JP2013102062A - Semiconductor mounting member and method for manufacturing the same - Google Patents

Semiconductor mounting member and method for manufacturing the same Download PDF

Info

Publication number
JP2013102062A
JP2013102062A JP2011245060A JP2011245060A JP2013102062A JP 2013102062 A JP2013102062 A JP 2013102062A JP 2011245060 A JP2011245060 A JP 2011245060A JP 2011245060 A JP2011245060 A JP 2011245060A JP 2013102062 A JP2013102062 A JP 2013102062A
Authority
JP
Japan
Prior art keywords
substrate
conductor
mounting member
insulating layer
semiconductor mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011245060A
Other languages
Japanese (ja)
Other versions
JP5861400B2 (en
Inventor
Masatoshi Kunieda
雅敏 國枝
Hirobumi Futamura
博文 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2011245060A priority Critical patent/JP5861400B2/en
Publication of JP2013102062A publication Critical patent/JP2013102062A/en
Application granted granted Critical
Publication of JP5861400B2 publication Critical patent/JP5861400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor mounting member having high reliability and a method for manufacturing the same.SOLUTION: In the semiconductor mounting member, a second substrate 300 includes an upwardly projecting second connection conductor 332P, and a first substrate 500 includes an upwardly projecting first connection conductor 872P. For instance, a stress generated when the semiconductor mounting member is mounted on an external substrate is released to the first substrate side through the first connection conductor 872P and to the second substrate side through the second connection conductor 332P, and thereby the stress applied to a brittle semiconductor element 90 having high toughness can be relaxed.

Description

本発明は、第2基板と、該第2基板上にバンプを介して搭載される第1基板とからなる半導体実装部材及びその製造方法に関するものである。 The present invention relates to a semiconductor mounting member including a second substrate and a first substrate mounted on the second substrate via bumps, and a method for manufacturing the same.

半導体装置のパッケージ基板として、高集積化のためコア基板に層間樹脂絶縁層と導体パターンとを交互に積層して成るビルドアップ多層配線板が用いられている。ここで、更に、集積率を高め、配線距離を短くするため、厚みのあるコア基板を除いたコアレスのビルドアップ多層配線板が提案されている。特許文献1には、金属板の凹部に導電性フィラーを充填し、該金属板の上に絶縁層と導体パターンとを積層した後、金属板をエッチング除去することで、導電性フィラーから成る電極を備えるコアレスのビルドアップ多層配線板を製造する方法が提案されている。 As a package substrate of a semiconductor device, a build-up multilayer wiring board formed by alternately laminating interlayer resin insulation layers and conductor patterns on a core substrate is used for high integration. Here, in order to further increase the integration rate and shorten the wiring distance, a coreless build-up multilayer wiring board excluding a thick core substrate has been proposed. In Patent Document 1, a conductive filler is filled in a concave portion of a metal plate, an insulating layer and a conductor pattern are stacked on the metal plate, and then the metal plate is removed by etching, whereby an electrode made of a conductive filler. A method of manufacturing a coreless build-up multilayer wiring board comprising:

US2008/0188037A1US2008 / 0188037A1

近年、半導体素子を形成する材料のLow-k化が進む傾向にある。こうした場合、種々の熱応力に対して半導体素子が脆弱になる。
このため、例えば特許文献1に記載の半導体装置を外部基板上に実装する際に生じる熱応力や、実装後に生じる熱応力をできる限り緩和し、そうした熱応力が半導体素子に加わることを抑制する手段が要求されている。
In recent years, there is a tendency that the material for forming a semiconductor element is made low-k. In such a case, the semiconductor element becomes vulnerable to various thermal stresses.
For this reason, for example, thermal stress generated when the semiconductor device described in Patent Document 1 is mounted on an external substrate and thermal stress generated after mounting are alleviated as much as possible, and such thermal stress is prevented from being applied to the semiconductor element. Is required.

本発明の目的は、高い信頼性を有する半導体実装部材を提供することである。 An object of the present invention is to provide a semiconductor mounting member having high reliability.

請求項1に記載の発明は、複数の第1絶縁層と、該第1絶縁層上に形成されている第1導体パターンと、上下に位置する前記第1導体パターン同士を接続する第1ビア導体とを有する第1基板と、該第1基板を実装し、複数の第2絶縁層と、該第2絶縁層上に形成されている第2導体パターンと、上下に位置する前記第2導体パターン同士を接続する第2ビア導体とを有する第2基板と、前記第1基板上に設けられ、該第1基板に半導体素子を接続するための第1バンプと、前記第2基板上に設けられ、該第2基板に前記第1基板を接続するための第2バンプと、を有する半導体実装部材であって、
前記第1基板は、前記第1絶縁層のうち最外層に位置する第1絶縁層の表面から突き出る第1接続導体を有し、前記第2基板は、前記第2絶縁層のうち最外層に位置する第2絶縁層の表面から突き出る第2接続導体を有し、前記第1バンプは前記第1接続導体上に設けられ、前記第2バンプは前記第2接続導体上に設けられている。
The invention according to claim 1 is a first via for connecting a plurality of first insulating layers, a first conductor pattern formed on the first insulating layer, and the first conductor patterns positioned above and below. A first substrate having a conductor; a plurality of second insulating layers mounted on the first substrate; a second conductor pattern formed on the second insulating layer; and the second conductor positioned above and below A second substrate having a second via conductor for connecting the patterns, a first bump provided on the first substrate, for connecting a semiconductor element to the first substrate, and provided on the second substrate A semiconductor mounting member having a second bump for connecting the first substrate to the second substrate,
The first substrate has a first connection conductor protruding from a surface of the first insulating layer located in the outermost layer of the first insulating layer, and the second substrate is an outermost layer of the second insulating layer. A second connection conductor protruding from the surface of the second insulating layer located is provided, the first bump is provided on the first connection conductor, and the second bump is provided on the second connection conductor.

