JP2021000835A - ヒートパイプ機能付成形金型 - Google Patents

ヒートパイプ機能付成形金型 Download PDF

Info

Publication number
JP2021000835A
JP2021000835A JP2020156145A JP2020156145A JP2021000835A JP 2021000835 A JP2021000835 A JP 2021000835A JP 2020156145 A JP2020156145 A JP 2020156145A JP 2020156145 A JP2020156145 A JP 2020156145A JP 2021000835 A JP2021000835 A JP 2021000835A
Authority
JP
Japan
Prior art keywords
mold
heat
heat pipe
refrigerant
elongated hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020156145A
Other languages
English (en)
Inventor
憲生 多田
Norio Tada
憲生 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu Tadaseiki Co Ltd
Original Assignee
Gifu Tadaseiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu Tadaseiki Co Ltd filed Critical Gifu Tadaseiki Co Ltd
Priority to JP2020156145A priority Critical patent/JP2021000835A/ja
Publication of JP2021000835A publication Critical patent/JP2021000835A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】金型に分散する熱量を少なくし、薄手の合成樹脂の射出成形体であっても、金型の特定部分のみ部分的に冷却したり、加熱したりすることができ、小型化可能な成形金型の提供。【解決手段】合成樹脂を成形する射出成形体を金属粉体で積層造形されてなる金型60に形成された射出成形体70を冷却する冷媒路42a,42b,52a,52bと、冷媒路と熱的に結合しており、金型に対する熱移動を自在としたヒートパイプ機能構成体は、ヒートパイプ機能構成体を構成する金属パイプを省略して、一端を金型に形成した長孔41とし、他端を前記冷媒路側に配設して作動液を封止する構造体とし、ヒートパイプ機能のみを持たせたものである。【選択図】図17

