JP4438278B2 - 振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法 - Google Patents

振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法 Download PDF

Info

Publication number
JP4438278B2
JP4438278B2 JP2002303213A JP2002303213A JP4438278B2 JP 4438278 B2 JP4438278 B2 JP 4438278B2 JP 2002303213 A JP2002303213 A JP 2002303213A JP 2002303213 A JP2002303213 A JP 2002303213A JP 4438278 B2 JP4438278 B2 JP 4438278B2
Authority
JP
Japan
Prior art keywords
frequency
voltage
vibrating body
drive
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002303213A
Other languages
English (en)
Other versions
JP2004140928A (ja
Inventor
秀弘 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002303213A priority Critical patent/JP4438278B2/ja
Publication of JP2004140928A publication Critical patent/JP2004140928A/ja
Application granted granted Critical
Publication of JP4438278B2 publication Critical patent/JP4438278B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法に関する。例えば、交流電圧信号の印加によって振動する振動体の駆動を制御する振動体駆動制御装置および振動体駆動制御方法、振動体を有する振動体駆動機構により駆動される駆動体の駆動を制御する駆動体駆動制御装置に関する。
【0002】
【背景技術】
交流電圧信号を印加することにより振動する振動体、例えば、圧電素子などがある。また、圧電素子の振動運動を利用する振動体駆動機構として、例えば、圧電アクチュエータが知られている。圧電アクチュエータは、2枚の板状の圧電素子と、この圧電素子の間に挟持され圧電素子の振動により振動される板状の板状体と、2枚の圧電素子のそれぞれに設けられた電極とを備えて構成されている。
このような構成において、電極に交流電圧を印加すると圧電素子が振動する。すると、この圧電素子の振動により板状体が振動される。この板状体の表面の一部を、例えばロータなどの駆動体に摩擦接触させることにより、ロータを回転させることができる。
【0003】
ところで、圧電素子は、振動する際の周波数である共振周波数をそれぞれ有する。振動体駆動機構の駆動(振動)は、圧電素子に印加する交流電圧の電圧よりも交流電圧の周波数に依存し、交流電圧の周波数が共振周波数に一致するかもしくは共振周波数付近であれば圧電素子を振動させることができる。つまり、振動体にある程度大きな振動を励振して振動体駆動機構を駆動させ、例えば、ロータを回転駆動させることができる交流電圧の周波数範囲、つまり駆動周波数範囲が存在する。
このため従来は、圧電素子に共振周波数の交流電圧を印加することにより、振動体駆動機構を駆動することが広く行われている(例えば、超音波モータについて、特許文献1、2、3、4、5を参照)。
【0004】
【特許文献1】
特開平5−95686号公報
【特許文献2】
特開平5−176562号公報
【特許文献3】
特開平5−199776号公報
【特許文献4】
特開平6−38554号公報
【特許文献5】
特開平10−116125号公報
【0005】
【発明が解決しようとする課題】
しかしながら、振動体の振動を発生させて振動体駆動機構を駆動し、例えばロータを回転させる駆動周波数範囲は、周囲の温度変化により変化することが知られている。
