JP2020202218A - Wiring board and method for manufacturing wiring board - Google Patents

Wiring board and method for manufacturing wiring board Download PDF

Info

Publication number
JP2020202218A
JP2020202218A JP2019106435A JP2019106435A JP2020202218A JP 2020202218 A JP2020202218 A JP 2020202218A JP 2019106435 A JP2019106435 A JP 2019106435A JP 2019106435 A JP2019106435 A JP 2019106435A JP 2020202218 A JP2020202218 A JP 2020202218A
Authority
JP
Japan
Prior art keywords
wiring board
stiffener
layer
wiring
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019106435A
Other languages
Japanese (ja)
Other versions
JP7351107B2 (en
Inventor
祥之 櫃岡
Yoshiyuki Hitsuoka
祥之 櫃岡
将士 澤田石
Masashi Sawadaishi
将士 澤田石
貴志 木津
Takashi Kizu
貴志 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2019106435A priority Critical patent/JP7351107B2/en
Publication of JP2020202218A publication Critical patent/JP2020202218A/en
Application granted granted Critical
Publication of JP7351107B2 publication Critical patent/JP7351107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a wiring board that can be manufactured with a good yield and a method for manufacturing the wiring board.SOLUTION: A wiring board includes a first wiring board (wiring board 1 for FC-BGA), a second wiring board (interposer 3) laminated on the first wiring board, and a stiffener 5 laminated on the second wiring board. The stiffener is a board end of a support board on which the second wiring board is formed. A method for manufacturing a wiring board includes a step of alternately laminating an insulating resin layer and a wiring layer on one surface of the support board to form a second wiring board, a step of mounting the second wiring board on the first wiring board, and a step of removing unnecessary parts of the support board by using the board end of the support board as a stiffener.SELECTED DRAWING: Figure 1

Description

本発明は、配線基板及び配線基板の製造方法に関する。 The present invention relates to a wiring board and a method for manufacturing a wiring board.

近年半導体装置の高速、高集積化が進む中で、FC−BGA(Flip Chip−Ball Grid Array)用配線基板に対しても、半導体素子との接続端子の狭ピッチ化、基板配線の微細化が求められている。一方、FC−BGA用配線基板とマザーボードとの接続は、従来とほぼ変わらないピッチの接続端子での接続が要求されている。この半導体素子との接続端子の狭ピッチ化、基板配線の微細化のため、シリコン上に配線を形成して半導体素子接続用の基板(シリコンインターポーザ)として、それぞれFC−BGA用配線基板に接続する方式が知られている。また、FC−BGA用配線基板の表面をCMP(Chemical Mechanical Polishing、化学機械研磨)等で平坦化してから微細配線を形成する方式が特許文献1に開示されている。また、支持基板の上に微細な配線層を形成しFC−BGA用配線基板に搭載した後、支持基板を剥離することで狭ピッチな配線基板を形成する方式が特許文献2に開示されている。 In recent years, with the progress of high speed and high integration of semiconductor devices, the pitch of connection terminals with semiconductor elements has been narrowed and the board wiring has been miniaturized for FC-BGA (Flip Chip-Ball Grid Array) wiring boards. It has been demanded. On the other hand, the connection between the FC-BGA wiring board and the motherboard is required to be connected with connection terminals having a pitch that is almost the same as the conventional one. In order to narrow the pitch of the connection terminals with the semiconductor element and miniaturize the board wiring, wiring is formed on silicon and connected to the FC-BGA wiring board as a substrate (silicon interposer) for connecting the semiconductor element. The method is known. Further, Patent Document 1 discloses a method of forming fine wiring after flattening the surface of a wiring board for FC-BGA by CMP (Chemical Mechanical Polishing, chemical mechanical polishing) or the like. Further, Patent Document 2 discloses a method in which a fine wiring layer is formed on a support substrate, mounted on a wiring board for FC-BGA, and then the support substrate is peeled off to form a narrow-pitch wiring board. ..

特開2014−225671号公報Japanese Unexamined Patent Publication No. 2014-225671 国際公開第2018/047861号International Publication No. 2018/047861

シリコンインターポーザは、シリコンウェハを利用して、半導体前工程用の設備を用いて製作されている。シリコンウェハは形状、サイズに制限があり、1枚のウェハから製作できるインターポーザの数が少なく、製造設備も高価であるため、インターポーザも高価となる。また、シリコンウェハが半導体であることから、伝送特性も劣化するという問題がある。 The silicon interposer is manufactured by using a silicon wafer and using equipment for a semiconductor front-end process. Since silicon wafers are limited in shape and size, the number of interposers that can be manufactured from one wafer is small, and the manufacturing equipment is expensive, the interposers are also expensive. Further, since the silicon wafer is a semiconductor, there is a problem that the transmission characteristics are also deteriorated.

また、FC−BGA用配線基板の表面の平坦化を行いその上に微細配線層を形成する方式においては、シリコンインターポーザに見られる伝送特性劣化は小さいが、FC−BGA用配線基板の製造不良と、難易度の高い微細配線形成時の不良との通算で同一基板面内収率が低下する問題や、FC−BGA用配線基板の反り、歪みに起因した半導体素子の実装における問題がある。 Further, in the method of flattening the surface of the FC-BGA wiring board and forming a fine wiring layer on the surface, the deterioration of the transmission characteristics seen in the silicon interposer is small, but the manufacturing defect of the FC-BGA wiring board is caused. There is a problem that the in-plane yield of the same substrate is lowered in total with defects at the time of forming fine wiring with high difficulty, and there is a problem in mounting a semiconductor element due to warpage and distortion of the wiring board for FC-BGA.

一方、支持基板の上に微細な配線層を形成し、これをFC−BGA用配線基板に搭載しようとすると、次のような問題があった。すなわち、FC−BGA用配線基板に搭載した後に支持基板を剥離するため、搭載時の封止樹脂が支持基板まで濡れ上がって支持基板の剥離を妨げる問題と、剥離時にかかる力や内部に貯蔵されている応力で配線基板全体が反るため、この後半導体素子を実装する際に不具合を生じる問題である。 On the other hand, when a fine wiring layer is formed on the support substrate and this is mounted on the FC-BGA wiring board, there are the following problems. That is, since the support substrate is peeled off after being mounted on the FC-BGA wiring board, the sealing resin at the time of mounting wets up to the support substrate and hinders the peeling of the support substrate, and the force applied at the time of peeling is stored inside. Since the entire wiring board is warped by the stress, there is a problem that a problem occurs when the semiconductor element is mounted after that.

そこで本発明は、上記問題に鑑みなされたものであり、歩留まり良く製造できる配線基板及び配線基板の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a wiring board and a method for manufacturing a wiring board, which can be manufactured with a high yield.

