JP2020004926A - Wiring board and manufacturing method thereof - Google Patents

Wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2020004926A
JP2020004926A JP2018125947A JP2018125947A JP2020004926A JP 2020004926 A JP2020004926 A JP 2020004926A JP 2018125947 A JP2018125947 A JP 2018125947A JP 2018125947 A JP2018125947 A JP 2018125947A JP 2020004926 A JP2020004926 A JP 2020004926A
Authority
JP
Japan
Prior art keywords
wiring board
wiring
layer
substrate
outermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018125947A
Other languages
Japanese (ja)
Inventor
祥之 櫃岡
Yoshiyuki Hitsuoka
祥之 櫃岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2018125947A priority Critical patent/JP2020004926A/en
Publication of JP2020004926A publication Critical patent/JP2020004926A/en
Pending legal-status Critical Current

Links

Abstract

To provide a large-sized, low-cost wiring board that suppresses warpage during a manufacturing process of a wiring board and includes terminal electrodes and fine wire lines with a narrow pitch, and a manufacturing method thereof.SOLUTION: In a manufacturing method of a wiring board including a second wiring board including a build-up wiring layer, and a first wiring board joined to the second wiring board, the second wiring board and the first wiring board are electrically connected to each other via terminals (protruding electrodes) protruding from the respective surfaces, and a gap between the first wiring board and the second wiring board is filled with an insulating resin, the first wiring board is constituted, in order, by a first outermost layer, a wiring layer, and a second outermost layer, and a reinforcing material is included in at least one of the first outermost layer and the second outermost layer, and a release layer and the first wiring board are formed in this order on a rectangular support board, and the support board is released after the first wiring board has been bonded to the second wiring board.SELECTED DRAWING: Figure 1

Description

本発明は、配線基板及び配線基板の製造方法に関する。   The present invention relates to a wiring board and a method for manufacturing the wiring board.

近年、携帯電話や通信端末に代表される電子機器の高機能化、高性能化はめざましく、これら電子機器には、半導体チップが配線基板に実装された半導体パッケージが広く使用されている。半導体チップを配線基板に実装する形態として、従来から用いられてきたリードフレームやピン、ワイヤを用いたものから、最近では半導体チップを直接配線基板に表面実装するフリップチップ(Flip Chip−Ball Grid Array、FC−BGA)方式のパッケージの採用が進んでいる。   2. Description of the Related Art In recent years, electronic devices typified by mobile phones and communication terminals have been significantly improved in function and performance, and semiconductor packages in which semiconductor chips are mounted on wiring boards are widely used for these electronic devices. As a form of mounting a semiconductor chip on a wiring board, a flip chip (Flip Chip-Ball Grid Array) that directly mounts a semiconductor chip on a surface of a wiring board, instead of a conventional one using a lead frame, pins, and wires, has been used. , FC-BGA) type packages are being adopted.

一般のFC−BGA配線基板は、図6にその概略を示すように、配線層51を多層化したビルドアップ配線構造となっている。FC−BGA配線基板50は、厚めのコア層57の表裏にコア層57よりは薄い配線層51(絶縁樹脂53/配線パターン52)を複数積み重ね、上下の配線パターン52間を導通ビア56で接続し、アレイ配置された半導体チップ側の第一の端子電極54と、マザーボード側の第二の端子電極間55との導通をとったものである。   A general FC-BGA wiring board has a build-up wiring structure in which wiring layers 51 are multilayered, as schematically shown in FIG. In the FC-BGA wiring board 50, a plurality of wiring layers 51 (insulating resin 53 / wiring pattern 52) thinner than the core layer 57 are stacked on the front and back of the thicker core layer 57, and the upper and lower wiring patterns 52 are connected by the conductive vias 56. Then, conduction is established between the first terminal electrodes 54 on the semiconductor chip side arranged in the array and the second terminal electrodes 55 on the motherboard side.

近年の半導体チップの高集積化に伴いFC−BGA配線基板も半導体チップを実装する端子電極の狭ピッチ化、配線パターンの微細化が求められている。このため、シリコン上に配線を形成してチップ実装用の基板(シリコンインターポーザ)とし、FC−BGA配線基板に実装する方式が特許文献1に開示されている。   With the recent increase in the degree of integration of semiconductor chips, the pitch of terminal electrodes for mounting semiconductor chips on FC-BGA wiring boards has been required to be narrower and wiring patterns have to be finer. For this reason, Patent Literature 1 discloses a method in which wiring is formed on silicon to be used as a chip mounting substrate (silicon interposer) and mounted on an FC-BGA wiring substrate.

一方で、CPU、GPU、メモリといった複数の半導体チップを同じ配線基板上に実装する製品が開発され、こうした製品には従来よりも大面積の配線基板が求められている。大面積の配線基板を製造するために、特許文献1のシリコンインターポーザ方式のように半導体チップ製造プロセスを採用すると、配線基板製品形状は四角であるので、円形状であるシリコンウエハに面付けすることは効率が悪くコストが嵩む。また配線基板に複数の半導体チップを実装するためには、実装工程時の熱処理による反り挙動を抑えることが課題となる。   On the other hand, products have been developed in which a plurality of semiconductor chips, such as CPUs, GPUs, and memories, are mounted on the same wiring board, and such products require a wiring board having a larger area than before. If a semiconductor chip manufacturing process is adopted as in the case of the silicon interposer method of Patent Document 1 in order to manufacture a large-area wiring board, the wiring board product shape is a square, so that it is imposed on a circular silicon wafer. Is inefficient and costly. In addition, in order to mount a plurality of semiconductor chips on a wiring board, it is necessary to suppress a warping behavior due to a heat treatment in a mounting process.

