JP2020199849A - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
JP2020199849A
JP2020199849A JP2019107423A JP2019107423A JP2020199849A JP 2020199849 A JP2020199849 A JP 2020199849A JP 2019107423 A JP2019107423 A JP 2019107423A JP 2019107423 A JP2019107423 A JP 2019107423A JP 2020199849 A JP2020199849 A JP 2020199849A
Authority
JP
Japan
Prior art keywords
heat
cooling
heat medium
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019107423A
Other languages
English (en)
Inventor
徹也 石関
Tetsuya Ishizeki
徹也 石関
武史 東宮
Takeshi Tomiya
武史 東宮
尭之 松村
Takayuki Matsumura
尭之 松村
謙太朗 守屋
Kentaro Moriya
謙太朗 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Automotive Climate Systems Corp
Original Assignee
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Automotive Climate Systems Corp filed Critical Sanden Automotive Climate Systems Corp
Priority to JP2019107423A priority Critical patent/JP2020199849A/ja
Priority to PCT/JP2020/020662 priority patent/WO2020246305A1/ja
Publication of JP2020199849A publication Critical patent/JP2020199849A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series

Abstract

【課題】冷房時に空調用熱媒体の排熱を促し、運転効率の向上を図る。【解決手段】周囲を通過する外気と内部を通過する空調用熱媒体との間で熱交換を行なう熱交換器13と、内部を個別に通過する空調用熱媒体と冷却用熱媒体との間で熱交換を行なう熱交換器43と、を備える。冷房時には、膨張弁37、蒸発器15、圧縮機35、熱交換器43、凝縮器16、及び熱交換器13を順に経由するように、空調用熱媒体を循環させる。また、熱交換器43、及びラジエータ42を順に経由するように、冷却用熱媒体を循環させる。【選択図】図3

