JP2020205195A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2020205195A
JP2020205195A JP2019113069A JP2019113069A JP2020205195A JP 2020205195 A JP2020205195 A JP 2020205195A JP 2019113069 A JP2019113069 A JP 2019113069A JP 2019113069 A JP2019113069 A JP 2019113069A JP 2020205195 A JP2020205195 A JP 2020205195A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
cell stack
hydrogen
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019113069A
Other languages
English (en)
Other versions
JP7131493B2 (ja
Inventor
良介 深谷
Ryosuke Fukaya
良介 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019113069A priority Critical patent/JP7131493B2/ja
Publication of JP2020205195A publication Critical patent/JP2020205195A/ja
Application granted granted Critical
Publication of JP7131493B2 publication Critical patent/JP7131493B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】低温の燃料ガスを効果的に活用できる燃料電池システムを得る。【解決手段】本燃料電池システム10では、ボルテックスチューブ16からの低温水素は、第1熱交換器32へ供給されて燃料電池スタック12からの排気が低温水素によって冷却され、これによって、水蒸気の状態で排気に含まれる生成水が凝縮されて液状にされる。燃料電池スタック12からの排気は、燃料電池システム10の作動状態で基本的に常に燃料電池スタック12から排出される。このため、本燃料電池システム10の作動状態で低温水素が排気と熱交換せずに燃料電池スタック12へ供給されることを抑制できるため、ボルテックスチューブ16において水素を低温にすることによる効果を十分に得ることができる。【選択図】図1

Description

本発明は、燃料電池システムに関する。
下記特許文献1に開示された燃料電池システムでは、燃料ガス(例えば、水素)は、ボルテックスチューブを通って燃料電池スタックへ供給される。燃料ガスは、ボルテックスチューブ内でボルテックスチューブへの供給時よりも高温の高温燃料ガスと、ボルテックスチューブへの供給時よりも低温の低温燃料ガスとに分離される。
一方、燃料電池スタックには、冷媒流路が設けられており、冷却装置の冷媒(冷却液)が流れる。これによって、燃料電池スタックが冷却される。また、燃料電池スタックを冷却した冷媒と、低温燃料ガスとは、低温燃料ガス側の熱交換器に供給される。熱交換器では、冷媒と低温燃料ガスとの間で熱が交換され、これによって、燃料電池スタックで加熱された冷媒が冷却される。
ところで、特許文献1に開示された燃料電池システムでは、燃料電池スタックの冷媒流路を通った冷媒の温度が十分に高くない場合、すなわち、冷媒の冷却の必要がない場合には、冷媒は、低温燃料ガス側の熱交換器を通らない。したがって、このような場合には、低温燃料ガスは、基本的に冷媒を冷却することなく、燃料電池スタックへ供給される。このため、特許文献1に開示された燃料電池システムでは、低温の燃料ガスの活用方法については改善の余地がある。
特開2019−040757号公報
本発明は、上記事実を考慮して、低温の燃料ガスを効果的に活用できる燃料電池システムを得ることが目的である。
請求項1に記載の燃料電池システムは、燃料ガスに含まれる水素と酸化剤ガスの酸素との電気化学反応によって発電する燃料電池の燃料電池スタックと、前記燃料電池スタックへの前記燃料ガスの供給路に設けられて前記燃料ガスが供給され、前記燃料ガスを供給時よりも高温の高温燃料ガスと供給時よりも低温の低温燃料ガスとに分離するボルテックスチューブと、前記ボルテックスチューブから排出された前記低温燃料ガスが供給されると共に、前記燃料電池スタックから排出された排気が供給され、前記低温燃料ガスと前記排気との間で熱を交換させて前記排気を冷却する熱交換器と、前記熱交換器から排出された前記排気が供給され、前記排気に含まれる水分を前記排気から分離する気液分離器と、を備えている。
