JP2020504231A - Electrical and electronic components having high strength and high electrical conductivity characteristics, copper alloys for semiconductors, and methods of manufacturing the same - Google Patents

Electrical and electronic components having high strength and high electrical conductivity characteristics, copper alloys for semiconductors, and methods of manufacturing the same Download PDF

Info

Publication number
JP2020504231A
JP2020504231A JP2019512912A JP2019512912A JP2020504231A JP 2020504231 A JP2020504231 A JP 2020504231A JP 2019512912 A JP2019512912 A JP 2019512912A JP 2019512912 A JP2019512912 A JP 2019512912A JP 2020504231 A JP2020504231 A JP 2020504231A
Authority
JP
Japan
Prior art keywords
copper alloy
strength
electric
less
precipitates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019512912A
Other languages
Japanese (ja)
Other versions
JP6837541B2 (en
Inventor
シン クァク,ウォン
シン クァク,ウォン
ジェ ジョン,ミン
ジェ ジョン,ミン
ユン チョイ,ジュン
ユン チョイ,ジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poongsan Corp
Original Assignee
Poongsan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poongsan Corp filed Critical Poongsan Corp
Publication of JP2020504231A publication Critical patent/JP2020504231A/en
Application granted granted Critical
Publication of JP6837541B2 publication Critical patent/JP6837541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

本発明は、高強度及び高電気伝導度の特性を有する電気電子部品及び半導体用銅合金及びその製造方法に関する。本発明による銅合金は、質量%で鉄(Fe):0.09〜0.20%、リン(P):0.05〜0.09%、マンガン(Mn):0.05〜0.20%、残量の銅(Cu)及び0.05質量%以下の不可避不純物からなり、470MPa以上の引張強度、145Hv以上の硬度、75%IACS以上の電気伝導度を有し、内燃化温度が400℃以上である。The present invention relates to an electric / electronic component having high strength and high electric conductivity, a copper alloy for a semiconductor, and a method for producing the same. In the copper alloy according to the present invention, iron (Fe): 0.09 to 0.20%, phosphorus (P): 0.05 to 0.09%, and manganese (Mn): 0.05 to 0.20% by mass. %, The remaining amount of copper (Cu) and unavoidable impurities of 0.05% by mass or less, having a tensile strength of 470 MPa or more, a hardness of 145 Hv or more, an electric conductivity of 75% IACS or more, and an internal combustion temperature of 400%. ° C or higher.

Description

本発明は高強度及び高電気伝導度の特性を有する電気電子部品及び半導体用銅合金及びその製造方法に関する。具体的には、銅(Cu)、鉄(Fe)、リン(P)及びマンガン(Mn)を含む銅合金及びその製造方法に関する。   The present invention relates to an electric / electronic component having high strength and high electrical conductivity, a copper alloy for a semiconductor, and a method for producing the same. Specifically, the present invention relates to a copper alloy containing copper (Cu), iron (Fe), phosphorus (P), and manganese (Mn), and a method for producing the same.

半導体リードフレーム、電気電子部品用の素材などを始めとした様々な用途の銅合金としてFeとPを含有するCu-Fe-P系合金が一般的に使用されている。例えば、質量%でFe:0.05〜0.15%、P:0.025〜0.04%を含有する銅合金(C19210)やFe:2.1〜2.6%、P:0.015〜0.15%、Zn:0.05〜0.2%を含有する銅合金(C19400)は、銅合金の中でも強度及び電気伝導度に優れるのでリードフレームの材料として広く使用されている。Fe、Pが添加元素として主に使用される理由は、銅基地内に析出相を形成することにより優れる強度と電気伝導度を示すためである。   A Cu-Fe-P-based alloy containing Fe and P is generally used as a copper alloy for various uses including materials for semiconductor lead frames and electric and electronic parts. For example, a copper alloy (C19210) containing Fe: 0.05 to 0.15% and P: 0.025 to 0.04% by mass%, Fe: 2.1 to 2.6%, P: 0.1% A copper alloy (C19400) containing 015 to 0.15% and Zn: 0.05 to 0.2% is widely used as a lead frame material because of its excellent strength and electrical conductivity among copper alloys. The reason why Fe and P are mainly used as additive elements is that they exhibit excellent strength and electrical conductivity by forming a precipitated phase in the copper matrix.

しかし、銅合金の様々な特性のうち、強度と電気伝導度は互いに相反する反比例特性を有し、強度が増加すると電気伝導度が減少し、電気伝導度が増加すると強度の低下は必然的である。従って、既存のC19210銅合金は、引張強度400MPa、電気伝導度80%IACS水準であり、強度特性は低いが電気伝導度特性が良好であるので、高い電気伝導度が求められる製品に使用され、既存のC19400銅合金は、引張強度500MPa、電気伝導度60%IACS水準であり、電気伝導度特性は低いが強度特性が良好であるので、高い強度が求められる製品に使用されている。   However, among the various properties of copper alloys, strength and electrical conductivity have inversely proportional properties, which are opposite to each other.When strength increases, electrical conductivity decreases, and when electrical conductivity increases, strength decreases inevitably. is there. Therefore, the existing C19210 copper alloy has a tensile strength of 400 MPa and an electrical conductivity of 80% IACS, and has a low strength property but a good electrical conductivity property, so that it is used for products requiring high electrical conductivity. The existing C19400 copper alloy has a tensile strength of 500 MPa and an electrical conductivity of 60% IACS, and has low electrical conductivity characteristics but good strength characteristics, and is therefore used for products requiring high strength.

最近、電気電子部品の軽薄短小化によって素材の特性がさらに重要となっている。電子機器、車両などに使用される半導体デバイスの大容量、小型化及び高集積化の傾向によって、半導体が使用されるリードフレームの小型化及び薄板化が進行されている。従って、現在の銅合金は従来の銅合金より高い強度、高い電気伝導度及び優れた加工性などを同時に満たす必要があり、電子部品の厚さが薄くなるに従って、該当用途の銅合金の特性は引張強度470MPa以上及び電気伝導度75%IACS以上を同時に満たすことが求められている。従って、産業系の要求を満たすために、互いに相反する特性である強度と電気伝導度を同時に向上させる努力が進行中である。   In recent years, the characteristics of materials have become more important as electrical and electronic components become lighter and thinner. 2. Description of the Related Art Due to the trend of large capacity, miniaturization, and high integration of semiconductor devices used in electronic devices, vehicles, and the like, lead frames using semiconductors have been reduced in size and thickness. Therefore, the current copper alloy needs to satisfy higher strength, higher electric conductivity and excellent workability than the conventional copper alloy at the same time. It is required to simultaneously satisfy a tensile strength of 470 MPa or more and an electric conductivity of 75% IACS or more. Therefore, efforts to simultaneously improve strength and electric conductivity, which are mutually contradictory properties, are being made to satisfy the requirements of industrial systems.

銅合金の強度を高めるために、FeとPの含量を増やすか、又はSn、Mg、Niなどの第3元素を添加することもあるが、これらの元素量を増加させると、強度は増加するが電気伝導度が低下する。これにより、添加元素の代わりに結晶粒を微細化するかまたは晶析出物のサイズ及び分布を制御することにより特性を向上させようとする努力があった。しかし、この場合にも表面欠陥の発生、信頼性の低下、不均一な微細組織などのような様々な問題が発生した。従って、銅合金の強度と電気伝導度を同時に改善させることが容易ではなく、重要な研究課題であった。   In order to increase the strength of the copper alloy, the content of Fe and P may be increased, or a third element such as Sn, Mg, or Ni may be added. However, when the amount of these elements is increased, the strength increases. However, the electric conductivity decreases. Accordingly, efforts have been made to improve the characteristics by reducing the size of crystal grains or controlling the size and distribution of crystal precipitates instead of the added elements. However, in this case as well, various problems such as generation of surface defects, reduction in reliability, and non-uniform microstructure occurred. Therefore, it is not easy to simultaneously improve the strength and electric conductivity of a copper alloy, and this is an important research subject.

また、銅合金材が適用される分野において、熱を与える工程が含まれるので、銅合金は熱に耐える特性が必要であるが、これを内燃化特性といい、内燃化温度により評価できる。内燃化温度とは、製造された銅合金板材を1分間熱処理した後に変化する硬度値を測定した時、初期(熱処理前)硬度値の80%を示す熱処理温度を意味する。内燃化温度は該当素材が熱に耐える特性を示す指標として活用され、上述したように最終の完製品の信頼性に連結される。既存の半導体パッケージ又は電子部品では380℃水準の内燃化温度特性
であると、製品の製造及び最終製品の信頼性に問題がなかった。しかし、最近の半導体パッケージ、電子部品などに適用される銅合金は製品加工時に半田付け(soldering)又はワイヤボンディング(wire bonding)などの熱を与える工程が追加されるなど、製品加工時により良好な内燃化性が求められるので、内燃化温度400℃以上水準の内燃化性の向上が必要である。
In addition, in a field where a copper alloy material is applied, a step of applying heat is included. Therefore, a copper alloy needs to have a heat-resistant property. This property is called internal combustion property and can be evaluated based on the internal combustion temperature. The internal combustion temperature refers to a heat treatment temperature that indicates 80% of an initial (before heat treatment) hardness value when a hardness value that changes after heat treatment of the manufactured copper alloy sheet material for 1 minute is measured. The internal combustion temperature is used as an index indicating the property of the material to withstand heat, and is linked to the reliability of the final finished product as described above. With existing semiconductor packages or electronic components having an internal combustion temperature characteristic of 380 ° C. level, there was no problem in the production of products and the reliability of end products. However, copper alloys applied to recent semiconductor packages, electronic components, etc. are more favorable at the time of product processing, such as adding a process of applying heat such as soldering or wire bonding at the time of product processing. Since internal combustion properties are required, it is necessary to improve internal combustion properties at an internal combustion temperature of 400 ° C. or higher.