Description

本発明は、合成樹脂の射出成形の際に使用される金型の冷却または加熱に関するもので、詳しくは、それら冷却機構及び加熱機構を含んだヒートパイプを用いた成形金型に関するものである。この発明のヒートパイプ機能付成形金型は、金型を流れる溶融樹脂の流れ、溶融樹脂の温度を制御するヒートパイプ機能付成形金型に属するものである。
なお、ここでは、冷却を前提に説明するが、金型の要部加熱についても基本的に同一であるから、ここでは、冷却のみを前提に説明する。
図1は従来の狭い位置で薄手の合成樹脂で射出成形する概念を説明する断面図、図2は更に狭い位置で薄手の合成樹脂で射出成形する概念を説明する断面図、図3は他の従来の射出成形の概念を説明する断面図である。
図1乃至図3は射出成形の対象が針状の山で掲載されている針状突起部3a,3b,3c,3dである場合の成形の仕方を説明するものである。
一般に、図1乃至図3に示すような射出成形体3の対象が針状突起部3a,3b,3c,3dである場合、金型1及び図2に示す入子2との間に射出成形体3が形成されるように配置し、入子2の内部には上部で折り返す冷媒路6を形成し、入子2を内部から冷やすように形成されている。冷媒の通路として形成された冷媒路6は入子2の中心にドリル穴4aを穿設し、ドリル穴4aには1/2断面となる位置に遮蔽板5が配設されている。冷媒路6を通過する冷媒が、右方向から入ると、遮蔽板5で進路を変更されて、直角に上昇し、遮蔽板5の上端でUターンし、下降して左方に流れる。
この冷却方法は、冷媒路6に近い金型1、他の金型1aは、冷媒路6を通過する冷媒によって冷却されるが、常に金型1、金型1aが冷えるように冷媒を流して冷却状態としておいても、入子2付近の図1に示すP点付近では熱がこもり、射出成形がうまくいかない場合がある。
針状突起部3a,3b,3c,3dが長い場合には、図2に示すように、射出成形体3の全体を入子2の全長よりも若干短くし、射出成形体3の全体を冷媒路6で冷却している。即ち、入子2の上部で折り返す冷媒路6を形成し、入子2を太い冷媒路6a、細い冷媒路6bで冷やすようにしている。しかし、冷媒路6bは先端に行くほど細くなること、先端では冷媒の流速が乱れ、酸化物等により流路詰まりが発生する確率が高くなる。
そこで、流路詰まりが生じないように、一般には冷媒路6を通過する冷媒を酸化し難い材料としているが、それでも異物等により流路詰まりが生じる場合がある。
また、冷媒路6を複数個直列に接続し、供給圧力を上げ、詰まり難さの条件を設定する方法を選択する当業者もいる。しかし、この直列接続された1個が流路詰まりを起こすと、必要な流量を確保できなくなるという問題点がある。
また、逆に、並列に接続する方法を採用すると、各冷媒路6の流体抵抗により、圧力バランスの調整が難しくなる。また、射出成形を繰り返した後、熱のこもりが生じた後、流路詰まりが発見できるものであるから、針状突起部3a,3b,3c,3dの成形ロスに無駄が生じざるを得ない。
更に、冷媒路6の直径方向に冷媒を循環させる遮蔽板5a,5b,5c,5dを挿入し、冷媒の流れる距離を長くすることにより、冷却能力を上げている。金型1,1aを流れる溶融樹脂の流れを左右する温度の制御は、樹脂製品に肉厚の薄い材料の冷却、樹脂製品の細い先端部分までを冷却することは困難である。例えば、図3のように、樹脂製品の開口径L1が小さい場合、更に、上部中央の径L2では冷媒の温度の影響が伝わり難くなる。
図3に示す金型のa点の温度は低いが、金型のb点の温度はa点の温度よりも低くならない。金型のb点の温度はa点の温度よりも低くならないばかりか、樹脂製品で断熱され、そこに熱がこもり、冷却できない箇所が生じることになる。
そこで、冷媒路6の直径を細くすることにより、冷媒の流れる流路を樹脂製品の冷媒路6に近付けて冷却する方法が考えられる。例えば、図3のように、射出成形体3の開口径L1から細管を挿入し、射出成形体3から放熱する方法がある。
このとき、細管を流れる冷媒の流動抵抗が細管より高くなる。したがって、流動抵抗の高さにより、細管を流れる冷媒の量が低減され、流れる冷媒の量が低減するから、冷却能力を上げることができない。
即ち、図1の欠点を解消するために金型1,1aの先端部まで冷媒を通すとすると、その細管の内径は細くなり、毛細管に近似したものとなるから、その細管を直列に繋げば流動抵抗が大きくて、流量を稼ぐことができない。更に、細管は詰まる可能性が高く実用化できない。
したがって、図4に示す直列接続した細管を配設するにしても、射出成形体3の径を小さくするには限度があることを示している。
図1乃至図3の従来例の欠点は、図4に示す細管の直接接続にあるから、図5のように、細管の並列接続をすれば、図1乃至図3の欠点が回避されるように思われる。当然ながら、並列回路を構成すれば、金型1,1aの細い先端部に通した毛細管の流れと本流6Aと本流6Bの流れとの間に並列接続すれば、直接接続よりも冷却流量は増加でき、流量を稼ぐことができる。しかし、細管が詰まる可能性が高いことに違いはない。
加えて、細管が複数本配設され、それらの長さが均一であっても、その配設位置によってベルヌーイの定理により、流体圧、流量が異なり、金型1,1aの温度を均一に冷却するには、その流量制御理論が確立されておらず不明である。
そこで、図6のように、ヒートパイプ7a,7b,7c,7dによって金型1,1aの熱エネルギーを射出成形体3の冷媒に移動させる方法を検討する余地が出てくる。しかし、金型1,1aとヒートパイプを別々に製造して、それらを一体化すると、大型化となり、金型の細い先端部に通した細管とする技術が十分に生きてこない。また、ヒートパイプ7a,7b,7c,7dとしての細管は異物が詰まる可能性が低く、また、3Dプリンターでこれらを一体化すれば、小型で高機能のものが得られる。
ここで、従来技術を特許・実用新案公報から抽出すると、特許文献1を挙げることができる。
特許文献1の技術は、図7に示すように、金型1Aと金型1Bのキャビティ面1Cの背後に設けられたノズル室1Dと、ノズル室1Dに連通し外部に接続された外部接続通路1Eと、ノズル室1Dに配設され炭酸ガスをノズル室1Dのキャビティ面1C側へ向けて噴射するノズル1Fと、炭酸ガス供給手段からノズル1Fへ炭酸ガスを供給する炭酸ガス供給通路1Gとを有し、一つの射出成形体を成形する射出成形の1ショットにおいて、溶融樹脂がキャビティ1Hへ注入され始めた後に、炭酸ガスを所定時間、噴射するものである。
この技術は、ターゲットとなるキャビティ面1C側の冷却方法で、蓄熱が生じ易いノズル室1Dに連通し、外部に接続された炭酸ガス供給通路1Gに高熱伝導部材としてのヒートパイプ1Jを挿入してあり、そのターゲットのキャビティ面1C側とは反対側に向けて炭酸ガスを噴射するノズル1Fを設置している。
また、特許文献2は、図8に示すプラスチック光学素子18を射出成形により成形する金型11において、該金型11内において移動しない固定側入子12と進退自在に取り付けられている可動側入子13と、可動側入子13と同方向に進退自在に取り付けられ、可動側入子13の温度を調整するための冷却管14,15,16等からなる温度調整手段と、可動側入子13に一端側が埋設され、他端が温度調整手段に取り付けられ、固定側入子12の温度調整に供すると共に可動側入子13と温度調整手段とを連動して進退自在なヒートパイプ17とを備えている。
このようにして特許文献2には、進退自在な可動側入子13の温度調整を適切に行うことができる構成を持った金型11となる。
特開2008−290448号公報 特開2005−219445号公報
特許文献1の技術は、ヒートパイプ17を挿入して目的の箇所の温度を低下させる手段として使用している。しかし、冷却熱はキャビティ面1C側に伝わらず、金型1Aに伝わって分散されてしまう。したがって、実用化には不向きである。
また、特許文献2は、ヒートパイプ17の一端が可動側入子13に埋設され、他端が冷媒路14,15,16等からなる温度調整手段に取付けられて固定側入子12の温度調整に供すると共に、可動側入子13と温度調整手段とを連動して進退自在なヒートパイプ17としている。しかし、特許文献2の技術は、ヒートパイプ17を挿入して目的の箇所の温度を調整する手段に使用されているものの、温度調節は固定側入子12に留まらず、金型11に伝わって分散されてしまう。したがって、この技術も実用化には解決しなければならない問題であった。
このように、特許文献1及び特許文献2は、ヒートパイプ1J,17を使用しており、熱エネルギの伝搬はそのヒートパイプ1J,17の能力に委ねられている。特許文献1及び特許文献2の何れにせよ、急峻な立ち上がりを得るには、金型をコンパクトにする必要があった。
即ち、特許文献1及び特許文献2に記載のヒートパイプ1J,17による熱エネルギの伝搬は、金型1A、または固定側入子12及び可動側入子13と、冷媒路1Kまたは冷媒路14,15,16と如何に伝搬効率を良く伝えるかにあります。
その意味で、図6のヒートパイプ7a,7b,7c,7dは、冷媒路6との接触が部分接触となり、熱伝導される部分が一部となる。結果、何処かに熱のこもる成形金型となり、実用的には使用できなくなる。
そこで、本発明は従来の問題点を解消すべくなされたもので、金型の冷却温度を低下させ、熱のこもりを少なくし、薄手の合成樹脂の射出成形体であっても、金型の特定部分のみ部分的に冷却したり、加熱したりすることができ、小型化可能な成形金型中にヒートパイプを組み込んだヒートパイプ機能付成形金型の提供を課題とするものである。
請求項1の発明のヒートパイプ機能付成形金型は、合成樹脂を成形する射出成形体または押出成形体を金属粉体で積層造形されてなる金型と、前記射出成形体または前記押出成形体を冷却する前記金型に形成された冷媒路と、一端が前記冷媒路と熱的に結合し、他端が前記金型と熱的に結合する密閉空間、前記密閉空間内を作動液が気化と液化を繰り返す前記金型から前記冷媒路に対する熱移動を自在としたヒートパイプ機能構成体とを具備し、前記ヒートパイプ機能構成体は、前記ヒートパイプ機能構成体を構成する金属パイプを省略して、一端を前記金型に形成した密閉空間長孔とし、他端を前記冷媒路側に配設して作動液を封止し、前記作動液を連続的に低温側から高温側に移動させるウィックを構成したものである。
ここで、上記金型は、上型または下型、キャビティまたはコアを問うものではなく、前記合成樹脂からなる前記射出成形体または前記押出成形体を形成するもので、一方または全体を形成するキャビティまたはコアを含むもので、金属出力3Dプリンター(三次元プリンター)を使用し、合成樹脂を成形する射出成形体または押出成形体を金属粉体で積層造形される。上記金型に設けた前記密閉空間長孔は、その周囲を毛細管現象により封入された前記作動液を連続的に低温側から高温側に移動させるウィックとしたものである。ここで、金属出力3Dプリンターで形成した前記金型に形成した密閉空間長孔は、ウィックを形成する空間であるから、熱エネルギの熱が移動する伝熱抵抗の小さい通路を確保できればよい。
なお、ヒートパイプ機能構成体は、一端が前記冷媒路と熱的に結合し、他端が前記金型と熱的に結合する密閉空間、前記密閉空間内を作動液が気化と液化を繰り返す前記金型から前記冷媒路に対する熱移動を自在とした構成である。
また、ヒートパイプ機能構成体は、前記作動液の蒸発と前記作動液の凝縮を連続的に行う前記金型に形成した前記密閉空間長孔とし、前記密閉空間長孔内の壁面側に位置し、毛細管現象によって封入された前記作動液を連続的に低温側から高温側に移動させるウィック、及び前記作動液が沸騰し、その蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと移動し、前記蒸気が凝縮することによって、凝縮熱が放出される構造としたものである。
そして、ヒートパイプ機能付成形金型の前記作動液を連続的に低温側から高温側に移動させるウィックは、前記金属パイプの壁面に微細多孔構造金属(ポーラス)に形成したものである。
ここで、上記密閉空間長孔の壁面に形成した微細多孔構造金属であり、毛細管現象が生じるものであればよい。
更に、ヒートパイプ機能付成形金型の前記作動液を連続的に低温側から高温側に移動させるウィックは、前記金型の密閉空間長孔内の壁面側の全内面に位置する連通した微細多孔構造金属とするか、前記密閉空間長孔内の壁面側に位置する1条以上のスパイラル細管とその中心管路を端部でまとめてなる中心管路とするか、前記密閉空間長孔内の壁面側に位置する複数本のパラレル細管及び端部でまとめた中心管路とするかの何れか1つからなるものである。