Description

本発明は、車両用空気調和装置に関するものである。
特許文献1に示されるように、空調用熱媒体を循環させ、ヒートポンプによって車室内の温度を調整する車両用空気調和装置と、冷却用熱媒体を循環させてバッテリを冷却する冷却装置と、を備えたものがある。そして、空調用熱媒体が低圧となる流路に熱交換器を配置し、暖房運転によって低温になった空調用熱媒体と、バッテリの冷却によって高温になった冷却用熱媒体との熱交換を行なうことにより、バッテリの排熱を回収し、車室内の暖房に有効利用している。
特開2018−184108号公報
空調用熱媒体と冷却用熱媒体との熱交換を行なうために、空調用熱媒体が低圧となる流路に熱交換器を配置すると、バッテリの排熱を暖房に利用することしかできず、逆に冷房時には、空調用熱媒体の排熱を促すことができない。
本発明の課題は、冷房時に空調用熱媒体の排熱を促し、運転効率の向上を図ることである。
本発明の一態様に係る車両用空気調和装置は、
車室内へ空気を供給する供給流路に設けられ、周囲を通過する空気と内部を通過する空調用熱媒体との間で熱交換を行ない、空調用熱媒体に吸熱させる蒸発器と、
供給流路のうち蒸発器よりも下流側に設けられ、周囲を通過する空気と内部を通過する空調用熱媒体との間で熱交換を行ない、空調用熱媒体に放熱させる凝縮器と、
周囲を通過する外気と内部を通過する空調用熱媒体との間で熱交換を行なう第一の熱交換器と、
空調用熱媒体を圧縮する圧縮機と、
冷房時に空調用熱媒体を膨張させる冷房時膨張弁と、
暖房時に空調用熱媒体を膨張させる暖房時膨張弁と、
発熱体を冷却するための冷却用熱媒体が内部を通過し、周囲を通過する外気との間で熱交換を行なう放熱用熱交換器と、
内部を個別に通過する空調用熱媒体と冷却用熱媒体との間で熱交換を行なう第二の熱交換器と、
冷房時に、冷房時膨張弁、蒸発器、圧縮機、第二の熱交換器、凝縮器、及び第一の熱交換器を順に経由するように、空調用熱媒体を循環させる第一の冷房時空調用経路と、
暖房時に、圧縮機、第二の熱交換器、凝縮器、暖房時膨張弁、及び第一の熱交換器を順に経由するように、空調用熱媒体を循環させる第一の暖房時空調用経路と、
冷房時に、第二の熱交換器、及び放熱用熱交換器を順に経由するように、冷却用熱媒体を循環させる第一の冷却用経路と、を備える。
本発明によれば、第二の熱交換器により、冷房時に、蒸発器、及び圧縮機を順に通過して高温高圧になった空調用熱媒体と、放熱用熱交換器を通過して低温になった冷却用熱媒体との熱交換が行なわれる。また、第二の熱交換器を通過して高温になった冷却用熱媒体は、放熱用熱交換器で外気と熱交換されて低温になる。このように、冷房時に空調用熱媒体の排熱が促され、運転効率の向上を図ることができる。
車両用空気調和装置を示す図である。 暖房運転を示す図である。 冷房運転を示す図である。 スーパーヒート領域を示す図である。 第2実施形態の冷房運転を示す図である。 第2実施形態の暖房運転を示す図である。
以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
《第1実施形態》
《構成》
図1は、車両用空気調和装置の一部を示す図である。
車両用空気調和装置11は、自動車に搭載されるヒートポンプシステムからなり、車室側に設けられた室内熱交換ユニット12(供給流路)と、車室外に設けられた熱交換器13(第一の熱交換器)と、を備える。車室側と車室外とは、例えばダッシュパネルによって隔てられている。
室内熱交換ユニット12は、ダッシュボードの内部に配置されており、一端側から外気や内気を導入し、他端側から車室内へ空気を供給するダクトによって形成されている。室内熱交換ユニット12は、HVAC(Heating Ventilation and Air Conditioning)とも呼ばれる。室内熱交換ユニット12の内部には、送風ファン14と、蒸発器15と、凝縮器16と、エアミックスダンパ17と、ヒータ18と、が設けられている。
送風ファン14は、室内熱交換ユニット12の一端側に設けられており、モータによって駆動されるときに、外気や内気を吸引し、他端側へと吐出する。
蒸発器15は、送風ファン14よりも下流側に設けられており、吸熱器及び除湿器として、放熱フィンの周囲を通過する空気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が吸熱によって蒸発気化することにより、放熱フィンの周囲の空気を冷却すると共に、放熱フィンの表面に結露を生じさせて除湿を行なう。送風ファン14から吹き出された空気は、全て蒸発器15を通過する。
凝縮器16は、蒸発器15よりも下流側に設けられており、放熱器として、放熱フィンの周囲を通過する空気とチューブ内を通過する高温の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が放熱によって凝縮液化することにより、放熱フィンの周囲の空気を加温する。凝縮器16は、室内熱交換ユニット12の断面のうち、略半分を塞ぐように配置されることで、凝縮器16を通過する流路と、凝縮器16を迂回する流路と、が形成されている。すなわち、蒸発器15を通過した空気の一部が凝縮器16を通過し、残りが凝縮器16を迂回する。