現在、リードフレーム用の銅合金素材で求められる強度と電気伝導度を得るための様々な特許が出願されている。   At present, various patents have been filed for obtaining the strength and electrical conductivity required for copper alloy materials for lead frames.

韓国公開特許公報第10−2008−0019274号(特許文献1)には、Cu−Fe−P系合金にMgを添加して強度を向上させることが開示されている。しかし、Mgの添加時に電気伝導度は必然的に低下するしかない。既存のCu−Fe−P合金系にMgを添加する時、引張強度は最大450MPa、電気伝導度は70%IACS水準であり、最近のリードフレームの要求特性(引張強度470MPa以上、電気伝導度75%IACS以上)に及ばない。この理由は、Mg−P系の粗大晶出物で説明される。Mgの添加時、鋳造の開始から熱間圧延の終了まで必然的に生成されるMg−P系の粗大晶出物及び欠陥の生成によって、強度及び電気伝導度特性の低下が必然的である。   Korean Patent Application Publication No. 10-2008-0019274 (Patent Document 1) discloses that Mg is added to a Cu-Fe-P-based alloy to improve the strength. However, when Mg is added, the electric conductivity is inevitably reduced. When Mg is added to an existing Cu-Fe-P alloy system, the tensile strength is up to 450 MPa and the electrical conductivity is 70% IACS level, and the required characteristics of recent lead frames (tensile strength of 470 MPa or more, electrical conductivity of 75%). % IACS). The reason for this is explained by Mg-P-based coarse crystals. When Mg is added, the strength and electrical conductivity characteristics are inevitably reduced due to the generation of Mg-P-based coarse crystals and defects which are inevitably generated from the start of casting to the end of hot rolling.

次に、韓国公開特許公報第10−2005−0076767号(特許文献2)には、Cu−Fe−P合金の析出物粒径を制御して強度を向上させることが記載されている。しかし、この発明は析出物の粒径を微細に制御するために2回以上の冷間圧延とアニーリング工程を実施するので、様々な変数が存在し、産業現場において実際に製造することが難しい実情である。また、この特許文献では析出物の体積分率を1%以上300個/μmと記載しているが、体積分率は粗大な粒子を含む数値であるという問題がある。 Next, Korean Patent Application Publication No. 10-2005-0076767 (Patent Literature 2) describes that the grain size of a precipitate of a Cu—Fe—P alloy is controlled to improve the strength. However, since the present invention carries out two or more cold rolling and annealing steps in order to finely control the grain size of the precipitates, there are various variables, and it is difficult to actually manufacture them at an industrial site. It is. In this patent document, the volume fraction of precipitates is described as 1% or more and 300 particles / μm 2 , but there is a problem that the volume fraction is a numerical value including coarse particles.

なお、韓国公開特許公報第10−2013−0136183号(特許文献3)には、Cu−Fe−P系合金にMnを添加して強度を向上させることが記載されているが、実際の産業現場で求める強度と電気伝導度特性に及ばない。また、この特許文献の請求請求の範囲の請求項4に析出物粒径を10〜30μmサイズに制御することが記載されているが、実際には10〜30μmサイズが大きすぎて析出物ではなく、鋳造欠陥又は異物質であり、強度及び電気伝導度を向上させる効果を奏しない。これに関連して、一般的に銅合金内に10〜30μmサイズの粒子が存在すると、特性低下だけではなく、表面品質の低下によって半導体パッケージ工程が不可能である。また、この特許文献に開示されている析出物がどの種類の析出物であるかを規定できる分析結果や根拠がなく、図3のSEM分析結果では析出物ではない単純な結晶粒系のみが観察されて技術的根拠にならない。   Korean Patent Application Publication No. 10-2013-0136183 (Patent Document 3) describes that Mn is added to a Cu-Fe-P-based alloy to improve the strength. It does not reach the strength and electrical conductivity characteristics required in. Further, in claim 4 of the patent document, it is described that the precipitate particle size is controlled to a size of 10 to 30 μm. However, actually, the size of the precipitate is too large to be 10 to 30 μm. , Casting defects or foreign substances, and does not have the effect of improving strength and electrical conductivity. In this regard, when particles having a size of 10 to 30 μm are generally present in a copper alloy, a semiconductor package process cannot be performed due to a decrease in surface quality as well as a decrease in characteristics. In addition, there is no analysis result or basis that can specify what kind of precipitate is disclosed in this patent document, and only a simple crystal grain system that is not a precipitate is observed in the SEM analysis result of FIG. It is not a technical basis.

韓国公開特許公報第10−2008−0019274号Korean Patent Application Publication No. 10-2008-0019274 韓国公開特許公報第10−2005−0076767号Korean Published Patent Application No. 10-2005-0076767 韓国公開特許公報第10−2013−0136183号Korean Published Patent Application No. 10-2013-0136183

本発明は、上記問題を解決するためのものであって、従来の技術では満たさない最近産業系における要求特性を満たす水準の強度及び電気伝導度を有し、内燃化性に優れた電気電子部品及び半導体用銅合金及びその製造方法を提供する。   The present invention has been made to solve the above problems, and is an electric / electronic component having a level of strength and electric conductivity that satisfy the characteristics required in recent industrial systems, which is not satisfied by the conventional technology, and has excellent internal combustion properties. And a copper alloy for a semiconductor and a method for producing the same.

本発明による電気電子部品又は半導体用銅合金は、質量%で鉄(Fe):0.09〜0.2
0%、リン(P):0.05〜0.09%、マンガン(Mn):0.05〜0.20%を各々含有し、残量の銅(Cu)及び0.05質量%以下の不可避不純物からなり、不可避不純物は、Si、Zn、Ca、Al、Ti、Be、Cr、Co、Ag及びZrからなるグループから選択されるいずれか1種であり、470MPa以上の引張強度と145Hv以上の硬度、75%IACS以上の電気伝導度、400℃以上の内燃化温度の特性を有する。不可避不純物の含量は、好ましくは0.01%以下である。銅合金はさらにNi及びSnのうちのいずれか1種を0.0001%〜0.03%範囲で含むことができる。
The copper alloy for an electric / electronic component or a semiconductor according to the present invention has an iron (Fe) content of 0.09 to 0.2 in mass%.
0%, phosphorus (P): 0.05 to 0.09%, manganese (Mn): 0.05 to 0.20%, and the remaining amount of copper (Cu) and 0.05% by mass or less. The inevitable impurities are any one selected from the group consisting of Si, Zn, Ca, Al, Ti, Be, Cr, Co, Ag, and Zr, and have a tensile strength of 470 MPa or more and a tensile strength of 145 Hv or more. , A conductivity of 75% IACS or more, and an internal combustion temperature of 400 ° C. or more. The content of inevitable impurities is preferably 0.01% or less. The copper alloy may further include any one of Ni and Sn in the range of 0.0001% to 0.03%.

銅合金は電界放出型の走査電子顕微鏡(FE−SEM)で結晶方位解釈法により測定した結晶粒径において、平均結晶粒径が20μm以下、標準偏差が5μm以下である。   The copper alloy has an average crystal grain size of 20 μm or less and a standard deviation of 5 μm or less in a crystal grain size measured by a field orientation scanning electron microscope (FE-SEM) by a crystal orientation interpretation method.

銅合金は(FeMn)P析出物を含む。この析出物は、炭素抽出レプリカ(carbon extraction replica)法で製造された試験片を高分解能の透過電子顕微鏡(HR−TEM)又は電界放出型の透過電子顕微鏡(FE−TEM)で100,000倍以上の倍率で測定し、(FeMn)P析出物は平均粒径が50nm以下であり、面密度が1.0×1010個/cm以上である。 The copper alloy contains (FeMn) 2 P precipitates. This precipitate was obtained by subjecting a test piece manufactured by a carbon extraction replica (carbon extraction replica) method to 100,000 times magnification with a high-resolution transmission electron microscope (HR-TEM) or a field emission type transmission electron microscope (FE-TEM). When measured at the above magnification, the (FeMn) 2 P precipitate has an average particle size of 50 nm or less and an areal density of 1.0 × 10 10 / cm 2 or more.

銅合金はシード又は板材の形態であることができる。   The copper alloy can be in the form of a seed or plate.

本発明による電気電子部品又は半導体用銅合金の製造方法は、上述する成分元素を溶解してインゴットを鋳造する段階、得られたインゴットを900℃以上〜1000℃以下で1〜4時間均質化熱処理し、加工率85〜95%で熱間圧延する段階、押下率87〜98%の範囲で冷間圧延する段階、430〜520℃の温度で1〜10時間析出熱処理する段階、及び10〜90%の押下率で仕上げ圧延する段階を含む。   The method for producing a copper alloy for an electric / electronic component or a semiconductor according to the present invention includes a step of casting the ingot by dissolving the above-described component elements, and a homogenizing heat treatment of the obtained ingot at 900 ° C. to 1000 ° C. for 1 to 4 hours. Hot rolling at a working rate of 85 to 95%, cold rolling at a pressing rate of 87 to 98%, precipitation heat treatment at a temperature of 430 to 520 ° C for 1 to 10 hours, and 10 to 90. % Finish rolling at a press rate of%.

