阻害抗体を使用してMASP-2機能活性を阻害する高い有効性は、血漿中のMASP-2の相対的に低い存在度(マウス血漿中で260〜330ng/mlの範囲(結果を参照されたい)、ヒト血漿中で170〜1196ng/mlの範囲(Moller-Kristensen, M., et al., J. Immunol. Methods 282:159-167 (2003))および任意の肝外MASP-2生合成の厳格な非存在のせいで、治療的に実現可能であり得る(Stover, C.M., et al., J. Immunol. 163:6848-6859 (1999); Endo, Y., et al., Int. Immunol. 14:1193-1201(2002))。したがって、MASP-2に対する阻害性モノクローナル抗体の投与によるMASP-2の阻害は、虚血誘発性炎症性病態を治療するのに有効であると考えられる。
実施例26
本実施例は、MASP-2(-/-)マウスモデルにおけるMASP-2機能活性の非存在が脳虚血/再灌流障害(卒中)からの有意な程度の保護を生じさせることを実証する。
方法:
三血管閉塞(3VO)手術:
Yanamotoら、Exp Neurology 182(2):261-274 (2003)に記載されているように、三血管閉塞(3VO)卒中モデルによって一過性虚血を誘発した。簡潔に説明すると、手術前、術後の痛みを最小限にするために、8〜18週齢の雌C57/B16マウスにVetergesic(鎮痛剤)を投与した。マウスを3%〜4%イソフルオランおよびO2/N2Oで麻酔したのち、維持麻酔のためにイソフルオランを0.5〜1.5%に減少させた。頚部の腹側正中切開によって2つ総頚動脈(CCA)を露出させたのち、動脈瘤クリップで左CCAを留めた。これは、同側の中大脳動脈(MCA)を焼灼する処置中の出血を減少させる。左CCAのクリップ留めののち、左頬骨弓を除去して頭蓋骨および中大脳動脈へのアクセスを可能にした。厚さ1mmの穿頭孔を開けてMCAへのアクセスを可能にしたのち、バイポーラコアギュレーター(Aura, Kirwan Surgical Products)を使用して永久的焼灼を実施した。MCA閉塞後、右CCAのクリップ留めによって30分間の虚血を誘発した。虚血期間中に頭部の創傷を閉じた。虚血の終了後、両クリップを取り外して24時間の再灌流を可能にし、その後、頚椎脱臼によってマウスを殺処分した。
梗塞サイズ測定
24時間の再灌流後、頸椎脱臼によってマウスを屠殺し、その脳を取り出し、予冷した脳マトリックスを使用して厚さ1mmにスライスした。虚血後の梗塞体積を、Bederson, J.B. et al., Stroke 17:1304-1308 (1986)およびLin T.N. et al, Stroke 24:117-121 (1993)に記載されている、ミトコンドリア活性の代謝細胞指示薬である2,3,5-トリフェニルテトラゾリウムクロリド(TTC)を使用する信頼性の高い方法によって測定した。このアッセイ法においては、脳切片中の赤い着色(白黒写真では暗い区域に見える)が正常な非梗塞組織を示し、一方、無着色の白い区域が梗塞組織を示す(Bederson et al., 1986)。脳を切り出したのち、スライスを室温の食塩水中2%TTCによって暗所で30分間染色した。その後、切片を10%ホルマリン中に固定し、4℃の暗所で貯蔵した。デジタル画像を撮影し、Scion Imageソフトウェアで解析して梗塞体積を算出した。浮腫による梗塞面積の過大評価を避けるため、梗塞体積は以下のように算出した。
梗塞体積=梗塞面積/(同側面積/対側面積)×1mm(スライスの厚さ)
結果:
図58は、30分の虚血および24時間の再灌流後の、WTおよびMASP-2(-/-)マウスにおける脳梗塞体積をグラフで示す。図58に示すように、3-VO後の梗塞体積は、WT(MASP-2(+/+)マウスに比べてMASP-2(-/-)マウスにおいて有意に減少している(p=0.0001)。
図59Aは、30分の虚血および24時間の再灌流後のWT(MASP-2+/+)マウスの一連の脳切片を示す。図59Aのパネル1〜8は、聴神経の出口(ブレグマ0)に対する、それぞれブレグマ1〜8に対応する脳の異なる切片区域を示す。
図59Bは、30分の虚血および24時間の再灌流後のMASP-2(-/-)マウスの一連の脳切片を示す。図59Bのパネル1〜8は、聴神経の出口(ブレグマ0)に対する、それぞれブレグマ1〜8に対応する脳の異なる切片区域を示す。
図59Aおよび59Bに示す脳切片に関して測定された梗塞体積を以下の表21に示す。
(表21)30分間のMCA閉塞、その後の24時間の再灌流で処置されたマウスの脳切片からの梗塞体積測定値(図59Aおよび59Bに示す)