エアミックスダンパ17は、凝縮器16を通過する流路を開放して凝縮器16を迂回する流路を閉鎖する位置と、凝縮器16を通過する流路を閉鎖して凝縮器16を迂回する流路を開放する位置と、の間で回動可能である。エアミックスダンパ17が凝縮器16を通過する流路を開放して凝縮器16を迂回する流路を閉鎖する位置にあるときには、蒸発器15を通過した空気は全て凝縮器16を通過する。エアミックスダンパ17が凝縮器16を通過する流路を閉鎖して凝縮器16を迂回する流路を開放する位置にあるときには、蒸発器15を通過した空気は全て凝縮器16を迂回する。エアミックスダンパ17が凝縮器16を通過する流路と凝縮器16を迂回する流路の双方を開放する位置にあるときには、蒸発器15を通過した空気のうち、一部が凝縮器16を通過し、残りが凝縮器16を迂回する。そして、凝縮器16の下流側で、凝縮器16を通過した空気と、凝縮器16を迂回した空気とが混合される。
ヒータ18は、例えば温度によって抵抗値が変化するPTCヒータ(PTC:Positive Temperature Coefficient)であり、凝縮器16の風下側に設けられ、凝縮器16を通過した空気は、全てヒータ18を通過する。ヒータ18は、ON/OFFの切り替えが可能であり、ONのときに通過する空気を加温する。
熱交換器13は、エンジンルーム内又はモータルーム内に設けられており、放熱フィンの周囲を通過する外気とチューブ内を通過する空調用熱媒体との間で熱交換を行なう。外気とは主に走行風であるが、十分な走行風が得られないときは、図示しない送風機が駆動されることで、放熱フィンに対して外気が送風される。
運転モードを暖房とするときには、熱交換器13を蒸発器、つまり吸熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に吸熱させ、蒸発気化させる。
運転モードを冷房とするときには、熱交換器13を凝縮器、つまり放熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する高温の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に放熱させ、凝縮液化させる。
次に、空調用熱媒体を循環させる基本的な回路構成について説明する。
凝縮器16の出口は、流路21を介して熱交換器13の入口に連通している。流路21には、膨張弁31(暖房時膨張弁)が設けられている。
膨張弁31は、液相である高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
熱交換器13の出口は、流路22を介して凝縮器16の入口に連通している。流路22には、熱交換器13の側から凝縮器16の側に向かって、開閉弁32、逆止弁33、アキュムレータ34、及び圧縮機35が、順に設けられている。
開閉弁32は、流路22を開放又は閉鎖する。
逆止弁33は、開閉弁32の側からアキュムレータ34の側への通過を許容し、逆方向の通過を阻止する。
アキュムレータ34は、空調用熱媒体の気液分離を行ない、気相の空調用熱媒体だけを圧縮機35へと供給する。
圧縮機35は、気相である低圧の空調用熱媒体を圧縮することにより、液化しやすい高圧の空調用熱媒体に昇圧させるものであり、空調用熱媒体と共に循環するオイルによって潤滑が行なわれる給油式である。例えば、ロータリー圧縮機、斜板式圧縮機、スクロール圧縮機等である。空調用熱媒体に対するオイル濃度は数%程度である。圧縮機35の駆動源は、エンジンや電動モータである。
流路21のうち、熱交換器13と膨張弁31との間には分岐点があり、この分岐点は、流路23を介して蒸発器15の入口に連通している。流路23には、分岐点の側から蒸発器15の側に向かって、開閉弁36、及び膨張弁37(冷房時膨張弁)が、順に設けられている。
開閉弁36は、流路23を開放又は閉鎖する。
膨張弁37は、液相である高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
流路22のうち、熱交換器13と開閉弁32との間には分岐点があり、また流路23のうち、開閉弁36と膨張弁37との間には分岐点があり、これら分岐点同士は、流路24を介して連通している。流路24には、逆止弁38が設けられている。
逆止弁38は、流路22の側から流路23の側への通過を許容し、逆方向の通過を阻止する。
流路22のうち、開閉弁32と逆止弁33との間には分岐点があり、この分岐点は、流路25を介して蒸発器15の出口に連通している。
次に、付加的な回路構成について説明する。
車両用空気調和装置11は、ラジエータ42(放熱用熱交換器)と、熱交換器43(第二の熱交換器)と、を備える。
ラジエータ42は、熱交換器13の風下側に配置され、内部を通過する冷却用熱媒体と周囲を通過する外気との間で熱交換を行ない、チューブ内の冷却用熱媒体に放熱させる。冷却用熱媒体は、例えば水であるが、冷媒やクーラント等、他の流体を用いてもよい。
熱交換器43は、内部を個別に通過する空調用熱媒体と冷却用熱媒体との間で熱交換を行なう。
