JP2020191380A - Method for manufacturing wiring board - Google Patents

Method for manufacturing wiring board Download PDF

Info

Publication number
JP2020191380A
JP2020191380A JP2019096087A JP2019096087A JP2020191380A JP 2020191380 A JP2020191380 A JP 2020191380A JP 2019096087 A JP2019096087 A JP 2019096087A JP 2019096087 A JP2019096087 A JP 2019096087A JP 2020191380 A JP2020191380 A JP 2020191380A
Authority
JP
Japan
Prior art keywords
wiring board
support
layer
wiring
interposer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019096087A
Other languages
Japanese (ja)
Inventor
将士 澤田石
Masashi Sawadaishi
将士 澤田石
優樹 梅村
Yuki Umemura
優樹 梅村
小林 茜
Akane Kobayashi
茜 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2019096087A priority Critical patent/JP2020191380A/en
Publication of JP2020191380A publication Critical patent/JP2020191380A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for manufacturing a wiring board that can be manufactured by mounting, on a FC-BGA board, a support with a fine wiring layer formed thereon and then peeling off the support, in which yield in a step for peeling off the support is improved, so that manufacturing with a good yield can be achieved.SOLUTION: A method for manufacturing a wiring board includes: a step of laminating a sealing resin on a second wiring board surface including a second wiring board junction to form a sealing resin layer; a joining and sealing step of pressure-joining a sealing resin layer surface of a second wiring board, the second wiring board, and a first wiring board so that the second wiring board junction and a first wiring board junction are joined and a gap between the first wiring board and the second wiring board other than a junction is sealed with the sealing resin; and a step of, after the joining and sealing step, peeling off a support from the second wiring board.SELECTED DRAWING: Figure 8

Description

本発明は配線基板の製造方法に関する。 The present invention relates to a method for manufacturing a wiring board.

近年半導体装置の高速、高集積化が進む中で、FC−BGA(Flip Chip-Ball Grid Array)用配線基板に対しても、半導体チップとの接続端子の狭ピッチ化、基板配線の微細化が求められている。一方、FC−BGA用配線基板とマザーボードとの接続は、従来とほぼ変わらないピッチの接続端子での接続が要求されている。この半導体チップと接続端子の狭ピッチ化、基板配線の微細化のため、シリコン上に配線形成してチップ接続用の基板(シリコンインターポーザ)として、それぞれFC−BGA用配線基板に接続する方式が特許文献1に開示されている。また、FC−BGA用配線基板の表面をCMP(Chemical Mechanical Polishing、化学機械研磨)等で平坦化してから微細配線を形成する方式が特許文献2に開示されている。また、支持基板の上に微細な配線層を形成しFC−BGA基板に搭載した後、支持基板を剥離することで狭ピッチな配線基板な形成する方式が特許文献3に開示されている。 In recent years, with the progress of high speed and high integration of semiconductor devices, the pitch of connection terminals with semiconductor chips has been narrowed and the board wiring has been miniaturized for FC-BGA (Flip Chip-Ball Grid Array) wiring boards. It has been demanded. On the other hand, the connection between the FC-BGA wiring board and the motherboard is required to be connected with connection terminals having a pitch that is almost the same as the conventional one. In order to narrow the pitch of the semiconductor chip and connection terminals and miniaturize the board wiring, a method of forming wiring on silicon and connecting it to the FC-BGA wiring board as a chip connection board (silicon interposer) is patented. It is disclosed in Document 1. Further, Patent Document 2 discloses a method of forming fine wiring after flattening the surface of a wiring board for FC-BGA by CMP (Chemical Mechanical Polishing, chemical mechanical polishing) or the like. Further, Patent Document 3 discloses a method in which a fine wiring layer is formed on a support substrate, mounted on an FC-BGA substrate, and then the support substrate is peeled off to form a narrow-pitch wiring board.

特許文献1に記載されるように、シリコンインターポーザは、シリコンウェハを利用して、半導体前工程用の設備を用いて製作されている。シリコンウェハは形状、サイズに制限があり、1枚のウェハから製作できるインターポーザの数が少なく、製造設備も高価であるため、インターポーザも高価となる。また、シリコンウェハが半導体であることから、伝送特性も劣化するという問題がある。 As described in Patent Document 1, a silicon interposer is manufactured by using a silicon wafer and using equipment for a semiconductor front-end process. Since silicon wafers are limited in shape and size, the number of interposers that can be manufactured from one wafer is small, and the manufacturing equipment is expensive, the interposers are also expensive. Further, since the silicon wafer is a semiconductor, there is a problem that the transmission characteristics are also deteriorated.

また、特許文献2に記載されるように、FC−BGA用配線基板の表面の平坦化を行いその上に微細配線層を形成する方式においては、シリコンインターポーザに見られる伝送特性劣化の問題は無いが、FC−BGA用配線基板の製造不良と、難易度の高い微細配線形成時の不良との合算で収率が低下する問題や、FC−BGA用配線基板の反り、歪みに起因した半導体素子の実装における問題がある。 Further, as described in Patent Document 2, in the method of flattening the surface of the FC-BGA wiring board and forming a fine wiring layer on the surface, there is no problem of deterioration of transmission characteristics seen in the silicon interposer. However, there is a problem that the yield decreases due to the sum of the manufacturing defect of the FC-BGA wiring board and the defect at the time of forming the highly difficult fine wiring, and the semiconductor element due to the warp and distortion of the FC-BGA wiring board. There is a problem with the implementation of.

一方、特許文献3に記載されるように、支持体の上に微細な配線層を形成しFC−BGA用基板に搭載し、支持体を剥離する方式がある。 On the other hand, as described in Patent Document 3, there is a method in which a fine wiring layer is formed on a support, mounted on a substrate for FC-BGA, and the support is peeled off.

図11、図12、図13は特許文献3の一実施形態に係る第一配線基板(FC−BGA用配線基板)と第二配線基板(インターポーザ)の接合方法の一例を示す模式的断面図である。 11, 12, and 13 are schematic cross-sectional views showing an example of a method of joining a first wiring board (FC-BGA wiring board) and a second wiring board (interposer) according to an embodiment of Patent Document 3. is there.