上記の課題を解決するために、本発明の配線基板は、第1配線基板と、前記第1配線基板上に積層された第2配線基板と、前記第2配線基板上に積層されたスティフナと、を有するものである。 In order to solve the above problems, the wiring board of the present invention includes a first wiring board, a second wiring board laminated on the first wiring board, and a stiffener laminated on the second wiring board. , And have.

本発明によれば、支持基板の剥離時の不具合を避けることができ、平滑性の高い配線基板上に半導体素子を実装できるため、実装工程の収率を向上させることが可能となる。 According to the present invention, it is possible to avoid defects at the time of peeling of the support substrate, and it is possible to mount the semiconductor element on a wiring board having high smoothness, so that the yield of the mounting process can be improved.

上記した以外の課題、構成および効果は、以下の実施をするための形態における説明により明らかにされる。 Issues, configurations and effects other than those mentioned above will be clarified by the description in the embodiments for carrying out the following.

本発明の一実施形態に係る配線基板に半導体素子を実装した半導体パッケージの一例を示す断面図である。It is sectional drawing which shows an example of the semiconductor package which mounted the semiconductor element on the wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板と支持基板の一例を示す断面図である。It is sectional drawing which shows an example of the 2nd wiring board and the support board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第2配線基板の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板と第2配線基板の接合工程の一例を示す断面図である。It is sectional drawing which shows an example of the joining process of the 1st wiring board and 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板と第2配線基板の接合工程の一例を示す断面図である。It is sectional drawing which shows an example of the joining process of the 1st wiring board and 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板と第2配線基板の接合工程の一例を示す断面図である。It is sectional drawing which shows an example of the joining process of the 1st wiring board and 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板と第2配線基板の接合工程の一例を示す断面図である。It is sectional drawing which shows an example of the joining process of the 1st wiring board and 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板と第2配線基板の接合工程の一例を示す断面図である。It is sectional drawing which shows an example of the joining process of the 1st wiring board and 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板と第2配線基板の接合工程の一例を示す断面図である。It is sectional drawing which shows an example of the joining process of the 1st wiring board and 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板と第2配線基板の接合工程の一例を示す断面図である。It is sectional drawing which shows an example of the joining process of the 1st wiring board and 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第1配線基板と第2配線基板の接合工程の一例を示す断面図である。It is sectional drawing which shows an example of the joining process of the 1st wiring board and 2nd wiring board which concerns on one Embodiment of this invention. アンダーフィルの濡れ広がりが支持基板の側面まで達しない場合の製造途中の配線基板を示す断面図である。It is sectional drawing which shows the wiring board in the process of manufacturing when the wet spread of the underfill does not reach the side surface of the support board. スティフナを設けていない配線基板に半導体素子を実装した半導体パッケージを示す断面図である。It is sectional drawing which shows the semiconductor package which mounted the semiconductor element on the wiring board which does not provide a stiffener. 本発明の他の実施形態に係る第1配線基板と第2配線基板とスティフナを積層した配線基板を示す平面図である。It is a top view which shows the wiring board which laminated | laminated the 1st wiring board, the 2nd wiring board and the stiffener which concerns on other embodiment of this invention. 本発明の他の実施形態に係る第1配線基板と第2配線基板とスティフナを積層した配線基板を示す平面図である。It is a top view which shows the wiring board which laminated | laminated the 1st wiring board, the 2nd wiring board and the stiffener which concerns on other embodiment of this invention. 本発明の他の実施形態に係る第1配線基板と第2配線基板とスティフナを積層した配線基板を示す平面図である。It is a top view which shows the wiring board which laminated | laminated the 1st wiring board, the 2nd wiring board and the stiffener which concerns on other embodiment of this invention. 本発明の他の実施形態に係る第1配線基板と第2配線基板とスティフナを積層した配線基板を示す平面図である。It is a top view which shows the wiring board which laminated | laminated the 1st wiring board, the 2nd wiring board and the stiffener which concerns on other embodiment of this invention. 本発明の他の実施形態に係る第1配線基板と第2配線基板とスティフナを積層した配線基板を示す平面図である。It is a top view which shows the wiring board which laminated | laminated the 1st wiring board, the 2nd wiring board and the stiffener which concerns on other embodiment of this invention.

以下に、本発明の実施形態にについて図面を参照して説明する。この実施形態は、支持基板の上に微細な配線層を形成しFC−BGA用配線基板に搭載した配線基板に関する。なお、この実施形態により本発明が限定されるものではない。ただし、以下に説明する各図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適宜省略する。また、各図面は説明を容易にするために適宜誇張して表現している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment relates to a wiring board in which a fine wiring layer is formed on a support substrate and mounted on the FC-BGA wiring board. The present invention is not limited to this embodiment. However, in each of the figures described below, the parts corresponding to each other are designated by the same reference numerals, and the description of the overlapping parts will be omitted as appropriate. In addition, each drawing is exaggerated as appropriate for ease of explanation.

<一実施形態>
図1は、本発明の一実施形態に係る配線基板に半導体素子を実装した半導体パッケージの一例を示す断面図である。
<One Embodiment>
FIG. 1 is a cross-sectional view showing an example of a semiconductor package in which a semiconductor element is mounted on a wiring board according to an embodiment of the present invention.

本発明の一実施形態に係る半導体パッケージは、FC−BGA用配線基板(第1配線基板)1の一方の面に、樹脂と配線とが積層されてなるビルドアップ配線層のみで形成された微細配線層を備えた薄いインターポーザ(第2配線基板)3が、はんだバンプまたは銅ポスト(銅ピラー)または金バンプなどで接合(接合部18)されている。また、FC−BGA用配線基板1とインターポーザ3との間隙が絶縁性の接着部材としてのアンダーフィル2で埋め込まれている。さらにインターポーザ3の、FC−BGA用配線基板1とは逆側の面に半導体素子4が銅ピラー20a及びその先端の半田20bで接合(接合部20)され、半導体素子4とインターポーザ3との間隙がアンダーフィル21で埋め込まれている。第2配線基板表面の半導体素子を搭載していない部分には、スティフナ5が接着されている。本明細書において、「インターポーザ」は、FC−BGA用配線基板とは別個の配線基板を意味し、FC−BGA用配線基板の表面上に形成された微細配線層とは区別される。 The semiconductor package according to the embodiment of the present invention is a fine structure formed only by a build-up wiring layer in which resin and wiring are laminated on one surface of a FC-BGA wiring board (first wiring board) 1. A thin interposer (second wiring board) 3 provided with a wiring layer is joined (joint portion 18) with solder bumps, copper posts (copper pillars), gold bumps, or the like. Further, the gap between the FC-BGA wiring board 1 and the interposer 3 is embedded with an underfill 2 as an insulating adhesive member. Further, the semiconductor element 4 is joined to the surface of the interposer 3 opposite to the FC-BGA wiring board 1 by the copper pillar 20a and the solder 20b at the tip thereof (joint portion 20), and the gap between the semiconductor element 4 and the interposer 3 is formed. Is embedded in the underfill 21. A stiffener 5 is adhered to a portion of the surface of the second wiring board on which no semiconductor element is mounted. In the present specification, the "interposer" means a wiring board separate from the FC-BGA wiring board, and is distinguished from the fine wiring layer formed on the surface of the FC-BGA wiring board.