請求項1に記載の燃料電池システムによれば、燃料電池スタックへの燃料ガスの供給路にボルテックスチューブが設けられており、燃料ガスは、燃料電池スタックへの供給の途中(燃料電池スタックへの供給前)にボルテックスチューブを通過する。ボルテックスチューブでは、供給された燃料ガスが、供給時よりも高温の高温燃料ガスと、供給時よりも低温の低温燃料ガスとに分離される。ボルテックスチューブから排出された低温燃料ガスは、熱交換器に供給される。この熱交換器には、燃料電池スタックから排出された排気が供給され、熱交換器では、ボルテックスチューブからの低温燃料ガスと、燃料電池スタックからの排気との間で熱が交換される。これによって、排気が冷却される。
ここで、燃料電池スタックでは、燃料ガスに含まれる水素と酸化剤ガスの酸素との間で電気化学反応が生じ、これによって発電される。また、このような水素と酸素との電気化学反応によって水分が生成される(以下、この水分を「生成水」と称する)。この生成水の少なくとも一部は、水蒸気の状態で排気に含まれる。このため、熱交換器において排気が冷却されると、排気に含まれる生成水が凝縮されて液状にされる。
さらに、このように液状とされた生成水は、気液分離器によって排気から分離される。このように排気から液状の生成水を得ることができ、本燃料電池システムの各構成や本燃料電池システム以外の装置へ液状の生成水を供給できる。このように、本燃料電池システムでは、ボルテックスチューブによって分離された低温燃料ガスを排気に含まれる水蒸気状の生成水の凝縮に用いている。燃料電池システムが作動して燃料ガスの水素と酸化剤ガスの酸素との間で電気化学反応が生じている状態では、生成水を含んだ排気が熱交換器に供給される。このため、低温の燃料ガスを効果的に活用できる。
以上、説明したように、請求項1に記載の燃料電池システムでは、低温の燃料ガスを効果的に活用できる。
第1の実施の形態に係る燃料電池システムの構成を示す水素、空気、冷却液の回路図である。 第2の実施の形態に係る燃料電池システムの構成を示す水素、空気、冷却液の回路図である。 第3の実施の形態に係る燃料電池システムの構成を示す水素、空気、冷却液の回路図である。 第4の実施の形態に係る燃料電池システムの構成を示す水素、空気、冷却液の回路図である。 第5の実施の形態に係る燃料電池システムの構成を示す水素、空気、冷却液の回路図である。 第6の実施の形態に係る燃料電池システムの構成を示す水素、空気、冷却液の回路図である。
次に、本発明の各実施の形態を図1から図6の各図に基づいて説明する。なお、以下の各実施の形態を説明するにあたり、説明している実施の形態よりも前出の実施の形態と基本的に同一の構成については、同一の符号を付与してその詳細な説明を省略する。
<第1の実施の形態の構成>
図1に示されるように、第1の実施の形態に係る燃料電池システム10は、燃料電池を構成する燃料電池スタック12を備えている。燃料電池スタック12は、複数のセルを備えている。燃料ガスとしての水素がセルの正極(アノード、燃料極)と正極側のセパレータとの間を流れ、酸化剤としての酸素を含む空気がセルの負極(カソード、空気極)と負極側のセパレータとの間を流れる。これによって、水素と酸素との電気化学反応が生じて、発電される。
燃料電池スタック12は、車両に搭載された駆動ドライバを介して駆動装置としての車両駆動モータへ電気的に接続されており、燃料電池スタック12から車両駆動モータへ電力が供給されることによって車両駆動モータが駆動される。車両駆動モータの出力軸は、車両の駆動輪へ機械的に接続されており、車両駆動モータの駆動力が駆動輪へ伝わることによって車両は、走行できる。
また、本燃料電池システム10は、燃料ガス貯蔵部としてのタンク14を備えている。タンク14には、上述した水素(燃料ガス)が高圧の状態で貯蔵されている。タンク14の、例えば、口金部分は、ボルテックスチューブ16の供給口18へ接続されており、タンク14からの水素は、ボルテックスチューブ16の供給口18を介してボルテックスチューブ16内へ供給される。ボルテックスチューブ16は、暖気排出部20及び冷気排出部22を備えている。暖気排出部20は、ボルテックスチューブ16の中心軸方向一端に設けられ、冷気排出部22は、ボルテックスチューブ16の中心軸方向他端に設けられている。
ボルテックスチューブ16の暖気排出部20は、第1バルブ24の吸入ポートへ接続されており、第1バルブ24の排出ポートは、燃料電池スタック12の正極側の吸入ポートへ接続されている。ボルテックスチューブ16の暖気排出部20から排出された水素は、第1バルブ24及び燃料電池スタック12の正極側の吸入ポートを通って燃料電池スタック12へ供給される。
燃料電池スタック12の正極側の排出ポートは、第1気液分離器26の吸入ポートへ接続されており、燃料電池スタック12の正極側の排出ポートから排出された排気は、第1気液分離器26に流れる。燃料電池スタック12の正極側の排出ポートから排出された排気が第1気液分離器26に供給されると、排気は、第1気液分離器26によって水分が多い排気と、水分が少ない排気とに分離される。
