JP2021004939A - 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム - Google Patents

像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム Download PDF

Info

Publication number
JP2021004939A
JP2021004939A JP2019117711A JP2019117711A JP2021004939A JP 2021004939 A JP2021004939 A JP 2021004939A JP 2019117711 A JP2019117711 A JP 2019117711A JP 2019117711 A JP2019117711 A JP 2019117711A JP 2021004939 A JP2021004939 A JP 2021004939A
Authority
JP
Japan
Prior art keywords
image blur
blur correction
runout
control device
correction control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019117711A
Other languages
English (en)
Inventor
進洋 柴田
Nobuhiro Shibata
進洋 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019117711A priority Critical patent/JP2021004939A/ja
Priority to US16/909,492 priority patent/US11190687B2/en
Publication of JP2021004939A publication Critical patent/JP2021004939A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/684Vibration or motion blur correction performed by controlling the image sensor readout, e.g. by controlling the integration time
    • H04N23/6845Vibration or motion blur correction performed by controlling the image sensor readout, e.g. by controlling the integration time by combination of a plurality of images sequentially taken
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

【課題】他の像ブレ補正制御装置と協調して像ブレ補正の制御を行う像ブレ補正制御装置のフィルタ処理のカットオフ周波数を、各像ブレ補正制御装置の振れ検出部の特性の相違を考慮して決定する。【解決手段】撮像装置の振れを検出する第1の検出手段と、前記第1の検出手段の第1の特性が第2の像ブレ補正制御装置が備える第2の検出手段の第2の特性よりも良好な場合、前記第1の検出手段により検出された振れ情報に基づいて第1のカットオフ周波数を決定し、第2の像ブレ補正制御装置が使用するカットオフ周波数として第1のカットオフ周波数を前記第2の像ブレ補正制御装置へ送信し、第1の特性が前記第2の特性よりも良好でない場合、第2のカットオフ周波数を受信する受信手段と、第1の特性が前記第2の特性よりも良好な場合、第1のカットオフ周波数を適用し、第1の特性が第2の特性よりも良好でない場合、第2のカットオフ周波数を適用する。【選択図】図6