反り抑制の課題として特許文献2には、FC−BGA配線基板のコア層、及びその両面の絶縁樹脂として、補強材入りの絶縁樹脂を積層して配線基板の剛性を高め、かつ狭ピッチの端子電極が必要な半導体チップを実装する側(インターポーザ側)のビルドアップ配線層にのみ特に微細な配線(微細配線)を有する配線層を複数層形成する技術が提案されている。   As a problem of warpage suppression, Patent Literature 2 discloses that a rigid layer containing a reinforcing material is laminated as a core layer of an FC-BGA wiring board and insulating resins on both surfaces thereof to increase the rigidity of the wiring board and to provide terminals having a narrow pitch. There has been proposed a technique of forming a plurality of wiring layers having particularly fine wiring (fine wiring) only on a build-up wiring layer on a side (interposer side) on which a semiconductor chip requiring electrodes is mounted.

しかしながら、特許文献2の構造には以下のような問題点がある。すなわち、インターポーザ側に複数層の絶縁樹脂層を形成するため、絶縁樹脂の硬化収縮により製造プロセス中に基板が反る。また、コア層の両面のビルドアップ配線層に用いられる補強材入り絶縁樹脂はビア穴の加工が困難であるため、ビアの狭ピッチ化が妨げられる。   However, the structure of Patent Document 2 has the following problems. That is, since a plurality of insulating resin layers are formed on the interposer side, the substrate warps during the manufacturing process due to the curing shrinkage of the insulating resin. In addition, it is difficult to process the via holes in the insulating resin containing the reinforcing material used for the build-up wiring layers on both sides of the core layer, so that the narrow pitch of the vias is prevented.

特開2002−280490号公報JP-A-2002-280490 特開2015−122385号公報JP 2015-122385 A

本発明は上記の事情に鑑みてなされたものであって、配線基板の製造プロセス中の反りを抑制し、狭ピッチの端子電極と微細配線を備える、大型で低コストな配線基板と、その製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and suppresses warpage during a manufacturing process of a wiring board, and includes a large-size, low-cost wiring board including terminal electrodes and fine wirings with a narrow pitch, and a manufacturing method thereof. The aim is to provide a method.

上記の課題を解決するために、本発明の配線基板は以下の特徴を備える。   In order to solve the above problems, a wiring board according to the present invention has the following features.

本発明の一態様に係る配線基板は、ビルドアップ配線層からなる第二配線基板と、第二配線基板に接合された第一配線基板と、を備え、第二配線基板と第一配線基板とはそれぞれ表面から突出した端子(突起電極)を介して電気的に接合され、第一配線基板及び第二配線基板の隙間に絶縁樹脂が充填され、第一配線基板は、順に第一最外層、配線層、第二最外層から成り、第一最外層、第二最外層の少なくとも一方に補強材を含む、ことを特徴とする。   The wiring board according to one embodiment of the present invention includes a second wiring board made of a build-up wiring layer, and a first wiring board joined to the second wiring board, and the second wiring board and the first wiring board. Are electrically connected via terminals (protruding electrodes) protruding from the respective surfaces, a gap between the first wiring board and the second wiring board is filled with an insulating resin, and the first wiring board is sequentially provided with a first outermost layer, It comprises a wiring layer and a second outermost layer, and at least one of the first outermost layer and the second outermost layer contains a reinforcing material.

本発明の別の態様に係る配線基板の製造方法は、前記本発明の一態様に係る配線基板の製造方法であって、四角形状の支持基板上に、順に剥離層、及び第一配線基板を形成し、第一配線基板を第二配線基板に接合した後、支持基板を剥離する、ことを特徴とする。   A method for manufacturing a wiring board according to another aspect of the present invention is the method for manufacturing a wiring board according to one aspect of the present invention, wherein a release layer and a first wiring board are sequentially formed on a rectangular support substrate. After forming and bonding the first wiring board to the second wiring board, the support substrate is peeled off.

また、本発明の別の態様に係る配線基板の製造方法は、支持基板の厚みが第一配線基板の厚みの10倍以上であり、かつ0.1mm〜2.0mmであることが好ましい。   Further, in the method for manufacturing a wiring board according to another aspect of the present invention, it is preferable that the thickness of the supporting substrate is at least 10 times the thickness of the first wiring board and is 0.1 mm to 2.0 mm.

さらに、本発明の別の態様に係る配線基板の製造方法は、支持基板の材質はガラスであり、支持基板を通して剥離層にレーザーを照射することにより、第一配線基板から支持基板を剥離する工程を含むことが好ましい。   Further, in the method of manufacturing a wiring board according to another aspect of the present invention, the step of peeling the support substrate from the first wiring substrate by irradiating a laser to the release layer through the support substrate, wherein the material of the support substrate is glass It is preferable to include

本発明の配線基板及び配線基板の製造方法によれば、配線基板の製造プロセス中の反りが抑制され、近年必要とされる狭ピッチの端子電極と微細配線を備える、大型で低コストな配線基板と、その製造方法が得られる。すなわち、充分な厚みの支持基板と、剛性の高い配線基板となり、製造プロセスに適合した水準の反り量で製造することができる。また、四角形状の支持基板を採用することにより面付け効率が高くなりコストが抑えられる。さらに別の観点では、良品と選別された第二配線基板に個片化した良品の第一配線基板を接合することにより、収率の低下を防止することができる。   ADVANTAGE OF THE INVENTION According to the wiring board and the manufacturing method of the wiring board of this invention, the warpage during the manufacturing process of a wiring board is suppressed, and the large-sized and low-cost wiring board provided with the narrow pitch terminal electrode and fine wiring required in recent years And a manufacturing method thereof. That is, the supporting substrate has a sufficient thickness and the wiring substrate has high rigidity, and can be manufactured with a warpage of a level suitable for the manufacturing process. In addition, the adoption of the rectangular support substrate increases the imposition efficiency and suppresses the cost. From another viewpoint, the yield can be prevented from lowering by joining the singulated non-defective first wiring board to the non-defective second wiring board.