熱交換器43のうち、空調用熱媒体が通過する流路の入口は、圧縮機35の出口に連通し、空調用熱媒体が通過する流路の出口は、凝縮器16の入口に連通する。
熱交換器43のうち、冷却用熱媒体が通過する流路の出口は、流路51を介してラジエータ42の入口に連通し、冷却用熱媒体が通過する流路の入口は、流路52を介してラジエータ42の出口に連通する。
流路51には、ラジエータ42の側から熱交換器43の側に向かって、ポンプ44、及びリザーバタンク45が、順に設けられている。
ポンプ44は、冷却用熱媒体を熱交換器43の側から吸入し、ラジエータ42の側へ吐出する。
リザーバタンク45は、回路内の圧力を調整する働きがあり、冷却用熱媒体の液量を点検したり補給したりする際にも用いられる。
次に、各運転モードについて説明する。
[暖房運転]
図2は、暖房運転を示す図である。
図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。
運転モードが暖房であるときには、膨張弁31を僅かに開放し、開閉弁32を開放し、開閉弁36を閉鎖し、膨張弁37を閉鎖した状態で、圧縮機35を駆動する。また、ポンプ44の駆動を停止する。
これにより、空調用熱媒体は、圧縮機35、熱交換器43、凝縮器16、膨張弁31、熱交換器13、開閉弁32、逆止弁33、及びアキュムレータ34を順に経由して循環する。このとき、流路21及び流路22を含め、空調用熱媒体の循環する経路が、第一の暖房時空調用経路である。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、凝縮器16で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、膨張弁31で膨張され低圧となり、熱交換器43で吸熱することで蒸発気化し、高温になる。気化しつつある空調用熱媒体は、熱交換器13でさらに吸熱することで蒸発気化し、さらに高温となる。
また、熱交換器43の冷却用熱媒体は、暖房開始時は低温であるが、空調用熱媒体から吸熱することで高温となり、ポンプ44の停止でラジエータ42へ送られることがないため、温度の低下が抑制される。したがって、それ以降は、冷却用熱媒体と空調用熱媒体との温度差が低減するため、空調用熱媒体から冷却用熱媒体への熱移動が抑制される。
一方、室内熱交換ユニット12では、送風ファン14を駆動すると共に、エアミックスダンパ17で凝縮器16を通過する流路を開放する。これにより、導入された空気が凝縮器16で加温され、温かい空気が車室内に供給される。また、ヒータ18を駆動すると、さらに加温される。
[冷房運転]
図3は、冷房運転を示す図である。
図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、冷却用熱媒体が通過する流路を太い破線で示す。
運転モードが冷房であるときには、膨張弁31を全開放し、開閉弁32を閉鎖し、開閉弁36を閉鎖し、膨張弁37を僅かに開放した状態で、圧縮機35を駆動する。また、ポンプ44を駆動する。
これにより、空調用熱媒体は、圧縮機35、熱交換器43、凝縮器16、膨張弁31、熱交換器13、逆止弁38、膨張弁37、蒸発器15、逆止弁33、及びアキュムレータ34を順に経由して循環する。このとき、流路21、流路22の一部、流路24、流路23の一部、及び流路25を含め、空調用熱媒体の循環する経路が、第一の冷房時空調用経路である。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、熱交換器43で放熱することで低温になる。空調用熱媒体は、熱交換器13でさらに放熱することで凝縮液化し、さらに低温になる。液相の空調用熱媒体は、膨張弁37で膨張され低圧となり、蒸発器15で吸熱することで蒸発気化し、高温となる。
また、冷却用熱媒体は、ポンプ44、ラジエータ42、熱交換器43、及びリザーバタンク45を順に経由して循環する。このとき、流路51及び流路52を含め、冷却用熱媒体の循環する経路が、第一の冷却用経路である。この循環経路において、冷却用熱媒体は、ラジエータ42で放熱することで低温となり、熱交換器43で吸熱することで高温となる。
一方、室内熱交換ユニット12では、送風ファン14を駆動すると共に、エアミックスダンパ17で凝縮器16を通過する流路を閉鎖する。これにより、導入された空気が蒸発器15で冷却及び除湿された後に、凝縮器16を迂回し、除湿された涼しい空気が車室内に供給される。
《作用》
次に、第1実施形態の主要な作用効果について説明する。
空調用熱媒体と冷却用熱媒体との熱交換を行なうために、空調用熱媒体が低圧となる流路に熱交換器を配置することが考えられる。これにより、発熱体41の排熱を回収し、車室内の暖房に有効利用することができる。しかしながら、逆に冷房時には、空調用熱媒体の排熱を促すことができない。
そこで、空調用熱媒体と冷却用熱媒体との熱交換を行なう熱交換器43を、圧縮機35と凝縮器16との間、つまり圧縮機35の出口側に配置した。