図59A、59Bおよび表21に示すように、MASP-2欠損は、一過性脳虚血(30分間のMCAO)、次いで24時間の再灌流後の組織損失を抑制する。これらの結果は、MASP-2(-/-)マウスモデルにおけるMASP-2機能活性の非存在が脳虚血/再灌流障害(卒中)からの有意な程度の保護を生じさせることを実証する。
実施例27
本実施例は、マウスモノクローナル抗体誘発関節リウマチモデルにおけるMASP-2(-/-)の結果を記載する。
背景/理論:関節リウマチ(RA)に最も一般的に使用される動物モデルはコラーゲン誘発性関節炎(CIA)である(最近のレビューに関しては、Linton and Morgan, Mol. Immunol. 36:905-14, 1999を参照されたい)。II型コラーゲン(CII)は関節基質タンパク質の主要成分の1つであり、アジュバント中の天然CIIによる免疫化が、関節軟骨中のCIIに対する交差反応性自己免疫応答により、自己免疫多発性関節炎を誘発する。RAにおけるように、CIAに対する感受性は、特定のクラスII MHCアレルの発現に関連している。C57Bl/6系統を含む一部のマウス系統は、適切なMHCハプロタイプを欠き、したがって、高いCII抗体価を生成しないため、古典的なCIAには耐性である。しかし、II型コラーゲンに対する4つの特異性モノクローナル抗体のカクテル(Col2 MoAb)をマウスに静脈内または腹腔内投与することにより、すべてのマウス系統において一貫した関節炎を誘発することができることがわかった。これらの関節炎誘発性モノクローナル抗体は市販されている(Chondrex, Inc., Redmond, WA)。このCIAの受身移入モデルは、C57Bl/6マウス系統を使用する最近公表されたいくつかの報告書において首尾よく使用されている(Kagari et al., J. Immunol. 169:1459-66, 2002; Kato et al., J. Rheumatol. 30:247-55, 2003; Banda et al, J. Immunol. 177:1904-12, 2006)。以下の研究は、CIAの受身移入モデルを使用する関節炎の発症に対する、C57Bl/6遺伝バックグラウンドを共有するWT(+/+)マウスの感受性とMASP-2(-/-)マウスの感受性とを比べた。
方法:
動物:実施例1に記載したようにMASP-2(-/-)マウスを作製し、C57Bl/6と10世代にわたり戻し交配させた。抗体注射時に7〜8週齢であった雄雌C57BL/6野生型マウス14匹ならびに抗体注射時に7〜8週齢であった雄雌MASP-2(-/-)およびWT(+/+)C57Bl/6マウス10匹をこの実験に使用した。マウス20匹にモノクローナル抗体カクテルを注射して20匹の確実な応答動物を得た(10匹ずつ2群)。マウス(10/群)を5匹/ケージで収容し、実験を開始する前5〜7日間、順化させた。
0日目および1日目にモノクローナル抗体カクテル(Chondrex, Redmond WA)(5mg)をマウスに静脈注射した。試験物質はtChondrexからのモノクローナル抗体(Col2 MoAb)+LPSであった。2日目、マウスにLPSを腹腔内に投与した。0日目、2日目、4日目、6日目、8日目、10日目、12日目および14日目での屠殺の前にマウスを秤量した。14日目、マウスをイソフルランで麻酔し、最後に血清を得るために出血させた。血液捕集ののち、マウスを安楽死させ、前肢および後肢を膝とともに切り取り、その後の処置に備えてホルマリン漬けした。
処置群:
群1(対照):C57/BL/6WT(+/+)系統のマウス4匹、
群2(試験):C57/BL/6WT(+/+)系統のマウス10匹(Col2 MoAb+LPSを投与)、および
群3(試験):C57/BL/MASP-2KO/6Ai(-/-)系統のマウス10匹(Col2 MoAb mAb+LPSを投与)。
以下のスコアリングシステムを使用して臨床関節炎スコアを毎日評価した:0=正常;1=1つの後足または前足関節が冒されている;2=2つの後足または前足関節が冒されている;3=3つの後足または前足関節が冒されている;4=中度(紅斑および中度の腫張または4つの指関節が冒されている);5=重度(広汎性紅斑および足全体のひどい腫張、指を曲げられない)。
結果:
図60は、毎日の平均臨床関節炎スコアを2週間プロットした群データを示す。CoL2 MoAb処置を受けなかった対照群において臨床関節炎スコアは見られなかった。MASP(-/-)マウスは、9〜14日目に低めの臨床関節炎スコアを示した。曲線下面積分析(AUC)による全臨床関節炎スコアは、WT(+/+)マウスに対してMASP-2(-/-)群における21%の減少を示した。しかし、C57Bl6マウスバックグラウンドは、先に述べたように、強固な全関節炎臨床スコアを提供しなかった。低い発生率および群サイズのせいで、肯定的な傾向を示しながらも、データは傾向(p=0.1)しか提供せず、p<0.05レベルでは統計的に有意ではなかった。統計的有意性を示すためには処置群にさらなるマウスが必要であると考えられる。関節炎の発生率の低下のせいで、重篤度に関しては患部足スコアを評価した。3よりも高い臨床関節炎スコアの発生は、MASP-2(-/-)マウスのいずれにも見られなかったが、WT(+/+)マウスの30%に見られ、(1)関節炎の重篤度が補体経路活性化に関連し得ること、および(2)MASP-2の遮断が関節炎において有益な効果を有し得ることをさらに示唆した。