本発明の一実施形態に係る、(a)第二配線基板に第一配線基板が接合された配線基板、(b)前記第一配線基板をより詳しく示す、いずれも模式断面図である。FIG. 2 is a schematic cross-sectional view showing (a) a wiring board in which a first wiring board is joined to a second wiring board, and (b) showing the first wiring board in more detail, according to an embodiment of the present invention. 本発明の一実施形態に係る、配線基板の製造方法のうち、第一配線基板の製造工程までの主要部を工程順に示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing, in a process order, a main part of a method of manufacturing a wiring board according to an embodiment of the present invention, up to the manufacturing process of the first wiring board. 本発明の一実施形態に係る、配線基板の製造方法のうち、図2の製造工程に続く製造工程の主要部を工程順に示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing a main part of a manufacturing process following the manufacturing process of FIG. 2 in the manufacturing method of the wiring board according to one embodiment of the present invention in the order of processes. 図3の製造工程に続く製造工程の主要部を工程順に示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing a main part of a manufacturing process following the manufacturing process of FIG. 3 in the order of processes. 本発明の一実施形態に係る、配線基板の製造方法のうち、配線基板の製品面付け効率を説明するための模式平面図である。FIG. 4 is a schematic plan view for explaining product imposition efficiency of the wiring board in the method for manufacturing a wiring board according to one embodiment of the present invention. 一般のFC−BGA配線基板の構造を例示する模式断面図である。It is a schematic cross section which illustrates the structure of a general FC-BGA wiring board.

以下、本発明の好適な一実施形態について、添付図面を参照しつつ説明する。但し、以
下に説明する各図においてそれぞれ同じものについては同一符号を付す。また各図面は発明の効果を理解しやすくするため適宜省略及び誇張してある。さらに本実施形態は本発明の技術的思想を説明するために例示するものであり、各部の材料、形状、配置、寸法等のパラメータを下記のものに限定するものではない。各パラメータは請求項の規定の範囲内で変更できる。
Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings. However, in each of the drawings described below, the same components are denoted by the same reference numerals. Each drawing is omitted or exaggerated as appropriate in order to facilitate understanding of the effects of the invention. Furthermore, this embodiment is an example for explaining the technical idea of the present invention, and does not limit parameters such as materials, shapes, arrangements, dimensions, and the like of the respective parts to the following. Each parameter can be changed within the scope of the claims.

[本発明の配線基板]
図1(a)は、本発明の一実施形態に係り、第二配線基板20に第一配線基板10が接合された配線基板100の模式断面図である。配線基板100は、ビルドアップ配線層からなる第二配線基板20と、第二配線基板20に接合された第一配線基板10と、を備え、第二配線基板20と第一配線基板10とはそれぞれ表面から突出した端子(突起電極、本例ではんだバンプ6)を介して電気的に接合され、かつ、第一配線基板10及び第二配線基板20の隙間に絶縁樹脂(絶縁性の接着部材、具体的にはアンダーフィル9)が充填されている。第一配線基板10の上面(第二配線基板20とは逆側の面)には半導体チップ(不図示)を実装するための接続パッド7が形成されている。突起電極は、はんだバンプ以外に、Cuポスト(Cuピラー)、または金バンプ等であってもよい。
[Wiring board of the present invention]
FIG. 1A is a schematic cross-sectional view of a wiring board 100 in which a first wiring board 10 is joined to a second wiring board 20 according to an embodiment of the present invention. The wiring board 100 includes a second wiring board 20 made of a build-up wiring layer, and a first wiring board 10 joined to the second wiring board 20. The second wiring board 20 and the first wiring board 10 Each is electrically connected via terminals (protruding electrodes, solder bumps 6 in this example) projecting from the surface, and is provided with an insulating resin (insulating adhesive member) in a gap between the first wiring board 10 and the second wiring board 20. Specifically, an underfill 9) is filled. Connection pads 7 for mounting a semiconductor chip (not shown) are formed on the upper surface of the first wiring substrate 10 (the surface opposite to the second wiring substrate 20). The bump electrode may be a Cu post (Cu pillar), a gold bump, or the like other than the solder bump.

図1(b)は、本発明の一実施形態に係る、第一配線基板10のみを、より詳しく示す模式断面図である。第一配線基板10は、配線基板100のインターポーザに相当する部分であり、順に第一最外層3、配線層4、第二最外層5から成り、第一最外層3、第二最外層5の少なくとも一方に補強材を含んでいる。配線層4は、必要な層数(図では3層)からなる配線層であり、絶縁樹脂4aと配線パターン8a、8b、・・・により構成されている。第一最外層3には前記の接続パッド7が形成され、第二最外層5には、第二配線基板20とはんだバンプ6を介して接合するためのパッド表面処理層7aが形成されている。   FIG. 1B is a schematic cross-sectional view showing only the first wiring substrate 10 according to one embodiment of the present invention in more detail. The first wiring board 10 is a portion corresponding to an interposer of the wiring board 100, and is composed of a first outermost layer 3, a wiring layer 4, and a second outermost layer 5 in that order. At least one includes a reinforcing material. The wiring layer 4 is a wiring layer having a required number of layers (three layers in the figure), and includes an insulating resin 4a and wiring patterns 8a, 8b,... The connection pads 7 are formed on the first outermost layer 3, and the pad surface treatment layer 7 a for bonding to the second wiring board 20 via the solder bumps 6 is formed on the second outermost layer 5. .

本発明の配線基板100は、従来通りの配線ルール・材料を用いたFC−BGA配線基板である第二配線基板20に加えて、第一配線基板10を備え、第一配線基板10は第一最外層3、配線層4、第二最外層5から成るので、第一配線基板10の第一最外層3に形成される接続パッド7のピッチを、従来のように配線基板に半導体チップを直接実装する場合の配線ピッチよりも狭くすることができる。それとともに、第一配線基板10の配線層4では、半導体チップを直接実装する従来の配線基板よりも微細な配線を使用することができる。すなわち、第一配線基板10の第一最外層3に狭ピッチの端子電極を形成し、配線層4に微細な配線パターンを形成することで、端子電極の狭ピッチ化と微細配線化に対応することができる。   The wiring board 100 of the present invention includes a first wiring board 10 in addition to a second wiring board 20 which is an FC-BGA wiring board using a conventional wiring rule and material. Since it is composed of the outermost layer 3, the wiring layer 4, and the second outermost layer 5, the pitch of the connection pads 7 formed on the first outermost layer 3 of the first wiring board 10 is reduced by directly connecting the semiconductor chip to the wiring board as in the conventional case. It can be narrower than the wiring pitch when mounting. At the same time, the wiring layer 4 of the first wiring board 10 can use finer wiring than a conventional wiring board on which a semiconductor chip is directly mounted. That is, by forming a terminal electrode having a narrow pitch on the first outermost layer 3 of the first wiring substrate 10 and forming a fine wiring pattern on the wiring layer 4, it is possible to cope with a narrow pitch of the terminal electrodes and fine wiring. be able to.