Description

本発明は、像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラムに関する。
近年のデジタルスチルカメラ、ビデオカメラ等の撮像装置には、像ブレ補正機能が備えられているのが一般的である。像ブレ補正機能には、通常2つのタイプがある。1つは、主に像ブレ補正専用の補正レンズ(以下「像ブレ補正レンズ」と呼ぶ)を光軸に垂直な方向に移動させることにより像ブレ補正動作を実現するタイプである。もう1つは、撮像素子を光軸に垂直な方向に移動させることにより像ブレ補正動作を実現するタイプである。
これら2つの像ブレ補正機構を同時に駆動させることにより、いずれか一方の像ブレ補正機構だけの場合と比較して、補正範囲を広くすることができる。これにより、更なるスローシャッタスピードでの像ブレ補正動作が可能となり、像ブレ補正性能を高めることができる。
通常は、像ブレ補正範囲にはメカニカルな限界(以下「補正限界」と呼ぶ)が存在する。像ブレ補正機構が補正限界に突き当たることを防止するために、像ブレ補正レンズ又は撮像素子を可能な限りメカニカルな中央の位置に維持するための制御(以下「パンニング制御」と呼ぶ)が知られている。具体的には、像ブレの周波数や振幅に応じて振れ補正量の演算過程で用いるフィルタのカットオフ周波数を変更することで、像ブレ補正特性を適切に行う手法が提案されている(特許文献1)。
特許第5460170号公報
像ブレ補正レンズと撮像素子を同時に駆動する方式は幾つかあるが、そのうちの1つとして半独立制御がある。半独立制御は、撮像素子の像ブレ補正制御はカメラ側の振れ検出部の出力値を用いて行い、像ブレ補正レンズの像ブレ補正制御はレンズ側の振れ検出部の出力値を用いて行う方式である。このとき、ライブビュー画像の見栄えを良好にするために、像ブレ補正レンズと撮像素子のパンニング制御の特性を揃える処理が行われる場合がある。
しかしながら、カメラ側の振れ検出部とレンズ側の振れ検出部が異なる特性(性能)を有している場合がある。振れ検出部の性能が低い場合、振れの状況(例えば低周波数かつ低振幅)によっては、低速のパンニング操作であるのか、振れ検出部が検知したノイズであるかの区別がつかない場合がある。従って、ユーザが低速のパンニング操作を行った際に、一方の振れ検出部では低速のパンニング操作が適切に検出され、他方の振れ検出部では低速のパンニング操作が検出されない場合がある。このような場合、カメラ側とレンズ側とでパンニング制御の特性を揃えることが困難となる。
本発明はこのような状況に鑑みてなされたものである。本発明は、他の像ブレ補正制御装置と協調して像ブレ補正の制御を行う像ブレ補正制御装置が振れに対して行うフィルタ処理のカットオフ周波数を、各像ブレ補正制御装置の振れ検出部の特性の相違を考慮して決定する技術を提供することを目的とする。
上記課題を解決するために、本発明は、撮像装置の像ブレを、所定の分担規則に従って第2の像ブレ補正制御装置と分担して補正する像ブレ補正制御装置であって、前記撮像装置の振れを検出する第1の検出手段により検出された振れ情報を取得する取得手段と、前記第1の検出手段の第1の特性が前記第2の像ブレ補正制御装置が備える第2の検出手段の第2の特性よりも良好であるか否かを判定する判定手段と、前記第1の特性が前記第2の特性よりも良好な場合に、前記第1の検出手段により検出された前記振れ情報に基づいて第1のカットオフ周波数を決定する第1の決定手段と、前記第1の特性が前記第2の特性よりも良好な場合に、前記第2の像ブレ補正制御装置が使用するカットオフ周波数として前記第1のカットオフ周波数を前記第2の像ブレ補正制御装置へ送信する送信手段と、前記第1の特性が前記第2の特性よりも良好でない場合に、前記第2の像ブレ補正制御装置から第2のカットオフ周波数を受信する受信手段と、前記第1の検出手段により検出された前記振れ情報に対してフィルタ処理を行うフィルタ手段であって、前記第1の特性が前記第2の特性よりも良好な場合、前記フィルタ処理に前記第1のカットオフ周波数を適用し、前記第1の特性が前記第2の特性よりも良好でない場合、前記フィルタ処理に前記第2のカットオフ周波数を適用する、フィルタ手段と、前記フィルタ処理が行われた振れ情報及び前記所定の分担規則に基づいて補正量を決定する第2の決定手段と、を備えることを特徴とする像ブレ補正制御装置を提供する。
本発明によれば、他の像ブレ補正制御装置と協調して像ブレ補正の制御を行う像ブレ補正制御装置が振れに対して行うフィルタ処理のカットオフ周波数を、各像ブレ補正制御装置の振れ検出部の特性の相違を考慮して決定することが可能となる。
なお、本発明のその他の特徴及び利点は、添付図面及び以下の発明を実施するための形態における記載によって更に明らかになるものである。
カメラ本体100及びレンズユニット150を含む撮像装置の構成を示すブロック図。 レンズ側防振制御部126による像ブレ補正制御系、及びカメラ側防振制御部133による像ブレ補正系の詳細な構成を示すブロック図。 補正量比率及び周波数帯域の変更の詳細を説明する模式図。 レンズ側振れ検出部125及びカメラ側振れ検出部131の検出波形と、カットオフ周波数変更との関係を説明する模式図。 補正量波形とカットオフ周波数変更との関係を説明する模式図。 カメラ本体100による像ブレ補正処理のフローチャート。 図6のS107の処理の詳細について説明する図。 図6のS109の処理の詳細について説明する図。 レンズユニット150による像ブレ補正処理のフローチャート。
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
[第1の実施形態]
図1は、カメラ本体100及びレンズユニット150を含む撮像装置の構成を示すブロック図である。カメラ本体100及びレンズユニット150はいずれも像ブレ補正制御装置を含む。図1において、ズームレンズ101は光軸方向に移動して、被写体像を結像させる撮影光学系200(撮影レンズ)の焦点距離を光学的に変化させ、撮影画角を変更する。像ブレ補正レンズ102は、光軸に垂直な方向に移動することにより、撮像装置の振れに起因する像ブレを光学的に補正する。フォーカスレンズ103は、光軸方向に移動することにより光学的にピント位置を調節する。絞り104とシャッタ105は開閉により光量を調節することができ、露出制御に使用される。
撮影光学系200を通過した光は、CCD(電荷結合素子)やCMOSセンサ(相補型金属酸化膜半導体)等を用いた撮像素子106により受光され、光信号から電気信号へと変換される。また、撮像素子106は、像ブレ補正レンズ102と同様に光軸に垂直な方向に移動することにより光学的に像ブレを補正する。
ADコンバータ107は、撮像素子106から読み出された撮像信号に対してノイズ除去処理、ゲイン調整処理、AD変換処理を行う。TG108(タイミングジェネレータ)は、カメラ制御部115の指令に従い、撮像素子106の駆動タイミングとADコンバータ107の出力タイミングを制御する。
画像処理回路109は、ADコンバータ107からの出力に対して、画素補間処理や色変換処理等を施した後、処理された画像データを内部メモリ110に送る。表示部111は、内部メモリ110に保持されている画像データと共に、撮影情報などを表示する。
圧縮伸長処理部112は、内部メモリ110に保存されているデータに対して、画像フォーマットに応じて圧縮処理又は伸長処理を行う。記憶メモリ113は、パラメータなどの様々なデータを記憶する。操作部114は、ユーザが各種のメニュー操作、モード切り換え操作を行うためのユーザインタフェースである。