冷房時には、膨張弁37、蒸発器15、圧縮機35、熱交換器43、凝縮器16、及び熱交換器13を順に経由するように、空調用熱媒体を循環させる。また、熱交換器43、及びラジエータ42を順に経由するように、冷却用熱媒体を循環させる。これにより、蒸発器15、及び圧縮機35を順に通過して高温高圧になった空調用熱媒体は、ラジエータ42を通過して低温になった冷却用熱媒体と熱交換され、次いで外気と熱交換されて低温になる。一方、熱交換器43を通過して高温になった冷却用熱媒体は、ラジエータ42で外気と熱交換されて低温になる。このように、冷房時に空調用熱媒体の排熱が促され、運転効率の向上を図ることができる。
また、ラジエータ42は、熱交換器13の風下側に配置される。冷房時は、熱交換器13も凝縮器として機能し放熱を行なうため、風上側となる熱交換器13で温められた外気が、風下側のラジエータ42へと流れる。しかしながら、圧縮機35で圧縮された空調用熱媒体は、冷凍サイクルのうちスーパーヒート領域にある。
図4は、スーパーヒート領域を示す図である。
冷凍サイクルを表すp−h線図において、圧縮機35で圧縮された空調用熱媒体は、凝縮温度よりも高温となるスーパーヒート領域となる。この空調用熱媒体から吸熱した冷却用熱媒体も高温となるため、ラジエータ42が熱交換器13の風下側に配置されるとしても、十分な放熱能力を確保することができる。したがって、冷房時に空調用熱媒体の排熱が促され、運転効率の向上を図ることができる。
《変形例》
本実施形態では、冷房時に膨張弁31を全開にする構成について説明したが、これに限定されるものではない。例えば、膨張弁31を迂回するバイパス流路を設け、このバイパス流路を開閉可能に構成してもよい。これにより、冷房時に膨張弁31を閉鎖し、バイパス流路を開放すれば、圧力損失を低減することができる。
本実施形態では、空調用熱媒体が暖房時に熱交換器43を通過する構成について説明したが、これに限定されるものではない。例えば、圧縮機35と熱交換器43との間に三方弁を設け、この三方弁により、圧縮機35から送られてきた空調用熱媒体を、熱交換器43に送るか、熱交換器43を迂回するバイパス流路に送るかを切り替えるようにしてもよい。これにより、暖房時に空調用熱媒体が冷却用熱媒体との熱交換によって熱を奪われることを抑制し、暖房能力の改善を図ることができる。
《第2実施形態》
《構成》
第2実施形態は、発熱体41の温度上昇を抑制するものである。
ここでは、低圧低温となる空調用熱媒体と高温の冷却用熱媒体との間で熱交換を行なうことを除いては、前述した実施形態と同様であるため、共通する部分については同一符号を付し、詳細な説明を省略する。
図5は、第2実施形態を示す図である。
自動車には、発熱する発熱体41が搭載されている。発熱体41とは、エンジン自動車であればエンジン、電気自動車であればモータ、インバータ、バッテリ等であり、冷却用熱媒体によって冷却される。
流路51のうち、ラジエータ42とポンプ44との間には分岐点があり、さらに熱交換器43とリザーバタンク45との間には分岐点があり、これら分岐点同士は、流路53を介して連通する。流路53には、ラジエータ42とポンプ44との間の分岐点側から、熱交換器43とリザーバタンク45との間の分岐点側に向かって、熱交換器63、及び発熱体41が順に設けられている。
ラジエータ42とポンプ44との間の分岐点には、三方弁46が設けられている。三方弁46は、ポンプ44から送られてきた冷却用熱媒体を、ラジエータ42に送るか、発熱体41に送るか、何れか一方に切り換える。
流路23のうち、流路24への分岐点と膨張弁37との間には分岐点があり、また流路22のうち、逆止弁33とアキュムレータ34との間には分岐点があり、これら分岐点同士は、流路61を介して連通している。流路61には、流路23の側から流路22の側に向かって、膨張弁62(冷却時膨張弁)、及び熱交換器63(第三の熱交換器)が、順に設けられている。
膨張弁62は、液相である高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
熱交換器63は、内部を個別に通過する空調用熱媒体と冷却用熱媒体との間で熱交換を行なう。
熱交換器63のうち、空調用熱媒体が通過する流路の入口は、膨張弁62の出口に連通し、空調用熱媒体が通過する流路の出口は、流路22に連通する。
熱交換器63のうち、冷却用熱媒体が通過する流路の出口は、発熱体41に連通し、冷却用熱媒体が通過する流路の入口は、三方弁46に連通する。
次に、各運転モードについて説明する。
[冷房運転]
図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。
運転モードが冷房であり、発熱体41の発熱量が予め定めた閾値を超えたときには、膨張弁31を全開放し、開閉弁32を閉鎖し、開閉弁36を閉鎖し、膨張弁37及び膨張弁62の双方を僅かに開放した状態で、圧縮機35を駆動する。また、三方弁46の出口を熱交換器63の側に切り替えた状態で、ポンプ44を駆動する。
これにより、空調用熱媒体は、圧縮機35、熱交換器43、凝縮器16、膨張弁31、熱交換器13、逆止弁38、膨張弁37、蒸発器15、逆止弁33、及びアキュムレータ34を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、熱交換器43で放熱することで低温になる。空調用熱媒体は、熱交換器13でさらに放熱することで凝縮液化し、さらに低温になる。液相の空調用熱媒体は、膨張弁37で膨張され低圧となり、蒸発器15で吸熱することで蒸発気化し、高温となる。