例えば、図13は、温度が異なる場合に、圧電素子に印加する交流電圧の周波数と振動体駆動機構の振動により回転されるロータの回転数との関係の一例を示す図である。(A)は温度が−10℃の場合を示しており、交流電圧の周波数が285から291kHz程度であれば、ロータを回転させることができる。(B)は温度が25℃の場合であり、交流電圧の周波数が280から285kHz程度であれば、ロータを回転させることができる。(C)は温度が60℃の場合であり、駆動電圧信号の周波数が274から280kHz程度であれば、ロータを回転させることができる。
また、振動体駆動機構とロータとの接触圧や接触角が変化する場合にもロータを回転させる周波数が変化する。また、振動体駆動機構とロータとの間に粉塵が挟まった場合にも、突発的に振動体駆動機構を駆動させる周波数が変化する。
【0006】
このように、振動体駆動機構を駆動させる際、ロータを回転できる駆動周波数範囲が変化するので、特定の値に固定された周波数では振動体駆動機構を駆動できず、ロータを回転させることができない場合が生じるという問題がある。特に、特定の値に固定された周波数では、−10℃から60℃までにわたる広い温度で振動体駆動機構を駆動できないという問題がある。また、振動体駆動機構を一旦駆動できた場合でも、駆動周波数範囲が変化した場合には、振動体駆動機構を駆動し続けることができないという問題が生じる。
【0007】
例えば、特許文献1の如く交流電圧を一定値に固定された周波数とする場合には、固定された周波数が駆動周波数範囲から外れている場合、振動体駆動機構を駆動できないという問題がある。
特許文献2では、振動体駆動機構の起動時にはホワイトノイズにより駆動を開始できたとしても、その後に駆動周波数範囲が変化した場合には駆動を継続することができないという問題がある。
特許文献3、4、5では、振動体駆動機構の駆動状態をフィードバックして制御するため、一旦駆動が停止されてしまうとフィードバック信号が得られないので、駆動を継続できないという問題がある。
【0008】
本発明の目的は、従来の問題を解消し、振動体を確実に駆動できる振動体駆動制御装置および振動体駆動制御方法、振動体を有する振動体駆動機構により駆動される駆動体を確実に駆動できる駆動体駆動制御装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の振動体駆動制御装置は、交流電圧信号の印加により振動する振動体の駆動を制御する振動体駆動制御装置であって、前記振動体に前記交流電圧信号を印加する交流電圧印加手段と、前記交流電圧印加手段から出力される前記交流電圧信号の周波数を所定周波数範囲において時間的に変動させる周波数変動手段とを備えることを特徴とする。
【0010】
このような構成において、周波数変動手段により交流電圧信号の周波数が所定周波数範囲において時間的に変動される。この変動する周波数を有する交流電圧信号が交流電圧印加手段により振動体に印加される。ここで、周波数変動手段により交流電圧信号の周波数が所定周波数範囲で変動されると、この周波数変動幅の中に振動体を振動(駆動)させる周波数(駆動周波数範囲)が含まれる可能性が高くなる。すると、この交流電圧信号の印加によって振動体を駆動できる可能性が高くなる。
周波数変動手段が設けられているので、温度変化等により駆動周波数範囲が変化した場合であっても、駆動周波数範囲の変化は周波数変動手段による周波数の変動幅に含まれる可能性を高くできる。例えば、温度が低温から高温まで広い範囲で変化する際の駆動周波数範囲の変化範囲全域を含んで交流電圧信号の周波数を変動させれば、確実に振動体を振動させることができる。また、駆動周波数範囲が突発的に変化したとしても、この駆動周波数範囲の変化は周波数変動手段による交流電圧信号の周波数変動幅に含まれる可能性が高い。よって振動体を振動させる周波数が突発的に変化したとしても、振動体の振動を継続させることができる。
すなわち、交流電圧信号の周波数を変動させることにより、振動体を確実に駆動させることができ、また、振動体の駆動を確実に継続することができる。
【0011】
本発明では、前記所定周波数範囲は、温度が−10℃である場合に前記振動体を駆動させる前記交流電圧信号の周波数から温度が60℃である場合に前記振動体を駆動させる前記交流電圧信号の周波数までの範囲であることが好ましい。
【0012】