カメラ制御部115は、CPU(中央演算処理装置)等の演算装置で構成され、操作部114によるユーザの操作に応じて内部メモリ110に記憶されている各種の制御プログラムを実行することによりカメラ本体100の全体制御を行う。また、制御プログラムは、例えばズーム制御、像ブレ補正制御、自動露出制御、自動焦点調節制御、及び被写体の顔を検出する処理等を行うためのプログラムも含む。レンズ制御部142は、CPU(中央演算処理装置)等の演算装置で構成され、レンズユニット150が備える内部メモリ(不図示)に記憶されている各種の制御プログラムを実行することによりレンズユニット150の全体制御を行う。
なお、カメラ制御部115の内部に図示されている各ブロックの機能の少なくとも一部は、カメラ制御部115とは別の回路により実装されてもよい。同様に、レンズ制御部142の内部に図示されている各ブロックの機能の少なくとも一部は、レンズ制御部142とは別の回路により実装されてもよい。
カメラ側通信部140及びレンズ側通信部128は、カメラ本体100とレンズユニット150との間で情報伝達を行うために使用される。
絞り駆動部120とシャッタ駆動部135は、絞り104とシャッタ105の駆動を行う。輝度信号検出部137は、撮像素子106から読み出されADコンバータ107を通過した信号を、被写体及び場面の輝度として検出する。露出制御部136は、輝度信号検出部137により得られた輝度情報に基づいて露出値(絞り値、及びシャッタ速度)の演算を行い、その演算結果を絞り駆動部120とシャッタ駆動部135へ通達する。また、露出制御部136は、撮像素子106から読み出された撮像信号を増幅する制御も同時に行う。これにより、自動露出制御(AE制御)が行われる。
ズームレンズ駆動部124は、ズームレンズ101を駆動し画角の変更を行う。ズーム制御部127は、操作部114によるズーム操作指示に従いズームレンズ101の位置制御を行う。
フォーカスレンズ駆動部121は、フォーカスレンズ103の駆動を行う。評価値演算部138は、輝度信号検出部137により得られた輝度情報から特定周波数成分を抽出した後、それに基づいてコントラスト評価値を算出する。フォーカスレンズ制御部139は、フォーカスレンズ103を所定範囲にわたり所定駆動量で駆動する指令を行う。それと同時に、それぞれのフォーカスレンズ位置における評価値演算部138の演算結果である評価値を取得する。フォーカスレンズ制御部139は、コントラスト評価値の変化曲線が頂点となるフォーカスレンズ位置からコントラストAF方式におけるデフォーカス量を算出し、フォーカスレンズ駆動部121へ通達する。フォーカスレンズ駆動部121によりフォーカスレンズ103をフォーカス位置へ駆動することで、撮像素子106面上において光束を合焦させる自動合焦制御(AF制御)が行われる。ここではコントラストAF方式について述べたが、位相差AF方式であっても構わない。位相差AF方式については、任意の既知の技術により実現可能である。
カメラ側振れ検出部131は、カメラ本体100に加わる振れ及び揺れの振動(以下、単に「振れ」とも言う)を検出する。カメラ本体100側に配置されたカメラ側振れ検出部131とは別に、レンズユニット150側にもレンズユニット150に加わる振れを検出するレンズ側振れ検出部125が配置されている。一般的に、振れを検出するセンサとしてはジャイロセンサが用いられ、ジャイロセンサにより振れの角速度を検出する。
なお、撮像装置においてカメラ本体100とレンズユニット150とは一体的に接続されているため、カメラ側振れ検出部131及びレンズ側振れ検出部125が検出した振れは、実質的に撮像装置の振れに相当する。従って、厳密な区別が必要でない限り、カメラ本体100に加わる振れ及びレンズユニット150に加わる振れのいずれについても、単に「振れ」又は「撮像装置の振れ」と呼ぶ場合がある。但し、後述する通りカメラ側振れ検出部131とレンズ側振れ検出部125とは特性が相違するため、カメラ側振れ検出部131で検出される振れのデータとレンズ側振れ検出部125で検出される振れのデータとは必ずしも一致しない。
撮像素子駆動部130は、撮像素子106の駆動を行う。撮像素子位置検出部132は、光軸と垂直な方向に駆動可能な撮像素子106の位置を検出する。
カメラ側防振制御部133は、カメラ側振れ検出部131が検知した振れ量の情報(振れ情報)を取得し、取得した振れ情報に基づいて、振れを抑制する像ブレ補正量を算出し、撮像素子106を光軸と垂直な方向に駆動する制御を行う。
像ブレ補正レンズ駆動部122は、像ブレ補正レンズ102の駆動を行う。像ブレ補正レンズ位置検出部123は、像ブレ補正レンズ102の光軸と垂直な方向の位置を検出する。レンズ側防振制御部126は、レンズ側振れ検出部125が検知した振れ量に基づいて、振れを抑制する像ブレ補正量を算出し、像ブレ補正レンズ102を光軸と垂直な方向に駆動する制御を行う。
画像合成処理部134は、レンズ側防振制御部126により算出された像ブレ補正量に対して適切な係数を乗じることにより、画像間の像ズレ量に換算する。この像ズレ量に基づいて次画像の走査範囲を適切に制御することで、画像間に生じる像ブレを補正することができる。この制御を連続的に実行することにより、手ブレによる像劣化を抑制した電子防振制御を行うことができる。
図2は、レンズ側防振制御部126による像ブレ補正制御系、及びカメラ側防振制御部133による像ブレ補正系の詳細な構成を示すブロック図である。レンズ側HPF152とカメラ側HPF162は、それぞれレンズ側振れ検出部125とカメラ側振れ検出部131が検出した振れ周波数に含まれるオフセット成分を除去する。即ち、レンズ側HPF152とカメラ側HPF162は、高域成分の抽出を行う。なお、HPFはハイパスフィルタの略称である。
レンズ側LPF153とカメラ側LPF163は、振れ角速度を振れ角度に積分する。なお、LPFはローパスフィルタの略称である。
レンズ側協調制御部129とカメラ側協調制御部141は、像ブレ補正レンズ102と撮像素子106の補正量比率、周波数帯域、補正範囲(これらを協調制御特性と呼ぶ)に基づいて、振れ補正量の演算を制御する。
レンズ側振れ補正量演算部154とカメラ側振れ補正量演算部164は、協調制御特性が反映された振れ角度に対してズーム倍率や被写体距離に関するゲインを乗じることにより、振れ補正量の演算を行う。補正量比率及び周波数帯域は変更可能である(詳細は後述)。
レンズ側PID制御部155とカメラ側PID制御部165は、像ブレ補正レンズ102と撮像素子106のそれぞれの補正量における目標位置と現在位置の偏差に対して、PID制御(比率制御、積分制御、微制御分)を行う。PID制御は一般的な技術であるため詳細は省略する。
レンズ側振れ判定部151は、レンズ側振れ検出部125が検出した振れの振幅と周波数に基づき、手ブレ、低速なパンニング操作、高速なパンニング操作、突発的な大きな振り回し等の状況を判定する。同様に、カメラ側振れ判定部161は、カメラ側振れ検出部131が検出した振れの振幅と周波数に基づき、手ブレ、低速なパンニング操作、高速なパンニング操作、突発的な大きな振り回し等の状況を判定する。レンズ側振れ判定部151とカメラ側振れ判定部161は、判定結果に応じてHPFとLPFのカットオフ周波数を変更することにより、防振性能と画質の両立を図っている。
一般的に、HPFのカットオフ周波数を下げると防振性能が上がる傾向にあり、カットオフ周波数が最小値のときに防振性能が最大化される。一方、HPFのカットオフ周波数を上げると防振性能が下がる傾向にあり、代わりに補正部材が補正限界付近に突き当たることを防止し速く大きな振れに対しても対応可能になる。LPFの場合は特性が逆となり、カットオフ周波数を上げると防振性能が上がる傾向にあり、下げると防振性能が下がる傾向にある。このカットオフ周波数の変更の詳細は後述する。
