JP2020182364A - 圧電駆動装置の制御方法、圧電駆動装置およびロボット - Google Patents

圧電駆動装置の制御方法、圧電駆動装置およびロボット Download PDF

Info

Publication number
JP2020182364A
JP2020182364A JP2019086364A JP2019086364A JP2020182364A JP 2020182364 A JP2020182364 A JP 2020182364A JP 2019086364 A JP2019086364 A JP 2019086364A JP 2019086364 A JP2019086364 A JP 2019086364A JP 2020182364 A JP2020182364 A JP 2020182364A
Authority
JP
Japan
Prior art keywords
drive
signal
duty ratio
piezoelectric element
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019086364A
Other languages
English (en)
Other versions
JP7318300B2 (ja
Inventor
英俊 斎藤
Hidetoshi Saito
英俊 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019086364A priority Critical patent/JP7318300B2/ja
Priority to US16/857,359 priority patent/US11476403B2/en
Priority to CN202010335167.9A priority patent/CN111865136B/zh
Publication of JP2020182364A publication Critical patent/JP2020182364A/ja
Application granted granted Critical
Publication of JP7318300B2 publication Critical patent/JP7318300B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/145Large signal circuits, e.g. final stages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】低速でも安定して駆動用圧電素子を駆動する圧電駆動装置およびその制御方法、ならびに前記圧電駆動装置を備えるロボットを提供すること。【解決手段】駆動用圧電素子を有し、前記駆動用圧電素子に駆動信号が印加されることにより振動する振動体と、前記振動体の振動により駆動される被駆動部と、目標パルスデューティー比に基づいて生成されるパルス信号を用いて前記駆動信号を生成する駆動信号生成部と、を有する圧電駆動装置の制御方法であって、前記目標パルスデューティー比が所定値未満であるとき、前記駆動信号生成部が生成する前記駆動信号は、間欠的に生成された周期信号であることを特徴とする圧電駆動装置の制御方法。【選択図】図18