本発明による銅合金は強度と電気伝導度に優れ、内燃化特性が卓越する。また、本発明による製造工程により銅合金の製造時に工程費用が減少するにも関わらず、得られる銅合金は優れる強度及び電気伝導度を示し、離散トランジスタ(discrete transistor又はdiscrete TR)、半導体リードフレームの以外にも様々な電気電子部品に適用可能である。   The copper alloy according to the present invention has excellent strength and electric conductivity, and has excellent internal combustion characteristics. In addition, the copper alloy obtained has excellent strength and electrical conductivity despite the reduction of the manufacturing cost of the copper alloy due to the manufacturing process according to the present invention, and it can be used as a discrete transistor (discrete transistor or discrete TR) and a semiconductor lead frame. The present invention can be applied to various electric and electronic components other than the above.

実施例5により製造された銅合金と既存の銅合金の内燃化特性を示すグラフである。13 is a graph showing the internal combustion characteristics of a copper alloy manufactured according to Example 5 and an existing copper alloy. 実施例1に記載の組成を有する銅合金の製造工程において870℃熱間圧延後の微細組織を示すFE−SEM写真である。3 is an FE-SEM photograph showing a microstructure after hot rolling at 870 ° C. in a manufacturing process of a copper alloy having the composition described in Example 1. 実施例1に記載の組成を有する銅合金の製造工程において900℃熱間圧延後の微細組織を確認するためのFE−SEM写真である。4 is an FE-SEM photograph for confirming a microstructure after hot rolling at 900 ° C. in a manufacturing process of a copper alloy having a composition described in Example 1. 実施例1に記載の組成を有する銅合金の製造工程において950℃熱間圧延後の微細組織を確認するためのFE−SEM写真である。4 is an FE-SEM photograph for confirming a microstructure after hot rolling at 950 ° C. in a process of manufacturing a copper alloy having the composition described in Example 1. 実施例5により製造された銅合金の微細組織を確認するためのFE−SEM写真である。9 is an FE-SEM photograph for confirming a microstructure of a copper alloy manufactured according to Example 5. 実施例5に記載の組成を有する銅合金の析出物を確認するために、イオンミリング(ion milling)法で製造された試験片のFE−TEM写真である。9 is an FE-TEM photograph of a test piece manufactured by an ion milling method to confirm a precipitate of a copper alloy having the composition described in Example 5. 実施例5に記載の組成を有する銅合金の析出物を確認するために、炭素抽出レプリカ(carbon extraction replica)法で製造された試験片のFE−TEM写真である。9 is an FE-TEM photograph of a test piece manufactured by a carbon extraction replica method to confirm a precipitate of a copper alloy having the composition described in Example 5.

本発明は強度と電気伝導度に優れ、内燃化特性が卓越した電気電子部品及び半導体用銅合金及びその製造方法を提供する。この明細書において、成分元素の含量を表示する%は、特に指示しない限り質量%である。   The present invention provides an electric / electronic component, a copper alloy for a semiconductor, and a method for producing the same, which are excellent in strength and electric conductivity and have excellent internal combustion characteristics. In this specification,% indicating the content of a component element is% by mass unless otherwise specified.

<本発明による銅合金>
本発明による銅合金は、質量%で鉄(Fe):0.09〜0.20%、リン(P):0.05〜0.09%、マンガン(Mn):0.05〜0.20%、残量の銅(Cu)及び0.05質量%以下の不可避不純物からなり、不可避不純物はSi、Zn、Ca、Al、Ti、Be、CR、Co、Ag及びZrからなるグループから選択されるいずれか1種であり、470MPa以上の引張強度と145Hv以上の硬度、75%IACS以上の電気伝導度及び400℃以上の内燃化度特性を有する電気電子部品又は半導体用銅合金である。
<Copper alloy according to the present invention>
In the copper alloy according to the present invention, iron (Fe): 0.09 to 0.20%, phosphorus (P): 0.05 to 0.09%, and manganese (Mn): 0.05 to 0.20% by mass. %, The remaining amount of copper (Cu) and inevitable impurities of 0.05% by mass or less, and the inevitable impurities are selected from the group consisting of Si, Zn, Ca, Al, Ti, Be, CR, Co, Ag, and Zr. And a copper alloy for electric or electronic parts or semiconductors having a tensile strength of 470 MPa or more, a hardness of 145 Hv or more, an electric conductivity of 75% IACS or more, and an internal combustion degree of 400 ° C. or more.

以下、本発明による銅合金の成分組成について述べる。この明細書において、元素の含量に対する表示%は、特に言及しない限り質量%である。   Hereinafter, the component composition of the copper alloy according to the present invention will be described. In this specification, the indicated% with respect to the content of the element is mass% unless otherwise specified.

[Fe]
Feは微細な(FeMn)P析出物を形成して、強度や導電率を向上させるために必要な元素である。Feの含有量は0.09〜0.20%の範囲である。0.09%未満に含有すると、析出物の形成に必要な粒子が不足するので、析出物による結晶粒成長の抑制効果が小さくなる。その結果、平均結晶粒径や平均結晶粒径の標準偏差が大きくなって強度が低下する。従って、これらの効果を有効に発揮させるためには、0.09%以上の含有が必要である。但し、0.20%を超えて過剰に含有すると、析出物の粗大化が起こり、平均結晶粒径の標準偏差が大きくなって曲げ加工性が低下し、電気伝導度も低下する。
[Fe]
Fe is an element necessary for forming fine (FeMn) 2 P precipitates and improving strength and electrical conductivity. The content of Fe is in the range of 0.09 to 0.20%. If the content is less than 0.09%, the particles required for the formation of precipitates are insufficient, and the effect of suppressing the growth of crystal grains by the precipitates is reduced. As a result, the average crystal grain size and the standard deviation of the average crystal grain size increase, and the strength decreases. Therefore, in order to exert these effects effectively, the content of 0.09% or more is necessary. However, if the content exceeds 0.20%, the precipitate becomes coarse, the standard deviation of the average crystal grain size increases, the bending workability decreases, and the electrical conductivity also decreases.

[P]
Pは脱酸作用の以外に、Fe、Mnと結合して(FeMn)P微細析出物を形成して、銅合金の強度や電気伝導度を向上させる。Pの含有量は0.05〜0.09%である。Pの含有が0.05%未満の少量であると、微細な析出物の形成が不十分であり、析出物による結晶粒成長の抑制効果が小さくなる。その結果、平均結晶粒径や平均結晶粒径の標準偏差が大きくなって強度が低下する。従って、0.05%以上の含有が必要である。但し、0.09%を超えすぎると、粗大な析出粒子が増加することにより平均結晶粒径の標準偏差が大きくなって曲げ加工性が低下する。また、電気伝導度も低下する。
[P]
In addition to the deoxidizing action, P combines with Fe and Mn to form (FeMn) 2 P fine precipitates, thereby improving the strength and electric conductivity of the copper alloy. The content of P is 0.05 to 0.09%. When the content of P is less than 0.05%, formation of fine precipitates is insufficient, and the effect of suppressing the growth of crystal grains by the precipitates is reduced. As a result, the average crystal grain size and the standard deviation of the average crystal grain size increase, and the strength decreases. Therefore, the content must be 0.05% or more. However, if the content exceeds 0.09%, the number of coarse precipitate particles increases, so that the standard deviation of the average crystal grain size increases and the bending workability decreases. In addition, the electric conductivity also decreases.

[Mn]
Mnは通常銅合金の添加時に強度向上に寄与すると報告されているが、強度を増加させるために単純にMnを添加した場合、最終に得られる銅合金の電気伝導度が必然的に低下する。本発明による銅合金では、(FeMn)P析出物を形成することにより強度の向上と同時に電気伝導度を向上させることができる。本発明の銅合金において、Mnの含有量は0.05〜0.20%である。Mnの添加含量が0.05%未満の少量であると、析出物形成が不足して結晶粒成長の抑制効果が小さくなり、上述したFeと同様に強度が低下する。但し、0.20%を超えると、粗大な晶出物や鋳造欠陥によって強度及び電気伝導度がいずれも低下する。
[Mn]
It has been reported that Mn usually contributes to strength improvement when a copper alloy is added. However, when Mn is simply added to increase strength, the electrical conductivity of a finally obtained copper alloy necessarily decreases. In the copper alloy according to the present invention, by forming (FeMn) 2 P precipitates, it is possible to improve not only strength but also electric conductivity. In the copper alloy of the present invention, the content of Mn is 0.05 to 0.20%. When the content of Mn is as small as less than 0.05%, the formation of precipitates is insufficient, the effect of suppressing the growth of crystal grains is reduced, and the strength is reduced similarly to Fe described above. However, if it exceeds 0.20%, both the strength and the electrical conductivity are reduced due to coarse crystals and casting defects.

[不可避不純物]
また、本発明の銅合金はSi、Zn、Ca、Al、Ti、Be、CR、Co、Ag及びZrからなるグループから選択されたいずれか1種を0.05%以下の範囲内で含有する。好ましくは、添加量は0.01%以下である。これらの元素は銅合金の多様な特性を向上させる役割をする元素であり、用途によって選択的に添加することが好ましい。
[Inevitable impurities]
Further, the copper alloy of the present invention contains any one selected from the group consisting of Si, Zn, Ca, Al, Ti, Be, CR, Co, Ag and Zr in a range of 0.05% or less. . Preferably, the addition amount is 0.01% or less. These elements are elements that play a role in improving various properties of the copper alloy, and are preferably added selectively depending on the application.

なお、本発明による銅合金では、一般的に強化効果が優れると広く知られているマグネ
シウム(Mg)の場合、添加した時に最終に得られる銅合金の強度は多少向上するが、電気伝導度の低下が必然的であり、マグネシウムがリンと反応して鋳造の開始から熱間圧延の終了まで必然的にMg−P系粗大晶出物及び欠陥を引き起こすので、除外しなければならない。
In addition, in the copper alloy according to the present invention, in the case of magnesium (Mg), which is generally widely known to have an excellent strengthening effect, the strength of the copper alloy finally obtained when added is slightly improved, but the electric conductivity is improved. A drop is inevitable and magnesium reacts with the phosphorus and inevitably causes Mg-P-based coarse crystals and defects from the start of casting to the end of hot rolling, and must be excluded.