レンズ側特性通知部156は、レンズ側振れ判定部151が判定した状況をレンズユニット150とカメラ本体100との間で通信できる情報に変換する。カメラ側特性通知部166は、カメラ側振れ判定部161が判定した状況をレンズユニット150とカメラ本体100との間で通信できる情報に変換する。レンズ側通信部128とカメラ側通信部140は、レンズユニット150とカメラ本体100との間でお互いの情報伝達を行う。
図3は、補正量比率及び周波数帯域の変更の詳細を説明する模式図である。図3(a)は、振幅分割を示している。分割前補正量波形と分割後補正量波形は、X軸が時間、Y軸が補正量を表している。中央は分割器のブロック図である。
分割前補正量波形で表現されている補正量を所定比率α又は1−αで積算する。ここで、αは0以上1以下の値である。例としてαが0.5である場合は、図3(a)に示す分割後補正量波形のように、補正量が50%ずつの比率で上下、即ち、それぞれカメラ側(カメラ本体100側)とレンズ側(レンズユニット150側)に分割される。
図3(b)は、周波数分割を示している。分割前補正量波形と分割後補正量波形は、X軸が時間、Y軸が補正量を表している。中央は分割器のブロック図である。
分割前補正量波形で表現されている補正量を所定カットオフ周波数でフィルタ演算する。例としてカットオフ周波数fcが3Hzである場合は、図3(b)に示す分割後補正量波形のように、補正量が上の高域と下の低域、即ち、それぞれカメラ側とレンズ側とに分割される。
図4は、レンズ側振れ検出部125及びカメラ側振れ検出部131の検出波形と、カットオフ周波数変更との関係を説明する模式図である。例として、カメラ側とレンズ側で異なる特性のジャイロが搭載されているとする。振れ検出部の検出波形は、X軸が時間、Y軸が角速度を表している。カットオフ周波数変更は、X軸が振れの周波数又は振幅、Y軸がカットオフ周波数を表している。
ここで、異なる特性のジャイロとは具体的に、低域成分のノイズの大小の違い、温度変動によるドリフト成分の大小の違いを指す。一般的に、高価なジャイロほど低域成分のノイズが小さく、温度変動によるドリフト成分も小さい傾向にある。このようなジャイロを良好特性のジャイロと呼び、それ以外を普通特性のジャイロと呼ぶ。
図4では、カメラ側に良好特性のジャイロを搭載し、レンズ側に普通特性のジャイロを搭載されているものとする。このとき、撮像装置をゆっくりと静かにパンニング操作をした場合、カメラ側とレンズ側のジャイロの検出波形はそれぞれ左のような波形になる。
カメラ側は、時間経過に対してほぼ平行な角速度を検出し続けており、低域成分のノイズが少ないことが分かる。この場合、振れの周波数及び振幅ともに極めて小さい状態であるため、防振性能を最大化するため、HPFのカットオフ周波数は上げない方がよい。なお、図示は省略するが、LPFのカットオフ周波数は下げない方がよい。
レンズ側は、時間経過に対してやや波打った角速度を検出し続けており、低域成分のノイズがカメラ側のジャイロと比較して大きいことが分かる。この場合、振れの周波数及び振幅ともにわずかながら大きく検出されているため、このままだとHPFのカットオフ周波数を上げることになる。なお、図示は省略するが、LPFのカットオフ周波数は下げることになる。
しかしながら、レンズ側の振れは意図したゆっくりと静かなパンニング操作によるものではなく、普通特性のジャイロが検出したノイズによるものである。そのため、HPFのカットオフ周波数を上げない(カメラ側とカットオフ周波数を揃える)ことが適切な処理となる。なお、LPFについては、カットオフ周波数を下げない(カメラ側とカットオフ周波数を揃える)ことが適切な処理となる。
これにより、レンズ側とカメラ側が協調制御を行うときに、防振性能と見栄え(画質)の双方を最適に設定することができる。
図5は、補正量波形とカットオフ周波数変更との関係を説明する模式図である。図4では、カメラ側とレンズ側のカットオフ周波数を揃えることの利点について説明したが、場合によっては揃えない方がよいことを説明する。
例として、振幅分割によりカメラ側とレンズ側の補正量比率が60%と40%とする。このとき、大きな振れに対して、カメラ側の補正量波形では補正量限界まで余裕がない状態である。そのため、カットオフ周波数変更(1)では、大きな振れの振幅に対してカットオフ周波数を大きく上げて、補正部材を補正量限界から中央へ戻す働きを大きくしている。
ここで、レンズ側のカットオフ周波数をカメラ側に揃えた場合は、レンズ側では補正量限界まで余裕があるにも関わらず、カットオフ周波数を大きく上げることになる。この場合は、補正量限界までの余裕幅が有効に活用されていないことになる。
そこで、フィルタのカットオフ周波数変更(2)では、カメラ側のカットオフ周波数のテーブル(図5ではグラフに相当)は変化させずに、レンズ側のカットオフ周波数のテーブルを変化させることにより、補正量限界までの余裕幅を有効に活用することができる。これにより大きな振れに対する見栄えの改善を行うことができる。
振幅分割を例として説明したが、周波数分割でも同様のことが言える。周波数分割の場合は、低域の方が高域と比較して補正量の振幅が大きくなる傾向にある。即ち、低域の方が補正量限界までの余裕がない状態となり得る。
カメラ側が低域を担当した場合には、レンズ側のカットオフ周波数のテーブルは変化させずに、カメラ側のカットオフ周波数のテーブルを変化させることにより、補正量限界までの余裕幅を有効に活用することができる。
図6は、カメラ本体100による像ブレ補正処理のフローチャートである。S102で、カメラ側防振制御部133は、周期制御を開始する。ここでは、後述する防振制御ループ処理(S104及びS119)の周期を決定する。
S103で、カメラ側防振制御部133は、カメラ側振れ検出部131の特性がレンズ側振れ検出部125の特性と比較して同等以上に良好か否かを判定する。特性が良好であるとは、ノイズレベルが小さく、温度ドリフト成分が小さいことを意味する。同等以上の場合、処理はS104に進み、そうでない場合、処理はS119に進む。前者の場合、カットオフ周波数の決定に関してカメラ本体100はマスタとしての役割を担うことになり、後者の場合、カットオフ周波数の決定に関してカメラ本体100はスレーブとしての役割を担うことになる。
S104で、カメラ側防振制御部133は、カメラ本体100をマスタとする防振制御ループを開始する。一方、S119では、カメラ側防振制御部133は、カメラ本体100をスレーブとする防振制御ループを開始する。
最初に、カメラ本体100をマスタとする防振制御ループについて説明する。S105で、カメラ側防振制御部133は、カメラ側振れ検出部131により取得された振れ角速度データを取得する。
S106で、カメラ側振れ判定部161は、S105で取得された振れ角速度データに基づいて、振れが小さな振れか否かを判定する。図4の説明で述べた通り、ノイズと同等レベルの小さな振れに対してはHPFのカットオフ周波数を上げない(カメラ側とレンズ側のカットオフ周波数を揃える)ことが適切な処理となる場合がある。また、ノイズと同等レベルの小さな振れに対してはLPFのカットオフ周波数を下げない(カメラ側とレンズ側のカットオフ周波数を揃える)ことが適切な処理となる場合がある。そのため、振れの振幅の絶対値が第1の振幅閾値未満、かつ周波数が第1の周波数閾値未満である場合、振れ角速度データがノイズと同等レベルの小さな振れに相当する(振れが第1の基準を満たす)と判断して、処理はS107に進む。S107では、小さい振れ時処理が行われる。