このような構成によれば、温度が低温である−10℃であっても、温度が高温である60℃であっても、交流電圧信号は振動体を駆動させる周波数を必ず含んでいる。よって、温度が何度であっても、または、振動体を駆動させる周波数が何らかの原因で突発的に変化したとしても、振動体を確実に駆動させることができる。
【0013】
本発明では、前記振動体の駆動を検出して駆動検出信号を出力する駆動検出手段を備え、前記周波数変動手段は、前記駆動検出手段による検出結果に応じて前記交流電圧信号の周波数を制御することが好ましい。
【0014】
このような構成によれば、振動体の駆動が駆動検出手段にて検出される。この検出結果に応じて周波数変動手段により交流電圧信号の周波数は制御される。
例えば、駆動検出手段で振動体の駆動が検出されない場合には、交流電圧信号の周波数変動幅をさらに大きくしたり、交流電圧信号の周波数変動の中心値をシフトさせるなどにより、交流電圧信号の周波数変動が駆動周波数範囲を含むようにする。すると、振動体を確実に駆動させることができる。
【0015】
本発明では、前記周波数変動手段は、前記駆動検出手段から前記駆動検出信号を受けた場合に、前記交流電圧信号の周波数変動幅を順次小さく設定する周波数変動幅設定手段を備えていることが好ましい。
【0016】
このような構成によれば、駆動検出手段で振動体の駆動が検出される場合には、周波数変動幅設定手段により、交流電圧信号の周波数変動幅が順次小さく設定される。
交流電圧信号の周波数変動幅のうち振動体を振動させる周波数(駆動周波数範囲)から外れている周波数では、振動体を振動させることができないか、または振動体の振動が微小となる。そのため、例えば、振動体の振動で駆動体を駆動させるような場合であっても、微小な振動ではこの駆動体を駆動できないことになる。よって、駆動周波数範囲から外れた交流電圧信号の周波数は無駄なエネルギーとなる。つまり、振動体を振動させるエネルギー効率を高くするため、交流電圧信号の周波数変動幅は、駆動周波数範囲を含んでできる限り小さいことが好ましい。
そこで、振動体の駆動が検出される場合には、交流電圧信号の周波数変動幅を順次小さく設定する。すると、交流電圧信号の周波数変動幅のうち駆動周波数範囲から外れる周波数を少なくすることができる。その結果、振動体を振動させるエネルギー効率を高くすることができる。
【0017】
本発明では、前記周波数変動手段は、前記駆動検出手段による検出結果に応じて前記交流電圧信号の周波数変動の変動中心を設定する中心値設定手段を備えていることが好ましい。
【0018】
このような構成によれば、駆動検出手段で振動体の駆動が検出結果に応じて、中心値設定手段により、交流電圧信号の周波数変動の中心値が設定される。
振動体を振動させるエネルギー効率を向上させるためには、交流電圧信号の周波数変動幅のうち駆動周波数範囲から外れた部分ができる限り小さいことが好ましい。しかし、例えば、交流電圧信号の周波数変動の変動中心が駆動周波数範囲から外れていた場合、交流電圧信号の周波数と駆動周波数範囲との交わる部分が小さくなってしまう。すると、エネルギー効率が悪くなる。そこで、駆動検出手段による検出結果に応じて、交流電圧信号の周波数変動の変動中心を設定する。例えば、交流電圧信号の周波数変動中心が駆動周波数範囲内に入るように設定する。すると、交流電圧信号の周波数のうち駆動周波数範囲から外れた部分を小さくすることができ、振動体を振動させるエネルギー効率を向上させることができる。
【0019】
本発明では、前記中心値設定手段は、前記駆動検出信号が出力された時点で前記振動体に印加される前記交流電圧信号の周波数の値に基づいて前記交流電圧信号の周波数変動の変動中心を設定することが好ましい。
【0020】
このような構成において、駆動検出信号が出力される瞬間は振動体が振動している。よって、この駆動検出信号が出力された時点で振動体に印加されていた交流電圧信号の周波数は、振動体を駆動させることができる周波数である。そこで、駆動検出信号が出力された時点の交流電圧信号の周波数値に基づいて中心値設定手段により交流電圧信号の周波数変動幅の中心値を設定する。すると、交流電圧信号の周波数変動中心値を駆動周波数範囲内に設定するなどにより、振動体を駆動させるエネルギー効率を向上させることができる。
【0021】
本発明では、前記中心値設定手段は、前記駆動検出信号が出力された時点で前記振動体に印加される前記交流電圧信号の周波数の値を前記交流電圧信号の周波数変動の変動中心として設定することが好ましい。