図11(a)に示すように、支持体5上に形成された第二配線基板(インターポーザ)3の第二配線基板接合部18aに合わせて第一配線基板(FC−BGA用配線基板)1の第一配線基板接合部18bを設計、製造した第一配線基板(FC−BGA用配線基板)1に対して支持体5上に形成された第二配線基板(インターポーザ)3を配置し、図11(b)に示すように、支持体5上に形成された第二配線基板(インターポーザ)3と第一配線基板(FC−BGA用配線基板)1を接合した後、封止樹脂(アンダーフィル)2を形成し支持体5上に形成された第二配線基板(インターポーザ)3と第一配線基板(FC−BGA用配線基板)1の固定、及び、接合部18を封止する。 As shown in FIG. 11A, the first wiring board (FC-BGA wiring board) 1 is aligned with the second wiring board joint 18a of the second wiring board (interposer) 3 formed on the support 5. The second wiring board (interposer) 3 formed on the support 5 is arranged with respect to the first wiring board (FC-BGA wiring board) 1 for which the first wiring board joint portion 18b is designed and manufactured. As shown in 11 (b), after joining the second wiring board (interposer) 3 and the first wiring board (FC-BGA wiring board) 1 formed on the support 5, the sealing resin (underfill) is used. ) 2 is formed, the second wiring board (interposer) 3 formed on the support 5 and the first wiring board (FC-BGA wiring board) 1 are fixed, and the joint portion 18 is sealed.

次に図12(c)に示すように、支持体5を剥離するために、剥離層6にUV光であるレーザ光20を照射する。支持体5の背面より、すなわち、支持体5の第一配線基板(FC−BGA用配線基板)1とは逆側の面からレーザ光20を支持体5との界面に形成され
た剥離層6に照射し、支持体5の剥離を行うが、支持体5側面が封止樹脂(アンダーフィル)2によって覆われていることで、図12(d)に示すように支持体5の剥離が困難となり、無理剥離すると第二配線基板(インターポーザ)3で断線、樹脂のクラックが発生してしまい収率が低下する問題があった。微細な配線層を持つ第二配線基板(インターポーザ)3の薄く剛性の低いものから、厚く剛性の高い支持体5を剥離するので、剥離時には、封止樹脂(アンダーフィル)2が、支持体5の側面になるべく付着していないように、製造工程を高精度に制御する必要があった。
Next, as shown in FIG. 12 (c), in order to peel off the support 5, the peeling layer 6 is irradiated with laser light 20 which is UV light. A release layer 6 formed at an interface between the laser beam 20 and the support 5 from the back surface of the support 5, that is, from the surface of the support 5 opposite to the first wiring board (FC-BGA wiring board) 1. However, it is difficult to peel off the support 5 as shown in FIG. 12 (d) because the side surface of the support 5 is covered with the sealing resin (underfill) 2. If it is forcibly peeled off, the second wiring board (interposer) 3 has a problem that the wire is broken and the resin is cracked, resulting in a decrease in yield. Since the thick and highly rigid support 5 is peeled off from the thin and low rigidity of the second wiring board (interposer) 3 having a fine wiring layer, the sealing resin (underfill) 2 is used as the support 5 at the time of peeling. It was necessary to control the manufacturing process with high precision so that it would not adhere to the side surface of the product as much as possible.

特許第4513222号公報Japanese Patent No. 45132222 特許第5654160号公報Japanese Patent No. 5654160 国際公開第2018/047861号International Publication No. 2018/047861

そこで本発明は、上記問題に鑑みなされたものであり、支持体の上に微細な配線層を形成したものをFC−BGA基板に搭載し支持体を剥離してできる配線基板の製造において、支持基板を剥離する工程における収率を向上させ、歩留まりがいい配線基板の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and is supported in the manufacture of a wiring board formed by mounting a fine wiring layer formed on a support on an FC-BGA substrate and peeling off the support. It is an object of the present invention to improve the yield in the step of peeling a substrate and to provide a method for manufacturing a wiring board having a good yield.

本発明は上記課題を解決するためになされたもので、本発明の請求項1に係る発明は、第一配線基板と、前記第一配線基板の主面上に接合された第二配線基板とを備え、前記第一配線基板と前記第二配線基板が対向する間隙が封止樹脂で封止される配線基板の製造方法であって、主面上に、突起している第一配線基板接合部を有する第一配線基板の準備工程と、前記第二配線基板が支持体上で配線形成され、前記支持体面の反対面で、第二配線基板接合部が突起している前記第二配線基板形成工程と、前記第二配線基板接合部を含む前記第二配線基板表面に前記封止樹脂を積層し、封止樹脂層を形成する工程と、前記第二配線基板の前記封止樹脂層面と、第一配線基板の第一配線基板接合部のある面を相対して、前記第二配線基板の接合部と前記第一配線基板の接合部の水平位置を合わせ、前記第二配線基板と前記第一配線基板を加圧接合し、前記第二配線基板の接合部と前記第一配線基板の接合部が接合し、接合部以外の前記第一配線基板と前記第二配線基板の間隙が前記封止樹脂で封止される、接合封止工程と、前記接合封止工程後、前記支持体を前記第二配線基板から剥離する工程と、を有することを特徴とする配線基板の製造方法である。 The present invention has been made to solve the above problems, and the invention according to claim 1 of the present invention includes a first wiring board and a second wiring board bonded on the main surface of the first wiring board. This is a method for manufacturing a wiring board in which the gap between the first wiring board and the second wiring board facing each other is sealed with a sealing resin, and the first wiring board is joined so as to project on the main surface. The second wiring board in which the first wiring board having the portion is prepared and the second wiring board is formed by wiring on the support, and the second wiring board joint is projected on the opposite surface of the support surface. The forming step, the step of laminating the sealing resin on the surface of the second wiring board including the second wiring board joint to form the sealing resin layer, and the sealing resin layer surface of the second wiring board. , The surface of the first wiring board where the first wiring board is joined is opposed to each other, and the horizontal positions of the joint of the second wiring board and the joint of the first wiring board are aligned with each other. The first wiring board is pressure-bonded, the joint portion of the second wiring board and the joint portion of the first wiring board are joined, and the gap between the first wiring board and the second wiring board other than the joint portion is the said. A method for manufacturing a wiring board, which comprises a joining sealing step of sealing with a sealing resin, and a step of peeling the support from the second wiring board after the joining sealing step. is there.

本発明の請求項2に係る発明は、前記支持体は、ガラス基板であることを特徴とする、請求項1に記載の配線基板の製造方法である。 The invention according to claim 2 of the present invention is the method for manufacturing a wiring board according to claim 1, wherein the support is a glass substrate.