なお、「振れの振幅の絶対値が第1の振幅閾値未満、かつ周波数が第1の周波数閾値未満である」ということは、小さい振れに対応する基準(第1の基準)の一例に過ぎない。従って、他の基準に基づいて小さい振れに対応する基準(第1の基準)が満たされるか否かを判定してもよい。
図7を参照して、S107の処理の詳細について説明する。S201で、カメラ側防振制御部133は、小さな振れに対応したカットオフ周波数の算出を行う。なお、カットオフ周波数の算出は、HPFとLPFそれぞれについて行われるが、以下では説明の簡略化のため、HPFとLPFとを明示せずに単に「カットオフ周波数」と言う。S204で、カメラ側防振制御部133は、S201において算出されたカットオフ周波数と1対1に対応したカットオフ周波数テーブル番号を送信データとして設定する。S205で、カメラ側防振制御部133はカメラ側通信部140を介して、S204において設定されたテーブル番号のデータをスレーブであるレンズユニット150へ送信する。なお、テーブル番号の代わりにS201で算出したカットオフ周波数そのものをレンズユニット150へ送信してもよい。
再び図6を参照すると、S106において振れが小さな振れではないと判定された場合、S108で、カメラ側振れ判定部161は、検出した振れが大きな振れであるか否かを判定する。図5の説明で述べた通り、大きな振れに対してはカメラ側とレンズ側とでカットオフ周波数を変えることが、補正量限界までを有効に活用した適切な処理となる場合がある。そのため、振れの振幅の絶対値が第2の振幅閾値以上、かつ周波数が第2の周波数閾値以上である場合、振れ角速度データが通常の手ブレを超えた大きな振れに相当する(振れが第2の基準を満たす)と判断して、処理はS109に進む。S109では、大きい振れ時処理が行われる。
なお、「振れの振幅の絶対値が第2の振幅閾値以上、かつ周波数が第2の周波数閾値以上である」ということは、大きい振れに対応する基準(第2の基準)の一例に過ぎない。従って、他の基準に基づいて大きい振れに対応する基準(第2の基準)が満たされるか否かを判定してもよい。
図8(a)及び図8(b)を参照して、S109の処理の詳細について説明する。図3を参照して説明した通り、協調制御における補正量の分割方式(カメラ側及びレンズ側での像ブレ補正の分担に関する分担規則)には、振幅分割と周波数分割とがある。図8(a)は、振幅分割の場合の大きい振れ時処理のフローチャートである。
S301で、カメラ側防振制御部133は、カメラ側の補正量比率がレンズ側と比較して大きいか否かを判定する。補正量比率は、現在設定されているズーム倍率、撮像装置のモードに応じて変化する。補正量比率が大きい場合は、レンズ側の補正量限界までの余裕幅がカメラ側と比較して大きいことを意味する。そのため、レンズ側のカットオフ周波数を適切に変更する(HPFのカットオフ周波数を下げたり、LPFのカットオフ周波数を上げたりする)ことで、余裕幅を有効に活用することができる。そのため、S302で、カメラ側防振制御部133は、レンズ側が自身でカットオフ周波数を算出するように指示するデータ(指示情報)である「−1」を送信データとして設定する。
S304で、カメラ側防振制御部133はカメラ側通信部140を介して、「−1」をレンズユニット150へ送信する。S306で、カメラ側防振制御部133は、大きな振れに対応したカットオフ周波数の算出を行う。ここで算出したカットオフ周波数は、カメラ側でのみ用いるカットオフ周波数であり、レンズ側に送信するものではないため、レンズ側との連携を意識する必要がない。例として、カメラ側はカットオフ周波数を最大まで変更する一方で、レンズ側はカットオフ周波数を抑えて設定することも可能となる。
S301においてカメラ側の補正量比率がレンズ側と比較して大きくない(振れの振幅の半分未満をカメラ側が担う)と判定された場合、S303で、カメラ側防振制御部133は、大きな振れに対応したカットオフ周波数の算出を行う。S305で、カメラ側防振制御部133は、S303において算出されたカットオフ周波数と1対1に対応したカットオフ周波数テーブル番号を送信データとして設定する。S307で、カメラ側防振制御部133はカメラ側通信部140を介して、S305において設定されたテーブル番号のデータをスレーブであるレンズユニット150へ送信する。なお、テーブル番号の代わりにS303で算出したカットオフ周波数そのものをレンズユニット150へ送信してもよい。
図8(b)は、周波数分割の場合の大きい振れ時処理のフローチャートである。S308で、カメラ側防振制御部133は、カメラ側で補正する周波数帯域がレンズ側と比較して低域か否かを判定する。周波数帯域は、現在設定されているズーム倍率、撮像装置のモードに応じて変化する。周波数帯域が低域の場合、レンズ側は高域であるためカメラ側と比較して補正量限界まで行き着きにくい。即ち、レンズ側の補正量限界までの余裕幅がカメラ側と比較して大きい。そのため、レンズ側のカットオフ周波数を適切に変更することで、余裕幅を有効に活用することができる。そのため、S308においてカメラ側で補正する周波数帯域がレンズ側と比較して低域であると判定された場合、処理はS302に進む。そうでない場合(振れの高周波成分をカメラ側が担う場合)、処理はS303に進む。S302〜S307の処理は、図8(a)のS302〜S307の処理と同じである。
再び図6を参照すると、S108において振れが大きな振れではないと判定された場合、処理はS110に進む。この場合、振れは小さくもなく大きくもない。S110で、カメラ側防振制御部133は、レンズ側が自身でカットオフ周波数を算出するように指示するデータである「−1」を送信データとして設定する。S111で、カメラ側防振制御部133はカメラ側通信部140を介して、「−1」をレンズユニット150へ送信する。S112で、カメラ側防振制御部133は、カメラ側のカットオフ周波数の算出を行う。
S113で、カメラ側防振制御部133は、S107、S109、又はS112で算出されたカットオフ周波数をカメラ側HPF162及びカメラ側LPF163に設定する。
S114で、カメラ側HPF162は、カメラ側振れ検出部131の温度ドリフト等で発生するオフセット成分を除去するために、HPF演算を行う。S115で、カメラ側LPF163は、振れ角速度データを振れ角度データに変換するために、LPF演算(積分演算)を行う。これらHPFとLPFのフィルタ処理におけるカットオフ周波数が、上述のS107、S109、又はS112で算出されたカットオフ周波数である。
S116で、カメラ側協調制御部141は、検出した振れ量に対して、協調制御特性の反映を行う。カメラ側とレンズ側で像ブレ補正量を振幅分割する場合、例えばカメラ側が40%、レンズ側が60%を担う場合を考える。この場合、カメラ側協調制御部141は、S115で算出された、HPF及びLPFの処理後の振れ角度データに対して、40%を乗算する。また、カメラ側とレンズ側で像ブレ補正量を周波数分割する場合、例えばカメラ側が3Hz未満の低周波、レンズ側が3Hz以上の高周波を担う場合を考える。この場合、カメラ側協調制御部141は、S115で算出された、HPF及びLPFの処理後の振れ角度データに対して、3Hz未満の周波数帯域をLPFで抽出する。振幅分割又は周波数分割された振れ角度がカメラ側の補正範囲を超えていた場合は、カメラ側協調制御部141は、その補正範囲でクランプを行う。
S117で、カメラ側振れ補正量演算部164は、協調制御特性が反映された振れ角度に対して、ズーム倍率や被写体距離に関するゲインを乗じることにより、最終的な振れ補正量の算出を行う。