[Ni]と[Sn]
さらに、Ni及びSnのうちのいずれか1種を0.0001%〜0.03%含むことができる。NiはCu基地内に固溶されて強度を向上させる効果を有し、耐熱性に効果的な元素である。0.0001%以下では強度向上の効果を達成できず、0.03%を超えて添加した場合は、電気伝導度の低下を招来する。
[Ni] and [Sn]
Further, it may contain 0.0001% to 0.03% of any one of Ni and Sn. Ni is a solid solution in the Cu matrix, has the effect of improving the strength, and is an element effective for heat resistance. If it is less than 0.0001%, the effect of improving the strength cannot be achieved, and if it exceeds 0.03%, the electric conductivity will be reduced.

SnはCu基地内に固溶されて強度を向上させる効果を有する固溶強化型の合金元素であって、0.0001%未満では強度向上の効果が期待されず、0.03%を超える場合、電気伝導度の低下を招来する。   Sn is a solid solution strengthened alloy element having the effect of improving strength by being solid-dissolved in the Cu matrix. If it is less than 0.0001%, the effect of improving strength is not expected, and if it exceeds 0.03%. This leads to a decrease in electric conductivity.

<本発明による銅合金の特性>
一般的に銅合金は強度が増加すると電気伝導度が減少する傾向があるので、2つの特性を制御することが非常に難しい。
<Characteristics of the copper alloy according to the present invention>
Generally, it is very difficult to control the two properties of copper alloys because electrical conductivity tends to decrease as strength increases.

本発明による銅合金の強度は、470MPa以上の引張強度及び145Hv以上の硬度の両方を満たすことができる。これは、最近産業系の要求特性が反映された数値であり、反比例特性を示す銅合金の強度と電気伝導度の特性を勘案した時、限界値の特性であると言える。   The strength of the copper alloy according to the present invention can satisfy both the tensile strength of 470 MPa or more and the hardness of 145 Hv or more. This is a numerical value that reflects the characteristics required of industrial systems recently, and can be said to be a limit value characteristic in consideration of the strength and electric conductivity characteristics of a copper alloy exhibiting an inverse proportional characteristic.

また、半導体又は電気電子部品に使用される銅合金の電気伝導度は75%IACS以上である必要がある。もしその以下の電気伝導度特性を示す場合、電気信号の伝達が円滑ではなく、製品に使用できない。本発明による銅合金の電気伝導度は75%IACS以上である。   Further, the electrical conductivity of a copper alloy used for a semiconductor or an electric / electronic component needs to be 75% IACS or more. If the following electrical conductivity characteristics are exhibited, the transmission of electrical signals is not smooth and cannot be used for products. The electrical conductivity of the copper alloy according to the invention is above 75% IACS.

即ち、本発明による銅合金は、以外にも強度及び電気伝導度の特性が同時に向上した優れた特性を示す。   That is, the copper alloy according to the present invention exhibits excellent properties in which the properties of strength and electric conductivity are simultaneously improved.

また本発明による銅合金は、400℃以上の卓越した内燃化温度を有する。内燃化温度についての説明は本発明による銅合金の製造方法で後述する。   Also, the copper alloy according to the present invention has an excellent internalization temperature of 400 ° C. or more. The internal combustion temperature will be described later in the method for producing a copper alloy according to the present invention.

<本発明による銅合金の製造方法>
本発明による銅合金は、後述する製造方法により製造される。まず上述した組成による成分元素を溶解してインゴットを鋳造する。得られたインゴットを900〜1000℃で1〜4時間均質化熱処理した直後、加工率85〜95%の熱間圧延を行う。熱間圧延を終了すると同時に水冷して溶質元素を固溶して溶体化処理し、加工率87〜98%の冷間圧延を施す。冷間圧延で高い変形エネルギーを蓄積して析出物生成の駆動力を増大させた後、、430〜520℃で1〜10時間析出熱処理する。その後、10〜90%押下率で仕上げ圧延して製品の最終厚さを決定する。
<Method for producing copper alloy according to the present invention>
The copper alloy according to the present invention is manufactured by a manufacturing method described below. First, an ingot is cast by dissolving the component elements having the above-described composition. Immediately after the obtained ingot is subjected to homogenizing heat treatment at 900 to 1000 ° C. for 1 to 4 hours, hot rolling is performed at a working ratio of 85 to 95%. At the same time as the completion of the hot rolling, the solute element is solid-dissolved by water cooling to form a solution treatment, and cold rolling is performed at a working ratio of 87 to 98%. After accumulating high deformation energy by cold rolling to increase the driving force for precipitate formation, a precipitation heat treatment is performed at 430 to 520 ° C. for 1 to 10 hours. Thereafter, finish rolling is performed at a pressing rate of 10 to 90% to determine the final thickness of the product.

具体的には、上述した本発明による銅合金の製造方法の各段階について説明する。   Specifically, each step of the above-described method for producing a copper alloy according to the present invention will be described.

まず、上述した成分元素を溶解、鋳造してインゴットを製造する。   First, an ingot is manufactured by melting and casting the above-mentioned component elements.

次に、得られたインゴットを900〜1000℃で1〜4時間の均質化熱処理した直後、加工率85〜95%の熱間圧延を行う。均質化熱処理は熱間圧延のための必須工程であ
り、インゴットが冷間加工ではなく、十分に加熱された状態で熱間圧延されて鋳造組織を除去し、新しい再結晶組織を形成するための過程である。熱間圧延段階は、本発明による銅合金の製造方法において最も重要な段階である。熱間圧延条件は合金特性のうち、金属組織に重要な影響を及ぼす因子であり、熱間圧延条件による熱間圧延後の組織が異なり、これにより完製品の特性が変化する。熱間圧延条件には大きく、熱間圧延温度、熱間圧延Pass数、冷却条件などがあり、各条件によって熱間圧延後に得られる組織が異なる。
Next, immediately after the obtained ingot is subjected to homogenizing heat treatment at 900 to 1000 ° C. for 1 to 4 hours, hot rolling is performed at a working ratio of 85 to 95%. Homogenization heat treatment is an essential step for hot rolling, in which the ingot is not cold worked, but is hot rolled in a sufficiently heated state to remove the cast structure and form a new recrystallized structure. It is a process. The hot rolling step is the most important step in the method for producing a copper alloy according to the present invention. The hot rolling condition is a factor which has an important effect on the metallographic structure among the alloy characteristics, and the structure after hot rolling differs depending on the hot rolling condition, thereby changing the characteristics of the finished product. The hot rolling conditions are large and include a hot rolling temperature, the number of hot rolling passes, and cooling conditions. The structure obtained after hot rolling differs depending on each condition.

本発明による銅合金の特性を達成するためには、熱間圧延の温度は900〜1000℃範囲でなければならない。熱間圧延の温度範囲である時、方向性のない等方性の再結晶組織を得ることができる。後述する実施例から確認できるように、熱間圧延温度が900℃未満では加工組織(圧延組織)が残存する。既存の一般的なリードフレーム用銅合金の場合、最終完製品の特性低下を防止するために、溶体化処理及び析出工程が1回以上追加されるが、これは工程費用の増加及び生産性の減少を招来する。反面、本発明による銅合金の場合、このような追加工程がなく特性を発現できるので、工程費用を節減でき、生産性が向上する。   In order to achieve the properties of the copper alloy according to the present invention, the hot rolling temperature must be in the range of 900-1000 ° C. When the temperature is in the hot rolling temperature range, an isotropic recrystallized structure having no directivity can be obtained. As can be confirmed from the examples described later, when the hot rolling temperature is lower than 900 ° C., a processed structure (rolled structure) remains. In the case of an existing general copper alloy for a lead frame, a solution treatment and a precipitation step are added one or more times in order to prevent deterioration of the properties of the final finished product. This leads to a decrease. On the other hand, in the case of the copper alloy according to the present invention, characteristics can be exhibited without such an additional process, so that process costs can be reduced and productivity can be improved.

900℃〜1000℃の温度範囲で1〜4時間均質化熱処理のために加熱する時、等方性の再結晶組織を得ると同時に溶体化処理の効果が奏される。1時間未満に加熱する場合、局部的に加工組織が残存して等方性の再結晶組織の特性を完全に示すことができない。また、4時間を超えて加熱する場合は、インゴットが部分的に溶解する問題がある。溶体化処理とは、Cu基地内に溶解度以上の元素を過飽和固溶して析出の効果を極大化する工程であり、一般的な析出硬化合金では薄板の厚さでさらなる溶体化工程を伴うので、工程費用が増加し、生産性が減少する。しかし、本発明による銅合金は、熱間圧延工程で熱処理により溶体化処理の効果を得ているので、その後、冷間圧延工程で87〜98%の強圧延により高い変形エネルギーを素材内に蓄積することができる。素材内部に残留する高い変形エネルギーは、冷間圧延後に析出工程の駆動力になって、析出工程で微細な析出物を均等に分布させることを可能にする。   When heating for a homogenizing heat treatment in a temperature range of 900 ° C. to 1000 ° C. for 1 to 4 hours, an isotropic recrystallized structure is obtained and at the same time the effect of solution treatment is exerted. If the heating is performed for less than one hour, the processed structure remains locally and the characteristics of the isotropic recrystallized structure cannot be completely exhibited. Further, when heating is performed for more than 4 hours, there is a problem that the ingot is partially melted. The solution treatment is a step of maximizing the effect of precipitation by supersaturating an element having a solubility equal to or higher than Cu in the Cu matrix, and a general precipitation hardening alloy involves a further solution treatment with a thin plate thickness. As a result, process costs increase and productivity decreases. However, since the copper alloy according to the present invention obtains the effect of solution treatment by heat treatment in the hot rolling process, high deformation energy is accumulated in the material by 87-98% strong rolling in the cold rolling process thereafter. can do. The high deformation energy remaining inside the material becomes a driving force of the precipitation process after cold rolling, and enables fine precipitates to be evenly distributed in the precipitation process.