また、第一最外層3、第二最外層5の少なくとも一方に補強材を含むので、従来のFC−BGA配線基板よりも剛性の高い配線基板となり、製造プロセス中の反りが抑えられる。   Further, since the reinforcing material is contained in at least one of the first outermost layer 3 and the second outermost layer 5, the wiring board has higher rigidity than the conventional FC-BGA wiring board, and the warpage during the manufacturing process is suppressed.

[本発明の配線基板の製造方法]
図2は、本発明の一実施形態に係る、配線基板の製造方法のうち、第一配線基板の製造工程までの主要部を工程順に示す模式断面図である。尚、図2は、図1、図3、図4の第二配線基板と接合前後の図とは上下反転している。
[Method of Manufacturing Wiring Board of the Present Invention]
FIG. 2 is a schematic cross-sectional view showing, in the order of steps, a main part of a method of manufacturing a wiring board according to an embodiment of the present invention, up to the manufacturing process of the first wiring board. Note that FIG. 2 is upside down from the view before and after bonding with the second wiring board in FIGS. 1, 3, and 4.

まず、図2(a)に示すように、支持体1の上に剥離層2を形成する。支持基板1には、ガラス基板を用いることができる。ガラス基板は表面が平坦であり、狭ピッチな端子電極や微細配線を形成するために好適である。また、ガラス基板はCTE(熱膨張係数)が小さい、すなわち熱プロセス中の伸縮が小さいため、後述の第二配線基板との接合の際に好適である。プロセス中の反りを抑制するため、支持基板1としてのガラス基板の厚みは500μm以上であることが望ましい。実用的には0.5mm〜2.0mmの範囲内でよい。   First, a release layer 2 is formed on a support 1 as shown in FIG. As the support substrate 1, a glass substrate can be used. The glass substrate has a flat surface and is suitable for forming terminal electrodes and fine wirings with a narrow pitch. Further, since the glass substrate has a small CTE (coefficient of thermal expansion), that is, a small expansion and contraction during a thermal process, it is suitable for bonding to a second wiring substrate described later. In order to suppress warpage during the process, the thickness of the glass substrate as the support substrate 1 is desirably 500 μm or more. Practically, it may be in the range of 0.5 mm to 2.0 mm.

剥離層2は、光の照射により分解可能な樹脂を含んでいる。本実施形態における光はレーザー光であるので、剥離層2に含まれる樹脂として、レーザー光が照射されることによって熱分解可能な樹脂が用いられる。剥離層2に含まれる樹脂としては、例えばエポキシ樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、オキセタン樹脂、及びマレイミド樹脂のうちの1種またはこれらの樹脂の2種類以上が混合された樹脂等が用いられる。剥離層2の厚さは、例えば0.1μm〜10μmである。   The release layer 2 contains a resin that can be decomposed by light irradiation. Since the light in this embodiment is a laser beam, a resin that can be thermally decomposed by irradiating the laser beam is used as the resin included in the peeling layer 2. The resin contained in the release layer 2 is, for example, one of an epoxy resin, an acrylic resin, a polyurethane resin, a silicone resin, a polyester resin, an oxetane resin, and a maleimide resin, or a resin in which two or more of these resins are mixed. Are used. The thickness of the release layer 2 is, for example, 0.1 μm to 10 μm.

次に、図2(b)に示すように、第一最外層3、必要な層数(図では3層)の配線層4、第二最外層5を順に形成し、第一配線基板10を作製する。第一配線基板10の厚みは50〜100μmであるので、支持基板1の厚みは第一配線基板10の厚みの10倍以上であるものが望ましい。本発明の実施形態によれば、充分に厚い支持基板1上に比較的薄い第一配線基板10を形成することにより、製造プロセス中の反りが抑えられる。   Next, as shown in FIG. 2B, a first outermost layer 3, a required number of wiring layers 4 (three layers in the figure), and a second outermost layer 5 are sequentially formed, and the first wiring substrate 10 is formed. Make it. Since the thickness of the first wiring board 10 is 50 to 100 μm, the thickness of the support substrate 1 is desirably 10 times or more the thickness of the first wiring board 10. According to the embodiment of the present invention, by forming the relatively thin first wiring board 10 on the sufficiently thick support substrate 1, warpage during the manufacturing process can be suppressed.

第一最外層3、第二最外層5で用いる樹脂としては、感光性の熱硬化性絶縁樹脂を用いる。例えばエポキシ系、シアネート系、ポリイミド系樹脂のいずれかを用いることができる。熱硬化性絶縁樹脂は、例えばシリカフィラーが含むが、アルミナ等の無機フィラーを使用してもよい。第一最外層3、第二最外層5の少なくとも一方に含む補強材としては、ガラスクロスが好適であるが、この他に耐熱性・機械強度に優れたカーボンファイバー、液晶ポリマー繊維等であってもよい。   As the resin used for the first outermost layer 3 and the second outermost layer 5, a photosensitive thermosetting insulating resin is used. For example, any one of epoxy-based, cyanate-based, and polyimide-based resins can be used. The thermosetting insulating resin includes, for example, a silica filler, but may use an inorganic filler such as alumina. As a reinforcing material contained in at least one of the first outermost layer 3 and the second outermost layer 5, glass cloth is suitable, but in addition, carbon fiber, liquid crystal polymer fiber, etc. having excellent heat resistance and mechanical strength are used. Is also good.