本願発明の半導体実装部材では、例えば半導体素子と第1基板との熱膨張係数の差により生じた熱応力が、まず第1接続体を介して第1基板側へ伝達される。さらに、第1基板側へ伝達された熱応力が第2接続体を介して第2基板側へ伝達される。すなわち、半導体素子と第1基板との熱膨張係数の差により生じた熱応力は、第1接続体及び第2接続体を介して半導体素子から離間する側へ伝達されるようになる。その結果、半導体素子に加わる熱応力を極力低減することが可能となる。 In the semiconductor mounting member of the present invention, for example, thermal stress generated by the difference in thermal expansion coefficient between the semiconductor element and the first substrate is first transmitted to the first substrate side through the first connection body. Furthermore, the thermal stress transmitted to the first substrate side is transmitted to the second substrate side via the second connector. That is, the thermal stress generated by the difference in thermal expansion coefficient between the semiconductor element and the first substrate is transmitted to the side away from the semiconductor element through the first connection body and the second connection body. As a result, it is possible to reduce the thermal stress applied to the semiconductor element as much as possible.

本発明の実施例に係る半導体実装部材の断面図である。It is sectional drawing of the semiconductor mounting member which concerns on the Example of this invention. 半導体実装部材の要部拡大図である。It is a principal part enlarged view of a semiconductor mounting member. 半導体実装部材の断面図である。It is sectional drawing of a semiconductor mounting member. 第2基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 2nd board | substrate. 第2基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 2nd board | substrate. 第2基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 2nd board | substrate. 第2基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 2nd board | substrate. 第2基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 2nd board | substrate. 第2基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 2nd board | substrate. 第1基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 1st board | substrate. 第1基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 1st board | substrate. 第1基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 1st board | substrate. 第1基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 1st board | substrate. 第1基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 1st board | substrate. 第1基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 1st board | substrate. 第1基板の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a 1st board | substrate.

本発明の実施例に係る半導体実装部材について、図1〜図3の断面図を参照して説明する。図1は半導体実装部材の一部を示し、図2は半導体実装部材の接続部を拡大して示し、図3は半導体実装部材の全部を示す。
半導体実装部材10は、第2基板300と、第2基板300上にバンプ28を介して実装されている第1基板500とからなる。
A semiconductor mounting member according to an embodiment of the present invention will be described with reference to the cross-sectional views of FIGS. 1 shows a part of the semiconductor mounting member, FIG. 2 shows an enlarged connection portion of the semiconductor mounting member, and FIG. 3 shows the entire semiconductor mounting member.
The semiconductor mounting member 10 includes a second substrate 300 and a first substrate 500 mounted on the second substrate 300 via bumps 28.

第2基板300は、第1面(上面)Fと第2面(裏面)Sとを有するコア基板30を備えている。第1面(上面)F上には導体パターン34が設けられ、第2面(裏面)S上には導体パターン34が設けられている。
第1面F上の導体パターン34と第2面S上の導体パターン334とはスルーホール導体36を介して接続されている。スルーホール導体36は、コア基板に設けられた貫通孔28内に銅めっきを充填することにより形成される。
The second substrate 300 includes a core substrate 30 having a first surface (upper surface) F and a second surface (back surface) S. A conductor pattern 34 is provided on the first surface (upper surface) F, and a conductor pattern 34 is provided on the second surface (back surface) S.
The conductor pattern 34 on the first surface F and the conductor pattern 334 on the second surface S are connected via a through-hole conductor 36. The through-hole conductor 36 is formed by filling the through hole 28 provided in the core substrate with copper plating.

コア基板330の第1面Fには、層間絶縁層(第2絶縁層)50,150と導体パターン58、158とが交互に積層されている。上下の導体パターン同士は、ビア導体60,160を介して電気的に接続されている。
最外層の層間絶縁層150上には、開口371を有するソルダーレジスト層370a、370bがそれぞれ設けられている。なお、請求項1における「最外層に位置する第2絶縁層」とは、ソルダーレジスト層370aを意味する。
Interlayer insulating layers (second insulating layers) 50 and 150 and conductor patterns 58 and 158 are alternately stacked on the first surface F of the core substrate 330. The upper and lower conductor patterns are electrically connected through via conductors 60 and 160.
On the outermost interlayer insulating layer 150, solder resist layers 370a and 370b having openings 371 are respectively provided. In addition, the “second insulating layer located in the outermost layer” in claim 1 means the solder resist layer 370a.

開口371から露出される導体パターン158上には、第2接続導体332Pが形成されている。第2接続導体332Pは、導体パターンを形成する材料と同じ材料(例えば銅)から形成されている。なお、熱応力を効果的に緩和することが可能という点で、第2接続導体332Pを半田から形成することが好ましい。 A second connection conductor 332P is formed on the conductor pattern 158 exposed from the opening 371. The second connection conductor 332P is formed of the same material (for example, copper) as the material forming the conductor pattern. In addition, it is preferable to form the 2nd connection conductor 332P from a solder at the point which can relieve | moderate a thermal stress effectively.

第2接続導体332Pの上面は、ソルダーレジスト層370aの表面よりも上方(第1基板側)に突き出ている。第2接続導体332Pの側面は、上方(第1基板側)に向かうにつれて径が小さくなるように傾斜している。さらに、第2接続導体332Pの側面は、弧状に凹む形状を有している。これにより、第2接続導体332Pが垂直な側面を有する場合と比較して、後述するバンプ28との接触面積が増大する。その結果、第2接続導体332Pを介して熱応力を緩和させやすくなる。
第2接続導体332P上には、第2接続導体332Pを被覆するようにバンプ28が設けられている。このバンプ28を介して、第2基板上に第1基板が実装されている。
The upper surface of the second connection conductor 332P protrudes upward (on the first substrate side) from the surface of the solder resist layer 370a. The side surface of the second connection conductor 332P is inclined so that the diameter becomes smaller toward the upper side (first substrate side). Furthermore, the side surface of the second connection conductor 332P has a shape recessed in an arc shape. Thereby, compared with the case where the 2nd connection conductor 332P has a perpendicular | vertical side surface, the contact area with the bump 28 mentioned later increases. As a result, it becomes easy to relieve the thermal stress through the second connection conductor 332P.
A bump 28 is provided on the second connection conductor 332P so as to cover the second connection conductor 332P. The first substrate is mounted on the second substrate via the bumps 28.