ここで、前記金型に設けた密閉空間長孔内の壁面側の全内面に位置する連通した微細多孔構造金属から熱エネルギのロスを少なくして前記金型に形成した密閉空間長孔内の壁面側の全内面に位置する連通した微細多孔構造金属を介して1条以上のスパイラル細管または複数本のパラレル細管に熱伝導されるから、熱エネルギ損失の少ない構成が可能となる。
請求項1の発明のヒートパイプ機能付成形金型は、一端が前記冷媒路と熱的に結合し、他端が前記金型と熱的に結合する密閉空間、前記密閉空間内を作動液が気化と液化を繰り返す前記金型から前記冷媒路に対する熱移動を自在としたヒートパイプ機能構成体は、前記ヒートパイプ機能構成体を構成する金属パイプを省略して、一端を前記金型に形成した密閉空間長孔とし、他端を前記冷媒路側に配設して作動液を封止したものである。
したがって、前記ヒートパイプ機能構成体を構成する金属パイプを省略して、直接、前記金型に前記ヒートパイプの金属パイプ相当部分を形成し、他端には前記冷媒路側に配設して作動液を封止し、ヒートパイプ機能構成体の機能を持たせたものであるから、細い金属パイプを挿入する必要がなく、前記金型が簡単に形成できる。
また、ヒートパイプ機能付成形金型のヒートパイプ機能は、前記作動液の蒸発と前記作動液の凝縮を連続的に行う金属粉体で積層し、造形した前記金型に形成した密閉空間長孔と、前記密閉空間長孔内の壁面側に位置し、毛細管現象により封入された前記作動液を連続的に低温側から高温側に移動させるウィック、及び前記作動液が沸騰し、その蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと移動し、前記蒸気が凝縮することによって、凝縮熱が凝縮部で放出される構造としたものであるから、金属粉体で積層造形された前記金型に形成した密閉空間長孔の内面を前記作動液の蒸発と前記作動液の凝縮を連続的に効率よく行うことができるから、前記密閉空間長孔内の壁面側に位置し、封入された前記作動液を毛細管現象により連続的に低温側から高温側に移動させるウィック、及び前記作動液が沸騰し、その蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと移動し、前記蒸気が凝縮することによって、凝縮熱が凝縮部で効率よく放出される。
また、前記作動液を連続的に低温側から高温側に移動させるウィックは、前記金型に形成した前記密閉空間長孔の壁面に微細多孔構造金属(ポーラス)に形成したものであるから、前記作動液を連続的に低温側から高温側に移動させるウィックが微細多孔構造金属)で形成されているから、前記金型と微細多孔構造金属のウィックとの一体感が強く、熱効率を上げることができる。
そして、ヒートパイプ機能付成形金型の前記作動液を連続的に低温側から高温側に移動させるウィックは、前記金型に形成した密閉空間長孔内の壁面側の全内面に位置する連通した微細多孔構造金属(ポーラス)とするか、前記密閉空間長孔内の壁面側に位置する1条以上のスパイラル細管とその中心管路を端部でまとめてなる中心管路とするか、前記密閉空間長孔内の壁面側に位置する複数本のパラレル細管及び端部でまとめた中心管路とするかの何れか1つからなるから、前記金型と前記密閉空間長孔内の壁面側との伝道が良好で、封入された前記作動液を毛細管現象により連続的に低温側から高温側に移動させるウィック、及び前記作動液が沸騰した蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと熱移動させることができる。
図1は従来の狭い位置で薄手の合成樹脂で射出成形する概念を説明する断面図である。 図2は図1よりも更に従来の狭い位置で薄手の合成樹脂で射出成形する概念を説明する断面図である。 図3は従来の射出成形の概念を説明する断面図である。 図4は想定される冷媒の直接接続による成形金型の原理を説明する構造の説明図である。 図5は想定される冷媒の並列接続によるヒートパイプ機能構成体の原理を説明する構造の説明図である。 図6は想定される冷媒のヒートパイプ機能によるヒートパイプ機能構成体の金型の原理を説明する構造の説明図である。 図7は特許文献1の射出成形の動作原理を説明する説明図である。 図8は特許文献2の射出成形の動作原理を説明する説明図である。 図9は従来の射出成形金型のヒートパイプ動作原理を説明する構造のメッシュウィックの一部断面説明図である。 図10は従来の実施例の射出成形金型のヒートパイプ動作原理を説明する構造のリップルウィックの一部断面説明図である。 図11は従来のヒートパイプの動作原理を説明する説明図である。 図12は本発明の実施の形態1のヒートパイプ機能付成形金型のヒートパイプ機能の動作原理を説明する説明図である。 図13は本発明の実施の形態2のヒートパイプ機能付成形金型のヒートパイプ機能の動作原理を説明する説明図である。 図14は本発明の実施の形態3のヒートパイプ機能付成形金型の動作原理を説明する説明図である。 図15は本発明の実施の形態4のヒートパイプ機能付成形金型の動作原理を説明する説明図である。 図16は本発明の実施の形態5のヒートパイプ機能付成形金型のヒートパイプ機能の動作原理を説明する説明図である。 図17は本発明の実施の形態6のヒートパイプ機能付成形金型のヒートパイプ機能の動作原理を説明する説明図である。 図18は本発明の実施の形態7で、(a)はロボットハンドの機構部分、(b)は合成樹脂を外皮に形成した完成品のロボットハンドである。 図19は本発明の実施の形態7で、(a)は合成樹脂からなる外皮の説明図、(b)は金型の冷却機構を示す説明図である。
以下、本発明の実施の形態について、図面に基づいて説明する。なお、実施の形態において、図示の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。
[実施の形態]
図9は従来のヒートパイプの原理を説明する構造のメッシュウィックの一部断面説明図で、図10は従来のヒートパイプ原理を説明する構造のリップルウィックの一部断面説明図である。また、図11は従来のヒートパイプ原理を説明する断面図である。なお、本実施の形態では、金属パイプ21を構成要件に有するものとして説明する。
図9乃至図11においてヒートパイプ機能構成体として説明するヒートパイプ20は、上側は高温部側25、下側は低温部(冷却部)側22とした垂直に立設するものであるが、所定の角度だけ傾斜させて配置する施工例もある。高温部側25の内壁23の面で作動液24が熱入力26を受けて蒸発し、高温部側25で発生した作動液24の蒸気は金属パイプ21の中心部の空洞を通って下降し、ヒートパイプ20の低温部側22に移動する。作動液24の蒸気は低温部側22に到達する間に冷却され、凝集されて液体となり、金属パイプ21の内壁23に収容され、再度、ウィックで毛細管現象が生じて金属パイプ21の内壁23のメッシュウィックAに沿って上昇する。
即ち、作動液24が金属パイプ21の内壁23で形成されたメッシュウィックAを上昇して高温部側25に戻る。
このように、高温部側25と低温部側22に温度差を与えると、ヒートパイプ20内で作動液24が金属パイプ21内を循環し、高温部から低温部への熱移動が生ずる。
ここで、図9のメッシュウィックAと図10のリップルウィックBは、毛細管現象が生じやすい構造である。本発明を実施する場合には、毛細管現象によって液体が上昇し、その後、上昇しながら蒸発できるものが望ましい。
特に、従来のヒートパイプ20の構造は、図11に示すように、銅または銅合金からなる金属パイプ21の両端を封止して、内部を真空状態としたものである。金属パイプ20の内面は、毛細管現象が生ずるウィックと呼ばれる構造で、例えば、図9のように、金属パイプ21の内周に細かい金網を配設したメッシュウィックAとしてもよいし、図10のように、金属パイプ21の内周に細かいスリットを形成したリップルウィックBとしてもよい。また、作動液24として少量の代替フロンまたは純水を用いることができる。このことから、本実施の形態では内部を真空状態とすることを前提に説明し、製作工程において真空状態に吸引しているが、完成品は金属パイプ21内に水蒸気、代替フロンガス(ハイドロクロロフルオロカーボン(HCFC)、ハイドロフルオロカーボン(HFC)、パーフルオロカーボン(PFC)等)が封入されており、減圧状態になっている。故に、内部の真空状態は厳密な真空状態ではない。
ここでは、従来のヒートパイプ20の動作について説明する。
従来の1本のヒートパイプ20の下端は、使用用途からすれば、ヒートアウト(放熱部)であり、上端はヒートイン(蒸発部)で、熱エネルギは熱入力26側から入り、熱出力27から冷却水を経て排出される。
詳しくは、ヒートパイプ20の上端は、図16及び図17に示す射出成形体70があり、射出成形体70を冷却する場合には、射出成形体70側がヒートイン側となり受熱部を構成している。ここでは、射出成形体70の熱を作動液24の蒸発に使用し、このときの作動液24の蒸気は、金属パイプ21内を移動する。本実施の形態では下降する。このとき、金属パイプ21の壁面側のウィックに接触し、そこで蒸気が液体に変化し、作動液24に戻る。金属パイプ21の壁面のウィックに接触して凝縮した作動液24はヒートアウト(放熱部)で放熱し、凝縮した作動液24はウィック等の毛細管現象で還流となって上昇する。ヒートパイプ20に封入する作動液24としては、ヒートパイプ20の制御する温度によって決定される。このように、射出成形体70の温度は、複数本のヒートパイプ20の金属パイプ21によって冷却化される。
なお、本発明を実施する場合には、前述したヒートパイプ20の形態が、金属パイプ21を有しない構成としている。動作は基本的に金属パイプ21を有するヒートパイプ20と同様であり、金属パイプ21の代わりに上金型40の密閉空間長孔41となっている。念のため、主に、図12乃至図15を用いて、本実施の形態のヒートパイプ機能について説明する。
また、本発明の実施の形態のヒートパイプ機能付成形金型のヒートパイプ機能構成体は、一端が冷媒路53と熱的に結合し、他端が上金型40と熱的に結合する密閉空間が、金属出力3Dプリンターで金属粉を多層化、一体化してヒートパイプ20状の空間として形成したものである。ここでは、ヒートパイプ20とは全く異なるが、表現し難いので仮想ヒートパイプ20Aとして説明する。
そして、密閉空間内、仮想ヒートパイプ20A内の作動液24が気化と液化を繰り返し、上金型40を冷媒路53で冷却する熱移動が自在となる。
図16乃至図17の上金型40(ここでは上金型40の事例のみ説明する)には、仮想ヒートパイプ20Aの機能を発揮させる密閉空間長孔41を形成している。この密閉空間長孔41の径及び長さは、上金型40の厚み、射出成形体の体積、または押し出し速度によって押出成形体の断面積等、その形態によって決定される。
上金型40に形成した密閉空間長孔41の壁面には、図12に示す微細多孔構造金属(ポーラス)Cを構成しており、毛細管現象が生じるものである。微細多孔構造金属Cは発泡金属または細かい穿孔によって毛細管現象を生じさせるように形成した材料であり、上金型40との熱伝導が良好なように金属で形成されている。
なお、図9に示す金属パイプ21、即ち、仮想ヒートパイプ20Aの内周のメッシュウィックA、図10に示すリップルウィックBでも基本的にウィックの性質として相違するものではない。
本実施の形態の微細多孔構造金属Cは、合成樹脂を成形する射出成形体を金属粉体で積層造形されてなる冷媒路42a,42b,52a,52bと熱的に結合している金型60は、金属出力3Dプリンターによって形成しているが、縦断面逆U字状、即ち、指サック状の微細多孔構造金属本体を形成しておき、それを細い角丸な挿入バーで挿入して、微細多孔構造金属Cを上金型40に形成した密閉空間長孔41に組み立ててもよい。本発明の実施の形態では、作動液24の蒸発と作動液24の凝縮を連続的に行う金属粉体で積層造形された上金型40に形成した密閉空間長孔41とし、密閉空間長孔41内の壁面側に位置し、毛細管現象により封入された作動液24を連続的に低温側から高温側に移動させる微細多孔構造金属Cからなるウィックを構成している。
本実施の形態では、微細多孔構造金属Cの開口側に銅または銅合金製のOリング39を配置し、それをボルトの雄螺子28と密閉空間長孔41の端部に螺合できるように形成した雌螺子42とを螺合させて封止させている。特に、密封が必要であるから、押圧力が加わるようにボルト頭28aを設けている。
また、微細多孔構造金属Cの開口側にOリング39を配置し、微細多孔構造金属Cの開口側にOリング39を配置し、そのOリング39と連続する銅合金によって、密閉空間長孔41を減圧にし、所定量の作動液24を収容する容積溜まりを形成してもよい。