アンダーフィル2は、FC−BGA用配線基板1とインターポーザ3とを固定し、接合部18を封止するために用いられる接着材料である。アンダーフィル2としては、例えば、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、ポリエステル樹脂、オキセタン樹脂、及びマレイミド樹脂の内の1種又はこれらの樹脂の2種類以上が混合された樹脂に、フィラーとしてのシリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、又は酸化亜鉛等が加えられた材料が用いられる。アンダーフィル2は、液状の樹脂を充填させることで形成される。 The underfill 2 is an adhesive material used for fixing the FC-BGA wiring board 1 and the interposer 3 and sealing the joint portion 18. The underfill 2 includes, for example, silica as a filler in a resin obtained by mixing one of epoxy resin, urethane resin, silicon resin, polyester resin, oxetane resin, and maleimide resin, or two or more of these resins. , Titanium oxide, aluminum oxide, magnesium oxide, zinc oxide and the like are added to the material. The underfill 2 is formed by filling with a liquid resin.

アンダーフィル21は半導体素子4とインターポーザ3とを固定し、接合部20を封止するために用いられる接着剤であり、アンダーフィル2と同様の材料で構成される。またこれら毛細管現象を利用して接合後に液状の樹脂を充填させるアンダーフィル2、及び、アンダーフィル21の代わりに、接合前にシート状のフィルムを予め配置し、接合時に空間を充填する異方性導電フィルム(ACF)または、フィルム状接続材料(NCF)や、接合前に液状の樹脂を予め配置し接合時に空間を充填する非導電ペースト(NCP)などを用いてもよい。 The underfill 21 is an adhesive used to fix the semiconductor element 4 and the interposer 3 and seal the joint portion 20, and is made of the same material as the underfill 2. Further, instead of the underfill 2 and the underfill 21 which are filled with a liquid resin after joining by utilizing these capillarities, a sheet-like film is arranged in advance before joining to fill the space at the time of joining. A conductive film (ACF), a film-like connecting material (NCF), or a non-conductive paste (NCP) in which a liquid resin is arranged in advance before joining to fill a space at the time of joining may be used.

インターポーザ3と半導体素子4との接合部20の個々の間隔は、インターポーザ3とFC−BGA用配線基板1との接合部18の個々の間隔よりも狭いことが一般的である。そのため、インターポーザ3において、半導体素子4を接合する側の方が、FC−BGA用配線基板1と接合する側よりも微細な配線が必要となる。例えば、現在のハイバンドメモリ(HBM)の使用に対応するためには、インターポーザ3では配線幅を2μm以上6μm以下にする必要がある。特性インピーダンスを50Ωにあわせるためには、配線幅が2μm、配線高さ2μmの場合、配線間の絶縁膜厚は2.5μmとなる。配線も含めた1層の厚さは4.5μmとなり、この厚さで5層のインターポーザ3を形成する場合、インターポーザ3は、総厚25μm程度のインターポーザ3となる。 The individual distance between the joint portion 20 between the interposer 3 and the semiconductor element 4 is generally narrower than the individual distance between the joint portions 18 between the interposer 3 and the FC-BGA wiring board 1. Therefore, in the interposer 3, the side where the semiconductor element 4 is joined requires finer wiring than the side where the semiconductor element 4 is joined with the FC-BGA wiring board 1. For example, in order to support the use of the current high band memory (HBM), the wiring width of the interposer 3 needs to be 2 μm or more and 6 μm or less. In order to match the characteristic impedance to 50Ω, when the wiring width is 2 μm and the wiring height is 2 μm, the insulating film thickness between the wirings is 2.5 μm. The thickness of one layer including wiring is 4.5 μm, and when a five-layer interposer 3 is formed with this thickness, the interposer 3 becomes an interposer 3 having a total thickness of about 25 μm.

前記の通り、インターポーザ3の厚みは総厚25μm程度と薄く、そのままの状態ではFC−BGA用配線基板1と接合するのが困難であるため、支持基板5を用いて剛直性を担保することが有効である。また、2μm程度の幅と高さを有する配線を形成するには、平坦な支持基板5が必要となる。上記理由により、図2に示すように、インターポーザ3は、剛直で平坦な支持基板5上に剥離層6と保護層7とシード層8を介して形成される。なお、支持基板上には剥離層6、保護層7、シード層8以外の層を設けてもよい。 As described above, the thickness of the interposer 3 is as thin as about 25 μm, and it is difficult to join the interposer 3 to the FC-BGA wiring board 1 as it is. Therefore, the support substrate 5 can be used to ensure rigidity. It is valid. Further, in order to form a wiring having a width and height of about 2 μm, a flat support substrate 5 is required. For the above reason, as shown in FIG. 2, the interposer 3 is formed on a rigid and flat support substrate 5 via a release layer 6, a protective layer 7, and a seed layer 8. A layer other than the release layer 6, the protective layer 7, and the seed layer 8 may be provided on the support substrate.

次に図3Aから図3Nを用いて、本発明の一実施形態に係る支持基板5上へのインターポーザ(第2配線基板)3の製造工程の一例を説明する。 Next, an example of a manufacturing process of the interposer (second wiring board) 3 on the support substrate 5 according to the embodiment of the present invention will be described with reference to FIGS. 3A to 3N.

まず、図3Aに示すように、支持基板5の一方の面に、後の工程で支持基板5を剥離するために必要な剥離層6を形成する。 First, as shown in FIG. 3A, a release layer 6 necessary for peeling the support substrate 5 in a later step is formed on one surface of the support substrate 5.

剥離層6は、例えば、UV光などの光を吸収して発熱、昇華、または変質によって剥離可能となる樹脂でもよく、熱によって発泡により剥離可能となる樹脂でもよい。 The peeling layer 6 may be, for example, a resin that absorbs light such as UV light and can be peeled off by heat generation, sublimation, or alteration, or a resin that can be peeled off by foaming due to heat.