実施例28
本実施例は、喘息モデルとして、レクチン経路媒介性C3活性化の強力なアクチベーターとしての純チリダニアレルゲンの使用を実証する。
理論:
チリダニ(HDM)誘発性アレルギー性喘息の十分に特性決定されたマウスモデルが開発されている。参照により本明細書に組み入れられる、X. Zhang et al., J. of Immunol. 182:5123-5130 (2009)を参照されたい。Zhang et al. (2009)に記載されているように、このモデルは、マウスを、3週にわたり週1度、気管内HDMに曝露することを含む。気管内HDM投与は、WT BALB/cマウスにおける気道応答性、BAL液中の総細胞数および好酸球数ならびに血清総IgEおよびアレルゲン特異性IgEレベルを有意に上昇させる。このモデルは、喘息の治療としてのMASP-2 mabの使用を評価するために使用することができる。
方法:
WTマウスから採取された血清試料を用いてC3沈着アッセイ法を実施した。C3活性化を測定するために、マイクロタイタープレートをマンナン(1μg/ウェル)でコーティングしたのち、TBS/Tween/Ca2+中ヒツジ抗HSA血清(2μg/ml)でコーティングした。プレートをTBS中0.1% HSAでブロッキングし、上記のように洗浄した。血漿試料を、4mMバルビタール、145mM NaCl、2mM CaCl2、1mM MgCl2、pH7.4中に希釈し、プレートに加え、37℃で1.5時間インキュベートした。洗浄後、ウサギ抗ヒトC3c(Dako)、次いでアルカリホスファターゼコンジュゲート化ヤギ抗ウサギIgGおよびpNPPを使用して結合C3bを検出した。
結果:
図61は、チリダニまたはザイモサンの存在における、WTマウスから採取された血清試料中のC3沈着アッセイ法の結果をグラフで示す。図61に示すように、チリダニアレルゲンは、ザイモサンとほぼ同じレベルでC3を活性化する、レクチン経路媒介性C3活性化の強力なアクチベーターである。これらの結果は、チリダニアレルゲンがレクチン経路を刺激することができることを示す。MASP-2抗体が第二補体経路の活性化を遮断するということが示された事実を考慮すると、MASP-2抗体は、チリダニアレルゲン感作個体による喘息の治療において治療物質として有効であると予想される。
実施例29
本実施例は、トロンビン活性化が、生理学的条件下、レクチン経路活性化ののちに起こることができることを実証し、MASP-2関与の程度を実証する。正常ラット血清中、レクチン経路の活性化は、補体活性化(C4沈着として評価)と同時並行的なトロンビン活性化(トロンビン沈着として評価)を招く。図62Aおよび62Bに見てとれるように、この系におけるトロンビン活性化は、MASP-2遮断抗体H1(Fab2フォーマット)によって阻害され、補体活性化の場合のそれ(図62A)に匹敵する阻害濃度応答曲線(図62B)を示す。これらのデータは、外傷において起こるようなレクチン経路の活性化が、MASP-2に完全に依存するプロセスにおいて補体系および凝固系の両方の活性化を招くことを示唆する。推論により、MASP-2阻害抗体は、大きな外傷の症例において死亡につながる顕著な特徴の1つである過度な全身性凝固、例えば播種性血管内凝固の症例を緩和する有効性があることを証明し得る。
実施例30
本実施例は、播種性血管内凝固(「DIC」)におけるレクチン経路の役割を評価するために、MASP-2(-/-)およびWT(+/+)マウスにおけるDICの限局性シュワルツマン反応モデルを使用して生成された結果を提供する。
背景/理論:
上述したように、MASP-2の遮断は、レクチン経路活性化を阻害し、両アナフィラトキシンC3aおよびC5a両方の生成を減少させる。C3aアナフィラトキシンは、インビトロで強力な血小板凝集因子であることが示されることができるが、インビボにおけるそれらの関与はそれほど十分には確定されておらず、創傷修復における血小板物質およびプラスミンの放出が二次的に補体C3を関与させるだけかもしれない。この例においては、播種性血管内凝固を生じさせるためにC3活性化の長期的上昇が必要であるかどうかを検討するために、MASP-2(-/-)およびWT(+/+)マウスにおいてレクチン経路の役割を分析した。
方法:
実施例1に記載したように、この実験に使用されるMASP-2(-/-)マウスを作製した。限局性シュワルツマン反応(LSR)モデルをこの実験に使用した。LSRは、リポ多糖(LPS)誘発応答であり、先天免疫系の細胞性および体液性要素からの十分に特性決定された寄与を示す。補体へのLSRの依存は十分に立証されている(Polak, L., et al., Nature 223:738-739 (1969); Fong J.S. et al., J Exp Med 134:642-655 (1971))。LSRモデルにおいて、マウスをTNFアルファ(500ng、陰嚢内)で4時間プライミングしたのち、マウスを麻酔し、精巣挙筋の生体内顕微鏡検査のために準備した。良好な血流量(1〜4mm/s)を示す後毛細血管細静脈(直径15〜60μm)のネットワークを観察に選択した。マウスを蛍光抗体で処置して、好中球または血小板を選択的に標識した。血管のネットワークを順次にスキャンし、すべての血管の画像を後の分析のためにデジタル的に記録した。微小循環の基底状態を記録したのち、LPS(100μg)を、単独で、または以下に記載する作用物質のいずれかとともに、マウスに単回静脈内注射した。次いで、同じ血管ネットワークを1時間にわたり10分ごとにスキャンした。バックグラウンド蛍光の減法によって蛍光体の特異的蓄積を識別し、画像を閾値化することによって強調した。記録された画像から反応の大きさを測定した。LSRの主な測度は凝集塊データであった。
これらの研究は、既知の補体経路枯渇物質、コブラ毒因子(CVF)または終末経路阻害因子(C5aRアンタゴニスト)のいずれかに曝露されたWT(+/+)マウスを比較した。結果(図63A)は、CVFおよびC5aRアンタゴニストの両方が血管系中の凝集塊の出現を防いだことを実証する。加えて、MASP-2(-/-)マウス(図63B)もまた、限局性シュワルツマン反応の完全な阻害を実証し、レクチン経路関与を裏付けた。これらの結果は、DIC発生におけるMASP-2の役割を明確に実証し、DICの治療および予防のためのMASP-2阻害因子の使用を裏付ける。
実施例31
本実施例は、WT(+/+)、MASP-2(-/-)、F11(-/-)、F11/C4(-/-)およびC4(-/-)マウスにおけるトロンビン基質によるC3の活性化およびマンナンへのC3沈着を記載する。
理論:
実施例29に記載したように、トロンビン活性化は、生理学的条件下、レクチン経路活性化ののちに起こることができ、MASP-2関与の程度を示すと判断された。C3は、補体系の活性化において中心的役割を果たす。C3活性化は古典補体活性経路および第二補体活性化経路の両方に求められる。C3がトロンビン基質によって活性化されるかどうかを決定するための実験を実施した。
方法:
トロンビン基質によるC3活性化
以下の活性化形態のトロンビン基質:ヒトFXIa、ヒトFVIIa、ウシFXa、ヒトFXa、ヒト活性化プロテインCおよびヒトトロンビンの存在においてC3の活性化を測定した。C3を様々なトロンビン基質ともにインキュベートしたのち、10% SDS-ポリアクリルアミドゲル上、還元条件下で分離した。セルロース膜を使用する電気泳動的転写ののち、膜を、モノクロナールビオチン結合ラット抗マウスC3とともにインキュベートし、ストレプトアビジン-HRPキットによって検出し、ECL試薬を使用して現像した。
結果:
C3の活性化は、インタクトなa鎖を切断型a'鎖および可溶性C3aへと切断することを含む。図64は、トロンビン基質によるヒトC3の活性化に関するウェスタンブロット分析の結果を示し、非切断C3アルファ鎖および活性化産物a'鎖が矢印によって示されている。図64に示すように、活性化形態のヒト凝固因子XIおよび因子Xならびに活性化ウシ凝固因子XとのC3のインキュベーションは、任意の補体プロテアーゼの非存在においてもインビトロでC3を切断することができる。
マンナン上のC3沈着
WT、MASP-2(-/-)、F11(-/-)、F11(-/-)/C4(-/-)およびC4(-/-)から採取された血清試料に対してC3沈着アッセイ法を実施した。F11は、凝固因子XIをコードする遺伝子である。C3活性化を測定するために、マイクロタイタープレートをマンナン(1μg/ウェル)でコーティングしたのち、TBS/Tween/Ca2+中ヒツジ抗HSA血清(2μg/ml)でコーティングした。プレートをTBS中0.1% HSAでブロッキングし、上記のように洗浄した。血漿試料を、4mMバルビタール、145mM NaCl、2mM CaCl2、1mM MgCl2、pH7.4中に希釈し、プレートに加え、37℃で1.5時間インキュベートした。洗浄後、ウサギ抗ヒトC3c(Dako)、次いでアルカリホスファターゼコンジュゲート化ヤギ抗ウサギIgGおよびpNPPを使用して結合C3bを検出した。
結果:
図65は、WT、MASP-2(-/-)、F11(-/-)、F11(-/-)/C4(-/-)およびC4(-/-)から採取された血清試料におけるC3沈着アッセイ法の結果を示す。図65に示すように、C4の完全な非存在においてさえ機能的レクチン経路がある。図65にさらに示すように、この新規なレクチン経路依存性補体活性化は凝固因子XIを要する。
考察:
この実験において得られた結果以前は、補体のレクチン経路は活性のためにC4を必要とすると当業者によって考えられていた。したがって、C4ノックアウトマウス(およびC4欠損ヒト)からのデータは、それらの生物がレクチン経路を欠く(古典経路欠損に加えて)という仮定をもって解釈されていた。本結果は、この概念が誤りであることを実証する。したがって、C4欠損動物の表現型に基づいて特定の疾患状況においてレクチン経路が重要ではないと示唆した過去の研究の結論は誤りといえる。実施例24に記載したように、本発明者らは、MASP-2ノックアウトマウスは保護されたが、一方、C4ノックアウトマウスは保護されなかった心筋梗塞モデルに関してこれを実証した。
本実施例に記載されたデータはまた、全血清の生理学的情況においてレクチン経路が凝固カスケードの成分を活性化することができることを示す。したがって、補体と凝固との間に、MASP-2を伴うクロストークがあることが実証される。
実施例32
この研究は、LPS(リポ多糖)誘発性血栓症のマウスモデルにおけるMASP-2欠損の効果を研究する。
理論:
志賀毒素産生性大腸菌感染によって生じる溶血性尿毒症症候群(HUS)は子供における急性腎不全の主要原因である。本実施例においては、MASP-2阻害が血管内血栓の形成を阻害または防止するのに有効であるかどうかを決定するために、MASP-2(-/-)マウスにおいてLPS誘発性血栓症(微小血管凝固)のシュワルツマンモデルを実施した。
方法:
LPS誘発性血栓症(微小血管凝固)のシュワルツマンモデルにおいてMASP-2(-/-)(n=9)およびWT(n=10)マウスを分析した。マウスにセラチアLPSを投与し、血栓形成を経時的にモニターした。微小血栓およびLPS誘発性微小血管凝固の発生率の比較を実施した。
結果:
注目すべきことに、試験したすべてのMASP-2-/-マウス(9/9)がセラチアLPS投与後に血管内血栓を形成しなかった。対照的に、同時並行的に試験されたWTマウス10匹のうち7匹において微小血栓が検出された(p=0.0031、フィッシャーの直接確率検定)。図66に示すように、LPS感染後、微小血管閉塞の発症までの時間をMASP-2(-/-)およびWTマウスにおいて測定し、60分間の測定で血栓形成を示したWTマウスの割合を示し、血栓形成は早くも約15分で検出された。WTマウスの80%までが60分で血栓形成を実証した。対照的に、図66に示すように、MASP-2(-/-)のいずれも60分では血栓形成を示さなかった(ログランク:p=0.0005)。
これらの結果は、MASP-2阻害がHUSモデルにおける血管内血栓症の発症に対して保護的であることを実証する。
実施例33
本実施例は、精製志賀毒素2+LPSの同時腹腔内注射を使用して、HUSのマウスモデルにおけるMASP-2抗体の効果を記載する。
背景:
精製志賀毒素2(STX2)+LPSの同時腹腔内注射を使用して、HUSのマウスモデルを発症させた。マウス腎臓の生化学的およびマイクロアレイ分析は、STX2+LPSチャレンジが、いずれかの作用物質単独の効果とは異なることを明らかにした。これらのマウスの血液および血清分析は、好中球増加、血小板減少、赤血球溶血ならびに増加した血清クレアチニンおよび血中尿素窒素を示した。加えて、マウス腎臓の組織学的分析および電子顕微鏡検査が、糸球体フィブリン沈着、赤血球うっ血、微小血栓形成および糸球体超微細構造変化を実証した。このHUSモデルが、C57BL/6マウスにおいて、ヒト疾患を確定する、血小板減少、溶血性貧血および腎不全を含むヒトHUSの病態のすべての臨床徴候を誘発することが立証された(J. Immunol 187(1):172-80 (2011))。
方法:
体重18〜20gの雌C57BL/6マウスをCharles River Laboratoriesから購入し、2群(各5匹)に分割した。一方の群のマウスを、総量150μlの食塩水に希釈した組換えMASP-2抗体mAbM11(1匹あたり100μg、最終濃度5mg/kg体重に相当)の腹腔内(i.p.)注射によって前処置した。対照群には任意の抗体なしの食塩水を投与した。MASP-2抗体mAbM11の腹腔内注射から6時間後、全てのマウスに、総量150μl中、亜致死量(3μg/1匹、150μg/kg体重に相当)のSerratia marcescens(LL6136、Sigma-Aldrich, St. Louis, MO)のLPSと、4.5ng/1匹の用量(225ng/kgに相当)のSTX2(LD50量の2倍)との組み合わせ腹腔内注射を実施した。食塩水注射を対照として使用した。