Description

本発明は、圧電駆動装置の制御方法、圧電駆動装置およびロボットに関するものである。
特許文献1に記載されている超音波モーターシステムは、超音波振動子と、超音波振動子により駆動される被駆動体と、超音波振動子に駆動電圧を印加する駆動装置と、を有する。また、駆動装置は、パルス信号を出力する信号生成回路と、信号生成回路から出力されたパルス信号から正弦波に近い波形の駆動信号を生成するドライブ回路と、を有し、ドライブ回路から出力された駆動信号が超音波振動子に印加される。
また、超音波モーターシステムは、信号生成回路から出力される目標デューティー比信号のデューティー比を0%〜50%の範囲内で変更することにより駆動信号の振幅を調整し、被駆動部としての被駆動体の駆動速度を制御する。具体的には、目標デューティー比信号のデューティー比を0%側に変化させることにより被駆動体が減速し、反対に、目標デューティー比信号のデューティー比を50%側に変化させることにより被駆動体が加速する。
また、特許文献1に記載されている超音波モーターシステムでは、被駆動体を減速させる場合、目標デューティー比信号のデューティー比を0%側に変化させるとともに、駆動信号の周波数を超音波振動子の共振周波数側へ変化させる。反対に、被駆動体を加速させる場合、目標デューティー比信号のデューティー比を50%側に変化させるとともに、駆動信号の周波数を超音波振動子の共振周波数から遠ざかる側へ変化させる。
特開2010−183816号公報
しかしながら、特許文献1の超音波モーターシステムのような構成の場合、パルス信号から生成した駆動信号により超音波振動子としての駆動用圧電素子を駆動させるため、低速ではパルス信号の波形が崩れてしまい駆動用圧電素子の駆動が不安定となる場合がある。
本発明の適用例に係る圧電駆動装置の制御方法は、
駆動用圧電素子を有し、前記駆動用圧電素子に駆動信号が印加されることにより振動する振動体と、
前記振動体の振動により駆動される被駆動部と、
目標パルスデューティー比に基づいて生成されるパルス信号を用いて前記駆動信号を生成する駆動信号生成部と、
を有する圧電駆動装置の制御方法であって、
前記目標パルスデューティー比が所定値未満であるとき、前記駆動信号生成部が生成する前記駆動信号は、間欠的に生成された周期信号であることを特徴とする。
第1実施形態に係る圧電駆動装置を示す平面図である。 図1に示す圧電アクチュエーターが備える振動体の電極の配置を示す平面図である。 図2のA−A線断面図である。 図2のB−B線断面図である。 図2のC−C線断面図である。 図2のD−D線断面図である。 駆動信号を説明するための図である。 圧電アクチュエーターの駆動状態を説明するための模式平面図である。 圧電アクチュエーターの駆動状態を説明するための模式平面図である。 圧電モーターの電気回路図である。 パルス信号のパルスデューティー比を説明するための図である。 第1PWM波形生成部および第1駆動回路を示す回路図である。 パルスデューティー比が小さ過ぎる場合のパルス信号を示す図である。 間欠的に生成された周期信号を含む駆動信号を示す図である。 目標パルスデューティー比と間欠デューティー比との関係の一例を示すグラフである。 図15に示す目標パルスデューティー比と間欠デューティー比との関係に基づいてローターを駆動するとき、目標駆動信号が示す目標駆動電圧とローターの回転速度との関係の一例を示すグラフである。 目標パルスデューティー比と間欠デューティー比との関係の別の一例を示すグラフである。 実施形態に係る圧電駆動装置の制御方法を説明するためのフローチャートである。 圧電モーターを備えるロボットの構成を示す概略斜視図である。 圧電モーターを備えるプリンターの構成を示す概略斜視図である。
以下、本発明の圧電駆動装置の制御方法、圧電駆動装置およびロボットの好適な実施形態を添付図面に基づいて詳細に説明する。
1.第1実施形態
まず、第1実施形態に係る圧電駆動装置について説明する。
図1は、第1実施形態に係る圧電駆動装置を示す平面図である。図2は、図1に示す圧電アクチュエーターが備える振動体の電極の配置を示す平面図である。図3は、図2のA−A線断面図である。図4は、図2のB−B線断面図である。図5は、図2のC−C線断面図である。図6は、図2のD−D線断面図である。
なお、以下では、説明の便宜上、互いに直交する3軸をX軸、Y軸およびZ軸とする。また、各軸の矢印側を「プラス側」とも言い、矢印と反対側を「マイナス側」とも言う。さらに、X軸のプラス側を「上」、X軸のマイナス側を「下」として説明する。
図1に示すように圧電駆動装置としての圧電モーター1は、被駆動部としてのローター2と、駆動部3と、を有する。ローター2は円盤状をなし、中心軸4まわりに回転可能になっている。駆動部3は、ローター2の外周面5に当接し、ローター2を中心軸4まわりに回転させる。
駆動部3は、圧電アクチュエーター6と、付勢部材7と、制御装置8と、を有する。付勢部材7は、圧電アクチュエーター6をローター2に向けて付勢する。制御装置8は、圧電アクチュエーター6の駆動を制御する。このような圧電モーター1では、圧電アクチュエーター6が屈曲振動する。その屈曲振動がローター2に伝わり、ローター2が中心軸4まわりに回転する。
なお、圧電モーター1の構成は、本実施形態の構成に限定されない。例えば、ローター2の周方向に沿って複数の駆動部3を配置し、複数の駆動部3の駆動によってローター2を回転させてもよい。また、駆動部3は、ローター2の外周面5ではなく、ローター2の主面11に当接していてもよい。主面11は中心軸4の軸方向を向く面である。また、被駆動部は、ローター2のような回転体に限定されず、例えば、直線移動するスライダーであってもよい。
ローター2にはエンコーダー12が設けられており、エンコーダー12によって、ローター2の回転角度および角速度が検出される。エンコーダー12の種類は特に限定されず、例えば、ローター2の回転時にその回転角度を検出するインクリメンタル型のエンコーダーであってもよいし、ローター2の回転の有無に関わらず、ローター2の原点からの絶対位置を検出するアブソリュート型のエンコーダーであってもよい。
エンコーダー12は、ローター2の上面に固定されたスケール13と、スケール13の上側に設けられた光学素子14と、を有する。スケール13は円板状をなし、上面に図示しないパターンが設けられている。一方、光学素子14は、スケール13のパターンに向けて光を照射する発光素子15と、スケール13のパターンを撮像する撮像素子16と、を有する。このような構成のエンコーダー12は、撮像素子16により取得されるパターンの画像をテンプレートマッチングすることにより、ローター2の回転角度、角速度、絶対位置等を検出することができる。ただし、エンコーダー12の構成としては、上記の構成に限定されない。例えば、撮像素子16に代えて、スケール13からの反射光または透過光を受光する受光素子を備えた構成であってもよい。
図1および図2に示すように、圧電アクチュエーター6は、振動体17、支持部18および接続部21を有する。支持部18は、振動体17を支持する。接続部21は、振動体17と支持部18とを接続する。振動体17には、ローター2と当接する凸部22が設けられている。凸部22は、振動体17の振動をローター2に伝達する。振動体17から凸部22が突出している方向が、第1方向19である。また、第2方向20は、第1方向19と直交する方向である。
振動体17は、Y軸およびZ軸を含むY−Z平面に広がる板状をなす。振動体17は、Y軸に沿って伸縮しながら屈曲することによりS字状に屈曲振動する。また、X軸に沿った位置からの平面視で、振動体17は、Y軸と平行な長軸を有する長手形状となっている。振動体17は、Y軸に沿って伸縮振動する。つまり、振動体17は、第1方向19に伸縮する伸縮振動と、第2方向20に屈曲する屈曲振動とを行う。ただし、振動体17の形状としては、その機能を発揮することができる限り、特に限定されない。
振動体17は、駆動用圧電素子としての第1圧電素子23〜第5圧電素子27と、振動体17の振動を検出するための検出用圧電素子としての第6圧電素子28および第7圧電素子31と、を有する。
このうち、第3圧電素子25は、振動体17のZ軸に沿った中央部に配置され、かつ、Y軸と平行な長軸を有する形状をなしている。第3圧電素子25のZ軸プラス側には、第1圧電素子23および第2圧電素子24がY軸に沿って並んで配置されている。第3圧電素子25のZ軸マイナス側には、第4圧電素子26および第5圧電素子27がY軸に沿って並んで配置されている。これらの第1圧電素子23〜第5圧電素子27は、それぞれ、通電によってY軸に沿って伸縮する。また、第1圧電素子23と第5圧電素子27とが互いに電気的に接続されており、第2圧電素子24と第4圧電素子26とが互いに電気的に接続されている。
第3圧電素子25、第1圧電素子23および第5圧電素子27、ならびに、第2圧電素子24および第4圧電素子26、にそれぞれ位相の異なる同周波数の駆動信号を印加し、伸縮のタイミングをずらすことにより、振動体17をY−Z平面においてS字状に屈曲振動させることができる。なお、駆動信号は交番電圧である。
第6圧電素子28は、第3圧電素子25のY軸プラス側に位置している。第7圧電素子31は、第3圧電素子25のY軸マイナス側に位置している。また、第6圧電素子28および第7圧電素子31は、互いに電気的に接続されている。第6圧電素子28および第7圧電素子31は、第1圧電素子23〜第5圧電素子27の駆動に伴う振動体17の振動に応じた外力を受け、受けた外力に応じた信号を出力する。そのため、第6圧電素子28および第7圧電素子31から出力される信号に基づいて、振動体17の振動状態を検知することができる。
接続部21は、振動体17の屈曲振動の節となる部分と支持部18とを接続している。具体的には、接続部21は、振動体17のY軸に沿った中央部と支持部18とを接続している。また、接続部21は、振動体17に対してZ軸マイナス側に位置する第1接続部21aと、Z軸プラス側に位置する第2接続部21bと、を有する。このように、接続部21は、振動体17と支持部18とを接続する。
振動体17、支持部18および接続部21は、図3ないし図6に示すように、2つの圧電素子ユニット32を互いに向かい合わせて貼り合せた構成となっている。各圧電素子ユニット32は、基板33と、基板33上に配置された駆動用の第11圧電素子34〜第15圧電素子38と、検出用の第16圧電素子41および第17圧電素子42と、第11圧電素子34〜第17圧電素子42を覆う保護層43と、を有する。
第11圧電素子34〜第17圧電素子42は、それぞれ、第1電極44、圧電体45および第2電極46を有する。第1電極44は基板33上に配置され、第11圧電素子34〜第17圧電素子42に共通して設けられている。圧電体45は第1電極44上に配置され、第11圧電素子34〜第17圧電素子42に個別に設けられている。第2電極46は圧電体45上に配置され、第11圧電素子34〜第17圧電素子42に個別に設けられている。
2つの圧電素子ユニット32は、第11圧電素子34〜第17圧電素子42を互いに向かい合わせた状態で接着剤47を介して接合されている。また、各圧電素子ユニット32の第1電極44同士は図示しない配線等を介して電気的に接続されている。各圧電素子ユニット32の第2電極46同士は図示しない配線等を介して電気的に接続されている。
以上のようにして、対向配置された2つの第11圧電素子34から1つの第1圧電素子23が構成されている。他の第12圧電素子35〜第17圧電素子42についても同様である。2つの第12圧電素子35から第2圧電素子24が構成されている。2つの第13圧電素子36から第3圧電素子25が構成されている。2つの第14圧電素子37から第4圧電素子26が構成されている。2つの第15圧電素子38から第5圧電素子27が構成されている。2つの第16圧電素子41から第6圧電素子28が構成されている。2つの第17圧電素子42から第7圧電素子31が構成されている。
圧電体45の構成材料としては、特に限定されず、例えば、チタン酸ジルコン酸鉛、チタン酸バリウム、チタン酸鉛、ニオブ酸カリウム、ニオブ酸リチウム、タンタル酸リチウム、タングステン酸ナトリウム、酸化亜鉛、チタン酸バリウムストロンチウム、タンタル酸ストロンチウムビスマス、メタニオブ酸鉛、スカンジウムニオブ酸鉛等の圧電セラミックスを用いることができる。また、圧電体45としては、上述した圧電セラミックスの他にも、ポリフッ化ビニリデン、水晶等を用いてもよい。なお、チタン酸ジルコン酸鉛の略称はPZTである。チタン酸バリウムストロンチウムの略称はBSTである。タンタル酸ストロンチウムビスマスの略称はSBTである。
圧電体45の形成方法としては、特に限定されず、バルク材料から形成してもよいし、ゾル−ゲル法やスパッタリング法を用いて形成してもよい。本実施形態では、圧電体45をゾル−ゲル法を用いて形成している。これにより、例えば、バルク材料から形成する場合と比べて薄い圧電体45が得られ、駆動部3の薄型化を図ることができる。
凸部22は、振動体17の先端部に設けられ、振動体17からY軸プラス側へ突出している。そして、凸部22の先端部は、ローター2の外周面5と接触している。そのため、振動体17の振動は凸部22を介してローター2に伝達される。
図7は、駆動信号を説明するための図である。横軸は時間の推移を示し、時間は図中左側から右側へ推移する。縦軸は、電圧を示し、電圧は図中上側が下側より高い電圧になっている。駆動信号としての第1駆動信号48、駆動信号としての第2駆動信号50、および駆動信号としての第3駆動信号51は、制御装置8が振動体17の圧電素子に印加する駆動信号を示している。第1駆動信号48、第2駆動信号50、および第3駆動信号51は、周波数および振幅が互いに同じであり、位相が互いに異なる波形の周期信号である。一方、後述するように、これらの周期信号は、必要に応じて間欠的に生成され、印加される。また、ピックアップ信号52は、第6圧電素子28および第7圧電素子31から出力される電圧信号である。
図8および図9は、圧電アクチュエーターの駆動状態を説明するための模式平面図である。
第1駆動信号48を第1圧電素子23および第5圧電素子27に印加する。第2駆動信号50を第3圧電素子25に印加する。第3駆動信号51を第2圧電素子24および第4圧電素子26に印加する。このとき、図8に示すように、振動体17がY軸に沿って伸縮振動しつつS字状に屈曲振動する。伸縮振動と屈曲振動とが合成されて、凸部22の先端が第1矢印53で示すように反時計回りに楕円軌道を描く楕円運動をする。このような凸部22の楕円運動によってローター2の外周面5が移動し、ローター2が第2矢印54で示すように時計回りに回転する。また、このような振動体17の振動に対応して、第6圧電素子28および第7圧電素子31からピックアップ信号52が出力される。