UV光などの光によって剥離可能となる樹脂を用いる場合、剥離層6を設けた側とは反対側の面から支持基板5に光を照射して、インターポーザ3と、FC−BGA用配線基板1との接合体から支持基板5を取り去る。この場合、支持基板5は、透明性を有する必要があり、例えばガラスを用いることができる。ガラスは平坦性に優れており、インターポーザ3の微細なパターン形成に向いている、また、ガラスはCTE(coefficient of thermal expansion、熱膨張率)が小さく歪みにくいことから、パターン配置精度及び平坦性の確保に優れている。支持基板5としてガラスを用いる場合、ガラスの厚さは、製造プロセスにおける反りの発生を抑制する観点から厚い方が望ましく、例えば0.7mm以上、好ましくは1.1mm以上の厚みである。また、ガラスのCTEは3ppm以上15ppm以下が好ましく、FC−BGA用配線基板1、半導体素子4のCTEの観点から9ppm程度がより好ましい。ここでは、支持基板5として、例えばガラスを用いる。 When a resin that can be peeled off by light such as UV light is used, the support substrate 5 is irradiated with light from the surface opposite to the side on which the peeling layer 6 is provided, and the interposer 3 and the FC-BGA wiring board 1 are irradiated. The support substrate 5 is removed from the joint body with. In this case, the support substrate 5 needs to have transparency, and glass can be used, for example. Glass has excellent flatness and is suitable for forming fine patterns of interposer 3, and since glass has a small CTE (coefficient of thermal expansion) and is not easily distorted, pattern arrangement accuracy and flatness are improved. Excellent for securing. When glass is used as the support substrate 5, the thickness of the glass is preferably thick from the viewpoint of suppressing the occurrence of warpage in the manufacturing process, and is, for example, 0.7 mm or more, preferably 1.1 mm or more. The CTE of the glass is preferably 3 ppm or more and 15 ppm or less, and more preferably about 9 ppm from the viewpoint of the CTE of the FC-BGA wiring board 1 and the semiconductor element 4. Here, for example, glass is used as the support substrate 5.

一方、剥離層6に前記熱によって発泡する樹脂を用いた場合は、インターポーザ3と、FC−BGA用配線基板1との接合体を加熱する事で支持基板5を取り去る。この場合、支持基板5には、歪みの少ない例えばメタルやセラミックスなどを用いることができる。 On the other hand, when the resin foamed by the heat is used for the release layer 6, the support substrate 5 is removed by heating the joint between the interposer 3 and the FC-BGA wiring board 1. In this case, for the support substrate 5, for example, metal or ceramics having less distortion can be used.

本発明の一実施形態では、剥離層6としてUV光を吸収して剥離可能となる樹脂を用い、支持基板5にはガラスを用いる。 In one embodiment of the present invention, a resin capable of absorbing UV light and peeling is used as the peeling layer 6, and glass is used as the support substrate 5.

次いで、図3Bに示すように、剥離層6の上に保護層7を形成する。保護層7は、後の工程で支持基板5を剥離する際にインターポーザ3を保護するための層であり、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコン樹脂、ポリエステル樹脂、オキセタン樹脂の内の1種又はこれらの樹脂の2種類以上が混合された樹脂であり、インターポーザ3から支持基板5を剥離した後に除去可能な樹脂である。保護層7については、スピンコート、ラミネート等、樹脂の形状に応じて適宜形成してよい、本発明の一実施形態ではアクリル系樹脂をラミネート法により形成している。 Next, as shown in FIG. 3B, the protective layer 7 is formed on the release layer 6. The protective layer 7 is a layer for protecting the interposer 3 when the support substrate 5 is peeled off in a later step, and is, for example, among epoxy resin, acrylic resin, urethane resin, silicon resin, polyester resin, and oxetane resin. It is a resin in which one kind or two or more kinds of these resins are mixed, and is a resin that can be removed after peeling the support substrate 5 from the interposer 3. The protective layer 7 may be appropriately formed depending on the shape of the resin such as spin coating and laminating. In one embodiment of the present invention, an acrylic resin is formed by a laminating method.

次いで、図3Cに示すように、真空中で、保護層7上にシード層8を形成する。シード層8は配線形成において、電解めっきの給電層として作用する。シード層8は、例えば、スパッタ法、またはCVD法などにより形成され、例えば、Cu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、ITO、IZO、AZO、ZnO、PZT、TiN、Cu、これらの単独もしくは複数組み合わせたものを適用することができる。本発明では、電気特性、製造の容易性の観点およびコスト面を考慮して、チタン層、続いて銅層を順次スパッタリング法で形成する。チタンと銅層の合計の膜厚は、電解めっきの給電層として1μm以下とするのが好ましい。本発明の一実施形態ではTi:50nm、Cu:300nmを形成した。 Then, as shown in FIG. 3C, the seed layer 8 is formed on the protective layer 7 in vacuum. The seed layer 8 acts as a feeding layer for electrolytic plating in wiring formation. The seed layer 8 is formed by, for example, a sputtering method or a CVD method, and for example, Cu, Ni, Al, Ti, Cr, Mo, W, Ta, Au, Ir, Ru, Pd, Pt, AlSi, AlSiCu, AlCu, NiFe, ITO, IZO, AZO, ZnO, PZT, TiN, Cu 3 N 4, may be applied a combination thereof alone or a plurality. In the present invention, the titanium layer and then the copper layer are sequentially formed by a sputtering method in consideration of electrical characteristics, ease of manufacture, and cost. The total film thickness of the titanium and copper layers is preferably 1 μm or less as the feeding layer for electrolytic plating. In one embodiment of the present invention, Ti: 50 nm and Cu: 300 nm were formed.

次に図3Dに示すようにレジストパターン9を形成し、電解めっきにより導体層(第1電極)10を形成する。導体層10は半導体素子4との接合用の電極となる。電解めっき法は電解ニッケルめっき、電解銅めっき、電解クロムめっき、電解Pdめっき、電解金めっき、電解ロジウムめっき、電解イリジウムめっき等が挙げられるが、電解銅めっきであることが簡便で安価で、電気伝導性が良好であることから望ましい。電解銅めっきの厚みは、回路の接続信頼性、及び、製造コストの観点から、1μm以上30μm以下であることが望ましい。その後、図3Eに示すようにレジストパターン9を除去する。 Next, as shown in FIG. 3D, a resist pattern 9 is formed, and a conductor layer (first electrode) 10 is formed by electrolytic plating. The conductor layer 10 serves as an electrode for bonding with the semiconductor element 4. Examples of the electrolytic plating method include electrolytic nickel plating, electrolytic copper plating, electrolytic chrome plating, electrolytic Pd plating, electrolytic gold plating, electrolytic rhodium plating, electrolytic iridium plating, etc. However, electrolytic copper plating is simple, inexpensive, and electric. It is desirable because it has good conductivity. The thickness of the electrolytic copper plating is preferably 1 μm or more and 30 μm or less from the viewpoint of circuit connection reliability and manufacturing cost. After that, the resist pattern 9 is removed as shown in FIG. 3E.