また、空調用熱媒体の一部は、熱交換器13と膨張弁37との間から分流し、膨張弁62、及び熱交換器63を順に経由し、蒸発器15と圧縮機35との間に合流する。このとき、流路61を含め、第一の冷房時空調用経路に並列に接続される経路が、第二の冷房時空調用経路である。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、熱交換器43で放熱することで低温になる。空調用熱媒体は、熱交換器13でさらに放熱することで凝縮液化し、さらに低温になる。液相の空調用熱媒体は、膨張弁62で膨張され低圧となり、熱交換器63で吸熱することで蒸発気化し、高温となる。
また、冷却用熱媒体は、ポンプ44、三方弁46、熱交換器63、発熱体41、及びリザーバタンク45を順に経由して循環する。このとき、流路51の一部、及び流路53を含め、冷却用熱媒体の循環する経路が、第二の冷却用経路である。この循環経路において、冷却用熱媒体は、熱交換器63で放熱することで低温となり、発熱体41で吸熱することで高温となる。
[暖房運転]
図6は、第2実施形態の暖房運転を示す図である。
図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。
運転モードが暖房であるときには、膨張弁31を閉鎖し、開閉弁32を閉鎖し、開閉弁36を開放し、膨張弁37を閉鎖した状態で、圧縮機35を駆動する。また、三方弁46の出口を熱交換器63の側に切り替えた状態で、ポンプ44を駆動する。
これにより、空調用熱媒体は、膨張弁31、及び熱交換器13を迂回するために、第一の暖房時空調用経路から切り替えられ、圧縮機35、熱交換器43、凝縮器16、開閉弁36、膨張弁62、熱交換器63、及びアキュムレータ34を順に経由して循環する。このとき、流路21の一部、流路23の一部、流路61、及び流路22の一部を含め、空調用熱媒体の循環する経路が、第二の暖房時空調用経路である。この循環経路において、気相の空調用熱媒体は、圧縮機35で圧縮され高圧となり、凝縮器16で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、膨張弁62で膨張され低圧となり、熱交換器63で吸熱することで蒸発気化し、高温になる。
また、冷却用熱媒体は、ポンプ44、三方弁46、熱交換器63、発熱体41、及びリザーバタンク45を順に経由して循環する。このとき、流路51の一部、及び流路53を含め、冷却用熱媒体の循環する経路が、第二の冷却用経路である。この循環経路において、冷却用熱媒体は、熱交換器63で放熱することで低温となり、発熱体41で吸熱することで高温となる。
《作用効果》
次に、第2実施形態の主要な作用効果について説明する。
運転モードが冷房であり、発熱体41の発熱量が予め定めた閾値を超えたときには、膨張弁62を僅かに開放し、空調用熱媒体の一部に膨張弁62、及び熱交換器63を経由させる。さらに、三方弁46の出口を熱交換器63の側に切り替え、熱交換器63、及び発熱体41を順に通過するように、冷却用熱媒体を循環させる。これにより、熱交換器13、及び膨張弁62を順に通過して低温低圧になった空調用熱媒体は、発熱体41を通過して高温になった冷却用熱媒体と熱交換されて高温になる。一方、熱交換器63を通過して低温になった冷却用熱媒体は、発熱体41で高温になる。このように、冷房時にも発熱体41の温度上昇を抑制することができる。
運転モードが暖房であり、発熱体41の発熱量が予め定めた閾値を超えたときには、膨張弁31を閉鎖し、開閉弁32を閉鎖し、開閉弁36を開放し、膨張弁62を僅かに開放し、空調用熱媒体に膨張弁62、及び熱交換器63を経由させる。さらに、三方弁46の出口を熱交換器63の側に切り替え、熱交換器63、及び発熱体41を順に通過するように、冷却用熱媒体を循環させる。これにより、凝縮器16、及び膨張弁62を順に通過して低温低圧になった空調用熱媒体は、発熱体41を通過して高温になった冷却用熱媒体と熱交換されて高温になる。一方、熱交換器63を通過して低温になった冷却用熱媒体は、発熱体41で高温になる。このように、暖房時にも発熱体41の温度上昇を抑制することができる。
その他の作用効果については、前述した第1実施形態と同様である。
以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。
11…車両用空気調和装置、12…室内熱交換ユニット、13…熱交換器、14…送風ファン、15…蒸発器、16…凝縮器、17…エアミックスダンパ、18…ヒータ、21…流路、22…流路、23…流路、24…流路、25…流路、31…膨張弁、32…開閉弁、33…逆止弁、34…アキュムレータ、35…圧縮機、36…開閉弁、37…膨張弁、38…逆止弁、41…発熱体、42…ラジエータ、43…熱交換器、44…ポンプ、45…リザーバタンク、46…三方弁、51…流路、52…流路、53…流路、61…流路、62…膨張弁、63…熱交換器