次に、熱間圧延を終了すると同時に水冷して溶質の元素を固溶して溶体化処理し、加工率87〜98%の冷間圧延を行う。冷間圧延で高い変形エネルギーを蓄積して析出物生成の駆動力を増大することができる。   Next, at the same time as the completion of the hot rolling, water cooling is carried out to solid-dissolve solute elements and to perform a solution treatment, and cold rolling is performed at a working ratio of 87 to 98%. Cold rolling can accumulate high deformation energy and increase the driving force for precipitate formation.

次に、430〜520℃で1〜10時間析出熱処理する。本発明による銅合金は析出硬化型の合金であって、析出工程が非常に重要である。本発明による銅合金は、Mnが添加された新しい銅合金を設計したものであるが、単純にMn添加のみでは最適の強度と電気伝導度が伴わないので、析出工程により微細析出物を均等に分散して形成することを具現したものである。既存のCu-Fe-P系合金の場合、銅合金内に主にFeP析出物が存在し、局部的に粗大なFeP析出物が存在して特性を低下させる。反面、本発明による銅合金の製造方法においては、上記条件で析出熱処理することにより銅合金内に微細な(FeMn)P析出物が分散形成されて、高強度と高電気伝導度特性を全て達成できる。 Next, precipitation heat treatment is performed at 430 to 520 ° C. for 1 to 10 hours. The copper alloy according to the present invention is a precipitation hardening type alloy, and the precipitation step is very important. Although the copper alloy according to the present invention is a new copper alloy to which Mn is added, simply adding Mn does not involve the optimal strength and electric conductivity, so that fine precipitates are evenly distributed by the precipitation step. This embodies dispersing formation. In the case of an existing Cu-Fe-P-based alloy, Fe 2 P precipitates are mainly present in the copper alloy, and coarse FeP precipitates are locally present to deteriorate properties. On the other hand, in the method for producing a copper alloy according to the present invention, fine (FeMn) 2 P precipitates are dispersed and formed in the copper alloy by performing the precipitation heat treatment under the above conditions, and all of the high strength and high electric conductivity characteristics are obtained. Can be achieved.

最後に、10〜90%押下率で仕上げ圧延する。加工率10〜90%の冷間圧延で仕上げ圧延して目標物性を確保する。この時、好ましい加工率の範囲は30〜70%でり、この範囲で発明合金の加工量に対する強度増大量の効率性が最も高い。   Finally, finish rolling is performed at a pressing rate of 10 to 90%. Finish rolling is performed by cold rolling at a working ratio of 10 to 90% to secure target physical properties. At this time, a preferable range of the working ratio is 30 to 70%, and in this range, the efficiency of the strength increase with respect to the working amount of the invention alloy is highest.

さらに、上記方法において、析出熱処理後及び最終仕上げ圧延前に必要によって加工率30〜90%の冷間圧延後、中間熱処理を行うことができる。加工率30〜90%の冷間圧延及び中間熱処理段階は、量産ライン析出熱処理設備の工程や製造条件により発生できる焼着(熱と圧力による部分的接合)や析出熱処理後の表面酸洗い(pickling)によるスクラッチなどの表面品質の問題を解決するためのものであり、必須工程ではない。中
間熱処理は析出熱処理後の製品厚さと仕上げ圧延後の厚さに大きな差が発生して目標物性(強度、電気伝導度)の範囲から外れるか、目標特性の確保が難しい場合に適用可能である。この時、中間熱処理は強度減少を目的とし、電気伝導度の減少は最小化しなければならないので、電気伝導度が0.1〜3%IACS範囲内で減少するように熱処理することが重要である。0.1%IACS未満に電気伝導率が減少する場合は、熱処理の効果がなく、3%IACSを超えて電気伝導度が減少する場合には、熱処理の効果は大きいが、電気伝導度及び強度の減少により開発合金の目標特性から外れる可能性がある。
Further, in the above method, if necessary, after the precipitation heat treatment and before the final finish rolling, the intermediate heat treatment can be performed after cold rolling at a working ratio of 30 to 90%. The cold rolling and intermediate heat treatment steps at a working rate of 30 to 90% include baking (partial joining by heat and pressure) and pickling after the precipitation heat treatment, which can occur depending on the process and production conditions of the mass production line precipitation heat treatment equipment. ) Is for solving the problem of surface quality such as scratch, and is not an essential step. Intermediate heat treatment can be applied when there is a large difference between the product thickness after precipitation heat treatment and the thickness after finish rolling and it is out of the range of target physical properties (strength, electrical conductivity) or it is difficult to secure the target characteristics . At this time, the intermediate heat treatment aims at reducing the strength, and the decrease in electric conductivity must be minimized. Therefore, it is important to perform the heat treatment so that the electric conductivity decreases within the range of 0.1 to 3% IACS. . When the electric conductivity decreases below 0.1% IACS, the effect of the heat treatment is not obtained. When the electric conductivity decreases beyond 3% IACS, the effect of the heat treatment is large, but the electric conductivity and the strength are not increased. May deviate from the target properties of the developed alloy due to the decrease in

本発明による銅合金の製造工程において、熱間圧延及び析出熱処理工程は最後に得られる銅合金特性に重要な影響を及ぼし、本発明による銅合金内の微細な(FeMn)P析出物の分布のためには、熱間圧延から析出工程までの段階で順に製造工程の精密な制御が必要である。銅合金内に生成された微細析出物を確認するためには、FE−SEM及びFE−TEM観測が必須である。 In the production process of the copper alloy according to the present invention, the hot rolling and the precipitation heat treatment process have an important effect on the properties of the finally obtained copper alloy, and the distribution of fine (FeMn) 2 P precipitates in the copper alloy according to the present invention. For this purpose, precise control of the production process is required in the order from the hot rolling to the precipitation process. In order to confirm fine precipitates generated in the copper alloy, FE-SEM and FE-TEM observation are essential.

本発明による銅合金の製造方法により製造された銅合金は、微細な(FeMn)P析出物を含み、FE−TEMを用いた結晶方位解釈法で100,000倍以上の倍率で微細組織を観察した時、(FeMn)P析出物の平均粒径が50nm以下であり、面密度は1.0×1010個/cm以上である。 The copper alloy produced by the method for producing a copper alloy according to the present invention contains fine (FeMn) 2 P precipitates and has a fine structure at a magnification of 100,000 times or more by a crystal orientation interpretation method using FE-TEM. When observed, the average particle size of the (FeMn) 2 P precipitate is 50 nm or less, and the areal density is 1.0 × 10 10 particles / cm 2 or more.

析出物の観察のために、従来には一般的なイオンミリング法のTEM試験片を製造したが、この試験片では数〜数十nmサイズの微細析出物を観察することが不可能である。たとえ微細析出物粒子の観察を試みても、イオンミリング法で製造されたTEM試験片では不純物又は異物質と析出物との区別が難しく、析出物の結晶構造及び組成などを確認することができない。反面、炭素抽出レプリカ法で製造した試験片をTEM分析して本発明による銅合金の微細析出物を観察することができる。   Conventionally, a TEM test piece of a general ion milling method has been manufactured for observation of the precipitate, but it is impossible to observe a fine precipitate having a size of several to several tens of nm with this test piece. Even if an attempt is made to observe fine precipitate particles, it is difficult to distinguish impurities or foreign substances from precipitates with a TEM specimen manufactured by an ion milling method, and the crystal structure and composition of the precipitates cannot be confirmed. . On the other hand, a test piece manufactured by the carbon extraction replica method can be analyzed by TEM to observe fine precipitates of the copper alloy according to the present invention.

本発明による銅合金内には微細な(FeMn)P析出物が粒界、粒内に均等に分布しており、(FeMn)P析出物の平均粒径は50nm以下である。もし析出物の平均粒径が50nmを超える場合、電気伝導度の低下が必然的であり、また半導体工程において信頼性不足の問題を引き起こすことができる。析出物の平均粒径は、例えば、電界放射型の透過電子顕微鏡(FE−TEM)の結晶方位解釈法により100,000倍以上の倍率で観察することにより測定できる。これに関連して、後述する実施例において、本発明による銅合金のFE−TEM分析結果を図4a及び図4bに示す。 In the copper alloy according to the present invention, fine (FeMn) 2 P precipitates are uniformly distributed in the grain boundaries and in the grains, and the average particle size of the (FeMn) 2 P precipitates is 50 nm or less. If the average particle size of the precipitate exceeds 50 nm, a decrease in electric conductivity is inevitable, and a problem of insufficient reliability in a semiconductor process can be caused. The average particle size of the precipitate can be measured, for example, by observing the crystal orientation by a field emission type transmission electron microscope (FE-TEM) at a magnification of 100,000 or more. In this connection, FIGS. 4a and 4b show the results of FE-TEM analysis of the copper alloy according to the present invention in the examples described later.