第1基板500は、コア基板を有さない。第1基板500は、第1絶縁層650、750と、ソルダーレジスト850、550と、導体パターン658、758と、ビア導体660、760と、を有する。第1基板500の第1主面上には、半導体チップ90が実装される。半導体チップ90は封止樹脂98により封止されている。
第1基板500を形成する第1絶縁層は、ガラスクロス、ガラス不織布、アラミドクロス、アラミド不織布等の補強材を含有していない。
第1基板500の厚みは、第2基板300よりも薄く、20〜30μmである。
The first substrate 500 does not have a core substrate. The first substrate 500 includes first insulating layers 650 and 750, solder resists 850 and 550, conductor patterns 658 and 758, and via conductors 660 and 760. A semiconductor chip 90 is mounted on the first main surface of the first substrate 500. The semiconductor chip 90 is sealed with a sealing resin 98.
The first insulating layer forming the first substrate 500 does not contain a reinforcing material such as glass cloth, glass nonwoven fabric, aramid cloth, or aramid nonwoven fabric.
The thickness of the first substrate 500 is thinner than the second substrate 300 and is 20 to 30 μm.

第1絶縁層650上には導体パターン658が形成されている。第1絶縁層650には孔651(ビアホール)が形成されており、孔651内には、めっきからなるビア導体660(第2導体パターン)が設けられている。ビア導体660は、第1絶縁層650を貫通している。第1絶縁層650上のうち、導体パターン658が形成されている面とは反対側の面には、ソルダーレジスト550が形成されている。このソルダーレジスト550は、ビア導体660の接続する導体パターン534を露出させる開口部556を有している。なお、請求項1における「最外層に位置する第1絶縁層」とは、ソルダーレジスト層850を意味する。 A conductor pattern 658 is formed on the first insulating layer 650. A hole 651 (via hole) is formed in the first insulating layer 650, and a via conductor 660 (second conductor pattern) made of plating is provided in the hole 651. The via conductor 660 passes through the first insulating layer 650. A solder resist 550 is formed on the surface of the first insulating layer 650 opposite to the surface on which the conductor pattern 658 is formed. The solder resist 550 has an opening 556 that exposes the conductor pattern 534 to which the via conductor 660 is connected. The “first insulating layer located in the outermost layer” in claim 1 means the solder resist layer 850.

開口部556により露出される導体パターン534上には、表面処理膜(図示せず)を介してバンプ28が形成されている。この表面処理膜は、例えばNi及びAuからなる。 Bumps 28 are formed on the conductor pattern 534 exposed through the openings 556 via a surface treatment film (not shown). This surface treatment film is made of, for example, Ni and Au.

第1絶縁層650上及び導体パターン658上には、第1絶縁層750が形成されている。また、第1絶縁層750上には、導体パターン758(第1導体パターン)が形成される。さらに、第1絶縁層750には孔751(ビアホール)が形成されている。そして、孔751内に導体(例えば銅のめっき)が充填されることにより、その孔751内の導体がビア導体760(フィルド導体)となる。導体パターン658と導体パターン758とは、互いにビア導体760を介して電気的に接続される。 A first insulating layer 750 is formed on the first insulating layer 650 and the conductor pattern 658. In addition, a conductor pattern 758 (first conductor pattern) is formed on the first insulating layer 750. Further, a hole 751 (via hole) is formed in the first insulating layer 750. Then, by filling the hole 751 with a conductor (for example, copper plating), the conductor in the hole 751 becomes a via conductor 760 (filled conductor). Conductive pattern 658 and conductive pattern 758 are electrically connected to each other via via conductor 760.

第1絶縁層650、750及びソルダーレジスト850、550は、例えば感光性樹脂からなる。ただしこれに限られず、第1絶縁層650、750及びソルダーレジスト850、550は、感光性樹脂以外の材料からなってもよい。
第1絶縁層の線膨張係数は、第2絶縁層の線膨張係数よりも小さく、10〜25ppmである。
The first insulating layers 650 and 750 and the solder resists 850 and 550 are made of, for example, a photosensitive resin. However, the present invention is not limited to this, and the first insulating layers 650 and 750 and the solder resists 850 and 550 may be made of a material other than the photosensitive resin.
The linear expansion coefficient of the first insulating layer is 10 to 25 ppm, which is smaller than the linear expansion coefficient of the second insulating layer.

導体パターン658及びビア導体660はそれぞれ、例えば図2に示すように、絶縁層650上に形成されている第1導体膜652と、第1導体膜652上に形成されている第2導体膜653,656と、からなる。また、導体パターン758及びビア導体760はそれぞれ、絶縁層750上に形成されている第1導体膜752と、第1導体膜752上に形成されている第2導体膜753,756と、からなる。ここで、第1導体膜652、752は、イオンマイグレーションの防止と絶縁層に対する密着性の双方を確保することが容易な点で、例えばTiN(下層)、Ti(上層)の2層構造で形成されることが好ましい。これら2層は、例えばスパッタリング法により形成されている。第2導体膜653、656,753、756は、電気抵抗の点で、例えばCuから形成されることが好ましい。本実施形態では、第2導体膜653、656,753、756が、無電解銅めっき膜653,753と、その上の電解銅めっき膜656、756と、からなる。このとき、無電解銅めっき膜653,753に代えて、スパッタリング法により形成される銅薄膜を採用してもよい。 Each of the conductor pattern 658 and the via conductor 660 includes, for example, a first conductor film 652 formed on the insulating layer 650 and a second conductor film 653 formed on the first conductor film 652 as shown in FIG. , 656. Each of the conductor pattern 758 and the via conductor 760 includes a first conductor film 752 formed on the insulating layer 750 and second conductor films 753 and 756 formed on the first conductor film 752. . Here, the first conductor films 652 and 752 are formed in a two-layer structure of, for example, TiN (lower layer) and Ti (upper layer) because it is easy to ensure both prevention of ion migration and adhesion to the insulating layer. It is preferred that These two layers are formed by sputtering, for example. The second conductor films 653, 656, 753, and 756 are preferably formed of Cu, for example, in terms of electrical resistance. In the present embodiment, the second conductor films 653, 656, 753, and 756 are composed of electroless copper plating films 653 and 753 and electrolytic copper plating films 656 and 756 thereon. At this time, instead of the electroless copper plating films 653 and 753, a copper thin film formed by a sputtering method may be employed.