第1気液分離器26の気体排出ポートは、燃料循環ポンプ28の吸入ポートへ接続されており、水分が少ない排気は、第1気液分離器26の気体排出ポートから排出されて燃料循環ポンプ28の吸入ポートへ供給される。燃料循環ポンプ28の排出ポートは、第1バルブ24の排出ポートと燃料電池スタック12の正極側の吸入ポートとの間で水素の流路に接続されている。燃料循環ポンプ28の排出ポートから排出された排気は、第1バルブ24の排出ポートと燃料電池スタック12の正極側の吸入ポートとの間を流れる水素に合流し、燃料電池スタック12の正極側の吸入ポートへ供給される。
一方、第1気液分離器26の液体排出ポートは、弁30へ接続されており、更に、弁30は、熱交換器としての第1熱交換器32の高温側吸入ポートへ接続されている。水分の含有量が多い排気は、第1気液分離器26の液体排出ポートから排出され、弁30を通り、第1熱交換器32の高温側吸入ポートから第1熱交換器32内へ供給される。第1熱交換器32の低温側吸入ポートは、ボルテックスチューブ16の冷気排出部22へ接続されており、ボルテックスチューブ16の冷気排出部22からの水素は、第1熱交換器32の低温側吸入ポートを通って第1熱交換器32へ供給される。
第1熱交換器32では、第1気液分離器26から供給された排気とボルテックスチューブ16の冷気排出部22から供給された水素との間で熱が交換される。第1熱交換器32の低温側排出ポートは、ボルテックスチューブ16の暖気排出部20と第1バルブ24の吸入ポートとの間で水素の流路に接続されている。第1熱交換器32の低温側吸入ポートを通った水素は、ボルテックスチューブ16の暖気排出部20と第1バルブ24の吸入ポートとの間を流れる水素に合流して燃料電池スタック12の正極側の吸入ポートへ供給される。
一方、第1熱交換器32の高温側排出ポートは、気液分離器としての第2気液分離器34の吸入ポートへ接続されており、第1熱交換器32の高温側排出ポートから排出された排気は、第2気液分離器34の吸入ポートを通って第2気液分離器34へ供給される。第1熱交換器32の高温側排出ポートから排出された排気は、第2気液分離器34において水分と水分が少ない排気とに分離され、水分が少ない排気は、第2気液分離器34の気体排出ポートから外部へ放出される。これに対して、第2気液分離器34の液体排出ポートは、インタークーラー(第2熱交換器)36の低温側吸入ポートへ接続されている。第2気液分離器34の液体排出ポートから排出された水分は、インタークーラー36の低温側吸入ポートを通ってインタークーラー36へ供給される。
一方、インタークーラー36の高温側吸入ポートは、エアコンプレッサ38の排出ポートへ供給されている。エアコンプレッサ38では、外気、すなわち、空気が吸引されて圧縮される。エアコンプレッサ38によって圧縮された空気は、インタークーラー36の高温側吸入ポートを通ってインタークーラー36へ供給される。インタークーラー36では、第2気液分離器34からの水分と、エアコンプレッサ38からの空気との間で熱が交換される。これによって、エアコンプレッサ38からの空気が冷却され、第2気液分離器34からの水分が加熱される。インタークーラー36で加熱された水分は、インタークーラー36の低温側排出ポートを通って外部へ排出される。
これに対して、インタークーラー36の高温側排出ポートは、燃料電池スタック12の負極側の吸入ポートへ接続されている。インタークーラー36にて冷却された空気は、燃料電池スタック12の負極側の吸入ポートを通って燃料電池スタック12へ供給され、燃料電池スタック12に供給された水素との電気化学反応に供される。燃料電池スタック12の負極側の排出ポートは、第2バルブ40の吸入ポートへ接続されている。第2バルブ40の排出ポートは、弁30と第1熱交換器32との間で燃料電池スタック12の正極側からの排気の流路に接続されている。燃料電池スタック12の負極側の排出ポートからの排気は、第2バルブ40を通り、弁30と第1熱交換器32との間を流れる燃料電池スタック12の正極側からの排気へ合流される。
一方、本燃料電池システム10は、冷却装置42を備えている。冷却装置42は、ラジエータ44を備えている。ラジエータ44は、例えば、車両のエンジンコンパートメントの内側におけるバンパリインフォースの車両後側に配置されている。ラジエータ44には、冷却装置42を循環する冷媒としての冷却液がラジエータ44を流れる。ラジエータ44は、概ね、車両前後方向に空気の通過が可能に構成されている。車両の走行状態で走行風がラジエータ44を通ると、走行風とラジエータ44内の冷却液との間で熱が交換される。これによって、冷却液が冷却される。なお、冷却液は、水でもよいし、エチレングリコール等を含んだ液体であってもよい。
ラジエータ44の冷却液の排出ポートは、三方弁46の第1吸入ポートへ接続されている。三方弁46の排出ポートは、燃料電池スタック12の冷却液流路の一端へ接続されており、ラジエータ44から三方弁46を介して燃料電池スタック12の冷却液流路の一端へ供給された冷却液は、燃料電池スタック12の冷却液流路を流れる。これによって、燃料電池スタック12が冷却される。
燃料電池スタック12の冷却液流路の他端は、ラジエータ44の吸入ポートへ接続されている。燃料電池スタック12を冷却することによって加熱された冷却液は、ラジエータ44の吸入ポートを通ってラジエータ44へ供給される。また、燃料電池スタック12の冷却液流路の他端は、三方弁46の第2吸入ポートへ接続されている。例えば、燃料電池スタック12の冷却液流路の他端からの冷却液が三方弁46の第2吸入ポートへ流れると、冷却液は、ラジエータ44を通ることなく燃料電池スタック12の冷却液流路の一端へ流れる。