なお、カメラ本体100の像ブレ補正は、振れ補正量に従って撮像素子106を光軸に直交する方向に駆動する方式と、撮像素子106により生成される撮像信号において画像として取得する位置を振れ補正量に従って変更する方式の、いずれであってもよい。カメラ側振れ補正量演算部164は、像ブレ補正の方式に応じた適切な計算方法で、振れ補正量の算出を行う。
S118は、カメラ本体100をマスタとする防振制御ループの末尾である。S102で設定された制御周期毎に、S104〜S118の防振制御ループ内の処理が繰り返し実行される。撮影終了などにより防振制御が終了すると、処理が防振制御ループを抜けて終了する。
次に、カメラ側振れ検出部131の特性がレンズ側振れ検出部125の特性と比較して同等未満の場合(S103で「NO」と判定される場合)について説明する。この場合、S119で、カメラ側防振制御部133は、カメラ本体100をスレーブとする防振制御ループを開始する。この防振制御ループにおいては、レンズユニット150がマスタとして機能する。
なお、カメラ本体100をスレーブとする防振制御ループに含まれるS105及びS113〜S117の処理は、カメラ本体100をマスタとする防振制御ループに含まれるS105及びS114〜S117の処理と同様である。
S120で、カメラ側防振制御部133はカメラ側通信部140を介して、レンズユニット150からカットオフ周波数を示すデータを受信する。S121で、カメラ側防振制御部133は、S120において受信したカットオフ周波数を示すデータが、カメラ側が自身でカットオフ周波数を算出するように指示するデータ(指示情報)である「−1」であるか否かを判定する。受信データが「−1」の場合、処理はS122に進み、そうでない場合、処理はS123に進む。
S122で、カメラ側防振制御部133は、S105において取得した振れデータに基づいて、カットオフ周波数を算出する。即ち、S120において受信したデータが「−1」の場合、カメラ側とレンズ側とでカットオフ周波数を揃える制御は行われない。
S123で、カメラ側防振制御部133は、S120において受信したデータが示すカットオフ周波数(受信データが「−1」でない場合)、又はS122で算出されたカットオフ周波数を、カメラ側HPF162及びカメラ側LPF163に設定する。
S124は、カメラ本体100をスレーブとする防振制御ループの末尾である。S102で設定された制御周期毎に、S119〜S124の防振制御ループ内の処理が繰り返し実行される。撮影終了などにより防振制御が終了すると、処理が防振制御ループを抜けて終了する。
図9は、レンズユニット150による像ブレ補正処理のフローチャートである。S402で、レンズ側防振制御部126は、周期制御を開始する。ここでは、後述する防振制御ループ処理(S404及びS419)の周期を決定する。
S403で、レンズ側防振制御部126は、レンズ側振れ検出部125の特性がカメラ側振れ検出部131の特性よりも良好か否かを判定する。特性が良好であるとは、ノイズレベルが小さく、温度ドリフト成分が小さいことを意味する。良好な場合、処理はS404に進み、そうでない場合、処理はS419に進む。前者の場合、カットオフ周波数の決定に関してレンズユニット150はマスタとしての役割を担うことになり、後者の場合、カットオフ周波数の決定に関してレンズユニット150はスレーブとしての役割を担うことになる。
S404で、レンズ側防振制御部126は、レンズユニット150をマスタとする防振制御ループを開始する。一方、S419では、レンズ側防振制御部126は、レンズユニット150をスレーブとする防振制御ループを開始する。
最初に、レンズユニット150をマスタとする防振制御ループについて説明する。S405で、レンズ側防振制御部126は、レンズ側振れ検出部125により取得された振れ角速度データを取得する。
S406〜S415の各ステップの処理は、図6におけるS106〜S115の各ステップの処理と同様である。但し、図6の説明においてカメラ本体100の構成要素について言及した部分とレンズユニット150の構成要素に言及した部分とを適宜入れ替える読み替えを行う。例えば、カメラ側防振制御部133が行う処理として説明した部分は、レンズ側防振制御部126が行う処理として読み替える。同様に、カメラ側振れ検出部131の振れ角速度データは、レンズ側振れ検出部125の振れ角速度データとして読み替える。
S416で、レンズ側協調制御部129は、検出した振れ量に対して、協調制御特性の反映を行う。この処理は、図6のS116における処理と同様であるが、レンズ側の分割比率又は周波数帯域に基づいて協調制御特性を反映させる点が異なる。カメラ側とレンズ側で像ブレ補正量を振幅分割する場合、例えばカメラ側が40%、レンズ側が60%を担う場合を考える。この場合、レンズ側協調制御部129は、S415で算出された、HPF及びLPFの処理後の振れ角度データに対して、60%を乗算する。また、カメラ側とレンズ側で像ブレ補正量を周波数分割する場合、例えばカメラ側が3Hz未満の低周波、レンズ側が3Hz以上の高周波を担う場合を考える。この場合、レンズ側協調制御部129は、S415で算出された、HPF及びLPFの処理後の振れ角度データに対して、3Hz以上の周波数帯域をHPFで抽出する。振幅分割又は周波数分割された振れ角度がレンズ側の補正範囲を超えていた場合は、レンズ側協調制御部129は、その補正範囲でクランプを行う。
S417で、レンズ側振れ補正量演算部154は、協調制御特性が反映された振れ角度に対して、ズーム倍率や被写体距離に関するゲインを乗じることにより、最終的な振れ補正量の算出を行う。
S418は、レンズユニット150をマスタとする防振制御ループの末尾である。S402で設定された制御周期毎に、S404〜S418の防振制御ループ内の処理が繰り返し実行される。撮影終了などにより防振制御が終了すると、処理が防振制御ループを抜けて終了する。
レンズユニット150をスレーブとする防振制御ループ(S419〜S424)の処理は、カメラ本体100をスレーブとする防振制御ループ(図6のS119〜S124)と同様である。但し、図6の説明においてカメラ本体100の構成要素について言及した部分とレンズユニット150の構成要素に言及した部分とを適宜入れ替える読み替えを行う。例えば、カメラ側防振制御部133が行う処理として説明した部分は、レンズ側防振制御部126が行う処理として読み替える。同様に、カメラ側振れ検出部131の振れ角速度データは、レンズ側振れ検出部125の振れ角速度データとして読み替える。
以上説明したように、第1の実施形態によれば、カメラ本体100の像ブレ補正制御装置及びレンズユニット150の像ブレ補正制御装置のうち、より良好な特性を持つ振れ検出部を持つ方がマスタとして防振制御ループを実行する。他方の像ブレ補正制御装置はスレーブとして防振制御ループを実行する。所定の条件(振れが小さいなど)が満たされる場合、マスタの像ブレ補正制御装置は、マスタの像ブレ補正制御装置の振れ検出部で検出した振れに基づいてフィルタ処理に適用するカットオフ周波数を決定し、スレーブの像ブレ補正制御装置へ送信する。これにより、マスタ及びスレーブの両方の像ブレ補正制御装置において、より良好な特性を持つ振れ検出部で検出した振れに基づいて決定されたカットオフ周波数を使用することが可能となる。
以上、撮像装置を例にして説明してきたが、本発明は撮像装置のみに限定されるものではなく、撮像装置を有する携帯機器にも適用可能である。
[その他の実施形態]
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
100…カメラ本体、125…レンズ側振れ検出部、126…レンズ側防振制御部、129…レンズ側協調制御部、131…カメラ側振れ検出部、133…カメラ側防振制御部、141…カメラ側協調制御部、150…レンズユニット