絶縁層750上には、導体パターン758の一部を露出させる開口部851を有するソルダーレジスト850が形成されている。ソルダーレジスト850の開口部851に露出される導体パターン758上には、第1接続導体872Pが形成されている。第1接続導体872Pは、導体パターンを形成する材料と同じ材料(例えば銅)から形成されている。なお、熱応力を効果的に緩和することが可能という点で、第1接続導体872Pを半田から形成することが好ましい。 On the insulating layer 750, a solder resist 850 having an opening 851 exposing a part of the conductor pattern 758 is formed. A first connection conductor 872P is formed on the conductor pattern 758 exposed in the opening 851 of the solder resist 850. The first connection conductor 872P is made of the same material (for example, copper) as the material forming the conductor pattern. Note that the first connection conductor 872P is preferably formed from solder in that thermal stress can be effectively relieved.

第1接続導体872Pの上面は、ソルダーレジスト層850の表面よりも上方(半導体素子側)に突き出ている。第1接続導体872Pの側面は、上方(半導体素子側)に向かうにつれて径が小さくなるように傾斜している。さらに、第1接続導体872Pの側面は、弧状に凹む形状を有している。これにより、第1接続導体872Pが垂直な側面を有する場合と比較して、後述するバンプ28との接触面積が増大する。その結果、第1接続導体872Pを介して熱応力を緩和させやすくなる。
第1接続導体872P上には、第1接続導体872Pを被覆するようにバンプ828が設けられている。このバンプ828を介して、第1基板500上に半導体素子90が実装されている。
The upper surface of the first connection conductor 872P protrudes upward (semiconductor element side) from the surface of the solder resist layer 850. The side surface of the first connection conductor 872P is inclined so that the diameter becomes smaller toward the upper side (semiconductor element side). Furthermore, the side surface of the first connection conductor 872P has a shape that is recessed in an arc. Thereby, compared with the case where the 1st connection conductor 872P has a perpendicular | vertical side surface, the contact area with the bump 28 mentioned later increases. As a result, it becomes easy to relieve the thermal stress through the first connection conductor 872P.
A bump 828 is provided on the first connection conductor 872P so as to cover the first connection conductor 872P. A semiconductor element 90 is mounted on the first substrate 500 via the bumps 828.

半導体素子の内部構造が図2中に示される。半導体素子90は、電極92と、貫通孔97を有する絶縁膜95と、該貫通孔97内であって、電極92上に形成されたビア導体94と、絶縁膜95から露出し、ビア導体94上に形成された第3導体ポスト96Pとを備える。第3導体ポストは銅めっきにより成る。 The internal structure of the semiconductor element is shown in FIG. The semiconductor element 90 includes an electrode 92, an insulating film 95 having a through hole 97, a via conductor 94 formed in the through hole 97 on the electrode 92, and the via conductor 94 exposed from the insulating film 95. And a third conductor post 96P formed thereon. The third conductor post is made of copper plating.

第1基板500と、半導体素子90とは、第1基板500側の第1導体ポスト872Pと、半導体素子90側の第3導体ポスト96Pとの間に設けられた半田バンプ828を介して接続されている。第1基板と半導体素子との間にはアンダーフィル樹脂99が充填されている。 The first substrate 500 and the semiconductor element 90 are connected via solder bumps 828 provided between the first conductor post 872P on the first substrate 500 side and the third conductor post 96P on the semiconductor element 90 side. ing. An underfill resin 99 is filled between the first substrate and the semiconductor element.

実施例の半導体実装部材10では、第2基板300が第2接続導体332Pを備え、第1基板500が第1接続導体872Pを備える。例えば半導体素子と第1基板との熱膨張係数の差により生じた熱応力が、まず第1接続体を介して第1基板側へ伝達される。さらに、第1基板側へ伝達された熱応力が第2接続体を介して第2基板側へ伝達される。すなわち、半導体素子と第1基板との熱膨張係数の差により生じた熱応力は、第1接続体及び第2接続体を介して半導体素子から離間する側へ伝達されるようになる。その結果、半導体素子に加わる熱応力を極力低減することが可能となる。 In the semiconductor mounting member 10 of the embodiment, the second substrate 300 includes the second connection conductor 332P, and the first substrate 500 includes the first connection conductor 872P. For example, thermal stress generated by the difference in thermal expansion coefficient between the semiconductor element and the first substrate is first transmitted to the first substrate side through the first connection body. Furthermore, the thermal stress transmitted to the first substrate side is transmitted to the second substrate side via the second connector. That is, the thermal stress generated by the difference in thermal expansion coefficient between the semiconductor element and the first substrate is transmitted to the side away from the semiconductor element through the first connection body and the second connection body. As a result, it is possible to reduce the thermal stress applied to the semiconductor element as much as possible.

[第2基板の製造方法]
図1〜図3を参照して上述した第2基板の製造方法について図4〜図9を参照して説明される。
(1)厚さ0.15mmのガラスエポキシ樹脂またはBT(ビスマレイミドトリアジン)樹脂からなるコア基板30の両面に15μmの銅箔22がラミネートされている銅張積層板20Aを出発材料とする。まず、銅箔22の表面に、黒化処理が施される(図4(A))。
[Method for manufacturing second substrate]
A method of manufacturing the second substrate described above with reference to FIGS. 1 to 3 will be described with reference to FIGS.
(1) A copper-clad laminate 20A in which a 15 μm copper foil 22 is laminated on both surfaces of a core substrate 30 made of glass epoxy resin or BT (bismaleimide triazine) resin having a thickness of 0.15 mm is used as a starting material. First, a blackening process is performed on the surface of the copper foil 22 (FIG. 4A).

(2)コア基板30の第1面F(上面)側に該第1面から該第2面に向けてCO2レーザが照射され、コア基板30の第1面F(上面)側にスルーホール用貫通孔を形成するための第1開口部28aが形成される(図4(B))。 (2) The first surface F (upper surface) side of the core substrate 30 is irradiated with CO2 laser from the first surface toward the second surface, and the first surface F (upper surface) side of the core substrate 30 is used for through holes. A first opening 28a for forming a through hole is formed (FIG. 4B).