接続パッド7を有する第一最外層3の形成は、例えば、まず剥離層2上に銅箔(不図示)を形成し、該銅箔上に第一最外層3を構成する感光性絶縁樹脂を塗工、露光、現像し、開口部を形成した後、ベークを実施する。次に該開口部に、銅箔をシード層として電解めっきを行うことにより接続パッド7を形成する。尚、剥離層2の上には、紫外線で硬化する接着剤を塗布して接着層(不図示)を形成してもよい。   The first outermost layer 3 having the connection pads 7 is formed, for example, by first forming a copper foil (not shown) on the release layer 2 and then forming a photosensitive insulating resin constituting the first outermost layer 3 on the copper foil. After coating, exposing, developing and forming an opening, baking is performed. Next, connection pads 7 are formed in the openings by performing electrolytic plating using a copper foil as a seed layer. Note that an adhesive curable by ultraviolet rays may be applied on the release layer 2 to form an adhesive layer (not shown).

接続パッド7の構造は、第一配線基板10を第二配線基板20と接合した後、支持基板1や剥離層2を除去し、図1(a)のように、接続パッド7を露出させたときに、接続パッド7の表面が、例えばAuとなるように銅箔側からAu/Ni/Cuとめっき層を形成する。このとき、AuへのCu拡散を防止するため、銅箔とAuとの間に薄いNi層を形成してからAu/Ni/Cuのめっきを行う。   The structure of the connection pad 7 is such that after bonding the first wiring substrate 10 to the second wiring substrate 20, the support substrate 1 and the release layer 2 are removed, and the connection pad 7 is exposed as shown in FIG. Sometimes, Au / Ni / Cu and a plating layer are formed from the copper foil side so that the surface of the connection pad 7 becomes, for example, Au. At this time, in order to prevent diffusion of Cu into Au, a thin Ni layer is formed between the copper foil and Au, and then Au / Ni / Cu plating is performed.

次に、配線層4中の配線パターン8a、8b、・・・の形成は、例えば以下のように行う。第一配線基板10の配線層4に用いられる絶縁樹脂4aは感光性エポキシ系樹脂を使用することが好ましいが、ポリイミド系樹脂であってもよい。まず、第一最外層3上に感光性エポキシ系樹脂等の絶縁樹脂をスピンコート法等により塗布する。感光性エポキシ系樹脂は比較的低温で硬化することができ、この後のビア穴を形成した後のキュア(硬化)による収縮が少なく好ましい。   Next, the formation of the wiring patterns 8a, 8b,... In the wiring layer 4 is performed, for example, as follows. The insulating resin 4a used for the wiring layer 4 of the first wiring board 10 is preferably a photosensitive epoxy resin, but may be a polyimide resin. First, an insulating resin such as a photosensitive epoxy resin is applied on the first outermost layer 3 by a spin coating method or the like. The photosensitive epoxy resin can be cured at a relatively low temperature, and is less likely to shrink due to curing (curing) after the formation of the via hole.

次に、第一最外層3上に導通ビア4bの穴形状を形成する。本実施形態では絶縁樹脂4aに感光性エポキシ系樹脂を使用しており、露光、及び現像を行うことにより導通ビア4bの穴形状を形成することができる。非感光のポリイミド系樹脂を使用する場合、レーザー光照射によって導通ビア4bの穴形状を形成しても良い。   Next, a hole shape of the conductive via 4b is formed on the first outermost layer 3. In this embodiment, a photosensitive epoxy resin is used for the insulating resin 4a, and the hole shape of the conductive via 4b can be formed by performing exposure and development. When a non-photosensitive polyimide resin is used, the hole shape of the conductive via 4b may be formed by laser beam irradiation.

次に、アッシング等で残渣を除去した後、例えばTiとCuを連続でスパッタし、電解銅めっきのシード層を形成する。このシード層の上に導通ビア4b、及び微細配線パターンを形成するが、Tiは下層の絶縁樹脂との密着性を向上することができ、めっき後のパ
ターン剥がれ、倒れを防止する効果を有する。その他、チタン−タングステン(TiW)とCuのスパッタ連続処理等にてシード層を形成しても良い。
Next, after removing the residue by ashing or the like, for example, Ti and Cu are continuously sputtered to form a seed layer of electrolytic copper plating. A conductive via 4b and a fine wiring pattern are formed on the seed layer. Ti can improve the adhesion to the underlying insulating resin, and has an effect of preventing pattern peeling and falling after plating. In addition, the seed layer may be formed by continuous sputtering of titanium-tungsten (TiW) and Cu.

次に、レジストパターンを形成し、その開口部、及び上記導通ビア4bの穴形状内に電解銅めっきにて、導通ビア4bと配線パターンを形成する。さらに、レジストパターンを除去した後、配線パターンをマスクとして、シード層としたスパッタCuとスパッタTiとをエッチングする。   Next, a resist pattern is formed, and a conductive via 4b and a wiring pattern are formed by electrolytic copper plating in the opening and the hole shape of the conductive via 4b. Further, after removing the resist pattern, the sputter Cu and the sputter Ti serving as the seed layer are etched using the wiring pattern as a mask.

以上説明した導通ビアと配線パターン形成工程を、積み重ねる配線層数に合わせて繰り返し、配線層4を形成する。   The conductive via and wiring pattern forming process described above is repeated according to the number of wiring layers to be stacked, and the wiring layer 4 is formed.

続いて、第二最外層5にバンプ形成を行うために、まず、配線層4を覆うように、第二最外層5となる感光性絶縁樹脂を塗工、露光、現像し、接続端子部を開口させた後、ベークを実施する。この開口部に銅の酸化を抑制し、はんだの濡れ性を高めるためニッケル・パラジウム・金めっきやOSP(Organic Solderability Preservative)を施し、パッド表面処理層7aを形成する。   Subsequently, in order to form a bump on the second outermost layer 5, first, a photosensitive insulating resin to be the second outermost layer 5 is coated, exposed, and developed so as to cover the wiring layer 4, and the connection terminal portion is formed. After opening, baking is performed. Nickel-palladium-gold plating or OSP (Organic Solderability Preservative) is applied to the opening to suppress copper oxidation and increase solder wettability, thereby forming a pad surface treatment layer 7a.