上金型40に形成した密閉空間長孔41は、図16に示す上金型40の外側に図示しない射出成形体70があり、射出成形体70を冷却する場合には、射出成形体70側がヒートイン側となり受熱部を構成している。ここでは、射出成形体70の熱を作動液24の蒸発に使用し、このときの作動液24の蒸気は、密閉空間長孔41の中央内を下降する。このとき、密閉空間長孔41の壁面側のウィックに接触し、そこで蒸気が潜熱を奪われ液体に変化し、作動液24に戻る。密閉空間長孔41の壁面のウィックに接触して凝縮した作動液24はヒートアウト(放熱部)で放熱し、凝縮した作動液24はウィック等の毛細管現象で還流となって上昇する。仮想ヒートパイプ20Aに封入する作動液24としては、仮想ヒートパイプ20Aの制御する温度によって決定される。このように、射出成形体70の温度は、複数本の仮想ヒートパイプ20Aによって冷却化される。
また、図13に示す実施の形態は、上金型40に仮想ヒートパイプ20Aの機能を発揮させる密閉空間長孔41を形成している。この密閉空間長孔41の径及び長さは、前者同様、前述した金型の厚み、射出成形体の体積、または押し出し速度によって押出成形体の断面積等、その形態によって決定される。
上金型40に形成した密閉空間長孔41は、その壁面に形成した微細多孔構造金属(ポーラス)C1及び3条の螺合させたスパイラル細管D1、D2、D3及びスパイラル細管D1、D2、D3の中心に配設した中心管路Eから構成されている。ここで、微細多孔構造金属C1はスパイラル細管D1、D2、D3に対する熱伝導を良くしている。3条の螺合させたスパイラル細管D1、D2、D3は、その中心上端には、作動液24が熱入力26を受けて蒸発する蒸気溜まりFが配設されている。したがって、3条の螺合させたスパイラル細管D1、D2、D3内の作動液24は、ウィック等の毛細管現象で還流となって上昇する。その温度の影響を受けて中心管路Eは、熱入力26を受けて蒸発するスパイラル細管D1、D2、D3の頭部の蒸気溜まりFから、中心管路Eを下降しながら作動液24の蒸気が液体化する。
上金型40に形成した密閉空間長孔41は、その壁面に形成した微細多孔構造金属C1であり、毛細管現象が生じるものである。微細多孔構造金属C1は発泡金属または細かい穿孔によって毛細管現象を生じさせるように形成した材料であり、上金型40との熱伝導が良好なように金属で形成している。
スパイラル細管D1、D2、D3の下端と中心管路Eの下端は、密閉空間長孔41の下端に位置し、作動液24を吸い込まず、作動液24の上面よりも高い位置に位置している。図13の実施の形態では、中心管路Eの上端にスパイラル細管D1、D2、D3を接続しているが、スパイラル細管D1、D2、D3の上端を取りまとめる端部としてもよい。
なお、本実施の形態では、密閉空間長孔41の内壁23に微細多孔構造金属C1とスパイラル細管D1、D2、D3と中心管路Eを具備しているが、微細多孔構造金属C1、スパイラル細管D1、D2、D3、中心管路Eの1以上を割愛することができる。
また、図14に示す実施の形態は、前述の実施の形態と同様、仮想ヒートパイプ20Aの機能は、密閉空間長孔41の径及び長さは、前述した金型の厚み、射出成形体の体積、または押し出し速度によって押出成形体の断面積等、その形態によって決定される。
上金型40に形成した密閉空間長孔41は、その密閉空間長孔41の壁面の周囲に配設したパラレル細管G1,G2,・・・,Gnが密閉空間長孔41の周りに均一に配置されている。パラレル細管G1,G2,・・・,Gnの上端には、作動液24が熱入力26を受けて蒸発する蒸気を集める蒸気溜まりJが配設されている。その蒸気溜まりJの中心から下方には、熱エネルギは熱入力26から入り、熱出力27から排出される通路が形成されている。密閉空間長孔41の壁面の周囲に配設された大径管路Hの下端部は、作動液24の液面より上に密閉空間長孔41の下端が設けられている。大径管路Hも下端が作動液24の液面より上に密閉空間長孔41の下端が設けられている。
密閉空間長孔41の壁面の周囲に配設したパラレル細管G1,G2,・・・,Gnは、隙間の内配設が望ましいが、密閉空間長孔41の周りに均一に、密に配置されているのが望ましい。また、大径管路Hも下端が作動液24の液面より上に位置しているが、本発明を実施する場合には、密閉空間長孔41の略全長としてもよいし、1/2の長さとしてもよい。しかし、大径管路Hの内面は、環状の微細多孔構造金属とするのが望ましい。
図15に示す実施の形態は、前述の図14に示す実施の形態と同様な点は説明を省略する。上金型40に仮想ヒートパイプ20Aを機能させる密閉空間長孔41を形成している。この密閉空間長孔41の径及び長さは、前述した金型の厚み、射出成形体の体積、または押し出し速度によって押出成形体の断面積等、その形態によって決定される。
上金型40に形成した密閉空間長孔41は、その密閉空間長孔41の壁面の周囲に配設したパラレル細管G1,G2,・・・,Gnが密閉空間長孔41の周りに均一に配置されている。パラレル細管G1,G2,・・・,Gnの中心上端には、作動液24が熱入力26を受けて蒸発する蒸気を集める蒸気溜まりJが配設されている。その中心から下方には、熱エネルギは熱入力26から入り、熱出力27から排出される大径管路Hが形成されている。密閉空間長孔41の壁面の周囲に配設したパラレル細管Gの下端部は、作動液24の液面より上に密閉空間長孔41の下端が設けられている。大径管路Hも下端が作動液24の液面より上に密閉空間長孔41の下端が設けられている。
ボルトのボルト頭28aの雄螺子28には、1枚〜10枚程度の複数枚のフィン29a,29cをワッシャ29b,29dによって距離を離し、複数枚のフィン29a,29c及びワッシャ29b,29dによって、ヒートシンク30を構成している。ヒートシンク30は、冷媒路52aと冷媒路52bとの間に配設した冷媒空間53に配設されている。
したがって、ヒートシンク30を構成する複数枚のフィン29a,29c及びワッシャ29b,29dによって冷却され、密閉空間長孔41を冷却することができ、また、上金型40を冷却することができる。
なお、ここでは、微細多孔構造金属C、スパイラル細管D、中心管路E、蒸気溜まりF、パラレル細管G、大径管路H、蒸気溜まりJ等を組み合わせたものであるが、本発明を実施する場合には、これを任意に組み合わせればよい。
次に、図16及び図17を用いて上金型40とそれに形成した密閉空間長孔41、冷媒路52a,52bに配設した冷媒空間53について説明する。
本実施の形態では、微細多孔構造金属Cの開口側に銅または銅合金製の金属製のOリング39を配置し、それを密閉空間長孔41の端部に螺合出るように形成した雌螺子42を螺合させて封止させている。特に、密封が必要であるから、押圧力が加わるように設けている。
また、微細多孔構造金属Cの開口側にOリング39を配置し、微細多孔構造金属Cの開口側にOリング39を配置し、そのOリング39と連続する銅合金によって、密閉空間長孔41を減圧にし、所定量の作動液24を収容する容積溜まりを形成してもよい。
これらの仮想ヒートパイプ20Aは、図16、図17のように実施される。
例えば、図16及び図17に示すように、上金型40及び下金型50からなる金型60が構成されている。このとき、密閉空間長孔41には冷却媒体を循環させる冷媒路42a及び冷媒路42b、図示しない他の冷媒路が配設されていて、上金型40のキャビティ全体を所定温度に冷却している。射出成形体70としては、所定幅の円弧状のベース71、その外方向側に4本の針状突起部72,73,74,75を設けたものである。下金型50には上金型40と同様、冷媒路52、図示しない冷媒路が配設されていて、下金型50の全体を冷却している。設計的に上金型40と下金型50からなる金型60は、全体が均一に冷却されるようになっている。
なお、冷媒路42a及び冷媒路42bを通る「冷却媒体(冷媒=冷却水)」は、冷却水が殆どであり、金型60を冷却するのに使用される。これに対して、後述するヒートパイプ90が内蔵するのは、作動液であり、代替フロン、水等が使用される。
通常、4本の針状突起部72,73,74,75は、溶融樹脂が針状突起部72,73,74,75の先端方向に流れるときには、ベース71から中央の2本の針状突起部73,74に溶融樹脂が流れることになるが、このとき徐々に溶融樹脂から熱が上金型40に流れ(伝わり)、溶融樹脂の熱が奪われ、急激に流動性が悪化する。
結果、上金型40のキャビティの中央に設けた2本の針状突起部73,74の先端には、溶融樹脂が回りきらない事態も生じ得る。
通常、ベース71は熱損失が少なくなるように、射出成形機の注口を決定しているが、本発明ではそれらを考慮しないで設定できる。以下、これを仔細に説明する。
本実施の形態のヒートパイプ機能付成形金型は、上金型40に射出成形体70を得る4本の針状突起部72,73,74,75と、円弧状の薄いベース71を形成している。上金型40には、温度を下げる冷却媒体を循環させる冷媒路42a及び冷媒路42bが設けられている。冷媒路42a及び冷媒路42bは、図示しない冷媒路と共に、金型60の温度を所定の温度に下げるものであり、通常、前述したように、上金型40と下金型50からなる金型60の温度を下げる冷媒としては水が使用される。本実施の形態の冷媒は、冷却水を前提とする実施例で説明する。
また、下金型50には、冷媒路52a及び冷媒路52bが配設されており、冷媒路52a,52bは、図示しない冷媒路と共に、下金型50の温度を所定の温度に下げるものである。
更に、下金型50には、冷媒路52が配設されており、冷媒路52の相互間には冷媒を収容可能な冷媒空間53としており、冷媒空間53の内面に一致、或いはその前後の距離に設定されている。冷媒空間53は冷媒路52a,52bの相互間に配設され、当該冷媒の流れにある。
本実施の形態では、冷媒空間53を特定サイズのボックスで形成し、冷媒路52a,52bの両端部は、冷媒路52に形成された冷媒を収容可能としている。
冷媒路52a,52bの両端部で挟持された冷媒空間53は、射出成形体70を直接成形するものではなく、速く冷却し、その形状を早く維持したい場合、他の部分よりも熱エネルギを少なくしたい場合に、射出成形体70に冷媒空間53側から冷却するものである。下金型50冷媒空間53を形成している。
但し、射出成形体70を射出するとき、高温高圧の樹脂を供給するので、下金型50の膨張が無視できないので、それを補償できる構造とする必要がある。
なお、本実施の形態におけるボルトのボルト頭28a及び雄螺子28は、冷媒空間53に供給された冷媒は、複数本の仮想ヒートパイプ20Aとして機能させるヒートアウト(放熱部)とし、冷媒路52からその熱エネルギが排出される。その間、複数本のヒートパイプ機能の配設孔は、金属出力3Dプリンターで金属を多層化して、本実施例では4枚のフィンからなるヒートシンク30を形成している。なお、金属出力3Dプリンターによる本実施例の射出成形金型の構成は、下面から順次平面を一体にして立ち上げるものであるが、一体のものは描いても判読できないので、通常の図面として処理している。
また、複数枚のフィンからなるヒートシンク30には、ヒートアウト(放熱部)とヒートイン(受熱部)の温度を排出等により攪拌できるようにしている。
ヒートシンク30は、本実施の形態においては4枚のフィンから構成されており、しかも、金属出力3Dプリンターで金属を多層化して形成しているが、本発明を実施する場合には、それに限定されるものではない。
次に、本実施の形態のヒートパイプ機能付成形金型の各作用、動作について説明する。
例えば、本実施の形態における射出成形体70の円弧状の薄いベース71は、型開きするまでに形状が崩れない程度に硬化している必要がある。また、射出成形機の注口が針状突起部72,75側にあると、針状突起部73と針状突起部74に充填する溶融樹脂が通過する場合には、部分的に熱エネルギが大きくなることがある。
このような場合には、下金型50で形成される円弧状の薄いベース71側に、射出成形する際の射出圧によって変形しない程度の厚み以内に、機械的に必要な程度の厚みを残して冷媒空間53を形成する。また、冷媒空間63には冷媒路52に冷却水が流れ、冷媒路52の一部としているように冷媒路52等の冷却路を形成する。また、その冷媒空間53には、両端に嵌め合いができる寸法精度で形成され、その冷却水が漏れることなくボルト等で締められている。