また図4a及び図4bに示したようなFE−TEMの結果に基づいて面密度を測定することができる。面密度は一定の面積範囲内に存在する析出物の数であり析出物の分散を計る尺度である。過去には析出物の分散を計るために体積分率が使用されたが、体積分率は一定範囲内の析出物が占める比率を示すものであるので、非常に大きい粗大粒子が生成された場合には誤差範囲が相当に大きい。反面、面密度の概念を使用する場合は、粗大粒子の存在が面密度数値に影響を及ぼさず、より正確な析出物の分散程度を確認できる。本発明による銅合金の面密度は1.0×1010個/cm以上である。本発明による銅合金の(FeMn)P析出物の平均粒径は50nm以下であり、非常に微細であるので、発明合金の特性を示すためには、多量の析出物形成が必要であり、析出物の数、即ち、面密度が1.0×1010個/cm以下である場合は、十分な強度を示すことができない。 Further, the areal density can be measured based on the FE-TEM results as shown in FIGS. 4A and 4B. The areal density is the number of precipitates present in a certain area range, and is a measure for measuring the dispersion of the precipitates. In the past, the volume fraction was used to measure the dispersion of precipitates, but the volume fraction indicates the ratio of precipitates within a certain range, so when very large coarse particles were generated Has a considerably large error range. On the other hand, when the concept of areal density is used, the presence of the coarse particles does not affect the numerical value of the areal density, and the degree of dispersion of the precipitate can be confirmed more accurately. The areal density of the copper alloy according to the present invention is 1.0 × 10 10 pieces / cm 2 or more. Since the average particle size of the (FeMn) 2 P precipitate of the copper alloy according to the present invention is 50 nm or less and is very fine, a large amount of precipitate formation is necessary to exhibit the characteristics of the inventive alloy, When the number of precipitates, that is, the area density is 1.0 × 10 10 / cm 2 or less, sufficient strength cannot be exhibited.

本発明による銅合金の内燃化温度は400℃以上である。電気電子部品及び半導体の用途において十分な内燃化特性を示すためには、内燃化温度が少なくとも400℃以上でなければならない。本発明は銅合金の強度向上のための手段として結晶粒の微細化法ではなく析出強化を実施したので内燃化特性が優れる。もし結晶粒の微細化のために強ひずみ加工を行う場合、高い内部応力により軟化不良が発生することができる。軟化不良とは、素
材の加工及び半導体パッケージング時に熱によって素材の硬度が軟化して製品不良を引き起こすことである。
The internalization temperature of the copper alloy according to the present invention is 400 ° C. or higher. The internal combustion temperature must be at least 400 ° C. or higher in order to exhibit sufficient internal combustion characteristics in electrical and electronic component and semiconductor applications. In the present invention, since the precipitation strengthening is carried out instead of the grain refinement method as a means for improving the strength of the copper alloy, the internal combustion characteristics are excellent. If strong strain processing is performed to refine crystal grains, poor softening can occur due to high internal stress. Poor softening means that the hardness of the raw material is softened by heat during processing of the raw material and semiconductor packaging, resulting in defective products.

本発明による電気電子部品又は半導体用銅合金は、シート又は板材の形態で製造できる。シート又は板材の形態は半導体又はICリードフレーム又はコネクタ及び端子への適用に適合する。   The electric / electronic component or the copper alloy for semiconductor according to the present invention can be manufactured in the form of a sheet or a plate. The form of the sheet or plate is suitable for application to semiconductor or IC lead frames or connectors and terminals.

本発明による銅合金は、上述したように、銅合金の組成を配合し製造工程を正確に制御して、既存の製品より優れた強度及び電気伝導度を同時に有し、また内燃化特性が優れて従来広く使用されている半導体リードフレーム、端子、コネクタ、スイッチ、リレーなどの電気電子部品だけではなく、最近需要が増加している自動車電力制御の半導体でる離散トランジスタに特に適合する。   As described above, the copper alloy according to the present invention has excellent strength and electrical conductivity at the same time as existing products by blending the composition of the copper alloy and precisely controlling the manufacturing process, and has excellent internal combustion characteristics. It is particularly applicable not only to electric and electronic components such as semiconductor lead frames, terminals, connectors, switches, relays and the like which have been widely used in the past, but also to discrete transistors which are semiconductors for automotive power control, which have been increasing in demand recently.

<実施例1〜実施例16>
実施例1ないし16の試験片を表1に示した組成により製造する。試験片の製造方法については後述する。
<Examples 1 to 16>
Test pieces of Examples 1 to 16 are manufactured according to the compositions shown in Table 1. The method for producing the test piece will be described later.

表1に示す組成で各々1kg基準に銅を含む合金元素を配合して高周波溶解炉で溶解し、厚さ20mm、幅50mm、長さ160〜180mmのインゴットを鋳造する。製造されたインゴットは、急速冷却及び収縮孔などの不良部を除去するために、下端と上端を各々20mmずつ切断した後、中間部分のインゴットを用いて900℃のボックス炉(box furnace)で2時間均質化熱処理を実施して、加工率90%の熱間圧延を進行し、熱間圧延が終了すると同時に溶質元素の析出を阻止するために水冷して溶体化処理した。析出工程の前に加工率90%の冷間圧延で高い変形エネルギーを蓄積して析出物生成の駆動力を増大させた後、450℃で3時間析出熱処理を施し、加工率50%の冷間圧延で仕上げた。最後に仕上げ圧延された銅合金を0.3t×30w×200Lのサイズの試験片に製造して次の試験に使用した。実施例1ないし実施例16により製造された銅合金の試験片の試験例に開示された特性分析結果を表2に示す。   An alloy element containing copper based on the composition shown in Table 1 and containing 1 kg each was melted in a high-frequency melting furnace, and an ingot having a thickness of 20 mm, a width of 50 mm, and a length of 160 to 180 mm was cast. In order to remove defective portions such as rapid cooling and shrinkage holes, the manufactured ingot was cut at a lower end and an upper end by 20 mm each, and then was subjected to a 900 ° C. box furnace using an ingot in the middle part. A time-homogenizing heat treatment was performed to advance hot rolling at a working ratio of 90%. At the same time as the completion of the hot rolling, water-cooling and solution treatment were performed to prevent precipitation of solute elements. Before the precipitation process, a high deformation energy is accumulated by cold rolling at a working ratio of 90% to increase the driving force for forming precipitates, and then a precipitation heat treatment is performed at 450 ° C. for 3 hours, and a cold working at a working ratio of 50% is performed. Finished by rolling. Finally, the finish-rolled copper alloy was manufactured into a test piece having a size of 0.3 t × 30 w × 200 L and used for the next test. Table 2 shows the characteristic analysis results disclosed in the test examples of the test pieces of the copper alloys manufactured according to Examples 1 to 16.

<比較例1〜比較例16>
比較例1ないし比較例16の試験片は、表1に示した組成で実施例1ないし実施例16と同じ条件の製造工程で製造する。比較例1ないし比較例16により製造された銅合金試験片の特性分析の結果も表2に示す。
<Comparative Example 1 to Comparative Example 16>
The test pieces of Comparative Examples 1 to 16 were manufactured with the compositions shown in Table 1 in the same manufacturing process as in Examples 1 to 16. Table 2 also shows the results of the characteristic analysis of the copper alloy test pieces manufactured according to Comparative Examples 1 to 16.

Figure 2020504231
Figure 2020504231

実施例1ないし実施例14は、Cu、Fe、Mn、Pの組成範囲の臨界的意義を評価するための実施例であり、表1に示した。実施例14ないし実施例16は、Ni、Sn添加元素の効果を確認するための実施例である。比較例1の成分はリードフレーム用として広く使用されているC19210合金と同じ成分の組成である。また、比較例8ないし比較例13は既存のC19210合金にMnを添加したものである。   Examples 1 to 14 are examples for evaluating the critical significance of the composition ranges of Cu, Fe, Mn, and P, and are shown in Table 1. Examples 14 to 16 are examples for confirming the effects of Ni and Sn added elements. The component of Comparative Example 1 has the same composition as the C19210 alloy widely used for lead frames. In Comparative Examples 8 to 13, Mn was added to an existing C19210 alloy.

<試験例>
以下、実施例及び比較例により製造された銅合金の試験片の特性分析方法について説明する。
<Test example>
Hereinafter, a method of analyzing characteristics of a test piece of a copper alloy manufactured according to an example and a comparative example will be described.

引張強度はZWICK ROELL社のZ100満能試験機を使用して測定し、硬度はINSTRON社のTUKON2500ビッカース硬度器を使用して1kg荷重で測定し、電気伝導率はFOERSTER社のSIGMATESTを用いて測定した。   Tensile strength is measured using a ZWICK ROELL Z100 competence tester, hardness is measured using an INSTRON TUKON 2500 Vickers hardness tester under a 1 kg load, and electrical conductivity is measured using a FOERSTER SIGMATEST. did.

内燃化温度の分析時、熱処理はTHERMO SCIENTIFIC社のThermolyne5.8L D1ベンチトップマッフル炉(Benchtop Muffle Furnace)を使用して実施した。具体的には、内燃化温度の算出は、試験片を300/350/400/450/500/550/600/650/700℃の温度で各々1時間ずつ熱処理した後に硬度値を測定して、硬度(Y軸)−温度(X軸)の折れ線グラフで作図した後、初期硬度値の80%地点と交差する温度値を導出して示した。その結果は、図1に実施例5の発明合金を例示として既存のC19400及びC19210合金と比較して示した。   During the analysis of the internalization temperature, the heat treatment was performed using a THERMO SCIENTIFIC Thermolyne 5.8L D1 bench-top muffle furnace (Benchtop Muffle Furnace). Specifically, the internal combustion temperature was calculated by subjecting a test piece to a heat treatment at a temperature of 300/350/400/450/500/550/600/650/700 ° C. for 1 hour, and then measuring the hardness value. After plotting a line graph of hardness (Y-axis) -temperature (X-axis), a temperature value crossing the 80% point of the initial hardness value was derived and shown. The results are shown in FIG. 1 as an example of the invention alloy of Example 5 in comparison with existing C19400 and C19210 alloys.