<第1の実施の形態の作用、効果>
次に、本実施の形態の作用並びに効果について説明する。
本燃料電池システム10では、タンク14から排出された水素がボルテックスチューブ16の供給口18を通ってボルテックスチューブ16内へ供給される。ボルテックスチューブ16内に供給された水素は、螺旋状の第1螺旋気流となってボルテックスチューブ16の中心軸方向一端側、すなわち、暖気排出部20側へ流れ、第1螺旋気流となった水素の一部は、暖気排出部20から排出される。暖気排出部20から排出されなかった第1螺旋気流(すなわち、水素)は、螺旋状の第2螺旋気流となって第1螺旋気流の内側(ボルテックスチューブ16の中心軸側)をボルテックスチューブ16の中心軸方向他端側、すなわち、冷気排出部22側へ流れる。
このように、水素が第1螺旋気流、第2螺旋気流となってボルテックスチューブ16内を流れると、第1螺旋気流と第2螺旋気流との間で熱が交換される。これによって、ボルテックスチューブ16の供給口18へ流れた際の水素よりも高温の高温水素(高温燃料ガス)がボルテックスチューブ16の暖気排出部20から排出される。これに対して、ボルテックスチューブ16の供給口18へ流れた際の水素よりも低温の低温水素(低温燃料ガス)がボルテックスチューブ16の冷気排出部22から排出される。
ボルテックスチューブ16の暖気排出部20から排出された高温水素は、第1バルブ24及び燃料電池スタック12の正極側の吸入ポートを通って燃料電池スタック12へ供給される。これに対して、ボルテックスチューブ16の冷気排出部22から排出された低温水素は、第1熱交換器32を通り、ボルテックスチューブ16の暖気排出部20と第1バルブ24との間で高温水素に合流されて高温水素と共に燃料電池スタック12へ供給される。
一方、エアコンプレッサ38が作動されると、空気である外気がエアコンプレッサ38によって吸引されて圧縮される。エアコンプレッサ38から排出された空気は、インタークーラー36を通って燃料電池スタック12の負極側の吸入ポートを通って燃料電池スタック12へ供給される。このように、燃料電池スタック12の正極側に水素が供給されて燃料電池スタック12の負極側に空気が供給されると、燃料電池スタック12では、水素と空気に含まれる酸素とによる電気化学反応が生じ、発電される。
一方、燃料電池スタック12において空気との電気化学反応に供されなかった水素は、排気として燃料電池スタック12の正極側の排出ポートから排出されて第1気液分離器26へ供給される。燃料電池スタック12では、水素と酸素との電気化学反応の結果、水分が生成される(以下、この水分を「生成水」と称する)。このため、燃料電池スタック12の正極側の排出ポートから排出された排気には、生成水の少なくとも一部が水蒸気として含まれる。このように、生成水の水蒸気が含まれた排気と、液状の生成水とが燃料電池スタック12の正極側の排出ポートから排出される、第1気液分離器26に流れる。
第1気液分離器26では、燃料電池スタック12の正極側の排出ポートから排出された排気が、生成水の含有量が少ない(水分が少ない)排気と、生成水の含有量が多い(水分が多い)排気とに分離される。生成水の含有量が少ない排気は、第1気液分離器26の気体排出ポートから排出されて燃料循環ポンプ28を通る。燃料循環ポンプ28を通った排気は、第1バルブ24の排出ポートと燃料電池スタック12の正極側の吸入ポートとの間を流れる水素に合流され、燃料電池スタック12の正極側の吸入ポートへ供給される。
一方、生成水の含有量が多い排気は、液状の生成水と共に第1気液分離器26の液体排出ポートから排出され、弁30を通って第1熱交換器32へ供給される。また、燃料電池スタック12において水素との電気化学反応に供されなかった空気は、排気として燃料電池スタック12の負極側の排出ポートから排出される。燃料電池スタック12の負極側の排出ポートから排出された排気は、第2バルブ40を通り、弁30と第1熱交換器32との間で第1気液分離器26の液体排出ポートからの排気に合流される。このようにして燃料電池スタック12の正極側、負極側の双方からの排気及び液状の生成水が第1熱交換器32へ供給される。
第1熱交換器32では、ボルテックスチューブ16で冷却された低温水素と燃料電池スタック12からの排気との間で熱交換が行われる。これによって排気が冷却されると、排気中で水蒸気として存在していた生成水が過飽和となり、凝縮されて液状に変化する。これによって、生成水が排気から分離される。このようにして排気から分離された液状の生成水は、排気と、元々、液状として排気中に混在していた生成水と共に第2気液分離器34へ供給され、第2気液分離器34において排気と、液状の生成水とに分離される。液状の生成水から分離された排気は、第2気液分離器34の気体排出ポートから外部へ放出される。