本発明によれば、支持基板の上に微細な配線層を形成しFC−BGA基板に搭載する方式において、容易に、支持基板を剥離できるため、工程の収率を向上し、歩留まり良く製造できる配線基板の製造方法を提供することが可能となる。 According to the present invention, in a method in which a fine wiring layer is formed on a support substrate and mounted on an FC-BGA substrate, the support substrate can be easily peeled off, so that the process yield can be improved and the yield can be improved. It becomes possible to provide a method for manufacturing a wiring board.

本発明の一実施形態に係る配線基板に半導体チップを実装した半導体パッケージの一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor package which mounted the semiconductor chip on the wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板(インターポーザ)の一例を示す模式的断面図である。It is a schematic sectional drawing which shows an example of the 2nd wiring board (interposer) which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板の製造方法の一例を示す模式的断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板の製造方法の一例を示す模式的断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板の製造方法の一例を示す模式的断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板の製造方法の一例を示す模式的断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板の製造方法の一例を示す模式的断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第一配線基板と第二配線基板の接合方法の一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example of the joining method of the 1st wiring board and the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第一配線基板と第二配線基板の接合方法の一例を示す模式的断面図である。It is a schematic sectional drawing which shows an example of the joining method of the 1st wiring board and the 2nd wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第一配線基板と第二配線基板の接合方法の一例を示す模式的断面図である。It is a schematic cross-sectional view which shows an example of the joining method of the 1st wiring board and the 2nd wiring board which concerns on one Embodiment of this invention. 特許文献3の一実施形態に係る第一配線基板と第二配線基板の接合方法の一例を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a method of joining a first wiring board and a second wiring board according to an embodiment of Patent Document 3. 特許文献3の一実施形態に係る第一配線基板と第二配線基板の接合方法の一例を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a method of joining a first wiring board and a second wiring board according to an embodiment of Patent Document 3. 特許文献3の一実施形態に係る第一配線基板と第二配線基板の接合方法の一例を示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a method of joining a first wiring board and a second wiring board according to an embodiment of Patent Document 3.

以下に、本発明の一実施形態に係る配線基板の製造方法について図面を参照して説明する。ただし、以下に説明する各図において相互に対応する部分については同一符号を付し、重複部分においては後述での説明を適宜省略する。 Hereinafter, a method for manufacturing a wiring board according to an embodiment of the present invention will be described with reference to the drawings. However, in each of the figures described below, the parts corresponding to each other are designated by the same reference numerals, and the description of the overlapping parts will be omitted as appropriate.

さらに、本発明の一実施形態は、本発明の技術的思想を具体化するための構成を例示するもであって、各部の材質、形状、構造、配置等を下記のものに特定するものでない本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、変更を加えることができる。 Further, one embodiment of the present invention exemplifies a configuration for embodying the technical idea of the present invention, and does not specify the material, shape, structure, arrangement, etc. of each part to the following. The technical idea of the present invention may be modified within the technical scope specified by the claims stated in the claims.

図1は本発明の一実施形態に係る配線基板22に半導体チップを実装した半導体パッケージ100の模式的断面図である。 FIG. 1 is a schematic cross-sectional view of a semiconductor package 100 in which a semiconductor chip is mounted on a wiring board 22 according to an embodiment of the present invention.

本発明の一実施形態に係る配線基板22に半導体チップを実装した半導体パッケージ100は、第一配線基板(FC−BGA用配線基板)1の一方の面に、樹脂と配線とが積層されてなるビルドアップ配線層のみで形成された微細配線層を備えた薄い第二配線基板(インターポーザ)3が、はんだバンプまたは銅ポスト(銅ピラー)または金バンプなどで接合(接合部18)されている。また、第一配線基板(FC−BGA用配線基板)1と第二配線基板(インターポーザ)3との間隙が絶縁性の接着部材である封止樹脂(アンダーフィル)2で埋め込まれている。さらに第二配線基板(インターポーザ)3の、第一配線基板(FC−BGA用配線基板)1とは逆側の面に半導体素子4が銅ピラー20a及びその先端の半田20bで接合(接合部20)され、半導体素子4と第二配線基板(インターポーザ)3との間隙が封止樹脂(アンダーフィル)21で埋め込まれている。 The semiconductor package 100 in which a semiconductor chip is mounted on a wiring board 22 according to an embodiment of the present invention is formed by laminating a resin and wiring on one surface of a first wiring board (FC-BGA wiring board) 1. A thin second wiring board (interposer) 3 having a fine wiring layer formed only of a build-up wiring layer is joined (joint portion 18) with solder bumps, copper posts (copper pillars), gold bumps, or the like. Further, the gap between the first wiring board (FC-BGA wiring board) 1 and the second wiring board (interposer) 3 is filled with a sealing resin (underfill) 2 which is an insulating adhesive member. Further, the semiconductor element 4 is joined by the copper pillar 20a and the solder 20b at the tip thereof on the surface of the second wiring board (interposer) 3 opposite to the first wiring board (FC-BGA wiring board) 1 (joint portion 20). ), And the gap between the semiconductor element 4 and the second wiring board (interposer) 3 is filled with the sealing resin (underfill) 21.

封止樹脂(アンダーフィル)2は、第一配線基板(FC−BGA用配線基板)1と第二配線基板(インターポーザ)3とを固定及び接合部18を封止するために用いられる接着材料である。封止樹脂(アンダーフィル)2としては、例えば、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、ポリエステル樹脂、オキセタン樹脂、及びマレイミド樹脂の1種又
はこれらの樹脂の2種類以上が混合された樹脂に、フィラーとしてのシリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、又は酸化亜鉛等が加えられた材料が用いられる。
The sealing resin (underfill) 2 is an adhesive material used for fixing the first wiring board (FC-BGA wiring board) 1 and the second wiring board (interposer) 3 and sealing the joint portion 18. is there. The sealing resin (underfill) 2 includes, for example, a filler in a resin obtained by mixing one of epoxy resin, urethane resin, silicon resin, polyester resin, oxetane resin, and maleimide resin, or two or more of these resins. A material to which silica, titanium oxide, aluminum oxide, magnesium oxide, zinc oxide or the like is added is used.

封止樹脂(アンダーフィル)21は半導体チップ4と第二配線基板(インターポーザ)3とを固定及び接合部20を封止するために用いられる接着剤であり、封止樹脂(アンダーフィル)2と同様の材料で構成される。 The sealing resin (underfill) 21 is an adhesive used for fixing the semiconductor chip 4 and the second wiring board (interposer) 3 and sealing the joint portion 20, and is the sealing resin (underfill) 2 and the sealing resin (underfill) 2. It is composed of similar materials.