(3)コア基板30の第2面S(裏面)側に該第2面から該第1面に向けて第1開口部28a形成条件と同一条件でCO2レーザが照射され、第1開口部28aに連結する第2開口部28bが形成される(図4(C))。 (3) The CO 2 laser is irradiated on the second surface S (back surface) side of the core substrate 30 from the second surface toward the first surface under the same conditions as the first opening 28a formation conditions, and the first opening 28a. A second opening 28b is formed to be connected to (FIG. 4C).

(4)コア基板30の第2面S(裏面)側に該第2面から該第1面に向けて第2開口部28bの第1開口部28aとの連結部に、CO2レーザが照射され、該第1開口28aと第2開口28bとの連結部を広げる第3開口部28cが形成される(図4(D))。 (4) The CO 2 laser is irradiated on the second surface S (back surface) side of the core substrate 30 toward the first surface from the second surface toward the first surface. Then, a third opening 28c is formed to widen the connecting portion between the first opening 28a and the second opening 28b (FIG. 4D).

(5)過マンガン酸により貫通孔28のデスミア処理が行われた後、無電解めっき処理により無電解めっき膜31が形成される(図5(A))。 (5) After the desmear process of the through-hole 28 is performed with permanganic acid, the electroless plating film 31 is formed by the electroless plating process (FIG. 5A).

(6)コア基板30の表面の無電解めっき膜31に所定パターンのめっきレジスト40が形成される(図5(B))。 (6) A plating resist 40 having a predetermined pattern is formed on the electroless plating film 31 on the surface of the core substrate 30 (FIG. 5B).

(7)電解めっき処理により、めっきレジスト40の非形成部に電解めっき膜32が形成され、貫通孔28がめっき充填されたスルーホール導体36が形成される(図5(C))。 (7) By electrolytic plating, the electrolytic plating film 32 is formed on the portion where the plating resist 40 is not formed, and the through-hole conductor 36 in which the through hole 28 is filled with plating is formed (FIG. 5C).

(8)めっきレジスト40を剥離し、めっきレジスト下の無電解めっき膜31,銅箔22をエッチングにより除去し、導体回路34及びスルーホール導体36が形成され、コア基板30が完成される(図6(A))。 (8) The plating resist 40 is peeled off, the electroless plating film 31 and the copper foil 22 under the plating resist are removed by etching, the conductor circuit 34 and the through-hole conductor 36 are formed, and the core substrate 30 is completed (see FIG. 6 (A)).

(9)上記工程を経たコア基板30の両面上に、コア基板より少し大きめで厚さ50μmの層間絶縁層用樹脂フィルムが昇温しながら真空圧着ラミネートされ、層間絶縁層50が設けられる(図6(B)参照)。 (9) An interlayer insulating layer 50 is provided on both surfaces of the core substrate 30 that has undergone the above-described steps by vacuum compression laminating a resin film for an interlayer insulating layer that is slightly larger than the core substrate and having a thickness of 50 μm while raising the temperature (FIG. 6 (B)).

(10)次に、CO2ガスレーザにて層間絶縁層50に直径80μmのバイアホール用開口部51が設けられる(図6(C)参照)。クロム酸、過マンガン酸塩などの酸化剤等に浸漬させることによって、層間絶縁層50に粗化面が設けられる(図示せず)。 (10) Next, a via hole opening 51 having a diameter of 80 μm is provided in the interlayer insulating layer 50 with a CO 2 gas laser (see FIG. 6C). By immersing in an oxidizing agent such as chromic acid or permanganate, the interlayer insulating layer 50 is provided with a roughened surface (not shown).

(11)予め層間絶縁層50の表層にパラジウムなどの触媒が付与されて、無電解めっき液に5〜60分間浸漬させることにより、0.1〜5μmの範囲で無電解めっき膜52が設けられる(図6(D))。 (11) A catalyst such as palladium is applied to the surface layer of the interlayer insulating layer 50 in advance and immersed in the electroless plating solution for 5 to 60 minutes, whereby the electroless plating film 52 is provided in the range of 0.1 to 5 μm. (FIG. 6 (D)).

(12)上記処理を終えた基板30に、市販の感光性ドライフィルムが貼り付けられ、フォトマスクフィルムを載置して露光した後、炭酸ナトリウムで現像処理し、厚さ15μmのめっきレジスト54が設けられる(図7(A))。 (12) A commercially available photosensitive dry film is affixed to the substrate 30 that has been subjected to the above-described treatment, and a photomask film is placed and exposed, and then developed with sodium carbonate. Provided (FIG. 7A).

(13)次に、電解めっき処理により、厚さ15μmの電解めっき膜56が形成される(図7(B)参照)。 (13) Next, an electrolytic plating film 56 having a thickness of 15 μm is formed by electrolytic plating (see FIG. 7B).

(14)めっきレジスト54が剥離除去された後、そのめっきレジスト下の無電解めっき膜52がエッチングにて溶解除去され、無電解めっき膜52と電解めっき膜56からなる導体回路58及びビア導体60が形成される(図7(C))。エッチング液によって、導体回路58及びビア導体60表面に粗化面が形成される(図示せず)。 (14) After the plating resist 54 is peeled and removed, the electroless plating film 52 under the plating resist is dissolved and removed by etching, and a conductor circuit 58 and a via conductor 60 each including the electroless plating film 52 and the electrolytic plating film 56 are removed. Is formed (FIG. 7C). A roughened surface is formed on the surfaces of the conductor circuit 58 and the via conductor 60 by the etching solution (not shown).

(15)上記(9)〜(14)と同様にして導体回路158及びビア導体160を備える層間絶縁層150が形成される(図8(A))。 (15) The interlayer insulating layer 150 including the conductor circuit 158 and the via conductor 160 is formed in the same manner as in the above (9) to (14) (FIG. 8A).

(16)市販のソルダーレジスト組成物が塗布され、露光・現像することで、開口部71を備えるソルダーレジスト層370a、370bが形成される(図9(B))。 (16) A commercially available solder resist composition is applied, and exposed and developed to form solder resist layers 370a and 370b having openings 71 (FIG. 9B).

(17)第1面F側のソルダーレジスト層370a上に無電解めっき膜352が形成される。他方、第2面S面側のソルダーレジスト層370bの開口部71にニッケルめっき層/金めっき層376が形成される(図8(C))。 (17) An electroless plating film 352 is formed on the solder resist layer 370a on the first surface F side. On the other hand, a nickel plating layer / gold plating layer 376 is formed in the opening 71 of the solder resist layer 370b on the second surface S surface side (FIG. 8C).