その後、前記開口部に、はんだペーストを印刷、またははんだボールを振り込み、リフローすることにより、図2(c)に示すように、第二最外層5にはんだバンプ6が形成される。また、バンプははんだだけではなく銅ピラーや銅コアボールを含んでもよい。   Thereafter, a solder paste is printed on the opening or a solder ball is transferred and reflowed to form a solder bump 6 on the second outermost layer 5 as shown in FIG. 2C. Further, the bumps may include not only solder but also copper pillars and copper core balls.

図3は、本発明の一実施形態に係る、配線基板の製造方法のうち、図2の製造工程に続く製造工程の主要部を工程順に示す模式断面図であり、図4は、図3の製造工程に続く製造工程の主要部を工程順に示す模式断面図である。   FIG. 3 is a schematic cross-sectional view showing, in the order of steps, a main part of a manufacturing process following the manufacturing process of FIG. 2 in the method of manufacturing a wiring board according to one embodiment of the present invention, and FIG. It is a schematic cross section which shows the principal part of a manufacturing process following a manufacturing process in order of a process.

支持基板1と剥離層2が付いた第一配線基板10を個片化し、図3に示すように近接させ、別に製造した第二配線基板20に接合する。接合は、第一配線基板10、第二配線基板20それぞれの対応する位置にはんだバンプ6が接触するよう位置合わせを行い、仮圧着し、リフローし、アンダーフィル9により樹脂封止を行う。個片化にはダイシング、スクライビング、レーザー加工などの工法が採用できる。   The first wiring board 10 provided with the support substrate 1 and the release layer 2 is divided into individual pieces, brought close to each other as shown in FIG. 3, and joined to a separately manufactured second wiring board 20. The bonding is performed such that the solder bumps 6 are brought into contact with the corresponding positions of the first wiring board 10 and the second wiring board 20, temporarily press-bonded, reflowed, and resin-sealed with the underfill 9. For singulation, methods such as dicing, scribing, and laser processing can be adopted.

アンダーフィル9は、第二配線基板20と第一配線基板10とを固定、及び封止するために用いられる絶縁性の接着剤である。アンダーフィル9としては、例えば、エポキシ樹脂、ポリウレタン樹脂、シリコン樹脂、ポリエステル樹脂、オキセタン樹脂、及びマレイミド樹脂のうちの1種またはこれらの樹脂の2種類以上が混合された樹脂に、フィラーとしてシリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、または酸化亜鉛等を加えた材料を用いることができる。   The underfill 9 is an insulating adhesive used for fixing and sealing the second wiring board 20 and the first wiring board 10. As the underfill 9, for example, an epoxy resin, a polyurethane resin, a silicone resin, a polyester resin, an oxetane resin, and a resin in which two or more of these resins are mixed, silica as a filler, A material to which titanium oxide, aluminum oxide, magnesium oxide, zinc oxide, or the like is added can be used.

続いて図4に示すように、支持基板1を剥離層2から除去する。除去の方法は、ガラスの支持基板1越しにレーザー光15を適宜走査しながら照射して、第一配線基板10からガラス基板1を剥離層2とともに除去する。このとき、接続パッド7の形成時にシード層として用いた銅箔(不図示)をともに除去することが望ましい。   Subsequently, as shown in FIG. 4, the support substrate 1 is removed from the release layer 2. As a method of removing, the glass substrate 1 is removed from the first wiring substrate 10 together with the release layer 2 by irradiating the glass substrate 1 with a laser beam 15 while appropriately scanning the substrate. At this time, it is desirable to remove both the copper foil (not shown) used as the seed layer when forming the connection pads 7.

あるいは、支持基板1と剥離層2の界面から支持基板1のみを除去した後、粘着テープ等の粘着性の部材により、剥離層2(または剥離層2と不図示の接着層)及び銅箔を剥離してもよい。すなわち、粘着テープ等を支持基板1が接着されていた領域の少なくとも一部に貼り付け、粘着テープ等を剥がすことにより、第一配線基板1上に残存する剥離層や接着層、銅箔を除去する。   Alternatively, after removing only the support substrate 1 from the interface between the support substrate 1 and the release layer 2, the release layer 2 (or the release layer 2 and an adhesive layer (not shown)) and the copper foil are separated by an adhesive member such as an adhesive tape. You may peel off. That is, an adhesive tape or the like is attached to at least a part of the area where the support substrate 1 has been adhered, and the adhesive tape or the like is peeled off to remove a peeling layer, an adhesive layer, and a copper foil remaining on the first wiring substrate 1. I do.

銅箔をともに剥離しない場合は、銅箔と既述の薄いNi層とをエッチングし、表面にA
uが露出した、半導体チップを実装する接続パッド7を露出させる。このようにして本発明の配線基板100が完成する。
If the copper foil is not peeled off together, the copper foil and the thin Ni layer described above are etched and A
The connection pad 7 on which the semiconductor chip is mounted, on which u is exposed, is exposed. Thus, the wiring board 100 of the present invention is completed.

図5は、本発明の一実施形態に係る、配線基板の製造方法のうち、配線基板の製品面付け効率を説明するための模式平面図である。本発明の製造方法では、支持基板(基板サイズα)は円形状基板30ではなく、四角形状基板40を用いるので、一般に四角形状をしている配線基板(製品サイズβ)を効率良く面付けすることができる。また支持基板1にはガラス基板を用いることができるので、半導体素子製造プロセスよりも安価な配線基板製造プロセスを活用できるため、低コストで配線基板を製造することができる。   FIG. 5 is a schematic plan view for explaining the product imposition efficiency of the wiring board in the method for manufacturing a wiring board according to one embodiment of the present invention. In the manufacturing method of the present invention, since the support substrate (substrate size α) uses the square substrate 40 instead of the circular substrate 30, the generally rectangular wiring substrate (product size β) is efficiently imposed. be able to. Further, since a glass substrate can be used as the support substrate 1, a wiring substrate manufacturing process that is less expensive than a semiconductor element manufacturing process can be used, and thus a wiring substrate can be manufactured at low cost.