第二配線基板(インターポーザ)3と半導体素子4との接合部20の個々の間隔は、第二配線基板(インターポーザ)3と第一配線基板(FC−BGA用配線基板)1との接合部18の個々の間隔よりも狭いことが一般的である。そのため、第二配線基板(インターポーザ)3において、半導体素子4を接合する側の方が、第一配線基板(FC−BGA用配線基板)1と接合する側よりも微細な配線が必要となる。例えば、現在のハイバンドメモリ(HBM)の使用に対応するためには、第二配線基板(インターポーザ)3では配線幅を2μm以上6μm以下にする必要がある。特性インピーダンスを50Ωにあわせるためには、配線幅が2μm、配線高さ2μmの場合、配線間の絶縁膜厚は2.5μmとなる。配線も含めたい1層の厚さは4.5μmとなり、この厚さで5層の第二配線基板(インターポーザ)3を形成する場合、第二配線基板(インターポーザ)3は、総厚25μm程度の第二配線基板(インターポーザ)3となる。 The individual distance between the joint portion 20 between the second wiring board (interposer) 3 and the semiconductor element 4 is the joint portion 18 between the second wiring board (interposer) 3 and the first wiring board (FC-BGA wiring board) 1. It is generally narrower than the individual spacing of. Therefore, in the second wiring board (interposer) 3, the side where the semiconductor element 4 is joined requires finer wiring than the side where the semiconductor element 4 is joined with the first wiring board (FC-BGA wiring board) 1. For example, in order to support the use of the current high band memory (HBM), the wiring width of the second wiring board (interposer) 3 needs to be 2 μm or more and 6 μm or less. In order to match the characteristic impedance to 50Ω, when the wiring width is 2 μm and the wiring height is 2 μm, the insulating film thickness between the wirings is 2.5 μm. The thickness of one layer including wiring is 4.5 μm, and when forming a five-layer second wiring board (interposer) 3 with this thickness, the second wiring board (interposer) 3 has a total thickness of about 25 μm. It becomes the second wiring board (interposer) 3.

前記の通り、第二配線基板(インターポーザ)3の厚みは総厚25μm程度と薄く、そのままの状態では第一配線基板(FC−BGA用配線基板)1と接合するのが困難であるため、支持体5を用いて剛直性を担保することが有効である。また、2μm程度の幅と高さを有する配線を形成するには、平坦な支持体5が必要となる。上記理由により、図2に示すように、第二配線基板(インターポーザ)3は、剛直で平坦な支持体5上に剥離層6と保護層7とシード層8を介して形成される。なお、支持体上には剥離層6、保護層7、シード層8以外の層を設けてもよい。 As described above, the thickness of the second wiring board (interposer) 3 is as thin as about 25 μm, and it is difficult to join the first wiring board (FC-BGA wiring board) 1 as it is, so that it is supported. It is effective to use the body 5 to ensure rigidity. Further, in order to form a wiring having a width and height of about 2 μm, a flat support 5 is required. For the above reason, as shown in FIG. 2, the second wiring board (interposer) 3 is formed on a rigid and flat support 5 via a release layer 6, a protective layer 7, and a seed layer 8. A layer other than the release layer 6, the protective layer 7, and the seed layer 8 may be provided on the support.

次に図3(a)から(c)、図4(d)から(f)、図5(g)から(i)、図6(j)から(l)、図7(m)から(n)を用いて、本発明の一実施形態に係る支持体5上への第二配線基板(インターポーザ)3の製造工程の一例を説明する。 Next, FIGS. 3 (a) to (c), 4 (d) to (f), 5 (g) to (i), 6 (j) to (l), and 7 (m) to (n). ) Will be used to describe an example of the manufacturing process of the second wiring board (interposer) 3 on the support 5 according to the embodiment of the present invention.

まず、図3(a)に示すように、支持体5の一方の面に、後の工程で支持体5を剥離するために必要な剥離層6を形成する。 First, as shown in FIG. 3A, a peeling layer 6 necessary for peeling the support 5 in a later step is formed on one surface of the support 5.

剥離層6は、例えば、UV光などの光を吸収して発熱、もしくは、変質によって剥離可能となる樹脂でもよく、熱によって発泡により剥離可能となる樹脂でもよい。UV光などの光によって剥離可能となる樹脂を用いる場合、剥離層6を設けた側とは反対側の面から支持体5に光を照射して、第二配線基板(インターポーザ)3と、第一配線基板(FC−BGA用配線基板)1との接合体から支持体5を取り去る。この場合、支持体5は、透明性を有する必要があり、例えばガラスを用いることができる。ガラスは平坦性に優れており、第二配線基板(インターポーザ)3の微細なパターン形成に向いている、また、ガラスはCTE(coefficient of thermal expansion、熱膨張率)が小さく歪みにくいことから、パターン配置精度及び平坦性の確保に優れている。支持体5としてガラスを用いる場合、ガラスの厚さは、製造プロセスにおける反りの発生を抑制する観点から厚い方が望ましく、例えば0.7mm以上、好ましくは1.1mm以上の厚みである。また、ガラスのCTEは3ppm以上15ppm以下が好ましく、第一配線基板(FC−BGA用配線基板)1、半導体素子4のCTEの観点から9ppm程度がより好ましい。ここでは、支持体5として、例えばガラスを用いる。一方、剥離層6に前記熱によって発泡する樹脂を用いた場合は、第二配線基板(インターポーザ)3と、
第一配線基板(FC−BGA用配線基板)1との接合体を加熱する事で支持体5を取り去る。この場合、支持体5には、歪みの少ない例えばメタルやセラミックスなどを用いることができる。本発明の一実施形態では、剥離層6としてUV光を吸収して剥離可能となる樹脂を用い、支持体5にはガラスを用いる。
The peeling layer 6 may be, for example, a resin that absorbs light such as UV light and generates heat or can be peeled off by alteration, or may be a resin that can be peeled off by foaming due to heat. When a resin that can be peeled off by light such as UV light is used, the support 5 is irradiated with light from the surface opposite to the side on which the peeling layer 6 is provided, and the second wiring board (interposer) 3 and the second The support 5 is removed from the joint with one wiring board (FC-BGA wiring board) 1. In this case, the support 5 needs to have transparency, and glass can be used, for example. Glass has excellent flatness and is suitable for forming a fine pattern of the second wiring substrate (interposer) 3, and glass has a small CTE (coefficient of thermal expansion) and is not easily distorted. Excellent in ensuring placement accuracy and flatness. When glass is used as the support 5, the thickness of the glass is preferably thick from the viewpoint of suppressing the occurrence of warpage in the manufacturing process, and is, for example, 0.7 mm or more, preferably 1.1 mm or more. The CTE of the glass is preferably 3 ppm or more and 15 ppm or less, and more preferably about 9 ppm from the viewpoint of the CTE of the first wiring board (FC-BGA wiring board) 1 and the semiconductor element 4. Here, for example, glass is used as the support 5. On the other hand, when the resin foamed by the heat is used for the release layer 6, the second wiring board (interposer) 3 and
The support 5 is removed by heating the joint with the first wiring board (wiring board for FC-BGA) 1. In this case, for the support 5, for example, metal or ceramics having less distortion can be used. In one embodiment of the present invention, a resin capable of absorbing UV light and peeling is used as the peeling layer 6, and glass is used as the support 5.