次に、図3Fに示すように絶縁樹脂層11を形成する。絶縁樹脂層11は導体層10が絶縁樹脂層11の層内に埋め込まれるように形成する。本実施形態では、絶縁樹脂層11として例えば、感光性のエポキシ系樹脂をスピンコート法により形成する。感光性のエポキシ樹脂は比較的低温で硬化することができ、形成後の硬化による収縮が少ないため、その後の微細パターン形成に優れる。絶縁樹脂層11としては、感光性のエポキシ系樹脂を用いてスピンコート法により形成する他、絶縁樹脂フィルムを真空ラミネータで真空下で加熱・加圧を行って形成することも可能であり、この場合は平坦性の良い絶縁膜を形成することができる。その他、例えばポリイミドを絶縁樹脂として用いることも可能である。 Next, the insulating resin layer 11 is formed as shown in FIG. 3F. The insulating resin layer 11 is formed so that the conductor layer 10 is embedded in the layer of the insulating resin layer 11. In the present embodiment, for example, a photosensitive epoxy resin is formed as the insulating resin layer 11 by a spin coating method. The photosensitive epoxy resin can be cured at a relatively low temperature, and shrinkage due to curing after formation is small, so that it is excellent in subsequent fine pattern formation. The insulating resin layer 11 can be formed by a spin coating method using a photosensitive epoxy resin, or can also be formed by heating and pressurizing an insulating resin film under vacuum with a vacuum laminator. In that case, an insulating film having good flatness can be formed. In addition, for example, polyimide can be used as the insulating resin.

次に、図3Gに示すように、フォトリソグラフィーにより、導体層10上に開口部を設ける。開口部に対して、現像時の残渣除去を目的として、プラズマ処理を行ってもよい。 Next, as shown in FIG. 3G, an opening is provided on the conductor layer 10 by photolithography. The openings may be subjected to plasma treatment for the purpose of removing residues during development.

次に、図3Hに示すように、開口部の表面上にシード層12を設ける。シード層12の構成については前述したシード層8と同様で、適宜構成、厚みを変更可能である。本発明の一実施形態ではTi:50nm、Cu:300nmをスパッタリング法で形成した。 Next, as shown in FIG. 3H, the seed layer 12 is provided on the surface of the opening. The structure of the seed layer 12 is the same as that of the seed layer 8 described above, and the structure and thickness can be changed as appropriate. In one embodiment of the present invention, Ti: 50 nm and Cu: 300 nm were formed by a sputtering method.

次に、図3Iに示すように、シード層12上にレジストパターン13を形成し、その開口部に電解めっきにより導体層(配線層)14を形成する。導体層14は、インターポーザ3の内部の配線層となる。本発明の一実施形態では導体層14として銅を形成した。その後、図3Jに示すようにレジストパターン13を除去する。その後、不要なシード層12をエッチング除去する。 Next, as shown in FIG. 3I, a resist pattern 13 is formed on the seed layer 12, and a conductor layer (wiring layer) 14 is formed in the opening thereof by electrolytic plating. The conductor layer 14 is a wiring layer inside the interposer 3. In one embodiment of the present invention, copper was formed as the conductor layer 14. After that, the resist pattern 13 is removed as shown in FIG. 3J. After that, the unnecessary seed layer 12 is removed by etching.

次に、図3Fから図3Jの工程を繰り返し、図3Kに示すような、導体層(配線層)14が多層化された基板を得る。導体層14の内、最表面に配置される導体層(第2電極)15は、FC−BGA用配線基板1との接合用の電極となる。 Next, the steps of FIGS. 3F to 3J are repeated to obtain a substrate in which the conductor layer (wiring layer) 14 is multilayered as shown in FIG. 3K. Of the conductor layers 14, the conductor layer (second electrode) 15 arranged on the outermost surface serves as an electrode for bonding to the FC-BGA wiring board 1.

次に、図3Lに示すように、インターポーザ3に最表面絶縁樹脂層16を形成する。最表面絶縁樹脂層16は、絶縁樹脂層11を覆うように、露光、現像により、導体層15が露出する開口部を備えるように形成する。本発明の実施形態では、感光性エポキシ樹脂を使用して最表面絶縁樹脂層16を形成する。なお、最表面絶縁樹脂層16は絶縁樹脂層11と同一材料でも構わない。 Next, as shown in FIG. 3L, the outermost surface insulating resin layer 16 is formed on the interposer 3. The outermost surface insulating resin layer 16 is formed so as to cover the insulating resin layer 11 so as to have an opening in which the conductor layer 15 is exposed by exposure and development. In the embodiment of the present invention, the photosensitive epoxy resin is used to form the outermost surface insulating resin layer 16. The outermost surface insulating resin layer 16 may be made of the same material as the insulating resin layer 11.

次に、図3Mに示すように導体層15の表面の酸化防止とはんだバンプの濡れ性をよくするため、表面処理層17を設ける。本発明の実施形態では、表面処理層17として無電解Ni/Pd/Auめっきを成膜する。なお、表面処理層17には、OSP(Organic Solderability Preservative 水溶性プレフラックスによる表面処理)膜を形成してもよい。また、無電解スズめっき、無電解Ni/Auめっきなどから適宜用途に応じて選択しても良い。 Next, as shown in FIG. 3M, a surface treatment layer 17 is provided in order to prevent oxidation of the surface of the conductor layer 15 and improve the wettability of the solder bumps. In the embodiment of the present invention, electroless Ni / Pd / Au plating is formed as the surface treatment layer 17. An OSP (Organic Solderability Preservative surface treatment with water-soluble preflux) film may be formed on the surface treatment layer 17. Further, electroless tin plating, electroless Ni / Au plating, etc. may be appropriately selected according to the intended use.

次に、図3Nに示すように、表面処理層17上に、フラックス塗布の後、スクリーン印刷法またはボール振込み法などにより半田材料を搭載した後、一度溶融冷却して固着させることで、半田バンプからなるインターポーザ3側のFC−BGA用配線基板1とインターポーザ3との接合部18aを得る。これにより、支持基板5上に形成されたインターポーザ(第2配線基板)3が完成する。 Next, as shown in FIG. 3N, after applying flux on the surface treatment layer 17, a solder material is mounted by a screen printing method, a ball transfer method, or the like, and then once melt-cooled and fixed, the solder bumps are fixed. A joint portion 18a between the FC-BGA wiring board 1 and the interposer 3 on the interposer 3 side is obtained. As a result, the interposer (second wiring board) 3 formed on the support substrate 5 is completed.

続けて、図4Aから図4Hを用いて、支持基板5上に形成されたインターポーザ(第2配線基板)3とFC−BGA用配線基板(第1配線基板)1の本発明の一実施形態に係る接合工程の一例を説明する。 Subsequently, using FIGS. 4A to 4H, the interposer (second wiring board) 3 and the FC-BGA wiring board (first wiring board) 1 formed on the support substrate 5 are set to one embodiment of the present invention. An example of such a joining process will be described.

図4Aに示すように、支持基板5上に形成されたインターポーザ3の接合部18aに合わせてFC−BGA用配線基板1の接合部18bを設計、製造したFC−BGA用配線基板1に対して支持基板5上に形成されたインターポーザ3を配置する。 As shown in FIG. 4A, with respect to the FC-BGA wiring board 1 in which the FC-BGA wiring board 1 joint 18b is designed and manufactured in accordance with the interposer 3 joint 18a formed on the support substrate 5. The interposer 3 formed on the support substrate 5 is arranged.