(18)第1面側の無電解めっき膜352上に電解めっき膜356が形成される(図9(A))。 (18) An electrolytic plating film 356 is formed on the electroless plating film 352 on the first surface side (FIG. 9A).

(19)電解めっき膜356上にエッチングレジスト354が形成される(図9(B))。 (19) An etching resist 354 is formed on the electrolytic plating film 356 (FIG. 9B).

(20)エッチングレジスト354非形成部の電解めっき膜356、無電解めっき膜352がエッチングされ、エッチングレジスト354が除去され第2接続導体332Pを備える第2基板300が完成する(図9(C))。 (20) The electrolytic plating film 356 and the electroless plating film 352 in the portion where the etching resist 354 is not formed are etched, the etching resist 354 is removed, and the second substrate 300 including the second connection conductor 332P is completed (FIG. 9C). ).

[第1基板の製造方法]
第1基板の製造方法について、図10〜図16を参照して説明される。
(1)まず、厚さ約1.1mmのガラス板510が用意される(図10(A))。
ガラス板は、実装するシリコン製ICチップとの熱膨張係数差が小さくなるように、CTEが3.3(ppm)以下で、且つ、後述する剥離工程において使用する308nmのレーザ光に対して透過率が9割以上であることが望ましい。
[First substrate manufacturing method]
A method for manufacturing the first substrate will be described with reference to FIGS.
(1) First, a glass plate 510 having a thickness of about 1.1 mm is prepared (FIG. 10A).
The glass plate has a CTE of 3.3 (ppm) or less so that the difference in coefficient of thermal expansion from the silicon IC chip to be mounted is small, and transmits a 308 nm laser beam used in the peeling process described later. It is desirable that the rate is 90% or more.

(2)ガラス板510の上に、主として熱可塑性ポリイミド樹脂からなる剥離層512が設けられる(図10(B))。 (2) A peeling layer 512 mainly made of a thermoplastic polyimide resin is provided on the glass plate 510 (FIG. 10B).

(3)剥離層512の上に、銅箔が積層されパターニングにより第2面側導体パターン534が形成される(図10(C))。 (3) A copper foil is laminated on the release layer 512, and a second surface side conductor pattern 534 is formed by patterning (FIG. 10C).

(4)剥離層512及び第2面側導体パターン534上に、層間樹脂絶縁層用の樹脂フィルム(味の素社製:商品名;ABF−45SH)が真空圧着ラミネートされ、第1樹脂絶縁層650が設けられる(図10(D)参照)。層間樹脂絶縁層用樹脂フィルムは、粒径0.1μm以下の可溶性粒子と無機粒子とを含む。 (4) On the release layer 512 and the second surface side conductor pattern 534, a resin film for interlayer resin insulation layer (manufactured by Ajinomoto Co., Inc .; trade name: ABF-45SH) is vacuum-bonded and laminated to form the first resin insulation layer 650 Provided (see FIG. 10D). The resin film for interlayer resin insulation layers includes soluble particles having a particle size of 0.1 μm or less and inorganic particles.

(5)CO2ガスレーザにて、第1樹脂絶縁層650を貫通し、剥離層512に至る電極体用開口651が設けられる(図10(E)参照)。 (5) An opening 651 for an electrode body that penetrates the first resin insulating layer 650 and reaches the peeling layer 512 is provided by a CO2 gas laser (see FIG. 10E).

(6)スパッタリングにより、第1樹脂絶縁層650上にTiN(下層)及びTi(上層)の2層構造から成る第1導体層652が形成される(図11(A))。 (6) A first conductor layer 652 having a two-layer structure of TiN (lower layer) and Ti (upper layer) is formed on the first resin insulating layer 650 by sputtering (FIG. 11A).

(7)表層にパラジウムなどの触媒を付与され、無電解めっき液に5〜60分間浸漬されることにより、無電解めっき膜653が設けられる(図11(B))。 (7) A catalyst such as palladium is applied to the surface layer and immersed in an electroless plating solution for 5 to 60 minutes to provide an electroless plating film 653 (FIG. 11B).

(8)無電解めっき膜上653に、市販の感光性ドライフィルムが貼り付けられ、フォトマスクフィルムが載置され露光された後、炭酸ナトリウムで現像処理され、厚さ約15μmのめっきレジスト654が設けられる(図11(C))。 (8) A commercially available photosensitive dry film is affixed on the electroless plating film 653, a photomask film is placed and exposed, developed with sodium carbonate, and a plating resist 654 having a thickness of about 15 μm is formed. (FIG. 11C).

(9)無電解めっき膜653を給電層として用い、電解めっきが施され電解めっき膜656が形成される(図11(D))。 (9) Electroless plating is performed using the electroless plating film 653 as a power feeding layer to form an electrolytic plating film 656 (FIG. 11D).

(10)めっきレジスト654が剥離除去される。そして、剥離しためっきレジスト下の無電解めっき膜653、第1導体層652が除去され、第1導体層652、無電解めっき膜653と電解めっき膜56からなる第1導体パターン658及び第1ビア導体660が形成される(図12(A))。 (10) The plating resist 654 is peeled and removed. Then, the electroless plating film 653 and the first conductor layer 652 under the peeled plating resist are removed, and the first conductor pattern 658 including the first conductor layer 652, the electroless plating film 653 and the electrolytic plating film 56, and the first via. A conductor 660 is formed (FIG. 12A).

(111)上記(4)〜(10)と同様にして、第1樹脂絶縁層650及び第1導体パターン658上に第2樹脂絶縁層750及び第1導体パターン758、第2ビア導体760が形成される(図12(B))。 (111) The second resin insulation layer 750, the first conductor pattern 758, and the second via conductor 760 are formed on the first resin insulation layer 650 and the first conductor pattern 658 in the same manner as the above (4) to (10). (FIG. 12B).

(12)開口851を備えるソルダーレジスト層850が形成される(図12(C))。 (12) A solder resist layer 850 having an opening 851 is formed (FIG. 12C).