次いで、図3(b)に示すように、剥離層6の上に保護層7を形成する。保護層7は、後の工程で支持体5を剥離する際に第二配線基板(インターポーザ)3を保護するための層であり、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、シリコン樹脂、ポリエステル樹脂、オキセタン樹脂の1種又はこれらの樹脂の2種類以上が混合された樹脂であり、第二配線基板(インターポーザ)3を支持体5から剥離後に除去可能な樹脂である。保護層7については、スピンコート、ラミネート等、樹脂の形状に応じて適宜形成してよい、本発明の一実施形態ではアクリル系樹脂をラミネート法により形成している。
次いで、図3(c)に示すように、真空中で、保護層7上にシード層8を形成する。シード層8は配線形成用において、電解めっきの給電層として作用する。シード層8は、例えば、スパッタ法、またはCVD法などにより形成され、例えば、Cu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、ITO、IZO、AZO、ZnO、PZT、TiN、Cu、Cu合金単体もしくは複数組み合わせたものを適用することができる。本発明では、電気特性、製造の容易性の観点およびコスト面を考慮して、チタン層、続いて銅層を順次スパッタリング法で形成する。チタンと銅層の合計の膜厚は、電解めっきの給電層として1μm以下とするのが好ましい。本発明の一実施形態ではTi:50nm、Cu:300nmを形成した。
Next, as shown in FIG. 3 (b), the protective layer 7 is formed on the release layer 6. The protective layer 7 is a layer for protecting the second wiring substrate (interposer) 3 when the support 5 is peeled off in a later step, and is, for example, an epoxy resin, an acrylic resin, a urethane resin, a silicon resin, or a polyester resin. , One of the oxetane resins or a mixture of two or more of these resins, and is a resin that can be removed after the second wiring substrate (interposer) 3 is peeled off from the support 5. The protective layer 7 may be appropriately formed depending on the shape of the resin such as spin coating and laminating. In one embodiment of the present invention, an acrylic resin is formed by a laminating method.
Next, as shown in FIG. 3 (c), the seed layer 8 is formed on the protective layer 7 in vacuum. The seed layer 8 acts as a feeding layer for electrolytic plating in forming wiring. The seed layer 8 is formed by, for example, a sputtering method or a CVD method, and for example, Cu, Ni, Al, Ti, Cr, Mo, W, Ta, Au, Ir, Ru, Pd, Pt, AlSi, AlSiCu, AlCu, can be applied NiFe, ITO, IZO, AZO, ZnO, PZT, TiN, those Cu 3 N 4, Cu combination alloy alone or more. In the present invention, the titanium layer and then the copper layer are sequentially formed by a sputtering method in consideration of electrical characteristics, ease of manufacture, and cost. The total film thickness of the titanium and copper layers is preferably 1 μm or less as the feeding layer for electrolytic plating. In one embodiment of the present invention, Ti: 50 nm and Cu: 300 nm were formed.

次に図4(d)に示すようにレジストパターン9を形成し、電解めっきにより導体層(第1電極)10を形成する。導体層11は半導体素子4と接合用の電極となる。電解めっき法は電解ニッケルめっき、電解銅めっき、電解クロムめっき、電解Pdめっき、電解金めっき、電解ロジウムめっき、電解イリジウムめっき等が挙げられるが、電解銅めっきであることが簡便で安価で、電気伝導性が良好であることから望ましい。電解銅めっきの厚みは、回路の接続信頼性、及び、製造コストの観点から、1μm以上30μm以下であることが望ましい。その後、図4(e)に示すようにレジストパターン9を除去する。 Next, as shown in FIG. 4D, a resist pattern 9 is formed, and a conductor layer (first electrode) 10 is formed by electrolytic plating. The conductor layer 11 serves as an electrode for bonding with the semiconductor element 4. Electrolytic plating methods include electrolytic nickel plating, electrolytic copper plating, electrolytic chrome plating, electrolytic Pd plating, electrolytic gold plating, electrolytic rhodium plating, electrolytic iridium plating, etc., but electrolytic copper plating is simple, inexpensive, and electric. It is desirable because it has good conductivity. The thickness of the electrolytic copper plating is preferably 1 μm or more and 30 μm or less from the viewpoint of circuit connection reliability and manufacturing cost. After that, the resist pattern 9 is removed as shown in FIG. 4 (e).

次に、図4(f)に示すように絶縁樹脂層11を形成する。絶縁樹脂層11は導体層10が絶縁樹脂層11の層内に埋め込まれるように形成する。本実施形態では、絶縁樹脂層11として例えば、感光性のエポキシ系樹脂をスピンコート法により形成する。感光性のエポキシ樹脂は比較的低温で硬化することができ、形成後の硬化による収縮が少ないため、その後の微細パターン形成に優れる。絶縁樹脂層11としては、感光性のエポキシ系樹脂を用いてスピンコート法により形成する他、絶縁樹脂フィルムを真空ラミネータで圧縮キュアを行って形成することも可能であり、この場合は平坦性の良い絶縁膜を形成することができる。その他、例えばポリイミドを絶縁樹脂として用いることも可能である。 Next, the insulating resin layer 11 is formed as shown in FIG. 4 (f). The insulating resin layer 11 is formed so that the conductor layer 10 is embedded in the layer of the insulating resin layer 11. In the present embodiment, for example, a photosensitive epoxy resin is formed as the insulating resin layer 11 by a spin coating method. The photosensitive epoxy resin can be cured at a relatively low temperature, and shrinkage due to curing after formation is small, so that it is excellent in subsequent fine pattern formation. The insulating resin layer 11 can be formed by a spin coating method using a photosensitive epoxy resin, or the insulating resin film can be formed by compression curing with a vacuum laminator. In this case, the insulating resin layer 11 is flat. A good insulating film can be formed. In addition, for example, polyimide can be used as the insulating resin.