一方、排気から分離された液状の生成水は、第2気液分離器34の液体排出ポートを通ってインタークーラー36へ供給される。インタークーラー36にはエアコンプレッサ38によって圧縮された空気が供給されている。ここで、空気は、エアコンプレッサ38によって圧縮されることで温度が高くなっている。インタークーラー36では、エアコンプレッサ38によって高温にされた空気と、第2気液分離器34からの生成水との間で熱が交換される。これによって第2気液分離器34からの生成水は、加熱され、更に、生成水は、インタークーラー36の低温側排出ポートを通って外部へ放出される。これに対して、第2気液分離器34からの生成水との間で熱が交換されることによって冷却された空気は、燃料電池スタック12の負極側に供給される。
このように、エアコンプレッサ38によって高温にされた空気を生成水によって冷却できる。これによって、高温の空気が燃料電池スタック12へ供給されることを抑制でき、燃料電池スタック12へ供給される空気の温度を適切に保つことができる。
一方、本燃料電池システム10では、冷却装置42の冷却液が燃料電池スタック12の冷却液流路を流れることによって燃料電池スタック12が冷却される。ここで、本燃料電池システム10では、上記のように、エアコンプレッサ38によって高温にされた空気が生成水によって冷却される。
このため、燃料電池スタック12の冷却液流路を流れる冷却液の温度上昇を抑制できる。これによって、燃料電池スタック12側からラジエータ44へ冷却液が流れた際に、ラジエータ44への入熱量が大きくなることを抑制できる。このため、例えば、車両走行時の走行風によって冷却液を十分に冷却でき、冷却装置42の冷却性能を向上できる。
ここで、本燃料電池システム10が作動されて、燃料電池スタック12において水素と空気に含まれる酸素との間で電気化学反応が生じて発電されている状態では、基本的に常に生成水が生成される。したがって、生成水が水蒸気の状態で含まれた排気は、本燃料電池システム10の作動状態で基本的に常に第1熱交換器32へ供給される。このため、本燃料電池システム10の作動状態では、基本的に常にボルテックスチューブ16からの低温水素は、第1熱交換器32において排気と熱を交換し、排気を冷却して水蒸気の状態で排気に含まれる生成水を凝縮している。
このように、本燃料電池システム10では、本燃料電池システム10の作動状態で低温水素が排気と熱交換せずに燃料電池スタック12へ供給されることを抑制できる。このため、ボルテックスチューブ16において水素を低温にすることによる効果を十分に得ることができる。
<第2の実施の形態>
図2に示されるように、第2の実施の形態に係る燃料電池システム10では、第2気液分離器34の液体排出ポートは、インタークーラー36の低温側吸入ポートへ接続されていない。また、本実施の形態は、噴射器としての噴霧器52を備えている。噴霧器52は、冷却装置42のラジエータ44の車両前側に配置されており、ラジエータ44の車両前側から霧状の液体をラジエータ44へ噴き付けることができる。噴霧器52は、第2気液分離器34の液体排出ポートへ接続されている。したがって、第2気液分離器34の液体排出ポートから排出された生成水は、噴霧器52へ供給される。これによって、噴霧器52から霧状の生成水がラジエータ44へ噴き付けられる。
一方、本実施の形態では、冷却装置42の冷却液が流れる燃料電池スタック12の冷却液流路の他端と、ラジエータ44の吸入ポート及び三方弁46の第2吸入ポートとの間にインタークーラー36の低温側吸入ポートが接続されている。また、本実施の形態では、インタークーラー36の低温側排出ポートが三方弁46の排出ポートと燃料電池スタック12の冷却液流路の一端との間に接続されている。このため、本実施の形態では、インタークーラー36が冷却装置42の一部を構成しており、エアコンプレッサ38によって圧縮されて高温となった空気は、インタークーラー36を流れる冷却液によって冷却される。
このように、本実施の形態では、第2気液分離器34からの生成水が噴霧器52へ供給され、噴霧器52からラジエータ44へ噴き付けられる。ラジエータ44に噴き付けられた霧状の生成水は、ラジエータ44の表面で蒸発することによってラジエータ44から気化熱を奪う。これによって、ラジエータ44での冷却液の冷却性能を向上でき、冷却液による燃料電池スタック12の冷却性能を向上できる。
また、上記のように十分に冷却された冷却液は、インタークーラー36を流れてエアコンプレッサ38によって圧縮されて高温となった空気との間で熱が交換される。これによって、エアコンプレッサ38によって圧縮された空気を冷却できる。これによって、高温の空気が燃料電池スタック12へ供給されることを抑制でき、燃料電池スタック12へ供給される空気の温度を適切に保つことができる。
<第3の実施の形態及び第4の実施の形態>
図3には第3の実施の形態が示されており、図4には第4の実施の形態が示されている。第3の実施の形態は、前記第1の実施の形態の変形例であり、第4の実施の形態は、前記第2の実施の形態の変形例である。