Claims (12)

  1. 撮像装置の像ブレを、所定の分担規則に従って第2の像ブレ補正制御装置と分担して補正する像ブレ補正制御装置であって、
    前記撮像装置の振れを検出する第1の検出手段により検出された振れ情報を取得する取得手段と、
    前記第1の検出手段の第1の特性が前記第2の像ブレ補正制御装置が備える第2の検出手段の第2の特性よりも良好であるか否かを判定する判定手段と、
    前記第1の特性が前記第2の特性よりも良好な場合に、前記第1の検出手段により検出された前記振れ情報に基づいて第1のカットオフ周波数を決定する第1の決定手段と、
    前記第1の特性が前記第2の特性よりも良好な場合に、前記第2の像ブレ補正制御装置が使用するカットオフ周波数として前記第1のカットオフ周波数を前記第2の像ブレ補正制御装置へ送信する送信手段と、
    前記第1の特性が前記第2の特性よりも良好でない場合に、前記第2の像ブレ補正制御装置から第2のカットオフ周波数を受信する受信手段と、
    前記第1の検出手段により検出された前記振れ情報に対してフィルタ処理を行うフィルタ手段であって、前記第1の特性が前記第2の特性よりも良好な場合、前記フィルタ処理に前記第1のカットオフ周波数を適用し、前記第1の特性が前記第2の特性よりも良好でない場合、前記フィルタ処理に前記第2のカットオフ周波数を適用する、フィルタ手段と、
    前記フィルタ処理が行われた振れ情報及び前記所定の分担規則に基づいて補正量を決定する第2の決定手段と、
    を備えることを特徴とする像ブレ補正制御装置。
  2. 前記振れ情報が示す振れが小さい振れに対応する第1の基準を満たさない場合、前記送信手段は、前記第1のカットオフ周波数の代わりに、前記第2の像ブレ補正制御装置が使用するカットオフ周波数を前記第2の像ブレ補正制御装置が決定することを指示する第1の指示情報を送信する
    ことを特徴とする請求項1に記載の像ブレ補正制御装置。
  3. 前記振れ情報が示す振れの振幅の絶対値が第1の振幅閾値未満であり、かつ前記振れ情報が示す振れの周波数が第1の周波数閾値未満である場合に、前記振れ情報が示す振れは前記第1の基準を満たす
    ことを特徴とする請求項2に記載の像ブレ補正制御装置。
  4. 前記振れ情報が示す振れが前記第1の基準を満たさない場合であっても、前記振れ情報が示す振れが大きい振れに対応する第2の基準を満たし、かつ前記所定の分担規則が前記撮像装置の振れの振幅の半分未満を前記像ブレ補正制御装置が担うという分担規則である場合、前記送信手段は、前記第1のカットオフ周波数を送信する
    ことを特徴とする請求項2又は3に記載の像ブレ補正制御装置。
  5. 前記振れ情報が示す振れが前記第1の基準を満たさない場合であっても、前記振れ情報が示す振れが大きい振れに対応する第2の基準を満たし、かつ前記所定の分担規則が前記撮像装置の振れの高周波成分を前記像ブレ補正制御装置が担うという分担規則である場合、前記送信手段は、前記第1のカットオフ周波数を送信する
    ことを特徴とする請求項2又は3に記載の像ブレ補正制御装置。
  6. 前記振れ情報が示す振れの振幅の絶対値が第2の振幅閾値以上であり、かつ前記振れ情報が示す振れの周波数が第2の周波数閾値以上である場合に、前記振れ情報が示す振れは前記第2の基準を満たす
    ことを特徴とする請求項4又は5に記載の像ブレ補正制御装置。
  7. 前記第1の特性が前記第2の特性よりも良好でない場合、
    前記受信手段は、前記第2の像ブレ補正制御装置から前記第2のカットオフ周波数、又は前記像ブレ補正制御装置が使用するカットオフ周波数を前記像ブレ補正制御装置が決定することを指示する第2の指示情報を受信し、
    前記受信手段が前記第2の指示情報を受信した場合、前記第1の決定手段は、前記振れ情報に基づいて前記第1のカットオフ周波数を決定し、
    前記フィルタ手段は、前記フィルタ処理に前記第1のカットオフ周波数を適用する
    ことを特徴とする請求項1乃至6のいずれか1項に記載の像ブレ補正制御装置。
  8. 請求項1乃至7のいずれか1項に記載の像ブレ補正制御装置と、
    撮像素子と、
    前記補正量に従って前記撮像素子を光軸に直交する方向に駆動する補正手段と、
    を備えることを特徴とするカメラ本体。
  9. 請求項1乃至7のいずれか1項に記載の像ブレ補正制御装置と、
    撮像素子と、
    前記撮像素子により生成される撮像信号において画像として取得する位置を前記補正量に従って変更する補正手段と、
    を備えることを特徴とするカメラ本体。
  10. 請求項1乃至7のいずれか1項に記載の像ブレ補正制御装置と、
    補正レンズを含む撮影光学系と、
    前記補正量に従って前記補正レンズを光軸に直交する方向に駆動する補正手段と、
    を備えることを特徴とするレンズユニット。
  11. 撮像装置の像ブレを、所定の分担規則に従って第2の像ブレ補正制御装置と分担して補正する像ブレ補正制御装置が実行する像ブレ補正制御方法であって、
    前記撮像装置の振れを検出する第1の検出手段により検出された振れ情報を取得する取得工程と、
    前記第1の検出手段の第1の特性が前記第2の像ブレ補正制御装置が備える第2の検出手段の第2の特性よりも良好であるか否かを判定する判定工程と、
    前記第1の特性が前記第2の特性よりも良好な場合に、前記第1の検出手段により検出された前記振れ情報に基づいて第1のカットオフ周波数を決定する第1の決定工程と、
    前記第1の特性が前記第2の特性よりも良好な場合に、前記第2の像ブレ補正制御装置が使用するカットオフ周波数として前記第1のカットオフ周波数を前記第2の像ブレ補正制御装置へ送信する送信工程と、
    前記第1の特性が前記第2の特性よりも良好でない場合に、前記第2の像ブレ補正制御装置から第2のカットオフ周波数を受信する受信工程と、
    前記第1の検出手段により検出された前記振れ情報に対してフィルタ処理を行うフィルタ工程であって、前記第1の特性が前記第2の特性よりも良好な場合、前記フィルタ処理に前記第1のカットオフ周波数を適用し、前記第1の特性が前記第2の特性よりも良好でない場合、前記フィルタ処理に前記第2のカットオフ周波数を適用する、フィルタ工程と、
    前記フィルタ処理が行われた振れ情報及び前記所定の分担規則に基づいて補正量を決定する第2の決定工程と、
    を備えることを特徴とする像ブレ補正制御方法。
  12. コンピュータを、請求項1乃至7のいずれか1項に記載の像ブレ補正制御装置の各手段として機能させるためのプログラム。
JP2019117711A 2019-06-25 2019-06-25 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム Pending JP2021004939A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019117711A JP2021004939A (ja) 2019-06-25 2019-06-25 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム
US16/909,492 US11190687B2 (en) 2019-06-25 2020-06-23 Image blur correction control apparatus, camera body, lens unit, image blur correction control method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117711A JP2021004939A (ja) 2019-06-25 2019-06-25 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム

Publications (1)

Publication Number Publication Date
JP2021004939A true JP2021004939A (ja) 2021-01-14

Family

ID=74043857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117711A Pending JP2021004939A (ja) 2019-06-25 2019-06-25 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム

Country Status (2)

Country Link
US (1) US11190687B2 (ja)
JP (1) JP2021004939A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004939A (ja) * 2019-06-25 2021-01-14 キヤノン株式会社 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231445A (en) * 1990-07-09 1993-07-27 Canon Kabushiki Kaisha Image stabilizing device for camera
JP2006113264A (ja) * 2004-10-14 2006-04-27 Fujinon Corp 像振れ補正装置
JP4401949B2 (ja) * 2004-11-26 2010-01-20 キヤノン株式会社 動画撮像装置及び動画撮像方法
JP5460170B2 (ja) 2009-08-03 2014-04-02 キヤノン株式会社 撮像装置及びその制御方法
US10771700B2 (en) * 2018-01-15 2020-09-08 Canon Kabushiki Kaisha Image blur correction apparatus, interchangeable lens, camera body, image blur correction method, and storage medium
JP2021004939A (ja) * 2019-06-25 2021-01-14 キヤノン株式会社 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム

Also Published As

Publication number Publication date
US11190687B2 (en) 2021-11-30
US20200412955A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
JPH11177879A (ja) 振れ補正装置、撮像装置、撮像システム、カメラユニット、及びレンズユニット
JP7045877B2 (ja) 像振れ補正装置、撮像システム、及びそれらの制御方法、プログラム
US11012627B2 (en) Image capturing apparatus and control method thereof
US11729500B2 (en) Lowpass filter control apparatus and lowpass filter control method for controlling variable lowpass filter
JP5645486B2 (ja) カメラシステム及びこれに用いられるレンズユニット、カメラユニット
JP2013156540A (ja) 撮像装置およびその制御方法
JP2008209577A (ja) カメラ
US7570879B2 (en) Image sensing apparatus, control method therefor, and automatic focus adjusting device for image sensing apparatus
JP2011254298A5 (ja)
JP5335408B2 (ja) 焦点調節装置及び方法
JP2021004939A (ja) 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム
JP7080118B2 (ja) 撮像装置及びその制御方法、撮影レンズ、プログラム、記憶媒体
JP6087714B2 (ja) 撮像装置およびその制御方法
JP6053287B2 (ja) 自動焦点調節装置および自動焦点調節方法
JP7481925B2 (ja) 像ブレ補正制御装置及び方法、プログラム、記憶媒体
US20210075976A1 (en) Imaging apparatus
JP7269119B2 (ja) 像ブレ補正制御装置、カメラ本体、レンズユニット、像ブレ補正制御方法、及びプログラム
JP2016066007A (ja) 撮像装置及びその制御方法
JP2016206310A (ja) 撮像装置およびその制御方法
JP5602774B2 (ja) 撮像装置およびその制御方法、レンズユニットおよびその制御方法
JP2017058563A (ja) 自動焦点調節装置、撮像装置、および自動焦点調節方法
JP2004325833A (ja) カメラおよび焦点調整方法
JPH0915486A (ja) 交換レンズ式カメラシステム
JP2024033494A (ja) 防振制御装置及び方法
JPH04352573A (ja) ビデオカメラ装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113