試験片の微細組織の平均結晶粒径の測定はFEI社のQuanta650FEG(FE−SEM)を用いて測定した。平均結晶粒径の測定のために試験片の表面を電解研磨処理した後、FE−SEMチャンバーに装入し、チャンバー内の真空度を1×10−5torr以下に維持した後、イオンビームを照射して結晶方位解釈法で観察した。図3に実施例5の発明合金微細組織の観察結果を示す。 The average crystal grain size of the fine structure of the test piece was measured using Quanta650 FEG (FE-SEM) manufactured by FEI. After electropolishing the surface of the test piece for measuring the average crystal grain size, the test piece was placed in an FE-SEM chamber, and the degree of vacuum in the chamber was maintained at 1 × 10 −5 torr or less. Irradiation and observation by crystal orientation interpretation method. FIG. 3 shows the observation results of the microstructure of the inventive alloy of Example 5.

析出物の平均粒径及び面密度測定のために、JEOL社のJEM−2100F(FE−TEM)を用いた。FE−TEM観察のために2つの方法で分析を行った。第一に、一般的な試験片製造法であるイオンミリング(ion milling)法を用いてFE−TEM分析した結果を図4aに示す。図4aから分かるように、微細析出物の確認及び分析が不可能であった。従って、イオンミリング法では確認が不可能な微細析出物の分析のために、炭素抽出レプリカ(carbon extraction replica)法により製造した試験片をFE−TEMで分析した結果を図4bに示した。   JEM-2100F (FE-TEM) manufactured by JEOL was used for measuring the average particle diameter and the areal density of the precipitate. Analysis was performed in two ways for FE-TEM observation. First, a result of FE-TEM analysis using an ion milling method, which is a general test piece manufacturing method, is shown in FIG. 4A. As can be seen from FIG. 4a, confirmation and analysis of the fine precipitate was not possible. Therefore, in order to analyze fine precipitates that cannot be confirmed by the ion milling method, the result of analyzing the test piece manufactured by the carbon extraction replica method by FE-TEM is shown in FIG. 4B.

上述した特性分析方法により測定した結果を以下の表2に示す。   The results measured by the above-described characteristic analysis method are shown in Table 2 below.

Figure 2020504231
Figure 2020504231

表2において、実施例4と比較例8とを対比すると、実施例4は比較例8の成分にP含量を増大させたものであり、微細な(FeMn)P析出物の形成に十分な量のPを提供することにより強度が向上しながら電気伝導度まで向上する結果を確認できる。また、実施例5の結果を確認すると、強度特性と電気伝導度特性の両方が同時に良好に具現されることを確認できる。 In Table 2, when Example 4 and Comparative Example 8 are compared, Example 4 is obtained by increasing the P content to the components of Comparative Example 8, and is sufficient for forming fine (FeMn) 2 P precipitates. By providing the amount of P, it can be confirmed that the strength is improved and the electric conductivity is improved. Also, when the results of Example 5 are confirmed, it can be confirmed that both the strength characteristics and the electric conductivity characteristics are simultaneously satisfactorily realized.

なお、比較例1ないし比較例16は、製造工程の最適化により析出物制御を実施しても
、現在産業系の要求特性の1つである強度基準を満たさない。これは本発明の合金の最適の成分組成から外れて微細な(FeMn)P析出物の形成が不可能であることによる。
Note that Comparative Examples 1 to 16 do not satisfy the strength criterion, which is one of the required characteristics of industrial systems at present, even if the precipitate control is performed by optimizing the manufacturing process. This is because it is impossible to form fine (FeMn) 2 P precipitates outside the optimum composition of the alloy of the present invention.

比較例のうち、比較例8ないし比較例13は、既存のC19210合金に単純にMnを添加するだけで効果があるか否かを確認するための実験である。比較例8ないし比較例13の結果から、単純にMnを添加するだけでは要求特性を満たさないことが確認できる。これは単純Mnの添加のみでは(FeMn)P析出物が形成されず、MnがCu基地内に固溶されて却って電気伝導度を減少させる結果を招来し、これは結局、(FeMn)P析出物の形成に必要なP含量の不足による結果である。特に、単純添加元素の固溶強化のみでは強度は多少向上するが、電気伝導度が急に減少する傾向を確認できる。 Among the comparative examples, Comparative Examples 8 to 13 are experiments for confirming whether simply adding Mn to an existing C19210 alloy is effective. The results of Comparative Examples 8 to 13 confirm that simply adding Mn does not satisfy the required characteristics. This means that the addition of simple Mn alone does not result in the formation of (FeMn) 2 P precipitates, but instead results in the Mn being dissolved in the Cu matrix to reduce the electrical conductivity, which eventually results in (FeMn) 2 This is due to the lack of P content required for the formation of P precipitates. In particular, it can be confirmed that the strength is somewhat improved only by the solid solution strengthening of the simple addition element, but the electrical conductivity tends to decrease rapidly.

上述した特性分析の結果を要約すると、本発明合金の特性を示す実施例1ないし実施例16と同じ製造法と分析法を合わせても、既存のC19210の組成では向上した合金特性を示すことができないことが確認できる。   Summarizing the results of the characteristic analysis described above, it can be seen that the composition of the existing C19210 shows improved alloy characteristics even when the same manufacturing method and analysis method as those in Examples 1 to 16 showing the characteristics of the alloy of the present invention are combined. It can be confirmed that it cannot be done.

なお、熱間圧延の温度条件による特性評価のために、実施例1の組成による銅合金の試験片を、以下の表3に示したように熱間圧延の温度条件を変更しながら各々製造して、それらの物性を評価した。   In order to evaluate the properties under the temperature conditions of the hot rolling, test pieces of the copper alloy having the composition of Example 1 were manufactured while changing the temperature conditions of the hot rolling as shown in Table 3 below. Then, their physical properties were evaluated.

Figure 2020504231
Figure 2020504231

表3から分かるように、熱間圧延の温度が900℃未満である場合は、本発明による銅合金の特性を示すことができない。表3の結果を図2aないし図2cに示す。図2aは一般的なリードフレーム用銅合金の熱間圧延条件である870℃で熱間圧延したものであり、熱間圧延後の組織を観察すると、加工組織(圧延組織)が残存して後工程に影響を及ぼし、これにより最終完製品の特性低下が起こることを確認できる。図2b及び図2cの場合、熱間圧延温度が900℃以上であるので、熱間圧延後に等方性再結晶の組織が形成されて本発明合金の特性を具現できる。   As can be seen from Table 3, when the hot rolling temperature is lower than 900 ° C., the properties of the copper alloy according to the present invention cannot be exhibited. The results in Table 3 are shown in FIGS. 2a to 2c. FIG. 2A shows a hot-rolled copper alloy for a lead frame at 870 ° C., which is a general hot-rolling condition. Observation of the structure after hot rolling reveals that the processed structure (rolled structure) remains It can be confirmed that the influence is exerted on the process, whereby the property of the final finished product is deteriorated. 2B and 2C, since the hot rolling temperature is 900 ° C. or higher, an isotropic recrystallization structure is formed after hot rolling, thereby realizing the characteristics of the alloy of the present invention.

なお、本発明による銅合金の平均結晶粒径及び微細組織を確認するために、実施例5により製造した銅合金の試験片をFE−SEMで観察した写真を図3に示す。図3の写真によると、実施例5による試験片内の平均結晶粒径は20μm以下であり、標準偏差は5μm以下である。かかる結果は、本発明による銅合金が電気電子部品及び半導体用として使用される時、表面欠陥の問題なしに使用可能な良好な水準の微細組織を有することを確認できる。   In addition, in order to confirm the average crystal grain size and the microstructure of the copper alloy according to the present invention, a photograph of a test piece of the copper alloy manufactured in Example 5 observed by FE-SEM is shown in FIG. According to the photograph of FIG. 3, the average crystal grain size in the test piece according to Example 5 is 20 μm or less, and the standard deviation is 5 μm or less. These results confirm that when the copper alloy according to the present invention is used for electrical and electronic components and semiconductors, it has a fine level of microstructure that can be used without the problem of surface defects.

実施例5の銅合金試験片をFE−TEMで分析した結果を図4a及び4bに示す。   FIGS. 4A and 4B show the results of analyzing the copper alloy test piece of Example 5 by FE-TEM.

図4aは実施例5に記載の組成を有する銅合金内の析出物確認のために一般的に使用されるイオンミリング法により製造された試験片のFE−TEM写真であり、析出物の存在及び分散有無は観察が不明であるので正確な分析ができない。かかる問題を解決するために、新しい分析法を適用する必要がある。   FIG. 4a is an FE-TEM photograph of a test piece manufactured by an ion milling method generally used for confirming a precipitate in a copper alloy having the composition described in Example 5, and the presence of the precipitate and Since the observation of the presence or absence of dispersion is unknown, accurate analysis cannot be performed. To solve such problems, new analytical methods need to be applied.