Claims (7)

  1. 車室内へ空気を供給する供給流路に設けられ、周囲を通過する空気と内部を通過する空調用熱媒体との間で熱交換を行ない、前記空調用熱媒体に吸熱させる蒸発器と、
    前記供給流路のうち前記蒸発器よりも下流側に設けられ、周囲を通過する空気と内部を通過する前記空調用熱媒体との間で熱交換を行ない、前記空調用熱媒体に放熱させる凝縮器と、
    周囲を通過する外気と内部を通過する前記空調用熱媒体との間で熱交換を行なう第一の熱交換器と、
    前記空調用熱媒体を圧縮する圧縮機と、
    冷房時に前記空調用熱媒体を膨張させる冷房時膨張弁と、
    暖房時に前記空調用熱媒体を膨張させる暖房時膨張弁と、
    発熱体を冷却するための冷却用熱媒体が内部を通過し、周囲を通過する外気との間で熱交換を行なう放熱用熱交換器と、
    内部を個別に通過する前記空調用熱媒体と前記冷却用熱媒体との間で熱交換を行なう第二の熱交換器と、
    冷房時に、前記冷房時膨張弁、前記蒸発器、前記圧縮機、前記第二の熱交換器、前記凝縮器、及び前記第一の熱交換器を順に経由するように、前記空調用熱媒体を循環させる第一の冷房時空調用経路と、
    暖房時に、前記圧縮機、前記第二の熱交換器、前記凝縮器、前記暖房時膨張弁、及び前記第一の熱交換器を順に経由するように、前記空調用熱媒体を循環させる第一の暖房時空調用経路と、
    冷房時に、前記第二の熱交換器、及び前記放熱用熱交換器を順に経由するように、前記冷却用熱媒体を循環させる第一の冷却用経路と、を備えることを特徴とする車両用空気調和装置。
  2. 前記第二の熱交換器は、冷房時に、前記蒸発器、及び前記圧縮機を順に通過して高温高圧になった前記空調用熱媒体と、前記放熱用熱交換器を通過して低温になった前記冷却用熱媒体との間で熱交換を行なうことを特徴とする請求項1に記載の車両用空気調和装置。
  3. 前記放熱用熱交換器は、前記第一の熱交換器の風下側に配置されていることを特徴とする請求項1又は2の何れか一項に記載の車両用空気調和装置。
  4. 冷房時に前記空調用熱媒体を膨張させる冷却時膨張弁と、
    内部を個別に通過する前記空調用熱媒体と前記冷却用熱媒体との間で熱交換を行なう第三の熱交換器と、
    冷房時に、前記空調用熱媒体の一部を、前記第一の冷房時空調用経路における前記第一の熱交換器と前記冷房時膨張弁との間から分流し、前記冷却時膨張弁、及び前記第三の熱交換器を順に経由し、前記第一の冷房時空調用経路における前記蒸発器と前記圧縮機との間に合流させる第二の冷房時空調用経路と、
    冷房時に、前記発熱体、及び前記第三の熱交換器を順に経由するように、前記冷却用熱媒体を循環させる第二の冷却用経路と、を備えることを特徴とする請求項1〜3の何れか一項に記載の車両用空気調和装置。
  5. 前記第三の熱交換器は、冷房時に、前記第一の熱交換器、及び前記冷却時膨張弁を順に通過して低圧低温になった前記空調用熱媒体と、前記発熱体を通過して高温になった前記冷却用熱媒体との間で熱交換を行なうことを特徴とする請求項4に記載の車両用空気調和装置。
  6. 暖房時に前記空調用熱媒体を膨張させる冷却時膨張弁と、
    内部を個別に通過する前記空調用熱媒体と前記冷却用熱媒体との間で熱交換を行なう第三の熱交換器と、
    暖房時に、前記暖房時膨張弁、及び前記第一の熱交換器を迂回するために前記第一の暖房時空調用経路から切り替えられ、前記圧縮機、前記第二の熱交換器、前記凝縮器、前記冷却時膨張弁、及び前記第三の熱交換器を順に経由するように、前記空調用熱媒体を循環させる第二の暖房時空調用経路と、
    暖房時に、前記発熱体、及び前記第三の熱交換器を順に経由するように、前記冷却用熱媒体を循環させる第二の冷却用経路と、を備えることを特徴とする請求項1〜3の何れか一項に記載の車両用空気調和装置。
  7. 前記第三の熱交換器は、暖房時に、前記凝縮器、及び前記冷却時膨張弁を順に通過して低圧低温になった前記空調用熱媒体と、前記発熱体を通過して高温になった前記冷却用熱媒体との間で熱交換を行なうことを特徴とする請求項6に記載の車両用空気調和装置。
JP2019107423A 2019-06-07 2019-06-07 車両用空気調和装置 Pending JP2020199849A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019107423A JP2020199849A (ja) 2019-06-07 2019-06-07 車両用空気調和装置
PCT/JP2020/020662 WO2020246305A1 (ja) 2019-06-07 2020-05-26 車両用空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107423A JP2020199849A (ja) 2019-06-07 2019-06-07 車両用空気調和装置