投与後、6時間ごとにマウスの生存率をモニターした。マウスがHUS病態の嗜眠段階に達するとマウスをすぐに殺処分した。36時間後、全マウスを殺処分し、両腎臓を免疫組織化学および走査型電子顕微鏡検査のために摘出した。実験の最後に心穿刺によって血液試料を採取した。処置群および対照群の両方におけるBUNおよび血清クレアチニンレベルを測定するために、血清を分離し、-80℃で凍結保存した。
免疫組織化学
各マウス腎臓の1/3を4%パラホルムアルデヒド中で24時間固定し、処理し、パラフィンに包埋した。厚さ3マイクロメートルの切片を切り出し、その後のヘマトキシリン・エオジン染料による染色に備えて帯電スライドに載せた。
電子顕微鏡検査
腎臓の中間切片を約1〜2mm3のブロックに切り分け、1×PBS中2.5%グルタルアルデヒド中4℃で一晩固定した。その後、固定した組織をUniversity of LeicesterのElectron Microscopy Facilityによって処理した。
クリオスタット切片
腎臓のもう1/3を約1〜2mm3のブロックに切り分け、液体窒素中で急速凍結させ、クリオスタット切片およびmRNA解析に備えて-80℃で維持した。
結果:
図67は、STX/LPS誘発性モデルにおける、食塩水で処置された対照マウス(n=5)およびMASP-2抗体で処置されたマウス(n=5)の経時(時)的生存率をグラフで示す。注目すべきことに、図67に示すように、すべての対照マウスが42時間以内に死んだ。きわめて対照的に、MASP-2抗体処置マウスの100%が実験の時間経過を通して生き延びた。図67に示す結果と合致して、重篤な疾病の徴候を示して死んだ、または殺処分されたのいずれかの非処置マウスのすべては有意な糸球体損傷を有するが、すべてのMASP-2抗体処置マウスの糸球体は正常に見えることが認められた(データ示さず)。これらの結果は、MASP-2阻害因子、例えばMASP-2抗体を使用して、溶血性尿毒症症候群(HUS)、非定型HUS(aHUS)、もしくは血栓性血小板減少性紫斑病(TTP)などの血栓性微小血管症(TMA)に罹患している対象または該血栓性微小血管症(TMA)を発症する危険のある対象を治療し得ることを実証する。
実施例34
本実施例は、血栓症のマウスFITC-デキストラン/光誘発性内皮細胞損傷モデルにおけるMASP-2欠損およびMASP-2阻害の効果を記載する。
背景/理論:実施例32および33に実証したように、MASP-2欠損(MASP-2 KO)およびMASP-2阻害(阻害性MASP-2抗体の投与による)は典型HUSのモデルにおいてマウスを保護するが、一方、STXおよびLPSに曝露されたすべての対照マウスは重篤なHUSを発症し、48時間以内に瀕死状態になった、または死んだ。例えば、図67に示すように、MASP-2阻害抗体で処置されたのちSTXおよびLPSに曝露されたすべてのマウスは生き延びた(フィッシャーの直接確率検定p<0.01、N=5)。したがって、抗MASP-2療法はこのHUSモデルにおいてマウスを保護する。
HUS、aHUS、TTPおよび他の病因のTMAを治療する場合のMASP-2阻害因子の有益性をさらに実証するために、以下の実験を実施して、血栓性微小血管症(TMA)のフルオレセインイソチオシアネート(FITC)-デキストラン誘発性内皮細胞損傷モデルにおけるMASP-2欠損およびMASP-2阻害の効果を分析した。
方法:
生体内顕微鏡検査
Frommholdら、BMC Immunology 12:56-68, 2011によって記載されているように、マウスを生体内顕微鏡検査のために準備した。簡潔にいうと、マウスを、ケタミン(125mg/kg体重、Ketanest, Pfitzer GmbH, Karlsruhe, Germany)およびキシラジン(12.5mg/kg体重、Rompun, Bayer, Leverkusen, Germany)の腹腔内(i.p.)注射によって麻酔し、体温を37℃に維持するための加熱パッドに載せた。食塩水浸漬対物レンズ(SW 40/0.75開口数、Zeiss, Jena, Germany)を有する正立顕微鏡(Leica, Wetzlar, Germany)で生体内顕微鏡検査を実施した。呼吸しやすくするために、マウスにPE90チューブ(Becton Dickson and Company, Sparks, MD, USA)を挿入した。採血およびモノクロナール抗体(mAb)全身投与のために、左頚動脈にPE10チューブ(Becton Dickson and Company, Sparks, MD, USA)を挿入した。
精巣挙筋標本作製