図4Bに示すように、支持基板5上に形成されたインターポーザ3とFC−BGA用配線基板1を接合した後、アンダーフィル2を形成し支持基板5上に形成されたインターポーザ3とFC−BGA用配線基板1とを固定し、接合部18を封止する。 As shown in FIG. 4B, after joining the interposer 3 formed on the support substrate 5 and the wiring board 1 for FC-BGA, an underfill 2 is formed and the interposer 3 and FC-BGA formed on the support substrate 5 are formed. The wiring board 1 is fixed and the joint 18 is sealed.

次に図4Cに示すように、支持基板5の不要な部分を取り除くべく切断する。本発明の一実施形態においては、支持基板5の切断にはダイシングブレード22を使用する。支持基板5の背面より、すなわち、支持基板5のFC−BGA用配線基板1とは逆側の面からブレードを入れて切断を行う。この切断には、UVレーザ・エキシマレーザなどによるレーザ加工やスクライバによる加工を選択してもよい。この切断によって、図4Dに示すような断面が得られる。 Next, as shown in FIG. 4C, the support substrate 5 is cut to remove unnecessary portions. In one embodiment of the present invention, the dicing blade 22 is used for cutting the support substrate 5. The blade is inserted from the back surface of the support substrate 5, that is, from the surface of the support substrate 5 opposite to the FC-BGA wiring board 1, and cutting is performed. For this cutting, laser processing with a UV laser, excimer laser, or the like or processing with a scriber may be selected. By this cutting, a cross section as shown in FIG. 4D is obtained.

次に図4Eに示すように、支持基板5の不要部分5’の下の剥離層6にエネルギーを与えて、支持基板の不要部分5’を剥離する。本発明の一実施形態においては、ガラス製の支持基板5越しに剥離層6にUVレーザ光19を照射することによって支持基板の不要部分5’を選択的に剥離可能な状態とすることで、図4Fに示すように支持基板5を取り外すことが可能となる。 Next, as shown in FIG. 4E, energy is applied to the release layer 6 under the unnecessary portion 5'of the support substrate 5 to peel off the unnecessary portion 5'of the support substrate. In one embodiment of the present invention, the release layer 6 is irradiated with UV laser light 19 through the glass support substrate 5, so that the unnecessary portion 5'of the support substrate can be selectively peeled. As shown in FIG. 4F, the support substrate 5 can be removed.

次に、保護層7を除去し、図4Gに示すような配線基板を得る。本発明の一実施形態では、保護層7は、アクリル系樹脂を用いており、ドライエッチングによって除去する。保護層7の除去は3%NaOHなどアルカリ系薬品で行っても構わない。 Next, the protective layer 7 is removed to obtain a wiring board as shown in FIG. 4G. In one embodiment of the present invention, the protective layer 7 uses an acrylic resin and is removed by dry etching. The protective layer 7 may be removed with an alkaline chemical such as 3% NaOH.

更に、シード層8を除去する。本発明の一実施形態では、保護層7側から順にチタンと銅を用いており、それぞれアルカリ系のエッチング剤と、酸系のエッチング剤にて溶解除去することで、図4Hに示すようなスティフナ5、インターポーザ(第2配線基板)3およびFC−BGA用配線基板(第1配線基板)1が接合された配線基板を得る。 Further, the seed layer 8 is removed. In one embodiment of the present invention, titanium and copper are used in order from the protective layer 7 side, and the stiffener as shown in FIG. 4H is dissolved and removed by an alkaline etching agent and an acid etching agent, respectively. 5. Obtain a wiring board to which the interposer (second wiring board) 3 and the FC-BGA wiring board (first wiring board) 1 are joined.

この後、表面に露出した導体層10上に、酸化防止と半田バンプの濡れ性をよくするため、無電解Ni/Pd/Auめっき、OSP、無電解スズめっき、無電解Ni/Auめっきなどの表面処理を施してもよい。以上により配線基板23が完成する。 After that, in order to prevent oxidation and improve the wettability of the solder bumps on the conductor layer 10 exposed on the surface, electroless Ni / Pd / Au plating, OSP, electroless tin plating, electroless Ni / Au plating, etc. Surface treatment may be applied. With the above, the wiring board 23 is completed.

<作用効果>
次に、上述したような配線基板23の構成とその製造方法を用いた場合の作用効果について、図1、図4B、図5および図6(比較例)を参照して説明する。
<Effect>
Next, the configuration of the wiring board 23 as described above and the effects when the manufacturing method thereof is used will be described with reference to FIGS. 1, 4B, 5 and 6 (comparative examples).

まず支持基板5の剥離時の不具合を避けることができる点について、図1、図4Bおよび図5を参照して説明する。図5のようにアンダーフィル2の濡れ広がりが支持基板5の側面まで達しない場合、支持基板5は問題なく剥離できるが、図4Bのように支持基板5の側面まで濡れあがっている場合、支持基板の剥離は容易ではない。第2配線基板は前記の通りごく薄いため、図4(b)のようになり剥離不能になることが多かった。支持基板5の基板端は剥離する必要がないとの発想に基づいて、本発明の一実施形態によれば、図1のように支持基板5の基板端を剥離せずスティフナとして活用するため、図5のようにアンダーフィル2の濡れ広がりが支持基板5の側面まで達しない場合はもちろん、図4Bのように支持基板5の側面まで濡れあがっている場合も剥離不具合を生じることがない。本明細書において、「支持基板の基板端」は、支持基板の内、その側面に隣接する部分を意味する。 First, the point that a defect at the time of peeling of the support substrate 5 can be avoided will be described with reference to FIGS. 1, 4B and 5. If the wet spread of the underfill 2 does not reach the side surface of the support substrate 5 as shown in FIG. 5, the support substrate 5 can be peeled off without any problem, but if it is wet to the side surface of the support substrate 5 as shown in FIG. 4B, the support substrate 5 is supported. Peeling of the substrate is not easy. Since the second wiring board is extremely thin as described above, it often becomes impossible to peel off as shown in FIG. 4 (b). Based on the idea that the substrate edge of the support substrate 5 does not need to be peeled off, according to one embodiment of the present invention, the substrate edge of the support substrate 5 is used as a stiffener without peeling off as shown in FIG. Not only when the wet spread of the underfill 2 does not reach the side surface of the support substrate 5 as shown in FIG. 5, but also when the wet spread reaches the side surface of the support substrate 5 as shown in FIG. 4B, the peeling defect does not occur. In the present specification, "the substrate edge of the support substrate" means a portion of the support substrate adjacent to the side surface thereof.