一方、第1駆動信号48と第3駆動信号51とを切り替える。すなわち、第1駆動信号48を第2圧電素子24および第4圧電素子26に印加する。第2駆動信号50を第3圧電素子25に印加する。第3駆動信号51を第1圧電素子23および第5圧電素子27に印加する。このとき、図9に示すように、振動体17がY軸に沿って伸縮振動しつつS字状に屈曲振動する。伸縮振動と屈曲振動とが合成されて、凸部22が第3矢印55で示すように時計回りに楕円軌道を描く楕円運動をする。このような凸部22の楕円運動によってローター2の外周面5が移動し、ローター2が第4矢印56で示すように反時計回りに回転する。また、このような振動体17の振動に対応して、第6圧電素子28および第7圧電素子31からピックアップ信号52が出力される。
上述のように、第1圧電素子23、第2圧電素子24、第4圧電素子26および第5圧電素子27の伸縮によって振動体17が屈曲振動し、ローター2を第2矢印54または第4矢印56の方向に送り出す。第1圧電素子23、第2圧電素子24、第4圧電素子26および第5圧電素子27に印加する第1駆動信号48および第3駆動信号51の振幅を制御し、凸部22のZ軸に沿った振幅を制御する。この制御により、ローター2の角速度を制御することができる。
具体的には、第1駆動信号48および第3駆動信号51の振幅を大きくすれば、凸部22のZ軸に沿った振幅が大きくなってローター2の駆動速度が増加し、反対に、第1駆動信号48および第3駆動信号51の振幅を小さくすれば、凸部22のZ軸に沿った振幅が小さくなってローター2の駆動速度が減少する。このようにして、振動体17の振動によりローター2を駆動することができる。
なお、ローター2を少なくとも一方向に回転させることができれば、第1圧電素子23〜第5圧電素子27に印加する駆動信号のパターンは、特に限定されない。
制御装置8は、第1圧電素子23〜第5圧電素子27に交番電圧である第1駆動信号48、第2駆動信号50および第3駆動信号51のうちのいずれかを印加することにより、駆動部3の駆動を制御する。なお、以下では、説明の便宜上、図8に示すように、ローター2を第2矢印54の方向に回転させる場合について代表して説明する。図9に示すように、ローター2を第4矢印56の方向に回転させる場合については、ローター2を第2矢印54の方向に回転させる場合と同様であるため、その説明を省略する。
図10は、圧電モーターの電気回路図である。図11は、パルス信号のパルスデューティー比を説明するための図である。図12は、第1PWM波形生成部および第1駆動回路を示す回路図である。
図10に示すように、制御装置8は電圧制御部57を有する。電圧制御部57は第1駆動信号48、第2駆動信号50および第3駆動信号51を生成する。
電圧制御部57は、第1電圧制御部58、第2電圧制御部61および周波数制御部62を有する。第1電圧制御部58は、第1圧電素子23および第5圧電素子27に第1駆動信号48を印加する。さらに、第1電圧制御部58は、第2圧電素子24および第4圧電素子26に第3駆動信号51を印加して振動体17を屈曲振動させる。第2電圧制御部61は、第3圧電素子25に第2駆動信号50を印加して振動体17をY軸に沿って伸縮振動させる。周波数制御部62は、第1駆動信号48、第2駆動信号50および第3駆動信号51の周波数を制御する。
ローター2が各時刻において目標位置となるように、電圧制御部57はローター2の駆動速度を第1駆動信号48および第3駆動信号51の振幅を変化させて制御する。これにより、圧電モーター1は各時刻におけるローター2の目標位置に対する位置ずれを抑制することができるため、優れた駆動特性を有することができる。
第1電圧制御部58は、位置指令制御部63、位置制御部64、速度制御部65、第1駆動信号生成部66および第2駆動信号生成部67を有する。第1駆動信号生成部66は第1駆動信号48を生成する回路であり、第2駆動信号生成部67は第3駆動信号51を生成する回路である。位置指令制御部63、位置制御部64および速度制御部65は、この順に接続されている。そして、速度制御部65には第1駆動信号生成部66および第2駆動信号生成部67が電気的に接続されている。
第1駆動信号生成部66は、パルスデューティー比信号生成部としての第1駆動電圧制御部68、パルス信号生成部としての第1PWM波形生成部71、および、駆動回路としての第1駆動回路72を有する。第1駆動電圧制御部68は、速度制御部65と電気的に接続されている。なお、PWMは、Pulse Width Modulationである。さらに、第1PWM波形生成部71は、後述する比較部73および出力部74を有する。第1PWM波形生成部71は、第1パルス信号91および第1反転パルス信号96を生成するとともに、必要に応じて第1パルス信号91および第1反転パルス信号96を間欠にする。なお、図12以外の各図では、第1反転パルス信号96についての図示を省略している。同様に、本明細書および各図では、後述する第2パルス信号112の反転信号や第3パルス信号125の反転信号についても説明や図示を省略している。
また、速度制御部65の出力が第1駆動電圧制御部68に入力される。第1駆動電圧制御部68が出力する信号は、第1PWM波形生成部71の比較部73に出力される。また、比較部73が出力する信号は、出力部74に入力される。さらに、出力部74が出力する信号は第1駆動回路72に入力される。そして、第1駆動回路72が出力する第1駆動信号48は第1圧電素子23、第5圧電素子27および第1駆動電圧制御部68に印加される。第1駆動回路72から第1駆動電圧制御部68に出力される回路を第1フィードバック回路75とする。第1フィードバック回路75は、第1駆動信号48を第1駆動電圧制御部68に入力する。
第2駆動信号生成部67は、パルスデューティー比信号生成部としての第2駆動電圧制御部76、パルス信号生成部としての第2PWM波形生成部77、および、駆動回路としての第2駆動回路78を有する。第2駆動電圧制御部76は、速度制御部65と電気的に接続されている。さらに、第2PWM波形生成部77は、図示しない比較部および出力部を有する。第2PWM波形生成部77は、第2パルス信号112を生成するとともに、必要に応じて第2パルス信号112を間欠にする。
また、速度制御部65の出力が第2駆動電圧制御部76に入力される。第2駆動電圧制御部76が出力する信号は、第2PWM波形生成部77の比較部に出力される。比較部が出力する信号は、出力部に出力される。出力部が出力する信号は第2駆動回路78に出力される。第2駆動回路78が出力する第3駆動信号51は第2圧電素子24、第4圧電素子26および第2駆動電圧制御部76に出力される。第2駆動回路78から第2駆動電圧制御部76に出力される回路を第2フィードバック回路83とする。第2フィードバック回路83は、第3駆動信号51を第2駆動電圧制御部76に入力する。
周波数制御部62は、第1PWM波形生成部71、第2PWM波形生成部77および後述する第3PWM波形生成部117と電気的に接続されている。周波数制御部62が出力する信号は、第1PWM波形生成部71、第2PWM波形生成部77および後述する第3PWM波形生成部117に入力される。
第1電圧制御部58は、エンコーダー12から出力される信号を位置制御部64および速度制御部65へ入力してフィードバックしている。そして、各時刻においてローター2の位置が目標位置となるように第1駆動信号48および第3駆動信号51を制御する。
位置指令制御部63は、図示しないホストコンピューター等の指令に基づいて、ローター2の目標位置を示した位置指令84を生成して位置制御部64に出力する。位置制御部64は、この位置指令84とエンコーダー12が検出したローター2の現在位置との偏差に対して比例ゲインを調整する比例制御を行うP制御(Proportional)を実施し、位置指令84に基づく位置となるローター2の目標速度を示した速度指令85を生成する。位置制御部64は生成した速度指令85を速度制御部65に出力する。速度制御部65は、位置制御部64が生成した速度指令85とエンコーダー12が検出した現在のローター2の駆動速度との偏差に対して比例ゲインを調整する比例制御と、積分ゲインを調整する積分制御と、を行うPI制御(Proportional Integral)を実施し、速度指令85に基づく駆動速度となる目標駆動電圧を示した目標駆動信号86を生成する。速度制御部65は生成した目標駆動信号86を第1駆動電圧制御部68および第2駆動電圧制御部76に出力する。
第1駆動電圧制御部68は、この目標駆動信号86と第1駆動回路72が生成した第1駆動信号48との偏差に対して比例ゲインを調整する比例制御と、積分ゲインを調整する積分制御と、を行うPI制御を実施し、目標駆動信号86に基づく振幅の電圧となる目標パルスデューティー比を示す第1目標パルスデューティー比信号87を生成する。目標パルスデューティー比とは、目標駆動信号86が示す振幅の第1駆動信号48を生成するために、第1パルス信号91および第1反転パルス信号96が目指すべきデューティー比のことをいう。このように第1駆動電圧制御部68は、入力される目標駆動信号86に基づいて第1目標パルスデューティー比信号87を生成する。
第1PWM波形生成部71は、この第1目標パルスデューティー比信号87に基づく目標パルスデューティー比を有し、周波数が周波数制御部62で生成された周波数指令88に基づく周波数となる第1パルス信号91および第1反転パルス信号96を生成する。そして、第1駆動回路72は第1パルス信号91および第1反転パルス信号96に基づいて第1駆動信号48を生成する。換言すれば、第1駆動回路72は第1目標パルスデューティー比信号87に基づいて生成される第1パルス信号91および第1反転パルス信号96を用いて第1駆動信号48を生成する。そして、第1駆動回路72は、このようにして生成された第1駆動信号48を第1圧電素子23および第5圧電素子27に印加する。
図11は、パルス信号のパルスデューティー比を説明するための図である。なお、以下の説明では、第1パルス信号91および第1反転パルス信号96のうち、代表的に第1パルス信号91について説明し、第1反転パルス信号96については、第1パルス信号91と同様であるため、その説明を省略する。
図11において、横軸は時間の推移を示し、時間は図中左側から右側へ推移する。縦軸は電圧を示し、図中上側は下側より高い電圧になっている。第1パルス信号91はパルス波であり、電圧が第1パルス電圧92と第2パルス電圧93との間で変化する。第1パルス信号91のパルスデューティー比とは、パルス幅94をパルス期間95で割ったものである。パルスデューティー比は0%〜50%の範囲で変更可能である。第1パルス信号91のパルスデューティー比が0%に近い程、第1駆動回路72で生成される第1駆動信号48の電圧振幅が小さくなり、反対に、第1パルス信号91のパルスデューティー比が50%に近い程、第1駆動回路72で生成される第1駆動信号48の電圧振幅が大きくなる。そのため、第1パルス信号91のパルスデューティー比を0%に近づける程、ローター2の駆動速度が遅くなり、反対に、第1パルス信号91のパルスデューティー比を50%に近づける程、ローター2の駆動速度が速くなる。
第1パルス信号91のパルスデューティー比が小さくなると、第1駆動回路72で生成される第1駆動信号48の波形が正弦波から崩れる。特に、第1パルス信号91のパルスデューティー比が0%に近い領域では、その問題が顕著なものとなる。この一因について、簡単に説明する。
図12は、第1PWM波形生成部および第1駆動回路を示す回路図である。
図12に示すように、第1駆動回路72は、例えば、MOSFET等で構成された第1スイッチング素子72a、第2スイッチング素子72bおよびLC共振回路72cを有する。LC共振回路72cはコイル72dおよびコンデンサー72eを含む。そして、第1スイッチング素子72aには第1パルス信号91が入力される。第2スイッチング素子72bには第1パルス信号91が反転した第1反転パルス信号96が入力される。第1パルス信号91が第2パルス電圧93のときに第1スイッチング素子72aがONとなり、第1パルス信号91が第1パルス電圧92のときに第1スイッチング素子72aがOFFとなる。第1反転パルス信号96が第2パルス電圧93のときに第2スイッチング素子72bがONとなり、第1反転パルス信号96が第1パルス電圧92のときに第2スイッチング素子72bがOFFとなる。
図13は、パルスデューティー比が小さ過ぎる場合のパルス信号を示す図である。なお、以下の説明では、第1パルス信号91および第1反転パルス信号96のうち、代表的に第1パルス信号91について説明し、第1反転パルス信号96については、第1パルス信号91と同様であるため、その説明を省略する。
第1PWM波形生成部71と第1駆動回路72との間の配線には、抵抗成分、容量成分、誘導成分等が含まれる。このため、図13に示すように、第1パルス信号91のパルスデューティー比が0%に近い場合、第1パルス信号91の波形が破線で示す理想的なパルス波から崩れる。そして、第2パルス電圧93のときの電圧値が第1スイッチング素子72aおよび第2スイッチング素子72bのON/OFFを切り替える切替電圧97を超えることができない場合が生じる。このような波形崩れが生じると、第1スイッチング素子72aおよび第2スイッチング素子72bを適正なタイミングでON/OFFすることができず、その結果として、第1駆動信号48の波形が正弦波から崩れた波形になる。
そこで、本実施形態に係る第1PWM波形生成部71は、第1パルス信号91の波形が崩れるのを抑制するため、第1パルス信号91のパルスデューティー比を0%に近づけすぎない構成を有している。具体的には、第1PWM波形生成部71の比較部73には、第1目標パルスデューティー比信号87が示す目標パルスデューティー比についての所定値として屈曲駆動所定値が設定されている。第1目標パルスデューティー比信号87が示す目標パルスデューティー比がこの屈曲駆動所定値未満であるとき、第1PWM波形生成部71の出力部74は、屈曲駆動所定値に固定されたパルスデューティー比の第1パルス信号91および第1反転パルス信号96をそれぞれ間欠信号として出力する。間欠にされた第1パルス信号91および第1反転パルス信号96を第1駆動回路72に入力すると、間欠的に生成された周期信号である第1駆動信号48が出力される。
図14は、間欠的に生成された周期信号PSを含む駆動信号を示す図である。