図3及び図4に示されるように、第3の実施の形態及び第4の実施の形態の各々は、膨張機54を備えている。膨張機54の吸入ポートは、ボルテックスチューブ16の暖気排出部20から排出された高温水素と、第1熱交換器32から低温側排出ポートから排出された低温水素との合流部分よりも水素の流路の下流側で水素の流路に接続されている。これに対して、膨張機54の排出ポートは、第1バルブ24の吸入ポートへ接続されている。したがって、ボルテックスチューブ16の暖気排出部20から排出された高温水素と、第1熱交換器32から低温側排出ポートから排出された低温水素とが合流されると、水素は、膨張機54へ供給される。膨張機54を通った水素は、第1バルブ24及び燃料電池スタック12の正極側の吸入ポートを通って燃料電池スタック12へ供給される。
膨張機54へ供給される水素は、ボルテックスチューブ16の暖気排出部20から排出された高温水素及び第1熱交換器32で排気と熱が交換することで高温になった水素である。このような水素が膨張機54へ供給されると、水素が膨張される(すなわち、水素の体積が増加される)。これによって、水素の温度及び圧力が低下され、膨張機54から排出される水素の温度は、例えば、ボルテックスチューブ16の供給口での水素の温度と同程度まで低下される。このため、比較的高温の水素が燃料電池スタック12へ供給されることを抑制でき、燃料電池システム10の運転条件を容易に調整できる。
また、膨張機54では、水素の膨張によって、例えば、膨張機54に設けられた回転軸等の機械的作動部が作動され、このような機械的作動部での機械仕事をエネルギーとして回収できる。このように回収したエネルギーによって燃料電池システム10を構成する他の装置(一例としては、燃料循環ポンプ28やエアコンプレッサ38)を駆動したり、燃料電池システム10以外の装置を駆動したりできる。
さらに、第3の実施の形態の膨張機54以外の構成は、基本的に前記第1の実施の形態と同様であり、第4の実施の形態の膨張機54以外の構成は、基本的に前記第2の実施の形態と同様である。したがって、第3の実施の形態は、基本的に前記第1の実施の形態と同様の効果を得ることができ、第4の実施の形態は、基本的に前記第2の実施の形態と同様の効果を得ることができる。
<第5の実施の形態及び第6の実施の形態>
図5には第5の実施の形態が示されており、図6には第6の実施の形態が示されている。第5の実施の形態は、前記第3の実施の形態の変形例であり、第6の実施の形態は、前記第4の実施の形態の変形例である。
図5及び図6に示されるように、第5の実施の形態及び第6の実施の形態の各々は、第3熱交換器56を備えている。第3熱交換器56の低温側吸入ポートは、膨張機54の排出ポートに接続されており、第3熱交換器56の低温側排出ポートは、第1バルブ24の吸入ポートへ接続されている。したがって、膨張機54によって膨張された水素が第3熱交換器56、第1バルブ24、燃料電池スタック12の正極側の吸入ポートを通って燃料電池スタック12へ供給される。
一方、図5に示されるように、第5の実施の形態では、第3熱交換器56の高温側吸入ポートは、冷却装置42の三方弁46の排出ポートへ接続されている。これに対して、図6に示されるように、第6の実施の形態では、第3熱交換器56の高温側吸入ポートは、冷却装置42の三方弁46の排出ポートからの冷却液と、インタークーラー36からの冷却液との合流部分へ接続されている。また、図5及び図6に示されるように、第5の実施の形態及び第6の実施の形態では、第3熱交換器56の高温側排出ポートは、燃料電池スタック12における冷却液流路の一端へ接続されている。したがって、冷却装置42の冷却液は、第3熱交換器56を通って燃料電池スタック12における冷却液流路へ流れる。
ここで、第3熱交換器56では、膨張機54によって膨張された水素と冷却装置42の冷却液との間で熱が交換される。これによって、冷却装置42の冷却液は、冷却され、膨張機54からの水素は、加熱される。このように、膨張機54によって低温にされた水素の温度を高くできる。このため、膨張機54によって水素の温度が大きく低下されても、水素の温度を第3熱交換器56によって適切な温度まで上昇させることができる。これによって、燃料電池システム10の運転条件を容易に調整できる。
また、このように膨張機54によって水素の温度が大きく低下されても、水素の温度を第3熱交換器56によって適切な温度まで上昇させることができるため、膨張機54での水素の膨張率を大きく設定できる。これによって、膨張機54の機械的作動部での機械仕事をエネルギーとして回収した際のエネルギーの回収量を大きくできる。
さらに、冷却装置42の冷却液と膨張機54からの水素との間の熱の交換によって冷却装置42の冷却液が冷却される。このため、冷却装置42による燃料電池スタック12の冷却性能を向上できる。
さらに、第5の実施の形態の第3熱交換器56以外の構成は、基本的に前記第3の実施の形態と同様であり、第6の実施の形態の第3熱交換器56以外の構成は、基本的に前記第4の実施の形態と同様である。したがって、第5の実施の形態は、基本的に前記第3の実施の形態と同様の効果を得ることができ、第6の実施の形態は、基本的に前記第4の実施の形態と同様の効果を得ることができる。