(13)スパッタリングにより、第1樹脂絶縁層650上にTiN(下層)及びTi(上層)、の2層構造から成る第1導体層652が形成される(図12(D))。 (13) A first conductor layer 652 having a two-layer structure of TiN (lower layer) and Ti (upper layer) is formed on the first resin insulating layer 650 by sputtering (FIG. 12D).

(14)表層にパラジウムなどの触媒を付与され、無電解めっき液に浸漬されることにより、無電解めっき膜853が設けられる(図13(A))。 (14) A catalyst such as palladium is applied to the surface layer and immersed in an electroless plating solution, whereby an electroless plating film 853 is provided (FIG. 13A).

(15)無電解めっき膜852上に電解めっき膜856が形成される(図13(B))。 (15) An electrolytic plating film 856 is formed on the electroless plating film 852 (FIG. 13B).

(16)電解めっき膜856上にエッチングレジスト824が形成される(図13(C))。 (16) An etching resist 824 is formed on the electrolytic plating film 856 (FIG. 13C).

(17)エッチングレジスト824非形成部の電解めっき膜856、無電解めっき膜852がエッチングされ、第1導体層652が剥離され、エッチングレジスト824が除去され第1接続導体872Pが形成される(図13(D))。 (17) The electrolytic plating film 856 and the electroless plating film 852 in the portion where the etching resist 824 is not formed are etched, the first conductor layer 652 is peeled off, the etching resist 824 is removed, and the first connection conductor 872P is formed (FIG. 13 (D)).

(18)第1接続導体872Pを介して、半田バンプ828が接続され、半導体素子90が実装される(図14(A)、図14(B))。 (18) The solder bump 828 is connected via the first connection conductor 872P, and the semiconductor element 90 is mounted (FIGS. 14A and 14B).

(19)第1基板500と半導体素子90との間にアンダーフィル99が充填された後、モールド型内で、半導体素子90がモールド樹脂98で封止される(図14(C))。 (19) After the underfill 99 is filled between the first substrate 500 and the semiconductor element 90, the semiconductor element 90 is sealed with the mold resin 98 in the mold (FIG. 14C).

(20)次いで、308nmのレーザ光がガラス板510を透過させて剥離層512に照射され、剥離層512が軟化される。そして、第1基板500に対してガラス板510がスライドされ、ガラス板510が剥離される(図15(A))。 (20) Next, a laser beam of 308 nm is transmitted through the glass plate 510 and applied to the release layer 512, and the release layer 512 is softened. Then, the glass plate 510 is slid with respect to the first substrate 500, and the glass plate 510 is peeled off (FIG. 15A).

(21)アッシングにより剥離層512が除去される(図15(B))。 (21) The peeling layer 512 is removed by ashing (FIG. 15B).

(22)絶縁層650上に、開口556を備えるソルダーレジスト層550が形成される(図15(C)、図16(A))。 (22) A solder resist layer 550 having an opening 556 is formed on the insulating layer 650 (FIGS. 15C and 16A).

(23)ソルダーレジスト層の開口556内に半田バンプ28が形成される(図16(B))。 (23) Solder bumps 28 are formed in the openings 556 of the solder resist layer (FIG. 16B).

[第1基板の第2基板への実装]
図3に示すように、半田バンプ28を介して、第2基板300の第2接続導体332Pに第1基板300が実装される。
[Mounting the first board to the second board]
As shown in FIG. 3, the first substrate 300 is mounted on the second connection conductor 332 </ b> P of the second substrate 300 via the solder bumps 28.

10 半導体実装部材
90 半導体素子
300 第2基板
332P 第2接続導体
50、150 第1絶縁層
500 第1基板
650、750 第1絶縁層
872P 第1接続導体
DESCRIPTION OF SYMBOLS 10 Semiconductor mounting member 90 Semiconductor element 300 2nd board | substrate 332P 2nd connection conductor 50,150 1st insulation layer 500 1st board | substrate 650,750 1st insulation layer 872P 1st connection conductor

Claims (10)

複数の第1絶縁層と、該第1絶縁層上に形成されている第1導体パターンと、上下に位置する前記第1導体パターン同士を接続する第1ビア導体とを有する第1基板と、
該第1基板を実装し、複数の第2絶縁層と、該第2絶縁層上に形成されている第2導体パターンと、上下に位置する前記第2導体パターン同士を接続する第2ビア導体とを有する第2基板と、
前記第1基板上に設けられ、該第1基板に半導体素子を接続するための第1バンプと、
前記第2基板上に設けられ、該第2基板に前記第1基板を接続するための第2バンプと、
を有する半導体実装部材であって、
前記第1基板は、前記第1絶縁層のうち最外層に位置する第1絶縁層の表面から突き出る第1接続導体を有し、
前記第2基板は、前記第2絶縁層のうち最外層に位置する第2絶縁層の表面から突き出る第2接続導体を有し、
前記第1バンプは前記第1接続導体上に設けられ、
前記第2バンプは前記第2接続導体上に設けられている。
A first substrate having a plurality of first insulating layers, a first conductor pattern formed on the first insulating layer, and a first via conductor connecting the first conductor patterns positioned above and below;
A second via conductor that mounts the first substrate and connects a plurality of second insulating layers, a second conductor pattern formed on the second insulating layer, and the second conductor patterns positioned above and below A second substrate having:
A first bump provided on the first substrate for connecting a semiconductor element to the first substrate;
A second bump provided on the second substrate for connecting the first substrate to the second substrate;
A semiconductor mounting member having
The first substrate has a first connection conductor protruding from the surface of the first insulating layer located in the outermost layer of the first insulating layer,
The second substrate has a second connection conductor protruding from the surface of the second insulating layer located in the outermost layer of the second insulating layer,
The first bump is provided on the first connection conductor;
The second bump is provided on the second connection conductor.
請求項1の半導体実装部材であって:
前記複数の第1絶縁層は、補強材を有しない。
The semiconductor mounting member according to claim 1, wherein:
The plurality of first insulating layers do not have a reinforcing material.
請求項1の半導体実装部材であって:
前記第1基板の厚みは、前記第2基板の厚みよりも小さい。
The semiconductor mounting member according to claim 1, wherein:
The thickness of the first substrate is smaller than the thickness of the second substrate.
請求項1の半導体実装部材であって:
前記第1基板の厚みは、20〜30μmである。
The semiconductor mounting member according to claim 1, wherein:
The first substrate has a thickness of 20 to 30 μm.
請求項1の半導体実装部材であって:
前記第1絶縁層の線膨張係数は、前記第2絶縁層の線膨張係数よりも小さい。
The semiconductor mounting member according to claim 1, wherein:
The linear expansion coefficient of the first insulating layer is smaller than the linear expansion coefficient of the second insulating layer.
請求項1の半導体実装部材であって:
前記第2接続導体は、前記第1基板側に向かうにつれて径が小さくなるように傾斜する側面を有している。
The semiconductor mounting member according to claim 1, wherein:
The second connection conductor has a side surface that is inclined so that its diameter decreases toward the first substrate side.
請求項6の半導体実装部材であって:
前記第2接続導体は、弧状に凹む側面を有している。
The semiconductor mounting member according to claim 6:
The second connection conductor has a side surface that is recessed in an arc.
請求項1の半導体実装部材であって:
前記第1接続導体は、半導体素子側に向かうにつれて径が小さくなるように傾斜する側面を有している。
The semiconductor mounting member according to claim 1, wherein:
The first connection conductor has a side surface that is inclined so that its diameter decreases toward the semiconductor element side.
請求項8の半導体実装部材であって:
前記第1接続導体は、弧状に凹む側面を有している。
The semiconductor mounting member according to claim 8, wherein:
The first connection conductor has a side surface that is recessed in an arc.
前記請求項1に記載の半導体実装部材の製造方法。 The method for manufacturing a semiconductor mounting member according to claim 1.
JP2011245060A 2011-11-09 2011-11-09 Semiconductor mounting materials Active JP5861400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245060A JP5861400B2 (en) 2011-11-09 2011-11-09 Semiconductor mounting materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011245060A JP5861400B2 (en) 2011-11-09 2011-11-09 Semiconductor mounting materials