Sperandioら、Blood, 97:3812-3819, 2001によって記載されているとおりに、生体内顕微鏡検査のための精巣挙筋の外科標本作製を実施した。簡潔にいうと、陰嚢を切開し、精巣挙筋を可動化した。筋肉の縦方向切開およびカバーガラス上での延展ののち、精巣上体および精巣を横にずらし、ピン留めして、精巣挙筋微小循環への完全な顕微鏡アクセスを可能にした。精巣挙筋細静脈をCCDカメラ(CF8/1、Kappa, Gleichen, Germany)によってPanasonic S-VHSレコーダに記録した。Frommholdら、BMC Immunology 12:56-68, 20112011によって以前に記載されているとおりに、精巣挙筋を温度調整(35℃)重炭酸緩衝食塩水で表面灌流した。
光励起FITCデキストラン傷害モデル
光毒性(FITC)-デキストラン(Cat. No. FD150S、Sigma Aldrich, Poole, U.K.)の光励起によって精巣挙筋細静脈および動脈の内皮の制御された光用量依存性血管損傷を誘発した。この手順が限局性血栓症を開始させる。光毒性試薬として、FITC-デキストランの10%w/v溶液60μLを左頸動脈アクセスに通して注入し、10分間循環血液全体に均一に延展させた。十分に灌流された細静脈を選択したのち、再現可能な制御されたやり方で血栓症を刺激するために、低〜ミッドレンジ強度(800〜1500)のハロゲン光を対象の血管に合焦させて、内皮表面にFITC-デキストラン蛍光および軽度〜中等度の光毒性を誘発した。ハロゲンランプ(12V、100W、Zeiss, Oberkochen, Germany)を使用して、FITC-デキストランの励起のために必要な光毒性光強度を生成した。Steinbauerら、Langenbecks Arch Surg 385:290-298, 2000によって記載されるように、蛍光色素の光誘発励起から生じた光毒性は、光強度および/または照射時間のしきい値を必要とし、内皮表面の直接加熱または反応性酸素ラジカルの生成のいずれかによって生じる。
低電力測定のための波長補正性ダイオード検出器(Labmaster LM-2、Coherent, Auburn, USA)により、各血管に適用される光の強度を測定して調節した。コンピュータ援用微小循環分析システム(CAMAS、Dr. Zeintl, Heidelberg)によってビデオスキャンのオフライン解析を実施し、Zeintlら、Int J Microcirc Clin Exp, 8(3):293-302, 2000によって記載されているように赤血球速度を測定した。
血栓誘発前のモノクロナール抗ヒトMASP-2阻害抗体(mAbH6)およびビヒクル対照の適用
盲検試験設計を使用して、生体内顕微鏡検査の精巣挙筋モデルにおける血栓の光毒性誘発の16時間前、9週齢雄C57BL/6 WT同腹仔マウスに、MASP-2機能活性の阻害因子である組換えモノクロナールヒトMASP-2抗体(mAbH6)(最終濃度10mg/kg体重で投与)または同じ量のアイソタイプ対照抗体(MASP-2阻害活性なし)の腹腔内注射を実施した。血栓誘発の1時間前、mAbH6または対照抗体のいずれかの第二の投与を実施した。また、MASP-2ノックアウト(KO)マウスをこのモデルにおいて評価した。
mAbH6(組換えヒトMASP-2に対して樹立)はヒトMASP-2機能活性の強力な阻害因子であるが、その種特異性のせいで、より低い親和性でマウスMASP-2と交差反応し、それに結合し、それを阻害する(データ示さず)。マウスMASP-2に対するmAbH6のより低い親和性を補うために、mAbH6を、種特異性における変化およびマウスMASP-2に対するより低い親和性を克服するために高い濃度(10mg/kg体重)で投与して、インビボ条件下、マウスMASP-2機能活性の有効な遮断を提供した。
この盲検試験において、試験した各個々の小静脈が完全に閉塞するのに要した時間を記録した(選択基準は匹敵しうる直径および血流速度であった)。
生体内顕微鏡検査のビデオ録画を使用して、60分の観察期間にわたり、微小血管閉塞を有するマウスの割合、発症の時間および閉塞までの時間を評価した。
結果:
図68は、FITC/デキストラン注射の16時間前および1時間前に投与されたアイソタイプ対照またはヒトMASP-2抗体mAbH6(10mg/kg)による処置後、FITC/デキストランUVモデルにおいて微小血管閉塞を起こしたマウスの割合を損傷誘発後の時間の関数としてグラフで示す。図68に示すように、アイソタイプ対照抗体の投与を受けた野生型マウスは、85%が30分以内またはそれ未満内に閉塞を起こしたが、一方、ヒトMASP-2抗体(mAbH6)で前処置された野生型マウスは、同じ期間内では19%しか閉塞を起こさず、ヒトMASP-2抗体処置群においては、最終的に閉塞を起こしたマウスにおいては閉塞までの時間が延びた。さらに、MASP-2 mAbH6処置マウスのうち3匹は60分の観察期間中に全く閉塞を起こさなかった(すなわち、血栓性閉塞から保護された)ことが注目される。