図12乃至図17の冷媒空間53は、下金型50を用いて、複数枚のフィンからなるヒートシンク30が形成されており、ヒートアウト(放熱)側の媒体の温度を降下させる。即ち、複数枚のフィンはワイヤカット放電加工機または型彫放電加工機で形成してもよいし、下金型50自体を金属出力3Dプリンターによって金属粒子から形成できる。何れにせよ、複数枚のフィンは所定の間隔で配設される。複数枚のフィンには、随処に仮想ヒートパイプ20Aを挿入して固定する装着孔が形成されている。本実施の形態では、ヒートイン(入熱)側とヒートアウト(放熱)側を判断して配設されるが、複数枚のフィンに対して垂直配置に限定されるものではない。所定の傾度を持たせて配設してもよいし、水平に配置してもよい。
このように、ヒートパイプ20の内面には、内面に配設したウィックに毛細管現象が生ずる構造としている。この仮想ヒートパイプ20Aは、一端のヒートアウト(放熱)側が、例えば、放熱により冷やされて低温度になり、また、他端のヒートイン(入熱)側が温められ、ヒートアウト側では加熱により作動液が蒸発し、また、蒸気流となって低温部へと移動する。このとき、当該蒸気流が金属パイプの管壁に接触すると、蒸気流が冷却されて凝縮し、この凝縮液は毛細管現象等によってヒートイン側に戻り、再び、蒸発、移動、凝縮のサイクルを繰り返し、熱を高温側から低温側に連続的に移動させます。
図15の実施の形態においては、ヒートシンク30が金属出力3Dプリンターによって金属粒子から形成することについて説明したが、公知の銅板等からなる薄い金属板を用いて構成することもできる。
複数枚のフィンは、所定の上下間隔で配設された薄手の銅板等からなり、ヒートパイプ20の機能部と密着しており、所定の位置に固着されている。複数枚のフィンの質量が小さいため、ヒートパイプ20の機能のみを固定しても、摺動することはない。しかし、フィン相互間に移動が生じないように、スペーサとして所定の厚みのリングを配設してもよい。
図16及び図17は、本発明の実施の形態のヒートパイプ機能付成形金型である。
例えば、上記実施の形態の図16及び図17に示すように、上金型40及び下金型50からなる金型60が構成されている。射出成形体70としては、所定幅の円弧状のベース71、その外方向側に4本の針状突起部72,73,74,75を設けたものである。下金型50には上金型40と同様、冷媒路52a及び冷媒路52b及び図示しない冷媒路が配設されていて、下金型50の全体を冷却している。設計的に上金型40と下金型50からなる金型60は、全体が均一に冷却されるようになっている。
下金型50には冷媒路52a,52bが配設されており、冷媒路52a,52bには、冷媒空間53が形成され、冷媒の流れの通路としている。
本実施の形態では、冷媒空間53を特定サイズのボックスとして金属出力3Dプリンターで形成しており、冷媒路52a,52bの端部は、形成された冷媒を収容可能な冷媒空間53とし、冷媒空間53と冷媒路52a,52bとは冷媒が漏れないように緻密に形成されている。
冷媒を収容可能な冷媒空間53は、射出成形体70を直接成形するもので、速く冷却してその形状を早く維持したい場合、他の部分よりも熱エネルギの消費を少なくしたい場合に、冷媒空間53側から冷却または加熱するものである。なお、ここでは冷却のみ説明する。
冷媒路52a,52bから冷媒空間53に供給された冷媒は、冷媒路52a,52bの反対側から排出される。実施例では4枚のフィンからなるヒートシンク30を形成している。また、ヒートシンク30は、本実施の形態においては4枚のフィンから構成されており、しかも、金属出力3Dプリンターで金属を多層化して形成しているが、本発明を実施する場合には、それに限定されるものではない。
次に、本実施の形態で使用する仮想ヒートパイプ20Aの機能について整理する。
図示する複数本の仮想ヒートパイプ20Aの下端はヒートアウト(放熱部)、上端はヒートイン(蒸発部)であり、ヒートアウトで冷却して冷媒路52から排熱される。詳しくは、仮想ヒートパイプ20Aの上端は射出成形体70があり、射出成形体70を冷却する場合には、射出成形体70側がヒートイン側の受熱部を構成している。ここでは、射出成形体70の熱を作動液の蒸発に使用し、このときの作動液の蒸気は、上金型40に形成した密閉空間長孔41内を移動する。このとき、上金型40に形成した密閉空間長孔41の壁面、ウィックに接触し、そこで蒸気が液体に変化し、作動液に戻る。上金型40に形成した密閉空間長孔41の壁面、ウィックに接触して凝縮した作動液24はヒートアウト(放熱部)で放熱し、凝縮した作動液はウィック等の毛細管現象で還流となって上昇する。このように、射出成形体70の温度は、複数本の仮想ヒートパイプ20Aによって冷却化される。
次に、仮想ヒートパイプ20Aの作用、金型60の動作について説明する。
例えば、本実施の形態における射出成形体70の円弧状の薄いベース71は、型開きするまでに形状が崩れない程度に硬化している必要がある。また、射出成形機の注口が針状突起部72,75側にあると、針状突起部73と針状突起部74に充填する溶融樹脂が通過する場合には、部分的に熱エネルギが大きくなることがある。このような場合には、下金型50の円弧状の薄いベース71側に位置し、射出成形する際の射出圧によって変形しない程度の厚み以内に、機械的に必要な程度の厚みを残して冷媒空間65を形成する。また、冷媒空間53には、冷媒路52に冷却水が流れ、冷媒路52aと冷媒路52bの一部としているように冷媒路52a,52b等の冷却路を形成する。
冷媒空間53は下金型50に設けたものであり、仮想ヒートパイプ20A及び複数枚のフィンからなるヒートシンク30が形成されている。このヒートパイプ20の機能及び複数枚のフィンからなるヒートシンク30は、下金型50自体を金属出力3Dプリンターによって金属粒子を積層して形成している。何れにせよ、複数枚のフィンは所定の間隔で配設される。仮想ヒートパイプ20Aは、本実施の形態では、ヒートイン(入熱)側とヒートアウト(放熱)側を決定して配設されるが、ヒートシンク30の複数枚のフィンに対して垂直配置に限定されるものではない。所定の傾度を持たせて配設してもよいし、水平に配置してもよい。
このように、仮想ヒートパイプ20Aの内面には、金属出力3Dプリンターで内面に配設したウィックに毛細管現象が生ずる構造としている。この仮想ヒートパイプ20Aは、一端のヒートアウト側が、例えば、放熱により冷やされて低温度になり、また、他端のヒートイン側が温められ、ヒートアウト側では加熱により作動液が蒸発し、また、蒸気流となって低温部へと移動する。このとき、当該蒸気流が上金型40に形成した密閉空間長孔41の管壁に接触すると、蒸気流が冷却されて凝縮し、この凝縮液は毛細管現象等によってヒートイン側に戻り、再び、蒸発、移動、凝縮のサイクルを繰り返し、熱を高温側から低温側に連続的に移動させます。
上記実施の形態のヒートパイプ機能付成形金型は、合成樹脂を成形する射出成形体70を金属粉体で積層造形されてなる金型60と、射出成形体70または前記射出成形体70を冷却する金型60に形成された冷媒路42a,42b,52a,52bと、冷媒路42a,42b,52a,52bと熱的に結合しており、金型60に対する熱移動を自在とした仮想ヒートパイプ20Aとを具備し、仮想ヒートパイプ20Aは、前記仮想ヒートパイプ20Aを構成する金属パイプ21を省略し、一端を金型60に形成した密閉空間長孔41とし、他端を冷媒路側に配設して作動液24を封止し、作動液24を連続的に低温側から高温側に移動させるウィックを構成したものである。
上記実施の形態のヒートパイプ機能付成形金型は、合成樹脂を成形する射出成形体を金属粉体で積層造形されてなる金型60に形成された射出成形体70を冷却する冷媒路42a,42b,52a,52bと、冷媒路と熱的に結合しており、金型60に対する熱移動を自在としたヒートパイプ機能構成体は、仮想ヒートパイプ20Aを構成する金属パイプ21を省略し、一端を金型60に設けた密閉空間長孔41とし、他端を前記冷媒路42a,42b,52a,52b側に配設して、作動液24を封止する構造体とし、ヒートパイプ20の機能のみを持たせたものである。
したがって、金型60が仮想ヒートパイプ20Aの機能の金属パイプ21の機能を担持し、特に、射出成形体70を金属粉体で積層造形されるから作動液24を連続的に低温側から高温側に移動させるウィックが成型時に形成され、仮想ヒートパイプ20Aの機能を構成する部品が少なくなり、前記金型に形成する前記長孔が細い形態とすることができ、場所を取らないから、薄い金型60にも配設することができる。
また、金型60に密閉空間長孔41の内壁23の面を形成するものであるから、熱伝導が良好であり、熱エネルギの損失が少なくなる。また、仮想ヒートパイプ20Aの機能で冷却されるから、通常の熱伝導による放射よりも放熱効率を良くすることができる。
前記仮想ヒートパイプ20Aは、前記金型60に形成した密閉空間長孔41内の壁面側に位置し、毛細管現象により封入された作動液24を連続的に低温側から高温側に移動させるウィック、及び作動液24が沸騰し、その蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと移動し、前記蒸気が凝縮することによって、凝縮熱が凝縮部で放出される構造としたのである。
本実施の形態のヒートパイプ機能付成形金型のヒートパイプ20は、作動液24の蒸発と作動液24の凝縮を連続的に行う金属粉体で積層造形された金型60に形成した密閉空間長孔41とし、密閉空間長孔41内の壁面側に位置し、毛細管現象により封入された作動液24を連続的に低温側から高温側に移動させるウィック、及び作動液24が沸騰し、その蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと移動し、前記蒸気が凝縮することによって、凝縮熱が凝縮部で放出される構造としたものであるから、金属粉体で積層造形された金型60に形成した密閉空間長孔41の内面を作動液24の蒸発と作動液24の凝縮を連続的に効率よく行うことができるから、密閉空間長孔41内の壁面側に位置し、封入された作動液24を毛細管現象により連続的に低温側から高温側に移動させるウィック、及び作動液24が沸騰し、その蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと移動し、前記蒸気が凝縮することによって、凝縮熱が凝縮部で効率よく放出される。作動液24を連続的に低温側から高温側に移動させるウィックは、金型60に形成した密閉空間長孔41の壁面に微細多孔構造金属Cに形成している。
また、上記実施の形態の合成樹脂を成形する射出成形体70は金属粉体で積層造形されてなる金型60と、射出成形を全体に説明したが、本発明を実施する場合には、射出成形体70に拘束されるものではなく、押出成形体にも使用できるものである。
そして、金型60に設けた密閉空間長孔41としては、上金型40及び/または下金型50またはキャビティまたはコアを含むものであり、また、配置関係に拘束を受けるものではない。
更に、冷媒路42a,42b,52a,52bは、上金型40及び/または下金型50またはキャビティまたはコアを含むも金型60に熱的に結合しており、金型60に対する熱移動を自在としたものを含むものである。
そして、作動液24を連続的に低温側から高温側に移動させるウィックは、金型60に形成した密閉空間長孔41の壁面に微細多孔構造金属に形成したものであるから、作動液24を連続的に低温側から高温側に移動させるウィックが微細多孔構造金属で形成されているから、金型60と微細多孔構造金属Cのウィックとの一体感が強く、熱効率を上げることができる。
この作動液24を連続的に低温側から高温側に移動させるウィックは、金型60に形成した密閉空間長孔41内の壁面側の全内面に位置する連通した微細多孔構造金属Cとするか、前記密閉空間長孔41内の壁面側に位置する1条以上のスパイラル細管とその中心管路を端部でまとめてなる中心管路Eとするか、前記密閉空間長孔41内の壁面側に位置する複数本のパラレル細管及び端部でまとめた中心管路Eとするかの何れか1つからなるものである。
本実施の形態のヒートパイプ機能付成形金型は、作動液24を連続的に低温側から高温側に移動させるウィックが、金型60に形成した密閉空間長孔41内の壁面側の全内面に位置する連通した微細多孔構造金属とするか、密閉空間長孔41内の壁面側に位置する1条以上のスパイラル細管Dとその中心管路Eを端部でまとめてなる中心管路Eとするか、前記密閉空間長孔41内の壁面側に位置する複数本のパラレル細管及び端部でまとめた中心管路Eとするかの何れか1つからなるから、金型60と密閉空間長孔41内の壁面側との伝導が良好で、封入された作動液24を毛細管現象により連続的に低温側から高温側に移動させるウィック、及び前記作動液が沸騰した蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと熱移動させることができる。