Publications (2)

Publication Number Publication Date
JP2013102062A true JP2013102062A (en) 2013-05-23
JP5861400B2 JP5861400B2 (en) 2016-02-16

Family

ID=48622417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011245060A Active JP5861400B2 (en) 2011-11-09 2011-11-09 Semiconductor mounting materials

Country Status (1)

Country Link
JP (1) JP5861400B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154064A (en) * 2014-02-19 2015-08-24 味の素株式会社 Printed wiring board
JP2016021481A (en) * 2014-07-14 2016-02-04 凸版印刷株式会社 Package substrate and method of manufacturing the same
JP2019212926A (en) * 2017-12-06 2019-12-12 味の素株式会社 Printed wiring board
JP2020004926A (en) * 2018-07-02 2020-01-09 凸版印刷株式会社 Wiring board and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347391A (en) * 2004-06-01 2005-12-15 Ibiden Co Ltd Printed wiring board
JP2009141041A (en) * 2007-12-05 2009-06-25 Shinko Electric Ind Co Ltd Package for mounting electronic component
JP2010251552A (en) * 2009-04-16 2010-11-04 Shinko Electric Ind Co Ltd Wiring substrate, semiconductor package, and method of manufacturing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347391A (en) * 2004-06-01 2005-12-15 Ibiden Co Ltd Printed wiring board
JP2009141041A (en) * 2007-12-05 2009-06-25 Shinko Electric Ind Co Ltd Package for mounting electronic component
JP2010251552A (en) * 2009-04-16 2010-11-04 Shinko Electric Ind Co Ltd Wiring substrate, semiconductor package, and method of manufacturing them

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154064A (en) * 2014-02-19 2015-08-24 味の素株式会社 Printed wiring board
KR20150098216A (en) * 2014-02-19 2015-08-27 아지노모토 가부시키가이샤 Printed wiring board
TWI674043B (en) * 2014-02-19 2019-10-01 Ajinomoto Co., Inc. Printed wiring board
KR102290572B1 (en) * 2014-02-19 2021-08-19 아지노모토 가부시키가이샤 Printed wiring board
JP2016021481A (en) * 2014-07-14 2016-02-04 凸版印刷株式会社 Package substrate and method of manufacturing the same
JP2019212926A (en) * 2017-12-06 2019-12-12 味の素株式会社 Printed wiring board
JP2020004926A (en) * 2018-07-02 2020-01-09 凸版印刷株式会社 Wiring board and manufacturing method thereof

Also Published As

Publication number Publication date
JP5861400B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
TWI482542B (en) Multilayer wiring substrate
JP5649490B2 (en) Wiring board and manufacturing method thereof
JP4427874B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board
JP5948795B2 (en) Manufacturing method of semiconductor device
JP2012069926A (en) Printed wiring board and manufacturing method therefor
JP2003209366A (en) Flexible multilayer wiring board and manufacturing method therefor
TW201014480A (en) Wiring board with built-in electronic component and method for manufacturing the same
JP2002016173A (en) Semiconductor device
JPWO2009147936A1 (en) Manufacturing method of multilayer printed wiring board
TW201101955A (en) Multilayer printed wiring board
JP2005310946A (en) Semiconductor device
JP2010135721A (en) Printed circuit board comprising metal bump and method of manufacturing the same
US20100108371A1 (en) Wiring board with built-in electronic component and method for manufacturing the same
JP2015028986A (en) Printed wiring board and printed wiring board manufacturing method
JP2016063130A (en) Printed wiring board and semiconductor package
JP2010219503A (en) Substrate for mounting semiconductor element and method of manufacturing the substrate for mounting the semiconductor element
JP2017163027A (en) Wiring board, semiconductor device, and manufacturing method for wiring board
JP2017152536A (en) Printed wiring board and manufacturing method thereof
JPWO2007069427A1 (en) Electronic component built-in module and manufacturing method thereof
WO2016116980A1 (en) Wiring substrate laminate and method for manufacturing semiconductor device using same
JP2015225895A (en) Printed wiring board, semiconductor package and printed wiring board manufacturing method
JP5861400B2 (en) Semiconductor mounting materials
JP6669330B2 (en) Printed circuit board with built-in electronic components and method of manufacturing the same
JP2001274324A (en) Semiconductor mounting substrate for multilayer semiconductor device, and semiconductor device and multilayer semiconductor device
JP2005347391A (en) Printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151207

R150 Certificate of patent or registration of utility model

Ref document number: 5861400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250