図4bは既存のイオンミリング法の限界を克服するために、実施例5に記載の組成を有する銅合金内の析出物確認のために炭素抽出レプリカ法で製造した試験片のFE−TEM写真である。炭素抽出レプリカ法で製造した試験片の観察時、微細析出物の形状、サイズ、組成、面密度などの分析を正確に行うことができる。図4aでは析出物の存在程度のみが確認できるが、図4bからは既存のCu−Fe−P系合金では見られない(FeMn)P系析出物が均等に形成されており、析出物の平均粒径が50nm以下、析出物の面密度が1.0×1010(個/cm)以上であることを確認できる。 FIG. 4b is an FE-TEM photograph of a test piece manufactured by a carbon extraction replica method to confirm a precipitate in a copper alloy having the composition described in Example 5 in order to overcome the limitations of the existing ion milling method. is there. When observing a test piece manufactured by the carbon extraction replica method, it is possible to accurately analyze the shape, size, composition, area density, and the like of the fine precipitate. In FIG. 4a, only the existence degree of the precipitate can be confirmed, but from FIG. 4b, the (FeMn) 2 P-based precipitate which is not seen in the existing Cu—Fe—P-based alloy is uniformly formed, It can be confirmed that the average particle size is 50 nm or less, and the areal density of the precipitate is 1.0 × 10 10 (pieces / cm 2 ) or more.

Claims (6)

質量%で鉄(Fe):0.09〜0.20%、リン(P):0.05〜0.09%、マンガン(Mn):0.05〜0.20%、残量の銅(Cu)及び0.05質量%以下の不可避不純物からなり、前記不可避不純物は、Si、Zn、Ca、Al、Ti、Be、Cr、Co、Ag及びZrからなるグループから選択されるいずれか1種であり、
(FeMn)P析出物を含み、前記(FeMn)P析出物は炭素抽出レプリカ(carbon extraction replica)法で製造された試験片を高分解能の透過電子顕微鏡(HR−TEM)又は電界放出型の透過電子顕微鏡(FE−TEM)で100,000倍以上の倍率で測定され、前記(FeMn)P析出物は平均粒径が50nm以下であり、面密度が1.0×1010個/cm以上であり、
470MPa以上の引張強度、145Hv以上の硬度、75%IACS以上の電気伝導度、及び400℃以上の内燃化温度の特性を有する、電気電子部品又は半導体用銅合金。
In mass%, iron (Fe): 0.09 to 0.20%, phosphorus (P): 0.05 to 0.09%, manganese (Mn): 0.05 to 0.20%, the remaining amount of copper ( Cu) and 0.05% by mass or less of inevitable impurities, wherein the inevitable impurities are any one selected from the group consisting of Si, Zn, Ca, Al, Ti, Be, Cr, Co, Ag, and Zr. And
(FeMn) 2 P precipitates, and the (FeMn) 2 P precipitates were prepared by subjecting a test piece manufactured by a carbon extraction replica method to a high-resolution transmission electron microscope (HR-TEM) or a field emission type. Was measured at a magnification of 100,000 times or more with a transmission electron microscope (FE-TEM), and the (FeMn) 2 P precipitate had an average particle size of 50 nm or less and an areal density of 1.0 × 10 10 particles / cm 2 or more,
A copper alloy for electric / electronic parts or semiconductors having a tensile strength of 470 MPa or more, a hardness of 145 Hv or more, an electrical conductivity of 75% IACS or more, and an internal combustion temperature of 400 ° C. or more.
前記不可避不純物の含量は0.01質量%以下である、請求項1に記載の電気電子部品又は半導体用銅合金。   2. The copper alloy for electric / electronic parts or semiconductors according to claim 1, wherein the content of the inevitable impurities is 0.01% by mass or less. 3. さらにNi及びSnのうちのいずれか1種を0.0001質量%〜0.03質量%範囲で含む、請求項1に記載の電気電子部品又は半導体用銅合金。   The electric / electronic component or the copper alloy for a semiconductor according to claim 1, further comprising one of Ni and Sn in a range of 0.0001% by mass to 0.03% by mass. 前記銅合金は、電界放出型の走査電子顕微鏡(FE−SEM)で結晶方位解釈法により測定した結晶粒径において、平均結晶粒径が20μm以下であり、標準偏差が5μm以下である、請求項1に記載の電気電子部品又は半導体用銅合金。   The copper alloy has an average crystal grain size of 20 μm or less and a standard deviation of 5 μm or less in a crystal grain size measured by a field orientation scanning electron microscope (FE-SEM) by a crystal orientation interpretation method. 2. The copper alloy for an electric / electronic component or a semiconductor according to 1. 前記銅合金はシート又は板材の形態である、請求項1に記載の電気電子部品又は半導体用銅合金。   The copper alloy for an electric / electronic component or a semiconductor according to claim 1, wherein the copper alloy is in a form of a sheet or a plate material. 請求項1ないし請求項3のうちいずれか1つに記載の成分元素を溶解してインゴットを鋳造する段階、
前記得られたインゴットを900℃以上〜1000℃以下で1〜4時間均質化熱処理し、加工率85〜95%で熱間圧延する段階、
押下率87〜98%の範囲で冷間圧延する段階、
430〜520℃の温度で1〜10時間析出熱処理する段階、及び
10〜90%の押下率で仕上げ圧延する段階を含む、電気電子部品又は半導体用銅合金の製造方法。
Dissolving the component elements according to any one of claims 1 to 3 to cast an ingot;
A step of subjecting the obtained ingot to a homogenizing heat treatment at 900 ° C. or higher and 1000 ° C. or lower for 1 to 4 hours and hot rolling at a working ratio of 85 to 95%;
Cold rolling at a pressing ratio of 87 to 98%,
A method for producing a copper alloy for electric / electronic parts or a semiconductor, comprising a step of performing a precipitation heat treatment at a temperature of 430 to 520 ° C. for 1 to 10 hours, and a step of finish rolling at a depression rate of 10 to 90%.
JP2019512912A 2017-11-02 2018-08-17 Electrical and electronic components with high strength and high electrical conductivity, copper alloys for semiconductors, and their manufacturing methods Active JP6837541B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020170145414A KR101834335B1 (en) 2017-11-02 2017-11-02 Copper alloy for electrical and electronic parts and semiconductor with high strength and high electrical conductivity and a method of preparing same
KR10-2017-0145414 2017-11-02
PCT/KR2018/009428 WO2019088419A1 (en) 2017-11-02 2018-08-17 Copper alloy having high strength and high electrical conductivity characteristics for electrical and electronic component and semiconductor, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2020504231A true JP2020504231A (en) 2020-02-06
JP6837541B2 JP6837541B2 (en) 2021-03-03

Family

ID=61974037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019512912A Active JP6837541B2 (en) 2017-11-02 2018-08-17 Electrical and electronic components with high strength and high electrical conductivity, copper alloys for semiconductors, and their manufacturing methods

Country Status (7)

Country Link
US (1) US20210332459A1 (en)
JP (1) JP6837541B2 (en)
KR (1) KR101834335B1 (en)
CN (1) CN109996898A (en)
MY (1) MY192447A (en)
TW (1) TWI681933B (en)
WO (1) WO2019088419A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000328157A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd Copper alloy sheet excellent in bending workability
JP4041803B2 (en) * 2004-01-23 2008-02-06 株式会社神戸製鋼所 High strength and high conductivity copper alloy
US8715431B2 (en) * 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
CN101124345B (en) * 2005-03-02 2011-02-09 古河电气工业株式会社 Copper alloy and method for production thereof
WO2007007517A1 (en) * 2005-07-07 2007-01-18 Kabushiki Kaisha Kobe Seiko Sho Copper alloy with high strength and excellent processability in bending and process for producing copper alloy sheet
KR101260911B1 (en) * 2010-02-08 2013-05-06 주식회사 풍산 Copper alloy having high strength, high conductivity and method of manufacture for the same
KR20130136183A (en) * 2012-06-04 2013-12-12 박효주 Copper alloy element and the method for production same

Also Published As

Publication number Publication date
KR101834335B1 (en) 2018-04-13
WO2019088419A1 (en) 2019-05-09
TW201922619A (en) 2019-06-16
MY192447A (en) 2022-08-21
JP6837541B2 (en) 2021-03-03
TWI681933B (en) 2020-01-11
CN109996898A (en) 2019-07-09
US20210332459A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
KR101291002B1 (en) High strength and high conductivity copper rod or wire
JP6039999B2 (en) Cu-Ni-Co-Si based copper alloy sheet and method for producing the same
KR101570556B1 (en) Method for Producing Copper Alloy Material for Electrical/Electronic Component
JP5539055B2 (en) Copper alloy material for electric / electronic parts and method for producing the same
JP2008095185A (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JP2011117034A (en) Copper-alloy material
CN112055756B (en) Cu-co-si-fe-p-based alloy having excellent bending formability and method for producing the same
JP2012097307A (en) Copper alloy, copper rolled product, electronic component and connector using the same, and method for manufacturing copper alloy
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP2013087338A (en) High strength and high conductive copper alloy and manufacturing method thereof
JP2012001780A (en) Copper alloy material for electric/electronic component, and method of manufacturing the same
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6837542B2 (en) Copper alloy plate material with excellent heat resistance and heat dissipation
JP4779100B2 (en) Manufacturing method of copper alloy material
JP5988794B2 (en) Copper alloy sheet and manufacturing method thereof
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP4875772B2 (en) Copper alloy sheet for electrical and electronic parts and method for producing the same
JP6837541B2 (en) Electrical and electronic components with high strength and high electrical conductivity, copper alloys for semiconductors, and their manufacturing methods
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
JP4721067B2 (en) Manufacturing method of copper alloy material for electric and electronic parts
JP2024538740A (en) Manufacturing method of copper alloy sheet material for automobiles or electric/electronic parts having excellent strength, electrical conductivity and bending workability, and copper alloy sheet material manufactured therefrom
JP2007291516A (en) Copper alloy and its production method
KR20240137545A (en) Copper alloy sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210209

R150 Certificate of patent or registration of utility model

Ref document number: 6837541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250