図14に示すように、第1駆動信号48を間欠にすると、第1駆動信号48の振幅の平均値を下げることができる。図14では、説明の便宜のため、正弦波のような周期信号PSの波形が連続する連続信号48Aと、周期信号PSが間欠になっている間欠信号48Bと、を含む第1駆動信号48について図示している。つまり、図14では、連続信号48Aが途中から間欠信号48Bへと変化している例である。
また、間欠信号48Bは、周期信号PSが出力されている期間である出力期間481と、出力が中断している期間である中断期間482と、を含む間欠周期483を繰り返し含んでいる。このような間欠的に生成された間欠信号48Bを含む第1駆動信号48が第1圧電素子23および第5圧電素子27に印加されることにより、出力期間481における振幅の平均値を間欠周期483全体における振幅とみなすことができる。これにより、第1駆動信号48の見かけの振幅を下げることができ、ローター2の駆動速度を遅くすることができる。
また、このようにして第1駆動信号48を間欠にするとき、第1パルス信号91および第1反転パルス信号96については、前述した屈曲駆動所定値のパルスデューティー比に固定することができる。このため、第1パルス信号91および第1反転パルス信号96のパルスデューティー比が0%に近くなるときに発生する波形の崩れを抑制することができる。つまり、前述した屈曲駆動所定値を、第1パルス信号91および第1反転パルス信号96の波形の崩れが少ないパルスデューティー比の範囲内に設定することにより、波形の崩れを抑制することができる。その結果、低速でも安定して第1圧電素子23および第5圧電素子27を駆動し、駆動速度を遅くした状態でも安定してローター2を回転させることができる。なお、パルスデューティー比を固定する際には、必ずしも屈曲駆動所定値に固定する必要はなく、それよりも高い値に固定するようにしてもよい。
第1PWM波形生成部71の比較部73に設定された目標パルスデューティー比の屈曲駆動所定値は、例えば5%以上30%以下程度にすることができ、好ましくは10%以上20%以下程度にすることができる。これにより、第1パルス信号91および第1反転パルス信号96の波形の崩れを抑制しつつ、間欠的に生成された周期信号である第1駆動信号48によって、第1圧電素子23および第5圧電素子27をより安定的に駆動することができる。なお、本明細書では、間欠的に生成された周期信号で圧電素子を駆動することを「間欠駆動」ともいう。
また、間欠的に生成された周期信号において、出力期間481を間欠周期483で割った値、すなわち間欠周期483に対するオン時間(出力期間481)の比を、間欠デューティー比とする。この間欠デューティー比を変更することにより、第1駆動信号48の見かけの振幅を調整することができる。つまり、第1駆動信号48を間欠信号48Bにするときには、第1駆動信号生成部66では、その間欠デューティー比が目標パルスデューティー比に基づいて切り替わる。これにより、第1駆動信号48を間欠信号48Bとした場合でも、ローター2の駆動速度を調整することができる。このため、低速であっても目的とする駆動速度でローター2を駆動することができる。
目標パルスデューティー比と間欠デューティー比との関係は、特に限定されず、任意に設定可能である。
図15は、目標パルスデューティー比と間欠デューティー比との関係の一例を示すグラフである。図15における横軸は目標パルスデューティー比を示し、縦軸は間欠デューティー比を示す。
図15は、目標パルスデューティー比についての屈曲駆動所定値を16%とした例である。この例では、目標パルスデューティー比が16%未満であるとき、目標パルスデューティー比と間欠デューティー比とが比例関係を満たしている。図15に示す第1相関線103は、目標パルスデューティー比と間欠デューティー比との関係を表す直線である。この第1相関線103が示すように、第1パルス信号91および第1反転パルス信号96のパルスデューティー比を16%に固定した状態で、目標パルスデューティー比に応じて間欠デューティー比を変更することで、目標パルスデューティー比に応じたローター2の駆動速度の制御が可能になる。これにより、第1パルス信号91および第1反転パルス信号96の波形の崩れを抑制しつつ、低速でも安定して第1圧電素子23および第5圧電素子27を駆動することができる。
より具体的には、図15に示す例において、屈曲駆動所定値を16%とした場合、目標パルスデューティー比が16%以上であれば、第1パルス信号91および第1反転パルス信号96の間欠デューティー比を100%とする。これにより、屈曲駆動信号である第1駆動信号48は周期信号が連続した連続信号48Aとなる。
一方、目標パルスデューティー比が16%未満である場合には、第1駆動信号48は間欠信号48Bとなる。
そして、目標パルスデューティー比が15%以上16%未満である場合には、目標パルスデューティー比0%〜16%の16分の15を出力期間481の長さとし、16分の1を中断期間482の長さとすればよい。このため、この場合の間欠デューティー比は、(15/16)×100≒93.8%と求められる。
また、目標パルスデューティー比が14%以上15%未満である場合には、目標パルスデューティー比0%〜16%の16分の14を出力期間481の長さとし、16分の2を中断期間482の長さとすればよい。このため、この場合の間欠デューティー比は、(14/16)×100=87.5%と求められる。
さらに、目標パルスデューティー比が1%以上2%未満である場合には、目標パルスデューティー比0%〜16%の16分の1を出力期間481の長さとし、16分の15を中断期間482の長さとすればよい。このため、この場合の間欠デューティー比は、(1/16)×100≒6.3%と求められる。
そして、目標パルスデューティー比が1%未満である場合には、出力期間481の長さを0とし、屈曲駆動を停止すればよい。
以上のような計算に基づいて、目標パルスデューティー比と間欠デューティー比との関係を求めると、図15に示すグラフが得られる。そして、この関係を直線で近似すると、第1相関線103が得られる。
なお、第1駆動信号48の連続信号48Aの周波数、すなわち前述した周期信号の周波数は、特に限定されないが、一例として480kHzと仮定する。そうすると、間欠周期483の逆数として求められる間欠信号48Bの間欠の周波数は、480/16=30kHzと計算することができる。間欠の周波数がこの程度であれば、人の可聴周波数の上限値とされる20kHzを超えているため、間欠信号48Bによる駆動に伴う騒音問題が発生しにくい。
また、第1駆動信号48が上記のようなパターンで間欠になっているとき、第3駆動信号51についても、第1駆動信号48とは異なるパターンで間欠になっていてもよいが、好ましくは同様のパターンで間欠になっている。
図16は、図15に示す目標パルスデューティー比と間欠デューティー比との関係に基づいてローター2を駆動するとき、目標駆動信号86が示す目標駆動電圧とローター2の回転速度との関係の一例を示すグラフである。図16における横軸は目標駆動電圧を示し、縦軸はローター2の回転速度を示す。
目標パルスデューティー比が16%未満であるとき、間欠信号48Bを第1駆動信号48として用いた場合でも、目標駆動電圧と回転速度との間には、一定の正の相関が得られる。図16に示す第2相関線104は、目標駆動電圧とローター2の回転速度との関係を表している。上述した間欠駆動を用いることにより、図16に示すローター2の回転速度を、目標駆動電圧とほぼ比例させることができる。これにより、目標駆動電圧を適宜変更することにより、ローター2を目的とする速度で駆動することが可能になる。したがって、間欠信号48Bを第1駆動信号48として用いることにより、より広い速度範囲においてローター2の駆動速度を安定的に制御することが可能になる。
図17は、目標パルスデューティー比と間欠デューティー比との関係の別の一例を示すグラフである。図17における横軸は目標パルスデューティー比を示し、縦軸は間欠デューティー比を示す。
図17も、目標パルスデューティー比の前記屈曲駆動所定値を16%とした例である。この例では、目標パルスデューティー比が16%未満であるとき、目標パルスデューティー比と間欠デューティー比とが正の相関関係を満たしているが、目標パルスデューティー比に対する間欠デューティー比の変化率は一定ではなく、変化している。図17に示す第3相関線105は、目標パルスデューティー比と間欠デューティー比との関係を表す曲線である。
より具体的には、図17に示す例において、屈曲駆動所定値を16%とした場合、目標パルスデューティー比が16%以上であれば、第1パルス信号91および第1反転パルス信号96の間欠デューティー比を100%とする。
一方、目標パルスデューティー比が13%以上16%未満である場合には、目標パルスデューティー比0%〜16%の16分の15を出力期間481の長さとし、16分の1を中断期間482の長さとすればよい。このため、この場合の間欠デューティー比は、(15/16)×100≒93.8%と求められる。
また、目標パルスデューティー比が11%以上13%未満である場合には、目標パルスデューティー比0%〜16%の16分の14を出力期間481の長さとし、16分の2を中断期間482の長さとすればよい。このため、この場合の間欠デューティー比は、(14/16)×100=87.5%と求められる。
さらに、目標パルスデューティー比が1%以上2%未満である場合には、目標パルスデューティー比0%〜16%の16分の1を出力期間481の長さとし、16分の15を中断期間482の長さとすればよい。このため、この場合の間欠デューティー比は、(1/16)×100≒6.3%と求められる。
そして、目標パルスデューティー比が1%未満である場合には、出力期間481の長さを0とし、屈曲駆動を停止すればよい。
以上のような計算に基づいて、目標パルスデューティー比と間欠デューティー比との関係を求めると、図17に示すグラフが得られる。そして、この関係を曲線で近似すると、第3相関線105が得られる。
また、第1駆動信号48が上記のような間欠信号48Bを含むとき、第3駆動信号51は、第1駆動信号48とは異なる条件の間欠信号を含んでいてもよいが、好ましくは同様の間欠信号48Bを含む。
以上のように、間欠的に生成された周期信号において、第1駆動信号48の間欠デューティー比、すなわち周期信号の間欠周期483に対する出力期間481(オン時間)の比を求めるときには、第1駆動信号生成部66は、目標パルスデューティー比から換算するための換算則に基づいて間欠デューティー比を求めるようにすればよい。この換算則としては、例えば上記のような第1相関線103や第3相関線105を描くための、目標パルスデューティー比と間欠デューティー比との関係を表す換算表や換算式が挙げられる。第1PWM波形生成部71の出力部74にこのような換算則を設定しておくことにより、入力された目標パルスデューティー比から間欠デューティー比を容易に求めることができる。
また、第1駆動信号生成部66の第1PWM波形生成部71は、複数の換算則を有し、換算則を切り替えるようにしてもよい。例えば、圧電モーター1の使用開始当初は、第1相関線103に基づく換算則を使用し、一定時間使用した後、別の換算則である第3相関線105に基づく換算則に切り替えるようにしてもよい。そして、この切り替え後の換算則に基づいて間欠デューティー比を求めるようにしてもよい。これにより、振動体17や凸部22に経時変化が生じるおそれがある場合、その変化を見越して、変化による影響が顕在化しないように適宜換算則を選択して適用することが可能になる。このため、経時変化が生じている場合でも、ローター2を目的とする速度で駆動することが可能になる。
また、図10に示す第2駆動信号生成部67は、第1駆動信号生成部66と同様の構成である。したがって、第2駆動信号生成部67については簡単に説明する。第2駆動電圧制御部76は、目標駆動信号86と第2駆動回路78が生成した第3駆動信号51とに基づくPI制御を実施する。そして、第3駆動信号51の電圧振幅が、目標駆動信号86に基づく電圧となる目標パルスデューティー比を示す第2目標パルスデューティー比信号111を生成する。つまり、第2駆動電圧制御部76は、入力される目標駆動信号86に基づいて第2目標パルスデューティー比信号111を生成する。
第2PWM波形生成部77は、この第2目標パルスデューティー比信号111に基づく目標パルスデューティー比を有し、周波数が周波数制御部62で生成された周波数指令88に基づく周波数となる第2パルス信号112を生成する。そして、第2駆動回路78は第2パルス信号112に基づいて第3駆動信号51を生成する。換言すれば、第2駆動回路78は第2目標パルスデューティー比信号111に基づいて生成される第2パルス信号112を用いて第3駆動信号51を生成する。そして、第2駆動回路78は第3駆動信号51を第2圧電素子24および第4圧電素子26に印加する。
ここで、第2PWM波形生成部77の比較部にも、第1PWM波形生成部71の比較部73と同様、第2目標パルスデューティー比信号111が示す目標パルスデューティー比についての屈曲駆動所定値が設定されている。第2目標パルスデューティー比信号111が示す目標パルスデューティー比がこの屈曲駆動所定値未満であるとき、第2PWM波形生成部77の出力部は、屈曲駆動所定値に固定されたパルスデューティー比の第2パルス信号112を出力する。それに加え、出力部は、この第2パルス信号112を間欠にして出力する。このようにして間欠にされた第2パルス信号112を第2駆動回路78に入力すると、間欠にされた第3駆動信号51が出力される。
このようにして間欠にした第3駆動信号51を用いることにより、低速でも安定して第2圧電素子24および第4圧電素子26を駆動し、駆動速度を遅くした状態でも安定してローター2を回転させることができる。
第2PWM波形生成部77の比較部に設定された目標パルスデューティー比の屈曲駆動所定値は、第1PWM波形生成部71の比較部73に設定された目標パルスデューティー比の前記屈曲駆動所定値と異なっていてもよいが、同じであるのが好ましい。これにより、第3駆動信号51は、前述した第1駆動信号48と同じタイミングで連続信号から間欠信号に変更されたり、あるいは、間欠信号から連続信号に変更されたりすることになる。その結果、振動体17を安定して屈曲振動させることができる。
なお、第2駆動信号生成部76は、第3駆動信号51の間欠デューティー比を、第1駆動信号48の間欠デューティー比と異ならせてもよいが、同じにするのが好ましい。
その他、第2PWM波形生成部77については、第1PWM波形生成部71と同様である。