さらには、以下のような効果がある。第一配線基板にあたる配線層をビルドアップ基板上に直接形成する従来の工法では、不良品のビルドアップ基板の上にも配線層を作り込んでしまうことがあるのに対し、本発明では、第二配線基板はすでに良品と選別されたビルドアップ基板を用い、これに第一配線基板を接合することにより、高収率で配線基板を生産することができる。また、100μm以下と薄い第一配線基板を単体で第二配線基板に接合することは通常困難であるが、本発明の配線基板の製造方法では、厚みのある支持基板が付いたまま接合するので従来の半導体製品の実装と同じ技術を活用することができ、かつ、支持基板は後で取り除くためシリコンインターポーザよりも全体として薄い配線基板が実現できる。   Further, there are the following effects. In the conventional method of forming the wiring layer corresponding to the first wiring board directly on the build-up board, the wiring layer may be formed also on the defective build-up board. As the second wiring substrate, a build-up substrate that has already been selected as a non-defective product is used, and the first wiring substrate is joined to the build-up substrate, whereby a wiring substrate can be produced with a high yield. Also, it is usually difficult to bond the first wiring board as thin as 100 μm or less to the second wiring board by itself, but in the method of manufacturing a wiring board of the present invention, the bonding is performed with the thick supporting substrate attached. The same technology as that for mounting a conventional semiconductor product can be used, and since the supporting substrate is removed later, a wiring substrate that is thinner than the silicon interposer as a whole can be realized.

<比較例>
第一配線基板の厚みに対して10倍を超えない厚み、すなわち第一配線基板50μm厚に対して0.3mm厚のガラス基板上で第一配線基板の製造を行ったところ、絶縁樹脂の硬化収縮や配線層形成時の応力により、ガラス基板が、第一配線基板側が内側になる形状に湾曲してしまい、配線形成のための製造プロセスに供することができなくなった。また、ガラス基板の割れによる不具合の割合も高くなった。
<Comparative example>
When the first wiring board was manufactured on a glass substrate having a thickness of not more than 10 times the thickness of the first wiring board, that is, 0.3 mm thickness with respect to the 50 μm thickness of the first wiring board, the insulating resin was cured. Due to the shrinkage and the stress at the time of forming the wiring layer, the glass substrate is curved into a shape in which the first wiring substrate side is inside, and cannot be provided to the manufacturing process for forming the wiring. In addition, the ratio of defects due to cracks in the glass substrate also increased.

<その他の実施形態>
以上説明した本発明の実施形態は単なる例示に過ぎず、本発明を限定するものではない。従って本発明は、その要旨を逸脱しない範囲での改変が可能である。例えば支持基板はガラス基板でなく別のレーザー透過性に優れた材料でもよいし、剥離層にレーザー照射以外の方法で剥離できる材料を採用し、支持基板として金属のような不透明な基板を使用してもよい。
<Other embodiments>
The embodiments of the present invention described above are merely examples, and do not limit the present invention. Therefore, the present invention can be modified without departing from the gist thereof. For example, the support substrate is not limited to a glass substrate, but may be another material having excellent laser permeability.The release layer may be made of a material that can be peeled off by a method other than laser irradiation. You may.

本発明は、マザーボードと半導体チップの間に、インターポーザを介在させる配線基板を備える半導体装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to a semiconductor device including a wiring board having an interposer interposed between a motherboard and a semiconductor chip.

1・・・・支持基板
2・・・・剥離層
3・・・・第一最外層
4・・・・配線層
4a・・・絶縁樹脂
4b・・・導通ビア
5・・・・第二最外層
6・・・・はんだバンプ
7・・・・接続パッド
7a・・・パッド表面処理層
8a、8b、8c・・・・配線パターン
9・・・・アンダーフィル
15・・・レーザー光
100・・配線基板
10・・・第一配線基板
20・・・第二配線基板
30・・・円形状基板
40・・・四角形状基板
α・・・・基板サイズ
β・・・・製品サイズ
50・・・一般のFC−BGA配線基板
51・・・配線層
52・・・配線パターン
53・・・絶縁樹脂
54・・・第一の端子電極
55・・・第二の端子電極
56・・・導通ビア
57・・・コア層
58・・・スル−ホール
59・・・スルーホールめっき
1 ... support substrate 2 ... release layer 3 ... first outermost layer 4 ... wiring layer 4a ... insulating resin 4b ... conductive via 5 ... second outermost layer Outer layer 6 Solder bump 7 Connection pad 7a Pad surface treatment layer 8a, 8b, 8c Wiring pattern 9 Underfill 15 Laser light 100 Wiring board 10 First wiring board 20 Second wiring board 30 Circular board 40 Square board α Board size β Product size 50 General FC-BGA wiring board 51 Wiring layer 52 Wiring pattern 53 Insulating resin 54 First terminal electrode 55 Second terminal electrode 56 Conducting via 57 ... Core layer 58 ... Through hole 59 ... Through hole plating

Claims (4)