Publications (1)

Publication Number Publication Date
JP2020199849A true JP2020199849A (ja) 2020-12-17

Family

ID=73652861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107423A Pending JP2020199849A (ja) 2019-06-07 2019-06-07 車両用空気調和装置

Country Status (2)

Country Link
JP (1) JP2020199849A (ja)
WO (1) WO2020246305A1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061820B2 (ja) * 1999-10-20 2008-03-19 株式会社デンソー 冷凍サイクル装置
JP4048654B2 (ja) * 1999-07-26 2008-02-20 株式会社デンソー 冷凍サイクル装置
JP5440426B2 (ja) * 2010-07-09 2014-03-12 株式会社日本自動車部品総合研究所 車両用温度調整システム
JP5861495B2 (ja) * 2011-04-18 2016-02-16 株式会社デンソー 車両用温度調整装置、および車載用熱システム
FR2984471B1 (fr) * 2011-12-15 2013-11-29 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'une chaine de traction et d'un habitacle de vehicule
KR101450636B1 (ko) * 2012-06-27 2014-10-14 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
JP2014037181A (ja) * 2012-08-13 2014-02-27 Calsonic Kansei Corp 電動車両用熱管理システム
JP6708099B2 (ja) * 2016-11-15 2020-06-10 株式会社デンソー 冷凍サイクル装置
JP6855281B2 (ja) * 2017-02-28 2021-04-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN108688445A (zh) * 2017-04-12 2018-10-23 丰田自动车株式会社 车辆热管理装置

Also Published As

Publication number Publication date
WO2020246305A1 (ja) 2020-12-10

Similar Documents

Publication Publication Date Title
JP4505510B2 (ja) 車両用空調システム
JP6838518B2 (ja) 冷凍サイクル装置
JP5775661B2 (ja) 自動車用加熱、換気、および/または空調装置
KR20160087001A (ko) 차량용 히트 펌프 시스템
JP7173064B2 (ja) 熱管理システム
JP5517641B2 (ja) 車両の空調装置
JP2007278624A (ja) ヒートポンプサイクル
JP7176405B2 (ja) 温度調整装置
JPH11286211A (ja) 車両用空調装置
US10611212B2 (en) Air conditioner for vehicle
KR20180112681A (ko) 자동차 공기 조화 시스템의 냉각제 분배 장치
JP2009291008A (ja) 電気駆動自動車の熱管理システム
KR102495460B1 (ko) 전기자동차용 냉난방 시스템
JP2014037179A (ja) 電動車両用熱管理システム
JP2009192155A (ja) 車両用空気調和システム
KR20090117055A (ko) 버스용 천정형 공기조화장치
WO2020246305A1 (ja) 車両用空気調和装置
JP7431637B2 (ja) 車両用空気調和装置
WO2020246306A1 (ja) 車両用空気調和装置
WO2020241612A1 (ja) 車両用空気調和装置
WO2021039615A1 (ja) 車両用空気調和装置
KR101127463B1 (ko) 차량용 냉난방 사이클
JP7097345B2 (ja) 車両用空調装置
WO2023090084A1 (ja) 車両用空調装置
WO2023248714A1 (ja) 車両用空調装置