仮想ヒートパイプ20Aの冷媒路42a,42b,52a,52b側には、前記射出成形体70または押出成形体を冷却するヒートシンク30を配設したものである。したがって、冷媒路42a,42b,52a,52b側には、射出成形体70または押出成形体を冷却するヒートシンク30を配設したものであるから、熱効率を上げることができる。
また、金型60は、合成樹脂を成形する射出成形体または押出成形体を金属粉体で積層造形されてなるが、本発明を実施する場合には、部分的に構成部品を組み付けてもよい。
そして、金型60の密閉空間長孔41は、雄螺子28及びボルト頭28aとの比率は、任意に設定することができる。また、金型60に設けた密閉空間長孔41は、1段のヒートパイプ20の機能を持たせた事例で説明したが、本発明を実施する場合には、冷媒路42a,42b,52a,52bから直列に2段の仮想ヒートパイプ20Aの機能を持たせることができる。
図18及び図19は、他の実施の形態を説明するものである。
図18(a)に示すように、往復ロッド101は、ロボットハンド100の操作杆で、ロボット本体104の図面の左右方向に移動させるものである。往復ロッド101の往復動作は、往復ロッド101の先端に軸支されている一対の補助杆103a,103bに接続されている。一対の補助杆103a,103bの他端は、回動自在に軸支されたハンド対102a,102bに接続されている。したがって、往復ロッド101の往復動作は、一対の補助杆103a,103bの回動角度を変化させ、ハンド対102a,102bを開閉し、その把持力で所望の物品を持ったり、放したりする。
しかし、ハンド対102a,102bを開閉し、その把持力で所望の物品を持ったり、放したりするとき、ハンド対102a,102bが金属であると、所望の物品に傷をつけたり、損傷させたりする。また、そうでなくとも、適正な保持力で持つ場合には、ロボット本体104と往復ロッド101の間の往復動に要する適当な外力は、限られた範囲の外力となり、その力のコントロールが難しい。
そこで、図18(b)に示すように、合成樹脂製(合成ゴムでも可)の射出成形体である外被カバー200を被せて使用することが望ましい。この場合、外被カバー200の厚みが場所によって変化するので、従来の技術では対応できなかった。しかし、本発明の実施の形態のように、仮想ヒートパイプ20Aを使用すると、製造が簡単化でき、しかも、対応が簡単化できる。
即ち、図19(a)は金型60を適宜省略して簡単化した概念図である。
図示のように、金型60に並列に冷媒路201a,201b、冷媒路202a,202b及び冷媒路203を形成する。冷媒路201a,201b及び冷媒路203は、従来技術と相違するものではない。冷媒路202a,202bには、冷媒路202a,202bよりも細い径で仮想ヒートパイプ20a,20bを形成したものである。
図19(a)では、仮想ヒートパイプ20a,20bを各々1本配設した事例を描いているが、本発明を実施する場合には、更に、仮想ヒートパイプ20aまたはヒートパイプ20bを2本以上の多数を配設することもできる。特に、仮想ヒートパイプ20a及び仮想ヒートパイプ20bは、金型60に並列に冷媒路201a,201b、冷媒路202a,202b、冷媒路203に配設し、かつ、それらよりも小径であるので、仮想ヒートパイプ20aまたは仮想ヒートパイプ20bの本数を多くし、その密度を上げることにより、図19(b)のように、温度制御条件を多岐に設定できる。
また、仮想ヒートパイプ20Aは、金属粉体で冷媒路201a,201b、冷媒路202a,202b、冷媒路203及び仮想ヒートパイプ20a、仮想ヒートパイプ20bを同一金属粉体材料で積層し、造形するものであるから、仮想ヒートパイプ20a、仮想ヒートパイプ20bが細くても、作動液24を流す空間を確保することができる。
そして、作動液24として水を使用する場合には、冷媒路201a,201b、冷媒路202a,202b、冷媒路203の端部を共通させ、共通する作動液24を水とすることができる。水としない場合でも、共通する作動液24を用いることができる。
更に、仮想ヒートパイプ20Aは、金型60に直接形成するものであるから、仮想ヒートパイプ20Aを構成する金属パイプを省略して、一端を金型60に形成した密閉空間長孔41とし、他端を冷媒路42a,42b,52a,52b、冷媒路201a,201b、冷媒路202a,202b、冷媒路203側に配設し、作動液24を封止したものとすることにより、仮想ヒートパイプ20Aを構成する部品が少なくなり、金型60に形成する密閉空間長孔41が細い形態とすることができ、場所を取らないから、薄い金型60にも配設することができる。
上記実施の形態のヒートパイプ機能付成形金型は、合成樹脂を成形する射出成形体または押出成形体を金属粉体で積層造形されてなる金型60と、射出成形体または押出成形体を冷却する金型60に形成された冷媒路42a,42b,52a,52b、冷媒路201a,201b、冷媒路202a,202b及び冷媒路203と、冷媒路42a,42b,52a,52bと熱的に結合しており、金型60に対する熱移動を自在とした仮想ヒートパイプ20Aとを具備し、ヒートパイプ20は、金属粉体で積層造形され、冷媒路42a,42b,52a,52b、冷媒路201a,201b、冷媒路202a,202b及び冷媒路203から分岐して金型60を冷却することができる。
したがって、仮想ヒートパイプ20Aは、冷媒路42a,42b,52a,52b、冷媒路201a,201b、冷媒路202a,202b及び冷媒路203から分岐して設けられたものであるから、水を含む作動液24を用いることにより、金型60の全体の温度を均一化できる。また、金型60の部位によって冷却能力を任意に設定できる。
上記実施の形態のヒートパイプ機能付成形金型は、合成樹脂を成形する射出成形体または押出成形体を金属粉体で積層造形されてなる金型60と、射出成形体または押出成形体を冷却する金型60に形成された冷媒路42a,42b,52a,52b、冷媒路202a,202bと、冷媒路42a,42b,52a,52b、冷媒路202a,202bと熱的に結合しており、金型60に対する熱移動を自在としたヒートパイプ20とを具備し、仮想ヒートパイプ20Aは、金型60と同一材料で積層造形され、冷媒路42a,42b,52a,52b、冷媒路202a,202bよりも細い径とすることができる。
したがって、仮想ヒートパイプ20Aは金型60と同一材料で積層し、造形されるものであるから、金属出力3Dプリンターで容易に3次元表現することができ、しかも、仮想ヒートパイプ20Aは冷媒路よりも細い径としたものであるから、金型60内に多数形成でき、射出成形体または押出成形体の特性に合わせた特性を持たせることができる。
上記実施の形態のヒートパイプ機能付成形金型は、合成樹脂を成形する射出成形体または押出成形体を金属粉体で積層造形されてなる金型60と、射出成形体または押出成形体を冷却する金型60に形成された冷媒路42a,42b,52a,52b、冷媒路202a,202bと、冷媒路42a,42b,52a,52b、冷媒路202a,202bと熱的に結合しており、金型60に対する熱移動を自在とした仮想ヒートパイプ20Aとを具備し、仮想ヒートパイプ20Aは、ヒートパイプ20を構成する金属パイプを省略して、一端を金型60に形成した密閉空間長孔41とし、他端を冷媒路42a,42b,52a,52b、冷媒路202a,202b側に配設して作動液24を封止したものとすることができる。
したがって、ヒートパイプ機能構成体20Aは、ヒートパイプ20を構成する金属パイプを省略して、直接、金型60に仮想ヒートパイプ20Aの金属パイプ相当部分を形成し、他端には冷媒路42a,42b,52a,52b側に配設して作動液24を封止し、ヒートパイプ機能を持たせたものであるから、細い金属パイプを挿入する必要がなく、金型60が簡単に形成できる。
上記実施8形態のヒートパイプ機能付成形金型は、合成樹脂を成形する射出成形体または押出成形体を金属粉体で積層造形されてなる金型60と、射出成形体または押出成形体を冷却する金型60に形成された冷媒路42a,42b,52a,52b、冷媒路202a,202bと、冷媒路42a,42b,52a,52b、冷媒路202a,202bと熱的に結合しており、金型60に対する熱移動を自在としたヒートパイプ20とを具備し、ヒートパイプ20を構成する金属パイプを省略し、一端を金型60に設けた密閉空間長孔41とし、他端を冷媒路側に配設して、作動液24を封止する構造体とし、仮想ヒートパイプ20Aのみを持たせたものである。
したがって、金型60の密閉空間長孔41の他端側に、射出成形体または押出成形体を冷却するヒートシンク30を配設すると、金型60に至るまでの熱エネルギはヒートシンク30を介して移動でき、射出成形体または押出成形体を冷却できる。ヒートシンク30の冷却は、固定側の上金型40と可動側の下金型50に直接伝熱するから、冷却が急速に行われる。このヒートシンク30は金型60の一部として、金属出力3Dプリンターでフィンを形成してもよいし、外部組み立てを行ったものをボルト等で締め付けて熱伝導を良好としてもよい。なお、フィンの表面は冷媒の流れによって冷却されることが望ましいが、大気中に空冷として露出してもよい。本発明を実施する場合に、前記ヒートシンク30の形態を問うものではない。
上記実施の形態のヒートパイプ機能付成形金型の作動液24を連続的に低温側から高温側に移動させるウィックは、金型60に形成した密閉空間長孔41の壁面に微細多孔構造金属(ポーラス)に形成したものであるから、作動液24を連続的に低温側から高温側に移動させるウィックが微細多孔構造金属)で形成されているから、金型60と微細多孔構造金属のウィックとの一体感が強く、熱効率を上げることができる。
上記実施の形態のヒートパイプ機能付成形金型の作動液24を連続的に低温側から高温側に移動させるウィックは、金型24に形成した密閉空間長孔41内の壁面側の全内面に位置する連通した微細多孔構造金属とするか、密閉空間長孔41内の壁面側に位置する1条以上のスパイラル細管とその中心管路を端部でまとめてなる中心管路とするか、前記密閉空間長孔41内の壁面側に位置する複数本のパラレル細管及び端部でまとめた中心管路とするかの何れか1つからなるから、金型60と前記長孔41内の壁面側との伝導が良好で、封入された作動液24を毛細管現象により連続的に低温側から高温側に移動させるウィック、及び前記作動液が沸騰した蒸気が高温側から低温側へと熱移動させることができる。
上記実施の形態の成形金型の仮想ヒートパイプ20A,20a,20bは、冷媒路203、冷媒路201a,201b、冷媒路202a,202b側には、前記射出成形体または押出成形体を冷却するヒートシンク30を配設したものであるから、熱効率を上げることができる。
仮想ヒートパイプ20A,20a,20bは、従来技術ではヒートパイプ20の金属パイプ21相当部分として表現するものであるが、ヒートパイプ20の金属パイプ21自体を示すものではなく、金属出力3Dプリンターで形成されるものである。したがって、本発明を実施する場合には、ヒートパイプ20の金属パイプ21を具有していない。
また、一端が冷媒路53,42a,42b,52a,52b、と熱的に結合し、他端が金型60(40,50)と熱的に結合する密閉空間長孔41、密閉空間長孔41内を作動液24が気化と液化を繰り返す金型60(40,50)から冷媒路53,42a,42b,52a,52bに対する熱移動を自在としたヒートパイプ機能構成体は、設計的理由により、上金型40として下金型50及び/または金型60となる。
そして、本発明を実施する場合のヒートパイプ機能構成体は、簡単化すると、ヒートパイプの構成を金属出力3Dプリンターで形成されるものとすることができる。
更に、冷媒路53,42a,42b,52a,52bについても、仮想ヒートパイプ20A,20a,20bの一端が配置される場所を特定するものであるから、仮想ヒートパイプ20A,20a,20bの一端によって決定される。
A メッシュウィック
B リップルウィック
C 微細多孔構造金属、
D スパイラル細管
E 中心管路
F,J 蒸気溜まり
G パラレル細管
H 中心管路
20A 仮想ヒートパイプ
30 ヒートシンク
40 上金型
41 密閉空間長孔
42a,42b 冷媒路
50 下金型
52a,52b 冷媒路
201a,201b 冷媒路
202a,202b 冷媒路
203 冷媒路
53 冷媒空間
60 金型
70 射出成形体
71 ベース
72,73,74,75 針状突起部