また、平坦性の高い配線基板上に半導体素子を実装できるため、実装工程の収率を向上させることが出来る点に関して図1と図6(比較例)を参照して説明する。一般的に、半導体素子の実装工程のうちリフロー処理において、主に絶縁樹脂・ガラス・銅からなる配線基板は、それぞれCTEが異なる材料が厚み方向に偏って分布しているため反りが生じる。また、主にシリコンからなる半導体素子と主に絶縁樹脂・ガラス・銅からなる配線基板とではCTEの差により熱プロセス中の挙動が異なるため、実装時に半田接続不良を生じる可能性がある。本発明の一実施形態によれば図1のように、ガラスなど配線基板よりCTEがシリコンと近く、剛性の高い材料からなる支持基板をスティフナとして第2配線基板上に設けているため、配線基板が、熱プロセス時にシリコンと近い挙動をし、かつ平坦性を維持できるため、図6のように、第2配線基板上にスティフナを設けていない場合と比較して、実装時の不具合を抑制することができる。 Further, since the semiconductor element can be mounted on the wiring board having high flatness, the yield of the mounting process can be improved, which will be described with reference to FIGS. 1 and 6 (comparative example). In general, in the reflow process of the mounting process of a semiconductor element, a wiring board mainly made of an insulating resin, glass, and copper is warped because materials having different CTEs are unevenly distributed in the thickness direction. Further, since the behavior during the thermal process differs between the semiconductor element mainly made of silicon and the wiring board mainly made of insulating resin / glass / copper due to the difference in CTE, there is a possibility that solder connection failure may occur at the time of mounting. According to one embodiment of the present invention, as shown in FIG. 1, since the CTE is closer to silicon than the wiring board such as glass and a support board made of a highly rigid material is provided on the second wiring board as a stiffener, the wiring board However, since it behaves like silicon during the thermal process and can maintain flatness, it suppresses defects during mounting as compared with the case where the stiffener is not provided on the second wiring board as shown in FIG. be able to.

<他の実施形態>
次に、本発明の他の実施形態に係る配線基板について図7を用いて説明する。
<Other embodiments>
Next, the wiring board according to another embodiment of the present invention will be described with reference to FIG.

図7Aから図7Eは、本発明の他の実施形態に係る第1配線基板と第2配線基板とスティフナを積層した配線基板を示す平面図である。図7Aから図7Eに示す配線基板は、スティフナの形状が異なる。そのため、支持基板5の形状を説明し、第2配線基板の表面に配置されているパッド等については省略する。 7A to 7E are plan views showing a wiring board in which a first wiring board, a second wiring board, and a stiffener are laminated according to another embodiment of the present invention. The wiring boards shown in FIGS. 7A to 7E have different stiffener shapes. Therefore, the shape of the support substrate 5 will be described, and the pads and the like arranged on the surface of the second wiring board will be omitted.

図7Aに示す配線基板は、第2配線基板上に開いている支持基板5の開口部の形状が長方形である。本明細書において、「支持基板の開口部」(「スティフナの開口部」)は、配線基板を平面視したとき、支持基板の基板端(スティフナ)に包囲される部分を意味する。 In the wiring board shown in FIG. 7A, the shape of the opening of the support board 5 opened on the second wiring board is rectangular. In the present specification, the "opening of the support substrate" ("opening of the stiffener") means a portion surrounded by the substrate end (stiffener) of the support substrate when the wiring board is viewed in a plan view.

図7Bに示す配線基板は、第2配線基板上に開いている支持基板5の開口部の形状が長方形であり、長方形の4隅の角に、角を中心として円形にさらに開口を拡げている。長方形の4隅の形状は一例であって、その他、具体的な細部の形状については適宜に変更可能である。例えば長方形の4隅の角に丸みを持たせるだけでも構わず、開口を拡げる形状は円形に限らず多角形であっても構わない。 In the wiring board shown in FIG. 7B, the shape of the opening of the support board 5 opened on the second wiring board is rectangular, and the openings are further expanded in a circle around the corners at the four corners of the rectangle. .. The shape of the four corners of the rectangle is an example, and the shape of other specific details can be changed as appropriate. For example, the corners of the four corners of the rectangle may be rounded, and the shape for expanding the opening may be polygonal as well as circular.

図7Cに示す配線基板は、スティフナの形状が2つのL字形である。図7Dに示す配線基板は、スティフナの形状が2つのI字形である。図7Eに示す配線基板は、スティフナの形状が4つの三角形である。 The wiring board shown in FIG. 7C has two L-shapes of stiffeners. The wiring board shown in FIG. 7D has two I-shaped stiffeners. The wiring board shown in FIG. 7E has four triangular stiffeners.

<作用効果>
図7Aの形状にすることにより、単純な工程により開口部を形成することができる。また、図7Bの形状にすることにより、熱プロセス時に生じる応力の集中を緩和し、前記角における第2の配線基板の反りを緩和することができる。さらに、図7Cから図7Eの形状にすることによっても、配線基板の反りを緩和することができる。
<Effect>
By forming the shape shown in FIG. 7A, the opening can be formed by a simple process. Further, the shape shown in FIG. 7B can alleviate the concentration of stress generated during the thermal process and alleviate the warp of the second wiring board at the corner. Further, the warp of the wiring board can be alleviated by changing the shape from FIG. 7C to FIG. 7E.

1:FC−BGA用配線基板(第1配線基板)、2;21:アンダーフィル、3:インターポーザ(第2配線基板)、4:半導体素子、5:支持基板(スティフナ)、6:剥離層、7:保護層、8;12:シード層、9;13:レジストパターン、10:導体層(第1電極)、11:絶縁樹脂層、14:導体層(配線層)、15:導体層(第2電極)、16:最表面絶縁樹脂層、17:表面処理層、18:インターポーザ‐FC−BGA接合部、18a:インターポーザの接合部、18b:FC−BGA用配線基板の接合部、19:レーザ光、20:半導体素子‐インターポーザ接合部、20a:銅ピラー、20b:半田、22:ダイシングブレード 1: FC-BGA wiring board (first wiring board), 2; 21: underfill, 3: interposer (second wiring board), 4: semiconductor element, 5: support board (stiffener), 6: release layer, 7: Protective layer, 8; 12: Seed layer, 9; 13: Resist pattern, 10: Conductor layer (first electrode), 11: Insulating resin layer, 14: Conductor layer (wiring layer), 15: Conductor layer (first electrode) 2 electrodes), 16: Outermost surface insulating resin layer, 17: Surface treatment layer, 18: Interposer-FC-BGA joint, 18a: Interposer joint, 18b: FC-BGA wiring board joint, 19: Laser Optical, 20: Semiconductor element-interposer junction, 20a: Copper pillar, 20b: Solder, 22: Dying blade

Claims (10)