次に、図5(g)に示すように、フォトリソグラフィーにより、導体層10上に開口部を設ける。開口部に対して、現像時の残渣除去を目的として、プラズマ処理を行ってもよい。 Next, as shown in FIG. 5 (g), an opening is provided on the conductor layer 10 by photolithography. The openings may be subjected to plasma treatment for the purpose of removing residues during development.

次に、図5(h)に示すように、開口部の表面上にシード層12を設ける。シード層12の構成については前述したシード層8と同様で、適宜構成、厚みを変更可能である。本発明の一実施形態ではTi:50nm、Cu:300nmをスパッタリング法で形成した。 Next, as shown in FIG. 5 (h), the seed layer 12 is provided on the surface of the opening. The structure of the seed layer 12 is the same as that of the seed layer 8 described above, and the structure and thickness can be changed as appropriate. In one embodiment of the present invention, Ti: 50 nm and Cu: 300 nm were formed by a sputtering method.

次に、図5(i)に示すように、シード層12上にレジストパターン13を形成し、そ
の開口部に電解めっきにより導体層(配線層)14を形成する。導体層14は、インターポーザ3の内部の配線層となる。本発明の一実施形態では導体層14として銅を形成した。その後、図6(j)に示すようにレジストパターン13を除去する。その後、不要なシード層12をエッチング除去する。
Next, as shown in FIG. 5 (i), a resist pattern 13 is formed on the seed layer 12, and a conductor layer (wiring layer) 14 is formed in the opening thereof by electrolytic plating. The conductor layer 14 is a wiring layer inside the interposer 3. In one embodiment of the present invention, copper was formed as the conductor layer 14. After that, the resist pattern 13 is removed as shown in FIG. 6 (j). After that, the unnecessary seed layer 12 is removed by etching.

次に、図4(f)から図5(j)の工程を繰り返し、図6(k)に示すような、導体層(配線層)14が多層化された基板を得る。導体層14の内、最表面に配置される導体層(第2電極)15は、第一配線基板(FC−BGA用配線基板)1との接合用の電極となる。 Next, the steps of FIGS. 4 (f) to 5 (j) are repeated to obtain a substrate in which the conductor layer (wiring layer) 14 is multilayered as shown in FIG. 6 (k). Of the conductor layers 14, the conductor layer (second electrode) 15 arranged on the outermost surface serves as an electrode for joining with the first wiring board (FC-BGA wiring board) 1.

次に、図6(l)に示すように、第二配線基板(インターポーザ)3に最表面絶縁樹脂層16を形成する。最表面絶縁樹脂層16は、絶縁樹脂層11を覆うように、露光、現像により、導体層15が露出するように開口部を備えるように形成する。本発明の実施形態では、最表面絶縁樹脂層16として感光性エポキシ樹脂を使用して最表面絶縁樹脂層16を形成する。なお、最表面絶縁樹脂層16は絶縁樹脂層11と同一材料でも構わない。 Next, as shown in FIG. 6 (l), the outermost surface insulating resin layer 16 is formed on the second wiring board (interposer) 3. The outermost surface insulating resin layer 16 is formed so as to cover the insulating resin layer 11 and to have an opening so that the conductor layer 15 is exposed by exposure and development. In the embodiment of the present invention, the outermost surface insulating resin layer 16 is formed by using a photosensitive epoxy resin as the outermost surface insulating resin layer 16. The outermost surface insulating resin layer 16 may be made of the same material as the insulating resin layer 11.

次に、図7(m)に示すように導体層15の表面の酸化防止とはんだバンプの濡れ性をよくするため、表面処理層17を設ける。本発明の実施形態では、表面処理層17として無電解Ni/Pd/Auめっきを成膜する。なお、表面処理層17には、OSP(Organic Soiderability Preservative 水溶性プレフラックスによる表面処理)膜を形成してもよい。また、無電解スズめっき、無電解Ni/Auめっきなどから適宜用途に応じて選択しても良い。 Next, as shown in FIG. 7 (m), a surface treatment layer 17 is provided in order to prevent oxidation of the surface of the conductor layer 15 and improve the wettability of the solder bumps. In the embodiment of the present invention, electroless Ni / Pd / Au plating is formed as the surface treatment layer 17. An OSP (Organic Soiderability Preservative surface treatment with a water-soluble preservative) film may be formed on the surface treatment layer 17. Further, electroless tin plating, electroless Ni / Au plating, etc. may be appropriately selected according to the intended use.

次に、図7(n)に示すように、表面処理層17上に、半田材料を搭載した後、一度溶融冷却して固着させることで、第一配線基板(FC−BGA用配線基板)1との接合のための半田バンプからなる第二配線基板(インターポーザ)接合部18aを得る。 Next, as shown in FIG. 7 (n), the solder material is mounted on the surface treatment layer 17, and then melt-cooled and fixed once to fix the first wiring board (FC-BGA wiring board) 1. A second wiring board (interposer) joint portion 18a made of solder bumps for joining with is obtained.

次に、図7(o)に示すように半田バンプ上に、第一配線基板(FC−BGA用配線基板)1と第二配線基板(インターポーザ)3とを固定及び接合部18を封止するために用いられる封止樹脂(アンダーフィル)2を積層する。封止樹脂(アンダーフィル)2の積層についてスリットコート、真空プレス等を使用しても構わない。積層した封止樹脂(アンダーフィル)2は、本硬化ではなく、Bステージ状であることが望ましい。材料については、液状樹脂、フィルム状樹脂、フィルム状感光性樹脂等用途に応じて適宜設定して構わない。これにより、支持体5上に第二配線基板(インターポーザ)3と封止樹脂(アンダーフィル)2が形成される。 Next, as shown in FIG. 7 (o), the first wiring board (FC-BGA wiring board) 1 and the second wiring board (interposer) 3 are fixed and the joint portion 18 is sealed on the solder bump. The sealing resin (underfill) 2 used for this purpose is laminated. A slit coat, a vacuum press, or the like may be used for laminating the sealing resin (underfill) 2. It is desirable that the laminated sealing resin (underfill) 2 has a B-stage shape rather than main curing. The material may be appropriately set according to the application such as liquid resin, film-like resin, and film-like photosensitive resin. As a result, the second wiring board (interposer) 3 and the sealing resin (underfill) 2 are formed on the support 5.