なお、上記の第2の実施の形態、第4の実施の形態、第6の実施の形態では、噴射器としての噴霧器52は、霧状の生成水をラジエータ44へ噴き付ける構成であった。しかしながら、噴射器から噴射される生成水の態様は、例えば、液滴状等であってもよい。すなわち、噴射器は、生成水をラジエータ44へ噴き付けることができる構成であればよく、噴射器から噴射される生成水の態様に関しては特に限定されるものではない。
また、上記の各実施の形態では、燃料電池スタック12の正極側からの排気及び燃料電池スタック12の負極側からの排気の双方が第1熱交換器32に供給される構成であった。しかしながら、燃料電池スタック12の正極側からの排気及び燃料電池スタック12の負極側からの排気の一方が第1熱交換器32に供給され、他方が第1熱交換器32に供給されない構成であってもよい。
10 燃料電池システム
12 燃料電池スタック
16 ボルテックスチューブ
32 第1熱交換器(熱交換器)
34 第2気液分離器(気液分離器)

Claims (1)

  1. 燃料ガスに含まれる水素と酸化剤ガスの酸素との電気化学反応によって発電する燃料電池の燃料電池スタックと、
    前記燃料電池スタックへの前記燃料ガスの供給路に設けられて前記燃料ガスが供給され、前記燃料ガスを供給時よりも高温の高温燃料ガスと供給時よりも低温の低温燃料ガスとに分離するボルテックスチューブと、
    前記ボルテックスチューブから排出された前記低温燃料ガスが供給されると共に、前記燃料電池スタックから排出された排気が供給され、前記低温燃料ガスと前記排気との間で熱を交換させて前記排気を冷却する熱交換器と、
    前記熱交換器から排出された前記排気が供給され、前記排気に含まれる水分を前記排気から分離する気液分離器と、
    を備える燃料電池システム。
JP2019113069A 2019-06-18 2019-06-18 燃料電池システム Active JP7131493B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019113069A JP7131493B2 (ja) 2019-06-18 2019-06-18 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113069A JP7131493B2 (ja) 2019-06-18 2019-06-18 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2020205195A true JP2020205195A (ja) 2020-12-24
JP7131493B2 JP7131493B2 (ja) 2022-09-06

Family

ID=73838030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113069A Active JP7131493B2 (ja) 2019-06-18 2019-06-18 燃料電池システム

Country Status (1)

Country Link
JP (1) JP7131493B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220993A (zh) * 2021-12-08 2022-03-22 上海澄朴科技有限公司 一种燃料电池系统氢气循环系统
CN114497626A (zh) * 2021-02-26 2022-05-13 中国科学院工程热物理研究所 处理固态氧化物燃料电池尾气的燃烧装置及方法
JP7450689B2 (ja) 2021-11-12 2024-03-15 エルジー エレクトロニクス インコーポレイティド 燃料電池装置及びその制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362159A (ja) * 1986-09-01 1988-03-18 Ishikawajima Harima Heavy Ind Co Ltd 淡水併給燃料電池発電装置
JP2005268141A (ja) * 2004-03-22 2005-09-29 Honda Motor Co Ltd 燃料電池システム
JP2007026824A (ja) * 2005-07-14 2007-02-01 Nissan Motor Co Ltd 燃料電池システム
JP2009152013A (ja) * 2007-12-19 2009-07-09 Toyota Motor Corp 燃料電池システム
JP2013093134A (ja) * 2011-10-24 2013-05-16 Honda Motor Co Ltd 燃料電池システム
JP2019036469A (ja) * 2017-08-16 2019-03-07 トヨタ自動車株式会社 燃料電池システム
JP2019040757A (ja) * 2017-08-25 2019-03-14 トヨタ自動車株式会社 燃料電池システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6362159B2 (ja) 2014-03-31 2018-07-25 Necエンベデッドプロダクツ株式会社 駆動回路、駆動方法及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362159A (ja) * 1986-09-01 1988-03-18 Ishikawajima Harima Heavy Ind Co Ltd 淡水併給燃料電池発電装置