半導体素子を実装するための配線基板であって、
ビルドアップ配線層からなる第二配線基板と、前記第二配線基板に接合された第一配線基板と、を備え、
前記第二配線基板と前記第一配線基板とはそれぞれ表面から突出した端子(突起電極)を介して電気的に接合され、
前記第一配線基板及び前記第二配線基板の隙間に絶縁樹脂が充填され、
前記第一配線基板は、順に第一最外層、配線層、第二最外層から成り、
前記第一最外層、前記第二最外層の少なくとも一方に補強材を含む、
ことを特徴とする配線基板。
A wiring board for mounting a semiconductor element,
A second wiring board made of a build-up wiring layer, and a first wiring board joined to the second wiring board,
The second wiring board and the first wiring board are electrically connected to each other via terminals (protruding electrodes) protruding from the surface,
An insulating resin is filled in the gap between the first wiring board and the second wiring board,
The first wiring board includes a first outermost layer, a wiring layer, and a second outermost layer in order,
The first outermost layer, including a reinforcing material in at least one of the second outermost layer,
A wiring board characterized by the above-mentioned.
四角形状の支持基板上に、順に剥離層、及び前記第一配線基板を形成し、
前記第一配線基板を前記第二配線基板に接合した後、前記支持基板を剥離する、
ことを特徴とする請求項1に記載の配線基板の製造方法。
On a square supporting substrate, a release layer is formed in order, and the first wiring substrate,
After joining the first wiring board to the second wiring board, peeling the support substrate,
2. The method for manufacturing a wiring board according to claim 1, wherein:
前記支持基板の厚みが前記第一配線基板の厚みの10倍以上であり、かつ0.1mm〜2.0mmである、
ことを特徴とする請求項2に記載の配線基板の製造方法。
The thickness of the support substrate is at least 10 times the thickness of the first wiring substrate, and 0.1 mm to 2.0 mm,
The method for manufacturing a wiring board according to claim 2, wherein:
前記支持基板の材質はガラスであり、前記支持基板を通して前記剥離層にレーザーを照射することにより、前記第一配線基板から前記支持基板を剥離する工程を含む、
ことを特徴とする請求項2、または3に記載の配線基板の製造方法。
The material of the support substrate is glass, by irradiating a laser to the release layer through the support substrate, including a step of peeling the support substrate from the first wiring substrate,
The method for manufacturing a wiring board according to claim 2 or 3, wherein:
JP2018125947A 2018-07-02 2018-07-02 Wiring board and manufacturing method thereof Pending JP2020004926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018125947A JP2020004926A (en) 2018-07-02 2018-07-02 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125947A JP2020004926A (en) 2018-07-02 2018-07-02 Wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2020004926A true JP2020004926A (en) 2020-01-09

Family

ID=69100505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125947A Pending JP2020004926A (en) 2018-07-02 2018-07-02 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2020004926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112248A (en) * 2020-01-16 2021-08-05 株式会社三共 Game machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102062A (en) * 2011-11-09 2013-05-23 Ibiden Co Ltd Semiconductor mounting member and method for manufacturing the same
US20150035163A1 (en) * 2013-08-02 2015-02-05 Siliconware Precision Industries Co., Ltd. Semiconductor package and method of fabricating the same
JP2015103535A (en) * 2013-11-21 2015-06-04 イビデン株式会社 Print circuit board
JP2015170725A (en) * 2014-03-07 2015-09-28 イビデン株式会社 composite substrate
JP2016033967A (en) * 2014-07-31 2016-03-10 新光電気工業株式会社 Support medium, wiring board and manufacturing method of the same, and semiconductor package manufacturing method
JP2017098306A (en) * 2015-11-18 2017-06-01 新光電気工業株式会社 Wiring board, semiconductor device, and method of manufacturing wiring board
JP2018067688A (en) * 2016-10-21 2018-04-26 日立化成株式会社 Method for manufacturing structure having conductor circuit, photosensitive resin composition and photosensitive resin film, and thermosetting resin composition and thermosetting resin film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102062A (en) * 2011-11-09 2013-05-23 Ibiden Co Ltd Semiconductor mounting member and method for manufacturing the same
US20150035163A1 (en) * 2013-08-02 2015-02-05 Siliconware Precision Industries Co., Ltd. Semiconductor package and method of fabricating the same
JP2015103535A (en) * 2013-11-21 2015-06-04 イビデン株式会社 Print circuit board
JP2015170725A (en) * 2014-03-07 2015-09-28 イビデン株式会社 composite substrate
JP2016033967A (en) * 2014-07-31 2016-03-10 新光電気工業株式会社 Support medium, wiring board and manufacturing method of the same, and semiconductor package manufacturing method
JP2017098306A (en) * 2015-11-18 2017-06-01 新光電気工業株式会社 Wiring board, semiconductor device, and method of manufacturing wiring board
JP2018067688A (en) * 2016-10-21 2018-04-26 日立化成株式会社 Method for manufacturing structure having conductor circuit, photosensitive resin composition and photosensitive resin film, and thermosetting resin composition and thermosetting resin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112248A (en) * 2020-01-16 2021-08-05 株式会社三共 Game machine

Similar Documents

Publication Publication Date Title
TWI426587B (en) Chip scale package and fabrication method thereof
JP5113114B2 (en) Wiring board manufacturing method and wiring board
WO2018047861A1 (en) Wiring board and method for manufacturing wiring board
US8334174B2 (en) Chip scale package and fabrication method thereof
JP2005294547A (en) Semiconductor device and manufacturing method thereof
JP2004335641A (en) Method of manufacturing substrate having built-in semiconductor element
US20130069219A1 (en) Semiconductor package and method for manufacturing the semiconductor package
TW201405745A (en) Package substrate, package structure and method for manufacturing package structure
US20170245365A1 (en) Printed wiring board and method for manufacturing the same
TW201417196A (en) Package substrate, package structure and methods for manufacturing same
JP2017050310A (en) Electronic component device and manufacturing method thereof
JP2011100793A (en) Method of manufacturing semiconductor package
JP2010161419A (en) Method of manufacturing semiconductor device
JP7351107B2 (en) Wiring board and wiring board manufacturing method
JP2006351950A (en) Semiconductor device and method for manufacturing the same
JP2016025281A (en) Semiconductor device and method for manufacturing the same
JP2020004926A (en) Wiring board and manufacturing method thereof
US11658104B2 (en) Intermediate substrate and fabrication method thereof
JP2004165190A (en) Semiconductor device and its manufacturing method
JP2007012714A (en) Semiconductor device
JP2005260120A (en) Semiconductor device
JP2005150344A (en) Semiconductor device and its manufacturing method
JP7347440B2 (en) Manufacturing method of wiring board for semiconductor package
JP7196936B2 (en) Method for manufacturing wiring board for semiconductor device, and wiring board for semiconductor device
JP7052464B2 (en) Manufacturing method of coreless substrate with fine wiring layer and manufacturing method of semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230411

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230427