続けて、図8(a)から図10(e)までを用いて、支持体5上に形成された第二配線基板(インターポーザ)3と第一配線基板(FC−BGA用配線基板)1の本発明の一実施形態に係る接合工程の一例を説明する。 Subsequently, using FIGS. 8 (a) to 10 (e), the second wiring board (interposer) 3 and the first wiring board (FC-BGA wiring board) 1 formed on the support 5 An example of the joining process according to the embodiment of the present invention will be described.

図8(a)に示すように、支持体5上に形成された第二配線基板(インターポーザ)3の第二配線基板(インターポーザ)接合部18aに合わせて第一配線基板(FC−BGA用配線基板)1の第一配線基板(FC−BGA用配線基板)接合部18bを設計、製造した第一配線基板(FC−BGA用配線基板)1に対して支持体5上に形成された第二配線基板(インターポーザ)3を配置する。 As shown in FIG. 8A, the first wiring board (FC-BGA wiring) is aligned with the second wiring board (interposer) joint 18a of the second wiring board (interposer) 3 formed on the support 5. A second wiring board formed on the support 5 with respect to the first wiring board (FC-BGA wiring board) 1 in which the first wiring board (FC-BGA wiring board) joint 18b of the substrate) 1 is designed and manufactured. The wiring board (interposer) 3 is arranged.

図8(b)に示すように、支持体5上に形成された第二配線基板(インターポーザ)3と第一配線基板(FC−BGA用配線基板)を加圧接合し、支持体5上に形成された第二配線基板(インターポーザ)3と第一配線基板(FC−BGA用配線基板)1の固定、及び、接合部18を封止する。 As shown in FIG. 8B, the second wiring board (interposer) 3 formed on the support 5 and the first wiring board (FC-BGA wiring board) are pressure-bonded and placed on the support 5. The formed second wiring board (interposer) 3 and the first wiring board (FC-BGA wiring board) 1 are fixed, and the joint portion 18 is sealed.

次に図9(c)に示すように、支持体5を剥離する。剥離層6は、UV光をレーザ光19で照射して剥離する。支持体5の背面より、すなわち、支持体5の第一配線基板(FC−BGA用配線基板)1とは逆側の面からレーザ光19を支持体5との界面に形成された剥離層6に照射し剥離可能な状態とすることで、図9(d)に示すように支持体5を取り外すことが可能となる。 Next, as shown in FIG. 9C, the support 5 is peeled off. The peeling layer 6 is peeled by irradiating UV light with laser light 19. A peeling layer 6 formed at an interface between the laser beam 19 and the support 5 from the back surface of the support 5, that is, from the surface of the support 5 opposite to the first wiring board (FC-BGA wiring board) 1. The support 5 can be removed as shown in FIG. 9 (d) by irradiating the substrate into a removable state.

第二配線基板(インターポーザ)3上に封止樹脂(アンダーフィル)2を積層し、FC−BGA用配線基板1と加圧接合することで封止樹脂(アンダーフィル)の側面への這い上がりを抑制することが可能となり、高い収率を確保することができる。 By laminating the sealing resin (underfill) 2 on the second wiring board (interposer) 3 and pressure-bonding it with the FC-BGA wiring board 1, the sealing resin (underfill) can be crawled up to the side surface. It can be suppressed and a high yield can be ensured.

次に、保護層7とシード層8を除去し、図10(e)に示すような基板を得る。本発明の実施形態では、保護層7は、アクリル系樹脂を用いており、アルカリ系溶剤(1%NaOH、2.3%TMAH)によって除去する。更に、シード層8は、保護層7側からチタンと銅を用いており、それぞれアルカリ系のエッチング剤と、酸系のエッチング剤にて溶解除去することができる。このようにして、第二配線基板(インターポーザ)3と第一配線基板(FC−BGA用配線基板)1が接合された配線基板22を得る。 Next, the protective layer 7 and the seed layer 8 are removed to obtain a substrate as shown in FIG. 10 (e). In the embodiment of the present invention, the protective layer 7 uses an acrylic resin and is removed with an alkaline solvent (1% NaOH, 2.3% TMAH). Further, the seed layer 8 uses titanium and copper from the protective layer 7 side, and can be dissolved and removed by an alkaline etching agent and an acid etching agent, respectively. In this way, the wiring board 22 to which the second wiring board (interposer) 3 and the first wiring board (FC-BGA wiring board) 1 are joined is obtained.

この後、表面に露出した導体層10上に、酸化防止と半田バンプの濡れ性をよくするため、無電解Ni/Pd/Auめっき、OSP、無電解スズめっき、無電解Ni/Auめっきなどの表面処理を施してもよい。以上により配線基板22が完成する。 After that, in order to prevent oxidation and improve the wettability of solder bumps on the conductor layer 10 exposed on the surface, electroless Ni / Pd / Au plating, OSP, electroless tin plating, electroless Ni / Au plating, etc. Surface treatment may be applied. With the above, the wiring board 22 is completed.

本発明の実施形態によれば、支持体の上に第二配線基板(インターポーザ)を形成し第一配線基板(FC−BGA用配線基板)に搭載する方式において、容易に、支持体を剥離できるため、工程の収率を向上し、歩留まり良く製造できる。 According to the embodiment of the present invention, in a method in which a second wiring board (interposer) is formed on a support and mounted on a first wiring board (FC-BGA wiring board), the support can be easily peeled off. Therefore, the yield of the process can be improved and the yield can be improved.