第2電圧制御部61は、PU電圧制御部114および第3駆動信号生成部115を有する。なお、PUとは、Pickupのことを指す。第3駆動信号生成部115は、第3圧電素子25に印加する第2駆動信号50を生成する。第3駆動信号生成部115は、第3駆動電圧制御部116と、第3PWM波形生成部117と、駆動回路としての第3駆動回路118と、を有する。第3PWM波形生成部117は、図示しない比較部および出力部を有する。第3PWM波形生成部117は、第3パルス信号125を生成するとともに、必要に応じて第3パルス信号125を間欠にする。さらに、第3駆動信号生成部115は、第2駆動信号50を第3駆動回路118から第3駆動電圧制御部116に入力する第3フィードバック回路119を有する。
第2電圧制御部61は、第6圧電素子28および第7圧電素子31から出力されるピックアップ信号52をPU電圧制御部114にフィードバックする。そして、第2電圧制御部61は、ピックアップ信号52が目標値となるように第2駆動信号50を制御する。ピックアップ信号52を目標値に維持することにより、振動体17がY軸に沿って安定して振動する。このため、圧電モーター1は安定した駆動が可能になる。
PU電圧制御部114には、図示しないホストコンピューターからピックアップ信号52の目標振幅値である振幅指令とピックアップ信号52とが入力される。PU電圧制御部114は、振幅指令とピックアップ信号52との偏差に対して比例ゲインを調整する比例制御と、積分ゲインを調整する積分制御と、を実施するPI制御とを行う。そして、PU電圧制御部114は、ピックアップ信号52が振幅指令に基づく振幅となるように電圧指令123を生成する。
第3駆動信号生成部115は、第1駆動信号生成部66および第2駆動信号生成部67と同様の構成である。したがって、第3駆動信号生成部115については簡単に説明する。
第3駆動電圧制御部116は、電圧指令123と第3駆動回路118が生成した第2駆動信号50との偏差に対して比例ゲインを調整する比例制御と、積分ゲインを調整する積分制御と、を行うPI制御を実施する。そして、第3駆動電圧制御部116は、第2駆動信号50の電圧振幅が電圧指令123に基づく電圧となる目標パルスデューティー比を示した第3目標パルスデューティー比信号124を生成する。第3駆動電圧制御部116は、第3目標パルスデューティー比信号124を第3PWM波形生成部117に伝達する。
第3PWM波形生成部117は、この第3目標パルスデューティー比信号124に基づく目標パルスデューティー比を有し、周波数が周波数制御部62で生成された周波数指令88に基づく周波数となる第3パルス信号125を生成する。そして、第3駆動回路118は第3パルス信号125に基づいて第2駆動信号50を生成する。第3駆動回路118は第2駆動信号50を第3圧電素子25に印加する。
ここで、第3PWM波形生成部117の比較部にも、第1PWM波形生成部71の比較部73と同様、第3目標パルスデューティー比信号124が示す目標パルスデューティー比についての所定値として伸縮駆動所定値が設定されている。第3目標パルスデューティー比信号124が示す目標パルスデューティー比がこの伸縮駆動所定値未満であるとき、第3PWM波形生成部117の出力部は、伸縮駆動所定値に固定されたパルスデューティー比の第3パルス信号125を出力する。それに加え、出力部は、この第3パルス信号125を間欠にして出力する。このようにして間欠にされた第3パルス信号125を第3駆動回路118に入力すると、間欠的に生成された周期信号である第2駆動信号50が出力される。
このようにして間欠信号である第2駆動信号50を用いることにより、低速でも安定して第3圧電素子25を駆動し、駆動速度を遅くした状態でも安定してローター2を回転させることができる。
第3PWM波形生成部117の比較部に設定された目標パルスデューティー比の前記伸縮駆動所定値は、第1PWM波形生成部71の比較部73や第2PWM波形生成部77の比較部に設定された屈曲駆動所定値と同じであってもよいが、両者を異ならせるのが好ましい。
具体的には、振動体17は、前述したように被駆動部であるローター2に当接する凸部22を有している。駆動用圧電素子としての第1圧電素子23〜第5圧電素子27は、振動体17を伸縮振動させる伸縮圧電素子としての第3圧電素子25、および、振動体17を屈曲振動させる屈曲圧電素子としての第1圧電素子23、第2圧電素子24、第4圧電素子26および第5圧電素子27と、を含んでいる。また、伸縮駆動信号である第2駆動信号50は、第3圧電素子25に印加され、屈曲駆動信号である第1駆動信号48は、第1圧電素子23および第5圧電素子27に印加され、屈曲駆動信号である第3駆動信号51は、第2圧電素子24および第4圧電素子26に印加される。
このとき、第3駆動信号生成部116は、第2駆動信号50の間欠デューティー比と、第1駆動信号48および第3駆動信号51の各間欠デューティー比とを、互いに同じにしてもよいが、異ならせることが好ましい。伸縮駆動と屈曲駆動とでは振動特性が異なることから、伸縮駆動所定値と屈曲駆動所定値とについても異ならせることにより、振動体17の振動をより最適化することができる。
具体的には、伸縮駆動信号である第2駆動信号50の生成に用いる目標パルスデューティー比を伸縮駆動目標パルスデューティー比とし、屈曲駆動信号である第1駆動信号48および第3駆動信号51の生成に用いる目標パルスデューティー比を屈曲駆動目標パルスデューティー比としたとき、第1駆動信号生成部66および第2駆動信号生成部67は、屈曲駆動目標パルスデューティー比についての所定値である屈曲駆動所定値を、伸縮駆動目標パルスデューティー比についての所定値である伸縮駆動所定値より大きくすることが好ましい。伸縮駆動は、屈曲駆動に比べて、安定駆動可能な目標パルスデューティー比の範囲が広い。このため、屈曲駆動所定値が伸縮駆動所定値より大きいことにより、伸縮駆動については、屈曲駆動に比べて、目標パルスデューティー比のより広い範囲において連続駆動させることができる。これにより、安定した伸縮駆動を維持しやすくなる。
さらに、第3駆動信号生成部116は、伸縮駆動所定値が0であるのが好ましい。つまり、伸縮駆動信号である第2駆動信号50については、間欠にしないのが好ましい。伸縮駆動信号については、屈曲駆動信号とは異なり、ローター2を低速で駆動する場合であっても、目標パルスデューティー比を0%近づけるほど小さくする必要がない。このため、必要性が低い間欠駆動を避け、ローター2を安定して駆動することができる。
その他、第3PWM波形生成部117の構成については、第1PWM波形生成部71の構成および第2PWM波形生成部77の構成と同様である。
周波数制御部62には、第3駆動回路118で生成された第2駆動信号50とピックアップ信号52とが入力される。周波数制御部62は、第2駆動信号50とピックアップ信号52との位相差を求め、予め設定されている目標位相差と実際の位相差との偏差に対して比例ゲインを調整する比例制御と、積分ゲインを調整する積分制御と、を実施するPI制御を行う。そして、周波数制御部62は実際の位相差が目標位相差に基づく位相差となるように周波数指令88を生成する。周波数制御部62で生成された周波数指令88は第1PWM波形生成部71、第2PWM波形生成部77および第3PWM波形生成部117に送信される。第1PWM波形生成部71、第2PWM波形生成部77および第3PWM波形生成部117は、それぞれ周波数指令88に基づく周波数の第1パルス信号91、第2パルス信号112および第3パルス信号125を生成する。第1パルス信号91、第2パルス信号112および第3パルス信号125は、それぞれ第1駆動回路72、第2駆動回路78および第3駆動回路118に入力される。そして、上述のように、第3駆動回路118は、振動体17に伸縮振動をさせる第2駆動信号50を生成する。第1駆動回路72および第2駆動回路78は、振動体17に屈曲振動をさせる第1駆動信号48および第3駆動信号51を生成する。
振動体17は、伸縮振動と屈曲振動とを組み合わせて、ローター2を移動させる。そして、第3駆動回路118は、振動体17に伸縮振動させる第2駆動信号50を生成する。第1駆動回路72および第2駆動回路78は、振動体17に屈曲振動させる第1駆動信号48および第3駆動信号51を生成する。
以上のように、本実施形態に係る圧電駆動装置である圧電モーター1は、駆動用圧電素子である第1圧電素子23および第5圧電素子27に第1駆動信号48が印加されることにより振動する振動体17と、振動体17の振動により駆動される被駆動部であるローター2と、第1圧電素子23および第5圧電素子27に第1駆動信号48を印加する第1電圧制御部58と、を有する。また、第1電圧制御部58は、入力される目標駆動信号86に基づいて第1目標パルスデューティー比信号87を生成するパルスデューティー比信号生成部である第1駆動電圧制御部68と、第1目標パルスデューティー比信号87が示す目標パルスデューティー比の第1パルス信号91を生成するパルス信号生成部である第1PWM波形生成部71と、第1パルス信号91を用いて第1駆動信号48を生成する第1駆動回路72と、を備える。さらに、第1PWM波形生成部71は、第1目標パルスデューティー比信号87が示す目標パルスデューティー比と屈曲駆動所定値とを比較して比較結果を出力する比較部73と、比較結果に基づいて第1パルス信号91を間欠にして出力する出力部74と、を備える。また、第1駆動回路72は、間欠にして出力された第1パルス信号91を用いて、間欠的に生成された周期信号を第1駆動信号48として生成する。
このような圧電モーター1によれば、第1パルス信号91を間欠にすることで、第1駆動信号48も間欠信号として生成することができ、第1駆動信号48の見かけの振幅を下げることができる。これにより、低速でも安定して第1圧電素子23および第5圧電素子27を駆動することができる。その結果、駆動速度が小さい場合でも、ローター2を安定して駆動することができる。また、第1パルス信号91のパルスデューティー比を必要以上に小さくする必要がなくなる。このため、第1パルス信号91の波形が崩れるのを抑制することができ、第1駆動信号48の波形が崩れるのを抑制することができる。かかる観点でも、第1圧電素子23および第5圧電素子27を安定して駆動することができる。
そして、目標パルスデューティー比が屈曲駆動所定値未満であるという結果が比較結果に含まれるとき、出力部74は、第1パルス信号91を間欠にして出力する。これにより、目標パルスデューティー比が小さい場合でも、第1パルス信号91のパルスデューティー比を必要以上に小さくすることなく、第1駆動信号48の見かけの振幅を下げることができる。その結果、第1駆動信号48の波形が崩れるのを抑制し、低速でも安定して第1圧電素子23および第5圧電素子27を駆動することができる。
次に、上述した圧電モーター1の制御方法について、図18にて説明する。
第1PWM波形生成部71、第2PWM波形生成部77および第3PWM波形生成部117の制御方法は、いずれも略同じである。したがって、以下では、第1PWM波形生成部71の制御方法について説明し、第2PWM波形生成部77および第3PWM波形生成部117の制御方法については、その説明を省略する。
図18は、実施形態に係る圧電駆動装置の制御方法を説明するためのフローチャートである。
図18に示す圧電駆動装置の制御方法は、速度制御部65により、目標駆動電圧を設定する目標駆動電圧設定工程と、第1駆動電圧制御部68により、目標パルスデューティー比を示す目標パルスデューティー比信号87を生成する目標パルスデューティー比信号生成工程と、目標パルスデューティー比と屈曲駆動所定値とを比較する目標パルスデューティー比比較工程と、目標パルスデューティー比および比較結果に基づき、第1パルス信号91を生成する間欠パルス信号生成工程および連続パルス信号生成工程と、第1パルス信号91に基づいて第1駆動信号48を生成し、出力する間欠駆動信号出力工程および連続駆動信号出力工程と、を有する。
図18のステップS1は、目標駆動電圧設定工程である。この工程では、速度制御部65において、ローター2の目標駆動速度に対応した目標駆動電圧を生成し、さらに、この目標駆動電圧に対応する目標駆動信号86を生成して、第1駆動電圧制御部68に出力する。
図18のステップS2は、目標パルスデューティー比信号生成工程である。この工程では、目標駆動信号86が示す目標駆動電圧に基づいて、第1駆動電圧制御部68により、目標パルスデューティー比を算出する。そして、目標パルスデューティー比を示す第1目標パルスデューティー比信号87を生成する。第1駆動電圧制御部68は、生成した第1目標パルスデューティー比信号87を第1PWM波形生成部71に出力する。
図18のステップS3は、目標パルスデューティー比比較工程である。この工程では、比較部73により、第1目標パルスデューティー比信号87が示す目標パルスデューティー比と、間欠駆動を行うか否かのしきい値となる屈曲駆動所定値と、を比較する。具体的には、目標パルスデューティー比が屈曲駆動所定値未満であるか否かを判断する。そして、屈曲駆動所定値以上であった場合は、出力部74から出力する第1パルス信号91を間欠にしない。一方、屈曲駆動所定値未満であった場合には、出力部74から出力する第1パルス信号91を間欠にする。そして、比較結果を含む比較結果信号89を出力部74に出力する。
図18のステップS41は、間欠パルス信号生成工程である。比較部73において目標パルスデューティー比が屈曲駆動所定値未満であった場合、第1目標パルスデューティー比信号87に基づき、出力部74により、第1パルス信号91を生成する。また、比較結果信号89に基づき、出力部74により、第1パルス信号91の間欠デューティー比を設定する。これにより、この間欠デューティー比で間欠にした波形の第1パルス信号91を生成する。
なお、第1パルス信号91を間欠にする場合には、目標パルスデューティー比と間欠デューティー比との関係に基づいて、まず、第1パルス信号91の間欠デューティー比を設定し、それに基づいて第1駆動信号48の間欠デューティー比が調整される。
図18のステップS51は、間欠駆動信号出力工程である。出力部74において間欠にした波形の第1パルス信号91が生成され、出力されると、第1駆動回路72において間欠にした波形の第1駆動信号48が生成される。そして、この第1駆動信号48を第1圧電素子23および第5圧電素子27に出力する。
図18のステップS42は、連続パルス信号生成工程である。比較部73において目標パルスデューティー比が屈曲駆動所定値以上であった場合、第1目標パルスデューティー比信号87に基づき、出力部74により、第1パルス信号91を生成する。また、比較結果信号89に基づき、出力部74により、第1パルス信号91を連続信号とする。これにより、連続した波形の第1パルス信号91を生成する。
図18のステップS52は、連続駆動信号出力工程である。出力部74において連続した波形の第1パルス信号91が生成され、出力されると、第1駆動回路72において連続した波形の第1駆動信号48が生成される。そして、この第1駆動信号48を第1圧電素子23および第5圧電素子27に出力する。