図69は、ヒトMASP-2抗体(mAbH6)およびアイソタイプ対照抗体で処置されたマウスに関する分単位の閉塞時間をグラフで示す。データは、分散ドットとして平均値(水平バー)および標準誤差バー(垂直バー)とともに報告されている。この図は、閉塞が認められたマウスにおける閉塞時間を示す。したがって、60分の観察期間中に閉塞を起こさなかった3匹のMASP-2抗体処置マウスはこの分析には含めなかった(閉塞を起こさなかった対照処置マウスはなかった)。分析に使用した統計検定は対応のないt検定であった。「*」という記号はp=0.0129を示す。図69に示すように、閉塞を起こした4匹のMASP-2抗体(mAbH6)処置マウスにおいて、MASP-2抗体による処置は、アイソタイプ対照抗体で処置されたマウスに比べて、低い光強度(800〜1500)による血栓症のFITC-デキストラン/光誘発性内皮細胞傷害モデルにおける静脈閉塞時間を有意に増加させた。アイソタイプ対照の完全閉塞時間の平均は19.75分であったが、一方、MASP-2抗体処置群の場合の完全閉塞時間の平均は32.5分であった。
図70は、低い光強度(800〜1500)を用いる血栓症のFITC-デキストラン/光誘発性内皮細胞損傷モデルにおいて野生型マウス、MASP-2 KOマウスおよび血栓症誘発の16時間前、次いで1時間前にヒトMASP-2抗体(mAbH6)10mg/kgの腹腔内投与で前処置された野生型マウスに関する、閉塞に至るまでの分単位時間をグラフで示す。閉塞を起こしたマウスだけが図70に含まれている。アイソタイプ対照抗体の投与を受けた野生型マウスの場合、n=2、MASP-2 KOの場合、n=2、およびヒトMASP-2抗体(mAbH6)の投与を受けた野生型マウスの場合、n=4。「*」という記号はp<0.01を示す。図70に示すように、MASP-2欠損およびMASP-2阻害(mAbH6、10mg/kg)は、血栓症のFITC-デキストラン/光誘発性内皮細胞傷害モデルにおいて、低い光強度(800〜1500)で静脈閉塞時間を増大させた。
結論:
本実施例の結果はさらに、TMAのマウスモデルにおいて、レクチン経路を遮断するMASP-2阻害物質(例えば、MASP-2機能を遮断する抗体)が、複数の微小血管障害の特徴である微小血管凝固および血栓を阻害することを実証する。したがって、MASP-2阻害抗体のようなMASP-2阻害物質の投与は、HUS、aHUS、TTPまたは他の微小血管障害に罹患している患者において有効な治療であり、かつ微小血管凝固および血栓からの保護を提供すると予想される。
実施例35
本実施例は、ヒトMASP-2阻害抗体(mAbH6)が、血小板を豊富に含むヒト血漿中の血小板機能に影響を及ぼさないことを実証する研究を記載する。
背景/理論:実施例34に記載したように、ヒトMASP-2阻害抗体(mAbH6)によるMASP-2阻害が血栓症のFITC-デキストラン/光誘発性内皮細胞傷害モデルにおいて静脈閉塞時間を増大させることが実証された。以下の実験は、MASP-2阻害抗体(mAbH6)が血小板機能に影響を及ぼすかどうかを判定するために実施した。
方法:以下のとおりに、血小板のADP誘発性凝集に対するヒトmAbH6 MASP-2抗体の効果を試験した。1μg/mlまたは0.1μg/mlの濃度のヒトMASP-2 mAbH6を、40μL溶液として、新たに調製した血小板を豊富に含むヒト血漿360μLに加えた。アイソタイプ対照抗体を負の対照として使用した。抗体を血漿に加えたのち、ADPを最終濃度2μMで加えることによって血小板活性化を誘発した。1mLキュベット中、小さな磁石で溶液をかく拌することによってアッセイ法を開始した。2チャンネルChrono-log Platelet Aggregometer Model 700 Whole Blood/Optical Lumi-Aggregometer中で血小板凝集を測定した。
結果:
5分間にわたり溶液中の凝集率を測定した。結果を以下の表22に示す。
上記表22に示すように、対照抗体またはMASP-2 mAbH6抗体で処置されたADP誘発性血小板凝集の間に有意な差は認められなかった。これらの結果は、ヒトMASP-2抗体(mAbH6)が血小板機能に影響を及ぼさないことを実証する。したがって、血栓症のFITC-デキストラン/光誘発性内皮細胞傷害モデルにおけるヒトMASP-2阻害抗体(mAbH6)によるMASP-2阻害が静脈閉塞時間を増大させることを実証した実施例34に記載された結果は、血小板機能に対するmAbH6の効果のせいではなかった。したがって、MASP-2阻害は、血小板機能に直接影響することなく血栓症を予防し、既存の抗血栓剤とは異なる治療機序を明らかにする。
本発明の好ましい態様が例示および説明されたが、本発明の精神および範囲から逸脱することなく様々な変更が可能なことが理解されると考えられる。
排他的な所有権または特権を主張する本発明の態様は添付の特許請求の範囲において規定される。