1・・・第一配線基板(FC−BGA用配線基板)
2、21・・・封止樹脂(アンダーフィル)
3・・・第二配線基板(インターポーザ)
4・・・半導体素子
5・・・支持体
6・・・剥離層
7・・・保護層
8、12・・・シード層
9、13・・・レジストパターン
10・・・導体層(第1電極)
11・・・絶縁樹脂層
14・・・導体層(配線層)
15・・・導体層(第2電極)
16・・・最表面絶縁樹脂層
17・・・表面処理層
18・・・接合部(第二配線基板と第一配線基板)
18a・・・第二配線基板(インターポーザ)接合部
18b・・・第一配線基板(FC−BGA用配線基板)接合部
19・・・レーザ光
20・・・接合部(半導体素子と第二配線基板)
20a・・・銅ピラー
20b・・・半田
22・・・配線基板
100・・・半導体パッケージ
1 ... First wiring board (FC-BGA wiring board)
2, 21 ... Sealing resin (underfill)
3 ... Second wiring board (interposer)
4 ... Semiconductor element 5 ... Support 6 ... Release layer 7 ... Protective layers 8, 12 ... Seed layers 9, 13 ... Resist pattern 10 ... Conductor layer (first electrode) )
11 ... Insulating resin layer 14 ... Conductor layer (wiring layer)
15 ... Conductor layer (second electrode)
16 ... Outermost surface insulating resin layer 17 ... Surface treatment layer 18 ... Joint portion (second wiring board and first wiring board)
18a ... Second wiring board (interposer) junction 18b ... First wiring board (FC-BGA wiring board) junction 19 ... Laser light 20 ... Junction (semiconductor element and second wiring) substrate)
20a ... Copper pillar 20b ... Solder 22 ... Wiring board 100 ... Semiconductor package

Claims (2)

第一配線基板と、前記第一配線基板の主面上に接合された第二配線基板とを備え、前記第一配線基板と前記第二配線基板が対向する間隙が封止樹脂で封止される配線基板の製造方法であって、
主面上に、突起している第一配線基板接合部を有する第一配線基板の準備工程と、
前記第二配線基板が支持体上で配線形成され、前記支持体面の反対面で、第二配線基板接合部が突起している前記第二配線基板形成工程と、
前記第二配線基板接合部を含む前記第二配線基板表面に前記封止樹脂を積層し、封止樹脂層を形成する工程と、
前記第二配線基板の前記封止樹脂層面と、第一配線基板の第一配線基板接合部のある面を相対して、前記第二配線基板の接合部と前記第一配線基板の接合部の水平位置を合わせ、前記第二配線基板と前記第一配線基板を加圧接合し、前記第二配線基板の接合部と前記第一配線基板の接合部が接合し、接合部以外の前記第一配線基板と前記第二配線基板の間隙が前記封止樹脂で封止される、接合封止工程と、
前記接合封止工程後、前記支持体を前記第二配線基板から剥離する工程と、
を有することを特徴とする配線基板の製造方法。
A first wiring board and a second wiring board joined on the main surface of the first wiring board are provided, and a gap between the first wiring board and the second wiring board facing each other is sealed with a sealing resin. This is a method of manufacturing a wiring board.
The preparation process of the first wiring board having the first wiring board joint protruding on the main surface,
The second wiring board forming step in which the second wiring board is formed by wiring on the support and the second wiring board joint portion is projected on the opposite surface of the support surface.
A step of laminating the sealing resin on the surface of the second wiring board including the second wiring board joint to form a sealing resin layer.
The sealing resin layer surface of the second wiring board and the surface of the first wiring board with the first wiring board joint portion are opposed to each other, and the joint portion of the second wiring board and the joint portion of the first wiring board The second wiring board and the first wiring board are pressure-bonded by aligning the horizontal positions, the joint portion of the second wiring board and the joint portion of the first wiring board are joined, and the first other than the joint portion is joined. A joining sealing step in which the gap between the wiring board and the second wiring board is sealed with the sealing resin.
After the joint sealing step, a step of peeling the support from the second wiring board and
A method for manufacturing a wiring board, which comprises.
前記支持体は、ガラス基板であることを特徴とする、請求項1に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 1, wherein the support is a glass substrate.
JP2019096087A 2019-05-22 2019-05-22 Method for manufacturing wiring board Pending JP2020191380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019096087A JP2020191380A (en) 2019-05-22 2019-05-22 Method for manufacturing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096087A JP2020191380A (en) 2019-05-22 2019-05-22 Method for manufacturing wiring board

Publications (1)

Publication Number Publication Date
JP2020191380A true JP2020191380A (en) 2020-11-26

Family

ID=73453894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096087A Pending JP2020191380A (en) 2019-05-22 2019-05-22 Method for manufacturing wiring board

Country Status (1)

Country Link
JP (1) JP2020191380A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225997A (en) * 2014-05-29 2015-12-14 富士通株式会社 Method of manufacturing wiring board
JP2017120800A (en) * 2015-12-28 2017-07-06 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225997A (en) * 2014-05-29 2015-12-14 富士通株式会社 Method of manufacturing wiring board
JP2017120800A (en) * 2015-12-28 2017-07-06 富士通株式会社 Semiconductor device, semiconductor device manufacturing method, and electronic device

Similar Documents

Publication Publication Date Title
JP7092031B2 (en) Wiring board manufacturing method
JP2022040197A (en) Manufacturing method of wiring board
JP7351107B2 (en) Wiring board and wiring board manufacturing method
JP2021125565A (en) Wiring board and method for manufacturing wiring board
JP2021114534A (en) Wiring board and manufacturing method for wiring board
JPWO2020090601A1 (en) Manufacturing method of wiring board for semiconductor package and wiring board for semiconductor package
WO2022124394A1 (en) Substrate unit with support, substrate unit, and method for manufacturing substrate unit with support
JP7196936B2 (en) Method for manufacturing wiring board for semiconductor device, and wiring board for semiconductor device
JP7472484B2 (en) Composite wiring board and method for manufacturing the same
JP7456097B2 (en) Wiring board and wiring board manufacturing method
JP2020191380A (en) Method for manufacturing wiring board
JP7052464B2 (en) Manufacturing method of coreless substrate with fine wiring layer and manufacturing method of semiconductor package
JP2020077696A (en) Wiring board and semiconductor device using the same
US20230254983A1 (en) Wiring board and method of producing wiring board
JP2021197484A (en) Wiring board with support, wiring board and semiconductor device
JP2020161572A (en) Wiring substrate and method of manufacturing the same
JP2020191397A (en) Composite wiring board and method for manufacturing the same
US11974404B2 (en) Method of producing circuit boards
WO2023047946A1 (en) Support-equipped substrate and semiconductor device
JP2022015382A (en) Substrate unit with support, substrate unit, semiconductor device and method for manufacturing substrate unit with support
JP7415334B2 (en) Wiring board, semiconductor device, and wiring board manufacturing method
JP2021125507A (en) Wiring board and method for manufacturing wiring board
JP2022122509A (en) Substrate unit with support, substrate unit, semiconductor device, and manufacturing method thereof
JP2022015429A (en) Multilayer wiring board and method for manufacturing multilayer wiring board
JP2021158306A (en) Wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230801