以上のように、本実施形態に係る圧電駆動装置である圧電モーター1の制御方法は、駆動用圧電素子である第1圧電素子23および第5圧電素子27に第1駆動信号48が印加されることにより振動する振動体17と、振動体17の振動により駆動される被駆動部であるローター2と、第1目標パルスデューティー比信号87に基づいて生成される第1パルス信号91を用いて第1駆動信号48を生成する第1駆動信号生成部66と、を有する方法である。そして、この方法では、第1目標パルスデューティー比信号87が示す目標パルスデューティー比が屈曲駆動所定値未満であるとき、第1駆動信号生成部66が生成する第1駆動信号48は、間欠的に生成された周期信号である。
このような制御方法によれば、第1駆動信号48を間欠にすることで、第1駆動信号48の見かけの振幅を下げることができる。これにより、低速でも安定して第1圧電素子23および第5圧電素子27を駆動することができる。その結果、駆動速度が小さい場合でも、ローター2を安定して駆動することができる。また、第1駆動信号48を間欠にするときには、第1パルス信号91についても間欠にする必要がある。そうすると、第1パルス信号91のパルスデューティー比を必要以上に小さくする必要がなくなる。このため、第1パルス信号91の波形が崩れるのを抑制することができ、第1駆動信号48の波形が崩れるのを抑制することができる。かかる観点でも、第1圧電素子23および第5圧電素子27を安定して駆動することができる。
なお、屈曲駆動所定値は、第1駆動信号48の振幅に対応する目標駆動電圧を高くする過程と、目標駆動電圧を低くする過程とで、異ならせるようにしてもよい。具体的には、第1駆動信号48が連続信号である状態、すなわち間欠ではない状態から、目標パルスデューティー比を小さくする過程で間欠信号である状態に切り替えるとき、そのしきい値である屈曲駆動所定値を「第1屈曲駆動所定値(第1所定値)」とする。一方、第1駆動信号48が間欠信号である状態から、目標パルスデューティー比を大きくする過程で連続信号である状態に切り替えるとき、そのしきい値である屈曲駆動所定値を「第2屈曲駆動所定値(第2所定値)」とする。このとき、第1屈曲駆動所定値と第2屈曲駆動所定値とが同じであってもよいが、本実施形態に係る第1駆動信号生成部66は、第1屈曲駆動所定値と第2屈曲駆動所定値とを異ならせる。
後者の場合、目標パルスデューティー比を小さくする過程と大きくする過程とで、振動特性が異なる振動体17であっても、その振動特性に応じて第1駆動信号48における連続信号と間欠信号とを切り替えるタイミングを最適化することができる。このため、低速でローター2を駆動する場合でも、第1圧電素子23および第5圧電素子27を安定して駆動することができる。
2.第2実施形態
次に、圧電モーターを備えるロボットの実施形態について説明する。
図19は、圧電モーターを備えるロボットの構成を示す概略斜視図である。
図19に示すロボット171は、精密機器やこれを構成する部品の給材、除材、搬送および組立等の作業を行うことができる。ロボット171は、6軸ロボットであり、床や天井に固定されるベース172と、ベース172に回動自在に連結された第1アーム173と、第1アーム173に回動自在に連結された第2アーム174と、第2アーム174に回動自在に連結された第3アーム175と、を有する。さらに、ロボット171は、第3アーム175に回動自在に連結された第4アーム176と、第4アーム176に回動自在に連結された第5アーム177と、第5アーム177に回動自在に連結された第6アーム178と、これら第1アーム173〜第6アーム178の駆動を制御する制御装置181と、を有する。
また、第6アーム178にはハンド接続部が設けられており、ハンド接続部にはロボット171に実行させる作業に応じたエンドエフェクター182が装着される。また、各関節部のうちの全部または一部には圧電駆動装置としての圧電モーター180が搭載されており、この圧電モーター180の駆動によって各第1アーム173〜第6アーム178が回動する。圧電モーター180は、エンドエフェクター182に搭載され、エンドエフェクター182の駆動に用いられてもよい。そして、この圧電モーター180に、前述した圧電モーター1が用いられている。
制御装置181は、コンピューターで構成され、例えば、CPU(Central Processing Unit)、メモリー、インターフェイス等を有する。そして、プロセッサーが、メモリーに格納されている所定のプログラムを実行することで、ロボット171の各部の駆動を制御する。なお、前記プログラムは、インターフェイスを介して外部のサーバーからダウンロードしてもよい。また、制御装置181の構成の全部または一部は、ロボット171の外部に設けられ、ローカルエリアネットワーク等の通信網を介して接続された構成となっていてもよい。
このように、ロボット171は、少なくとも、第1アーム173と、関節部において第1アーム173と接続している第2アーム174と、関節部に配置されている前述した圧電モーター1と、を有する。
すなわち、ロボット171は、駆動用圧電素子である第1圧電素子23および第5圧電素子27に第1駆動信号48が印加されることにより振動する振動体17と、振動体17の振動により駆動される被駆動部であるローター2と、第1圧電素子23および第5圧電素子27に第1駆動信号48を印加する第1電圧制御部58と、を有する圧電モーター1を有している。そして、第1電圧制御部58は、入力される目標駆動信号に基づいて第1目標パルスデューティー比信号87を生成するパルスデューティー比信号生成部である第1駆動電圧制御部68と、第1目標パルスデューティー比信号87が示す目標パルスデューティー比の第1パルス信号91を生成するパルス信号生成部である第1PWM波形生成部71と、第1パルス信号91を用いて第1駆動信号48を生成する第1駆動回路72と、を備える。さらに、第1PWM波形生成部71は、第1目標パルスデューティー比信号87が示す目標パルスデューティー比と屈曲駆動所定値とを比較して比較結果を出力する比較部73と、比較結果に基づいて第1パルス信号91を間欠にして出力する出力部74と、を備える。また、第1駆動回路72は、間欠にして出力された第1パルス信号91を用いて、間欠的に生成された周期信号を第1駆動信号48として生成する。すなわち、第1駆動信号生成部66が生成する第1駆動信号48は、間欠的に生成された周期信号である。
このようなロボット171では、低速でも安定して駆動可能な圧電モーター1を有するため、優れた駆動特性を有する。
3.第3実施形態
次に、圧電モーターを備えるプリンターの実施形態について説明する。
図20は、圧電モーターを備えるプリンターの構成を示す概略斜視図である。
図20に示すプリンター191は、装置本体192と、装置本体192の内部に設けられている印刷機構193、給紙機構194及び制御装置195と、を備えている。また、装置本体192には、記録用紙196を設置するトレイ197と、記録用紙196を排出する排紙口198と、液晶ディスプレイ等の操作パネル201とが設けられている。
印刷機構193は、ヘッドユニット202と、キャリッジモーター203と、キャリッジモーター203の駆動力によりヘッドユニット202を往復動させる往復動機構204と、を備えている。また、ヘッドユニット202は、インクジェット式記録ヘッドであるヘッド202aと、ヘッド202aにインクを供給するインクカートリッジ202bと、ヘッド202aおよびインクカートリッジ202bを搭載したキャリッジ202cと、を有する。
往復動機構204は、キャリッジ202cを往復移動可能に支持しているキャリッジガイド軸204aと、キャリッジモーター203の駆動力によりキャリッジ202cをキャリッジガイド軸204a上で移動させるタイミングベルト204bと、を有する。また、給紙機構194は、互いに圧接している従動ローラー205および駆動ローラー206と、駆動ローラー206を駆動する圧電駆動装置としての圧電モーター207と、を有する。そして、この圧電モーター207に、前述した圧電モーター1が用いられている。
このようなプリンター191では、給紙機構194が記録用紙196を一枚ずつヘッドユニット202の下部近傍へ間欠送りする。このとき、ヘッドユニット202が記録用紙196の送り方向とほぼ直交する方向に往復移動して、記録用紙196への印刷が行なわれる。
制御装置195は、コンピューターで構成され、例えば、CPU、メモリー、インターフェイス等を有する。そして、プロセッサーが、メモリーに格納されている所定のプログラムを実行することで、プリンター191の各部の駆動を制御する。このような制御は、例えば、インターフェイスを介してパーソナルコンピューター等のホストコンピューターから入力された印刷データに基づいて実行される。なお、前記プログラムは、インターフェイスを介して外部のサーバーからダウンロードしてもよい。また、制御装置195の構成の全部または一部は、プリンター191の外部に設けられ、ローカルエリアネットワーク等の通信網を介して接続された構成となっていてもよい。
このように、プリンター191は、前述した圧電モーター1を有する。
すなわち、プリンター191は、駆動用圧電素子である第1圧電素子23および第5圧電素子27に第1駆動信号48が印加されることにより振動する振動体17と、振動体17の振動により駆動される被駆動部であるローター2と、第1圧電素子23および第5圧電素子27に第1駆動信号48を印加する第1電圧制御部58と、を有する圧電モーター1を有している。そして、第1電圧制御部58は、入力される目標駆動信号に基づいて第1目標パルスデューティー比信号87を生成するパルスデューティー比信号生成部である第1駆動電圧制御部68と、第1目標パルスデューティー比信号87が示す目標パルスデューティー比の第1パルス信号91を生成するパルス信号生成部である第1PWM波形生成部71と、第1パルス信号91を用いて第1駆動信号48を生成する第1駆動回路72と、を備える。さらに、第1PWM波形生成部71は、第1目標パルスデューティー比信号87が示す目標パルスデューティー比と屈曲駆動所定値とを比較して比較結果を出力する比較部73と、比較結果に基づいて第1パルス信号91を間欠にして出力する出力部74と、を備える。また、第1駆動回路72は、間欠にして出力された第1パルス信号91を用いて、間欠的に生成された周期信号を第1駆動信号48として生成する。
このようなプリンター191では、低速でも安定して駆動可能な圧電モーター1を有するため、優れた駆動特性を有する。
なお、本実施形態では、圧電モーター207が給紙用の駆動ローラー206を駆動しているが、この他にも、例えば、キャリッジ202cを駆動してもよい。
以上、本発明の圧電駆動装置の制御方法、圧電駆動装置およびロボットを図示の実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、前記実施形態の各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、前記実施形態において、他の任意の構成物が付加されていてもよい。さらに、前記実施形態に係る圧電駆動装置の制御方法には、任意の目的の工程が付加されていてもよい。また、各実施形態を適宜組み合わせるようにしてもよい。
1…圧電モーター、2…ローター、3…駆動部、4…中心軸、5…外周面、6…圧電アクチュエーター、7…付勢部材、8…制御装置、11…主面、12…エンコーダー、13…スケール、14…光学素子、15…発光素子、16…撮像素子、17…振動体、18…支持部、19…第1方向、20…第2方向、21…接続部、21a…第1接続部、21b…第2接続部、22…凸部、23…第1圧電素子、24…第2圧電素子、25…第3圧電素子、26…第4圧電素子、27…第5圧電素子、28…第6圧電素子、31…第7圧電素子、32…圧電素子ユニット、33…基板、34…第11圧電素子、35…第12圧電素子、36…第13圧電素子、37…第14圧電素子、38…第15圧電素子、41…第16圧電素子、42…第17圧電素子、43…保護層、44…第1電極、45…圧電体、46…第2電極、47…接着剤、48…第1駆動信号、48A…連続信号、48B…間欠信号、50…第2駆動信号、51…第3駆動信号、52…ピックアップ信号、53…第1矢印、54…第2矢印、55…第3矢印、56…第4矢印、57…電圧制御部、58…第1電圧制御部、61…第2電圧制御部、62…周波数制御部、63…位置指令制御部、64…位置制御部、65…速度制御部、66…第1駆動信号生成部、67…第2駆動信号生成部、68…第1駆動電圧制御部、71…第1PWM波形生成部、72…第1駆動回路、72a…第1スイッチング素子、72b…第2スイッチング素子、72c…LC共振回路、72d…コイル、72e…コンデンサー、73…比較部、74…出力部、75…第1フィードバック回路、76…第2駆動電圧制御部、77…第2PWM波形生成部、78…第2駆動回路、83…第2フィードバック回路、84…位置指令、85…速度指令、86…目標駆動信号、87…第1目標パルスデューティー比信号、88…周波数指令、89…比較結果信号、91…第1パルス信号、92…第1パルス電圧、93…第2パルス電圧、94…パルス幅、95…パルス期間、96…第1反転パルス信号、97…切替電圧、103…第1相関線、104…第2相関線、105…第3相関線、111…第2目標パルスデューティー比信号、112…第2パルス信号、114…PU電圧制御部、115…第3駆動信号生成部、116…第3駆動電圧制御部、117…第3PWM波形生成部、118…第3駆動回路、119…第3フィードバック回路、123…電圧指令、124…第3目標パルスデューティー比信号、125…第3パルス信号、171…ロボット、172…ベース、173…第1アーム、174…第2アーム、175…第3アーム、176…第4アーム、177…第5アーム、178…第6アーム、180…圧電モーター、181…制御装置、182…エンドエフェクター、191…プリンター、192…装置本体、193…印刷機構、194…給紙機構、195…制御装置、196…記録用紙、197…トレイ、198…排紙口、201…操作パネル、202…ヘッドユニット、202a…ヘッド、202b…インクカートリッジ、202c…キャリッジ、203…キャリッジモーター、204…往復動機構、204a…キャリッジガイド軸、204b…タイミングベルト、205…従動ローラー、206…駆動ローラー、207…圧電モーター、481…出力期間、482…中断期間、483…間欠周期、S1…ステップ、S2…ステップ、S3…ステップ、S41…ステップ、S42…ステップ、S51…ステップ、S52…ステップ