JP2005268141A (ja) * 2004-03-22 2005-09-29 Honda Motor Co Ltd 燃料電池システム
JP2007026824A (ja) * 2005-07-14 2007-02-01 Nissan Motor Co Ltd 燃料電池システム
JP2009152013A (ja) * 2007-12-19 2009-07-09 Toyota Motor Corp 燃料電池システム
JP2013093134A (ja) * 2011-10-24 2013-05-16 Honda Motor Co Ltd 燃料電池システム
JP2019036469A (ja) * 2017-08-16 2019-03-07 トヨタ自動車株式会社 燃料電池システム
JP2019040757A (ja) * 2017-08-25 2019-03-14 トヨタ自動車株式会社 燃料電池システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497626A (zh) * 2021-02-26 2022-05-13 中国科学院工程热物理研究所 处理固态氧化物燃料电池尾气的燃烧装置及方法
JP7450689B2 (ja) 2021-11-12 2024-03-15 エルジー エレクトロニクス インコーポレイティド 燃料電池装置及びその制御方法
CN114220993A (zh) * 2021-12-08 2022-03-22 上海澄朴科技有限公司 一种燃料电池系统氢气循环系统
CN114220993B (zh) * 2021-12-08 2024-06-25 上海澄朴科技有限公司 一种燃料电池系统氢气循环系统

Also Published As

Publication number Publication date
JP7131493B2 (ja) 2022-09-06

Similar Documents

Publication Publication Date Title
JP2020205195A (ja) 燃料電池システム
CN108666597B (zh) 燃料电池系统
US8241806B2 (en) Fuel cell system
US7462414B2 (en) Fuel cell system
JP2001313054A (ja) 燃料電池システム
JP2013154691A (ja) 燃料電池車両
US20050199192A1 (en) Thermal management system and method for vehicle electrochemical engine
JP5733578B2 (ja) 燃料電池システム
JP2008269844A (ja) 燃料電池システム
US6824906B2 (en) Fuel cell system incorporating and integrated cathode exhaust condenser and stack cooler
US11335922B2 (en) Energy conversion system
JP2002313383A (ja) 燃料電池システム
EP4026718B1 (en) Heat exchange device for vehicles
JP2004212025A (ja) エジェクタポンプを用いた冷凍機
KR101126879B1 (ko) 연료전지의 공기 냉각 시스템
JP2004168187A (ja) 自動車用空調システム
US20120058407A1 (en) Cooling Devices for a Fuel Cell System
JP2009121390A (ja) ランキンサイクルシステム
US6588522B2 (en) Vehicle with a fuel cell system and method for operating the same
KR20150065408A (ko) 전기식 사륜 구동장치의 냉각유닛
JP7077699B2 (ja) 燃料電池システム
JP2005259440A (ja) 燃料電池システム
US20230299314A1 (en) Device for supplying pressurised air to a fuel cell cathode, with optimised cooling
JP2019175758A (ja) 燃料電池システム
JP2019021545A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R151 Written notification of patent or utility model registration

Ref document number: 7131493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151