第1配線基板と、
前記第1配線基板上に積層された第2配線基板と、
前記第2配線基板上に積層されたスティフナと、
を有する配線基板。
The first wiring board and
The second wiring board laminated on the first wiring board and
With the stiffener laminated on the second wiring board,
Wiring board with.
前記第1配線基板の前記第2配線基板との接合部の個々の間隔は、マザーボードとの接合部の個々の間隔よりも狭い請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the individual spacing of the joints of the first wiring board with the second wiring board is narrower than the individual spacing of the joints with the motherboard. 前記第2配線基板の半導体素子との接合部の個々の間隔は、前記第1配線基板との接合部の個々の間隔よりも狭い請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the individual distance between the joints of the second wiring board with the semiconductor element is narrower than the individual distances of the joints with the first wiring board. 前記スティフナは前記第2配線基板より表面積が小さく、前記第2配線基板の前記スティフナが積層される面に半導体素子を実装する請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the stiffener has a smaller surface area than the second wiring board, and a semiconductor element is mounted on a surface of the second wiring board on which the stiffener is laminated. 前記スティフナは前記第2配線基板が形成された支持基板の基板端である請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the stiffener is a substrate end of a support substrate on which the second wiring board is formed. 前記スティフナはガラス材料から成る請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the stiffener is made of a glass material. 前記スティフナはメタル材料またはセラミックス材料から成る請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the stiffener is made of a metal material or a ceramic material. 前記スティフナには前記半導体素子を実装するための開口部が開いており、この開口部の形状は平面視したとき長方形をしている請求項4に記載の配線基板。 The wiring board according to claim 4, wherein the stiffener has an opening for mounting the semiconductor element, and the shape of the opening is rectangular when viewed in a plan view. 前記スティフナには前記半導体素子を実装するための開口部が開いており、この開口部の形状は平面視したとき長方形の四隅の外に、四隅それぞれを中心とした円形に拡がった形状をしている請求項4に記載の配線基板。 The stiffener has an opening for mounting the semiconductor element, and the shape of the opening is formed in a circular shape centered on each of the four corners in addition to the four corners of the rectangle when viewed in a plan view. The wiring board according to claim 4. 第1配線基板、第2配線基板、スティフナの順に積層された配線基板の製造方法であって、支持基板の片面に絶縁樹脂層と配線層を交互に積層して第2配線基板を形成する工程と、この第2配線基板を第1配線基板上に搭載する工程と、支持基板の基板端をスティフナとし、支持基板の不要部分を取り外す工程を含む配線基板の製造方法。 A method for manufacturing a wiring board in which a first wiring board, a second wiring board, and a stiffener are laminated in this order, in which an insulating resin layer and a wiring layer are alternately laminated on one side of a support substrate to form a second wiring board. A method for manufacturing a wiring board, which includes a step of mounting the second wiring board on the first wiring board and a step of removing an unnecessary part of the support board by using the board end of the support board as a stiffener.
JP2019106435A 2019-06-06 2019-06-06 Wiring board and wiring board manufacturing method Active JP7351107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019106435A JP7351107B2 (en) 2019-06-06 2019-06-06 Wiring board and wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019106435A JP7351107B2 (en) 2019-06-06 2019-06-06 Wiring board and wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2020202218A true JP2020202218A (en) 2020-12-17
JP7351107B2 JP7351107B2 (en) 2023-09-27

Family

ID=73743554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019106435A Active JP7351107B2 (en) 2019-06-06 2019-06-06 Wiring board and wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP7351107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908946A (en) * 2021-01-18 2021-06-04 上海先方半导体有限公司 Packaging structure for reducing warpage of plastic package wafer and manufacturing method thereof
WO2023246418A1 (en) * 2022-06-20 2023-12-28 华为技术有限公司 Circuit board assembly, electronic apparatus, and method for manufacturing circuit board assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140707A (en) 1998-05-07 2000-10-31 3M Innovative Properties Co. Laminated integrated circuit package
JP3387016B2 (en) 1999-02-09 2003-03-17 日本特殊陶業株式会社 Manufacturing method of wiring board, reinforcing plate with adhesive sheet piece, and manufacturing method thereof
JP2007305652A (en) 2006-05-09 2007-11-22 Toppan Printing Co Ltd Semiconductor package
JP2008140868A (en) 2006-11-30 2008-06-19 Toppan Printing Co Ltd Multilayer wiring board and semiconductor device
JP2008288463A (en) 2007-05-18 2008-11-27 Toppan Printing Co Ltd Multilayered wiring board
KR101678539B1 (en) 2010-07-21 2016-11-23 삼성전자 주식회사 Stack package, semiconductor package and method of manufacturing the stack package
JP2017224672A (en) 2016-06-14 2017-12-21 凸版印刷株式会社 Semiconductor package substrate, semiconductor package, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908946A (en) * 2021-01-18 2021-06-04 上海先方半导体有限公司 Packaging structure for reducing warpage of plastic package wafer and manufacturing method thereof
CN112908946B (en) * 2021-01-18 2023-05-23 上海先方半导体有限公司 Packaging structure for reducing warpage of plastic packaging wafer and manufacturing method thereof
WO2023246418A1 (en) * 2022-06-20 2023-12-28 华为技术有限公司 Circuit board assembly, electronic apparatus, and method for manufacturing circuit board assembly

Also Published As

Publication number Publication date
JP7351107B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
JP7092031B2 (en) Wiring board manufacturing method
JP7351107B2 (en) Wiring board and wiring board manufacturing method
JP2022040197A (en) Manufacturing method of wiring board
JP2021125565A (en) Wiring board and method for manufacturing wiring board
WO2020090601A1 (en) Semiconductor packaging wiring substrate and method of manufacturing semiconductor packaging wiring substrate
JP2021114534A (en) Wiring board and manufacturing method for wiring board
WO2022124394A1 (en) Substrate unit with support, substrate unit, and method for manufacturing substrate unit with support
JP7196936B2 (en) Method for manufacturing wiring board for semiconductor device, and wiring board for semiconductor device
JP7347440B2 (en) Manufacturing method of wiring board for semiconductor package
JP7472484B2 (en) Composite wiring board and method for manufacturing the same
JP7052464B2 (en) Manufacturing method of coreless substrate with fine wiring layer and manufacturing method of semiconductor package
JP2020077696A (en) Wiring board and semiconductor device using the same
JP2020004926A (en) Wiring board and manufacturing method thereof
US11974404B2 (en) Method of producing circuit boards
JP2020191380A (en) Method for manufacturing wiring board
US20230254983A1 (en) Wiring board and method of producing wiring board
JP2022122509A (en) Substrate unit with support, substrate unit, semiconductor device, and manufacturing method thereof
JP2020161572A (en) Wiring substrate and method of manufacturing the same
JP2021197484A (en) Wiring board with support, wiring board and semiconductor device
JP2022015382A (en) Substrate unit with support, substrate unit, semiconductor device and method for manufacturing substrate unit with support
JP7087369B2 (en) Manufacturing method of carrier substrate with fine wiring layer and semiconductor package substrate with fine wiring layer
JP2020191397A (en) Composite wiring board and method for manufacturing the same
JP2021125507A (en) Wiring board and method for manufacturing wiring board
JP2021158306A (en) Wiring board and manufacturing method thereof
JP2022015429A (en) Multilayer wiring board and method for manufacturing multilayer wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7351107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150