Claims (10)

  1. 駆動用圧電素子を有し、前記駆動用圧電素子に駆動信号が印加されることにより振動する振動体と、
    前記振動体の振動により駆動される被駆動部と、
    目標パルスデューティー比に基づいて生成されるパルス信号を用いて前記駆動信号を生成する駆動信号生成部と、
    を有する圧電駆動装置の制御方法であって、
    前記目標パルスデューティー比が所定値未満であるとき、前記駆動信号生成部が生成する前記駆動信号は、間欠的に生成された周期信号であることを特徴とする圧電駆動装置の制御方法。
  2. 前記間欠的に生成された周期信号において、間欠周期に対する出力期間の比を間欠デューティー比とするとき、
    前記目標パルスデューティー比に基づいて前記間欠デューティー比が切り替わる請求項1に記載の圧電駆動装置の制御方法。
  3. 前記駆動用圧電素子は、前記振動体を伸縮振動させる伸縮圧電素子、および、前記振動体を屈曲振動させる屈曲圧電素子、を含み、
    前記駆動信号は、前記屈曲圧電素子に印加される屈曲駆動信号、および、前記伸縮圧電素子に印加される伸縮駆動信号、を含み、

    前記屈曲駆動信号の前記間欠デューティー比と、前記伸縮駆動信号の前記間欠デューティー比と、が異なる請求項2に記載の圧電駆動装置の制御方法。
  4. 前記伸縮駆動信号の生成に用いる前記目標パルスデューティー比を伸縮駆動目標パルスデューティー比とし、
    前記屈曲駆動信号の生成に用いる前記目標パルスデューティー比を屈曲駆動目標パルスデューティー比とし、
    前記伸縮駆動目標パルスデューティー比についての前記所定値を伸縮駆動所定値とし、
    前記屈曲駆動目標パルスデューティー比についての前記所定値を屈曲駆動所定値とするとき、
    前記屈曲駆動所定値が前記伸縮駆動所定値より大きい請求項3に記載の圧電駆動装置の制御方法。
  5. 前記伸縮駆動所定値が0である請求項4に記載の圧電駆動装置の制御方法。
  6. 前記間欠的に生成された周期信号において、間欠周期に対する出力期間の比を間欠デューティー比とするとき、
    前記駆動信号生成部は、前記目標パルスデューティー比から換算する換算則に基づいて前記間欠デューティー比を求める請求項1ないし5のいずれか1項に記載の圧電駆動装置の制御方法。
  7. 前記目標パルスデューティー比を小さくする過程における前記所定値を第1所定値とし、
    前記目標パルスデューティー比を大きくする過程における前記所定値を第2所定値としたとき、
    前記第1所定値と前記第2所定値とが異なる請求項1ないし6のいずれか1項に記載の圧電駆動装置の制御方法。
  8. 駆動用圧電素子を有し、前記駆動用圧電素子に駆動信号が印加されることにより振動する振動体と、
    前記振動体の振動により駆動される被駆動部と、
    前記駆動用圧電素子に前記駆動信号を印加する電圧制御部と、
    を有し、
    前記電圧制御部は、
    入力される目標駆動信号に基づいて目標パルスデューティー比信号を生成するパルスデューティー比信号生成部と、
    前記目標パルスデューティー比信号が示す目標パルスデューティー比のパルス信号を生成するパルス信号生成部と、
    前記パルス信号を用いて前記駆動信号を生成する駆動回路と、
    を備え、
    前記パルス信号生成部は、
    前記目標パルスデューティー比信号が示す目標パルスデューティー比と所定値とを比較して比較結果を出力する比較部と、
    前記比較結果に基づいて前記パルス信号を間欠にして出力する出力部と、
    を備え、
    前記駆動回路は、前記間欠にした前記パルス信号を用いて、間欠的に生成された周期信号を前記駆動信号として生成することを特徴とする圧電駆動装置。
  9. 前記出力部は、前記目標パルスデューティー比が前記所定値未満であるとき、前記パルス信号を間欠にして出力する請求項8に記載の圧電駆動装置。
  10. 第1アームと、
    関節部において前記第1アームと接続している第2アームと、
    前記関節部に配置されている請求項8または9に記載の圧電駆動装置と、
    を備えることを特徴とするロボット。
JP2019086364A 2019-04-26 2019-04-26 圧電駆動装置の制御方法、圧電駆動装置およびロボット Active JP7318300B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019086364A JP7318300B2 (ja) 2019-04-26 2019-04-26 圧電駆動装置の制御方法、圧電駆動装置およびロボット
US16/857,359 US11476403B2 (en) 2019-04-26 2020-04-24 Control method for piezoelectric driving device, piezoelectric driving device, and robot
CN202010335167.9A CN111865136B (zh) 2019-04-26 2020-04-24 压电驱动装置的控制方法、压电驱动装置及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019086364A JP7318300B2 (ja) 2019-04-26 2019-04-26 圧電駆動装置の制御方法、圧電駆動装置およびロボット