Claims (1)

  1. 合成樹脂を成形する射出成形体または押出成形体を金属粉体で積層造形されてなる金型と、
    前記射出成形体または前記押出成形体を冷却する前記金型に形成された冷媒路と、
    一端が前記冷媒路と熱的に結合し、他端が前記金型と熱的に結合する密閉空間、前記密閉空間内を作動液が気化と液化を繰り返す前記金型から前記冷媒路に対する熱移動を自在としたヒートパイプ機能構成体とを具備し、
    前記ヒートパイプ機能構成体は、前記ヒートパイプ機能構成体を構成する金属パイプを省略して、一端を前記金型に形成した長孔とし、他端を前記冷媒路側に配設して作動液を封止し、
    前記ヒートパイプ機能構成体は、前記金属粉体で積層造形され、前記冷媒路から熱的に分岐して前記金型を冷却し、
    前記ヒートパイプ機能構成体は、前記ヒートパイプ機能構成体を構成する金属パイプを省略して、一端を前記金型に形成した長孔とし、他端を前記冷媒路側に配設して作動液を封止し、前記作動液を連続的に低温側(ヒートアウト)から高温側(ヒートイン)に移動させるウィックを構成し、
    前記ヒートパイプ機能構成体は、前記金型に形成した長孔内の壁面側に位置し、毛細管現象により封入された前記作動液を連続的に低温側から高温側に移動させるウィック、及び前記作動液が沸騰し、その蒸気が高温側(ヒートイン)から低温側(ヒートアウト)へと移動し、
    前記蒸気が凝縮することによって、凝縮熱が凝縮部で放出される構造とし、前記作動液を連続的に低温側から高温側に移動させるウィックは、前記金型に形成した長孔の壁面に微細多孔構造金属(ポーラス)に形成し、
    前記作動液を連続的に低温側から高温側に移動させるウィックは、前記金型に形成した長孔内の壁面側の全内面に位置する連通した微細多孔構造金属(ポーラス)とするか、前記長孔内の壁面側に位置する1条以上のスパイラル細管とその中心管路を端部でまとめてなる中心管路とするか、前記長孔内の壁面側に位置する複数本のパラレル細管及び端部でまとめた中心管路とするかの何れか1つからなることを特徴とするヒートパイプ機能付成形金型。
JP2020156145A 2020-09-17 2020-09-17 ヒートパイプ機能付成形金型 Pending JP2021000835A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020156145A JP2021000835A (ja) 2020-09-17 2020-09-17 ヒートパイプ機能付成形金型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020156145A JP2021000835A (ja) 2020-09-17 2020-09-17 ヒートパイプ機能付成形金型