Publications (2)

Publication Number Publication Date
JP2020182364A true JP2020182364A (ja) 2020-11-05
JP7318300B2 JP7318300B2 (ja) 2023-08-01

Family

ID=72917394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019086364A Active JP7318300B2 (ja) 2019-04-26 2019-04-26 圧電駆動装置の制御方法、圧電駆動装置およびロボット

Country Status (3)

Country Link
US (1) US11476403B2 (ja)
JP (1) JP7318300B2 (ja)
CN (1) CN111865136B (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244181A (ja) * 2006-03-13 2007-09-20 Konica Minolta Opto Inc 駆動装置
JP2016082834A (ja) * 2014-10-22 2016-05-16 セイコーエプソン株式会社 圧電駆動装置及びその駆動方法、ロボット及びその駆動方法
JP2019068587A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 圧電駆動装置の制御装置および圧電駆動装置の制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438278B2 (ja) * 2002-10-17 2010-03-24 セイコーエプソン株式会社 振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法
JP4333122B2 (ja) * 2002-11-08 2009-09-16 セイコーエプソン株式会社 超音波モータ駆動回路および電子機器
JP2008278721A (ja) * 2007-05-07 2008-11-13 Matsushita Electric Ind Co Ltd 超音波アクチュエータ装置
JP4525943B2 (ja) * 2007-07-02 2010-08-18 セイコーエプソン株式会社 超音波モータの駆動方法
JP2010183816A (ja) 2009-02-09 2010-08-19 Olympus Corp 超音波モータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244181A (ja) * 2006-03-13 2007-09-20 Konica Minolta Opto Inc 駆動装置
JP2016082834A (ja) * 2014-10-22 2016-05-16 セイコーエプソン株式会社 圧電駆動装置及びその駆動方法、ロボット及びその駆動方法
JP2019068587A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 圧電駆動装置の制御装置および圧電駆動装置の制御方法

Also Published As

Publication number Publication date
JP7318300B2 (ja) 2023-08-01
CN111865136A (zh) 2020-10-30
CN111865136B (zh) 2023-08-25
US20200343436A1 (en) 2020-10-29
US11476403B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
CN110784122B (zh) 压电驱动装置、机器人以及打印机
US11205973B2 (en) Method of controlling piezoelectric drive device, method of controlling robot, and method of controlling printer
CN111130381B (zh) 压电驱动装置、机器人以及打印机
JP7318300B2 (ja) 圧電駆動装置の制御方法、圧電駆動装置およびロボット
JP7238581B2 (ja) 圧電駆動装置の制御方法、圧電駆動装置およびロボット
JP2020054152A (ja) 圧電駆動装置の制御方法、圧電駆動装置、ロボットおよびプリンター
JP7388174B2 (ja) 圧電駆動装置の制御方法、圧電駆動装置、および、ロボット
JP2020137276A (ja) 圧電駆動装置の制御方法、圧電駆動装置およびロボット
US11394320B2 (en) Control method for piezoelectric drive device, piezoelectric drive device, robot, and printer
CN108809142B (zh) 振动致动器的控制装置、控制方法、机器人、打印机
JP2020089161A (ja) 圧電駆動装置およびロボット
US11515812B2 (en) Control method for piezoelectric drive device, piezoelectric drive device, and robot
JP7363563B2 (ja) 異常検出方法、圧電モーターおよびロボット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7318300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150