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018111185A Division JP7161169B2 (ja) 2018-06-11 2018-06-11 ヒートパイプ機能付成形金型

Publications (1)

Publication Number Publication Date
JP2021000835A true JP2021000835A (ja) 2021-01-07

Family

ID=73993691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020156145A Pending JP2021000835A (ja) 2020-09-17 2020-09-17 ヒートパイプ機能付成形金型

Country Status (1)

Country Link
JP (1) JP2021000835A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000836A (ja) * 2018-06-11 2021-01-07 株式会社岐阜多田精機 ヒートパイプ機能付成形金型
JP2021000834A (ja) * 2020-09-17 2021-01-07 株式会社岐阜多田精機 ヒートパイプ機能付成形金型

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133312U (ja) * 1989-04-11 1990-11-06
JPH0486223A (ja) * 1990-07-31 1992-03-18 Ikegami Kanagata Kogyo Kk 射出成形用金型
JPH06159962A (ja) * 1992-11-24 1994-06-07 Fujikura Ltd ループ型ヒートパイプの蒸発管の製造方法
JP2016172401A (ja) * 2015-03-17 2016-09-29 株式会社東芝 流路構造体及び温度調節装置
JP2021000834A (ja) * 2020-09-17 2021-01-07 株式会社岐阜多田精機 ヒートパイプ機能付成形金型
JP2021000836A (ja) * 2018-06-11 2021-01-07 株式会社岐阜多田精機 ヒートパイプ機能付成形金型

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133312U (ja) * 1989-04-11 1990-11-06
JPH0486223A (ja) * 1990-07-31 1992-03-18 Ikegami Kanagata Kogyo Kk 射出成形用金型
JPH06159962A (ja) * 1992-11-24 1994-06-07 Fujikura Ltd ループ型ヒートパイプの蒸発管の製造方法
JP2016172401A (ja) * 2015-03-17 2016-09-29 株式会社東芝 流路構造体及び温度調節装置
JP2021000836A (ja) * 2018-06-11 2021-01-07 株式会社岐阜多田精機 ヒートパイプ機能付成形金型
JP2021000834A (ja) * 2020-09-17 2021-01-07 株式会社岐阜多田精機 ヒートパイプ機能付成形金型

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021000836A (ja) * 2018-06-11 2021-01-07 株式会社岐阜多田精機 ヒートパイプ機能付成形金型
JP2021000834A (ja) * 2020-09-17 2021-01-07 株式会社岐阜多田精機 ヒートパイプ機能付成形金型

Similar Documents

Publication Publication Date Title
JP6979233B2 (ja) ヒートパイプ機能付成形金型
JP2021000835A (ja) ヒートパイプ機能付成形金型
JP2021000834A (ja) ヒートパイプ機能付成形金型
CN100447991C (zh) 用于防止干燥的薄板类型的冷却装置
CN111642103A (zh) 高热流密度多孔热沉流动冷却装置
US7123479B2 (en) Enhanced flow channel for component cooling in computer systems
US20140102671A1 (en) Flat heat pipe
US20070251673A1 (en) Heat pipe with non-metallic type wick structure
JP2006503436A (ja) 板型熱伝達装置及びその製造方法
CN101242729A (zh) 毛细微槽群与热电组合热控制方法及系统
CN100362307C (zh) 小热管的制造方法
JP2012507680A (ja) 微細管配列を有するマイクロヒートパイプアレイ及びその作製方法並びに熱交換システム
JP5681487B2 (ja) ヒートパイプの放散システムと方法
CN108801010B (zh) 一种大换热面积的环路热管蒸汽发生器
CN201594969U (zh) 针状相变电子散热器
WO2008115192A1 (en) Enhanced thermoelectric cooler with superconductive heat-dissipative devices for use in air-conditioners
CN201044554Y (zh) 水冷式微槽群与热电组合激光器热控制系统
JP7161169B2 (ja) ヒートパイプ機能付成形金型
CN201044553Y (zh) 风冷式微槽群与热电组合激光器热控制系统
CN109974136A (zh) 一种散热器、空调室外机和空调器
JP2018199266A (ja) 射出成形金型
CN101102656B (zh) 闭环自动补偿式散热方法及装置
TWM606229U (zh) 氣液冷凝系統
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN211557803U (zh) 一种服务器用柔性热管散热模组

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412