【0022】
このような構成によれば、駆動検出信号が出力された時点で振動体に印加された交流電圧信号の周波数が、中心値設定手段により、交流電圧信号の周波数変動の変動中心として設定される。
駆動検出信号が出力される時点で振動体に印加された交流電圧信号の周波数は、振動体を駆動させることができる周波数である。そこで、駆動検出信号の出力時点での交流電圧信号の周波数値を交流電圧信号の周波数変動の変動中心とする。すると、交流電圧信号の周波数変動幅のうち駆動周波数範囲から外れる部分を少なくできる。その結果、振動体を駆動するエネルギー効率を向上させることができる。
【0023】
本発明では、前記中心値設定手段は、以前設定した前記変動中心と今回前記駆動検出信号が出力された時点で前記振動体に印加された前記交流電圧信号の周波数の値とに基づいて前記交流電圧信号の周波数変動の変動中心を設定することが好ましい。
【0024】
このような構成において、以前に中心値設定手段により設定された交流電圧信号の周波数変動の中心値と、今回駆動検出信号が出力された時点の交流電圧信号の周波数とに基づき、中心値設定手段は、交流電圧信号の周波数変動の中心値を設定する。駆動検出信号が出力された時点の交流電圧信号の周波数は、確かに振動体を振動させる周波数、つまり駆動周波数に含まれる。しかしながら、駆動周波数範囲の中の真中であるとは限らない。そこで、駆動検出信号が出力された時点の交流電圧信号の周波数値をいくつか用いて、例えば、平均化などする。すると、周波数変動の変動中心を駆動周波数範囲の真中にできる限り近く設定することができる。周波数変動の変動中心が駆動周波数範囲の真中の周波数に近ければ、交流電圧信号の周波数変動幅のうち駆動周波数範囲から外れる部分を少なくできる。その結果、振動体を駆動するエネルギー効率を向上させることができる。
【0025】
本発明では、前記中心値設定手段は、前記交流電圧信号の周波数変動の中心値として前記振動体の共振周波数が初期設定されていることが好ましい。
【0026】
このような構成によれば、起動時には、中心値設定手段は初期設定された振動体の共振周波数を交流電圧信号の周波数変動の変動中心として設定する。すると、当初からできる限り交流電圧信号の周波数変動幅のうち駆動周波数範囲から外れる部分を少なくできる。
なお、初期設定する振動体の共振周波数は、標準温度、例えば20℃での振動体の共振周波数としてもよいが、周波数変動手段に温度を測定する温度測定手段を設けて、この温度測定手段により測定された温度に応じて振動体の共振周波数を設定するようにしてもよい。振動体の共振周波数は温度により変動するので、温度測定手段により温度測定を行って、この温度に応じた共振周波数を交流電圧信号の周波数変動の変動中心に初期設定する。すると、温度がさまざまに異なる場合であっても、当初からできる限り交流電圧信号の周波数変動幅のうち駆動周波数範囲から外れる部分を少なくできる。その結果、振動体を駆動するエネルギー効率を向上させることができる。
【0027】
本発明では、前記周波数変動手段は、前記駆動検出手段から前記駆動検出信号を受けた場合に前記交流電圧信号の周波数変動幅を順次小さく設定する周波数変動幅設定手段を備え、前記周波数変動幅設定手段は、所定の電圧変動幅を設定する電圧変動幅設定手段であり、前記中心値設定手段は、前記電圧変動幅設定手段で設定される電圧変動の中心電圧値を設定する中心電圧設定手段であり、前記周波数変動手段は、前記電圧変動幅設定手段および前記中心電圧設定手段で設定された変動幅および中心値を有する電圧信号を電圧レベルに応じた周波数信号に変換する電圧周波数変換手段を備えていることが好ましい。
【0028】
このような構成によれば、電圧変動幅設定手段により所定の電圧変動幅が設定され、さらに、中心値電圧設定手段により電圧変動の中心値が設定される。このように設定された変動幅および中心値を有する電圧信号が電圧周波数変換手段により電圧レベルに応じた周波数信号に変換される。すると、所定の周波数変動および周波数変動の中心値を有する周波数信号が生成される。そこで、交流電圧印加手段から出力される交流電圧信号の周波数をこの周波数信号の周波数変動幅および中心値を有するように変調する。すると、交流電圧印加手段から出力される交流電圧信号の周波数を所定周波数範囲において時間的に変動させることができる。
【0029】
本発明では、前記電圧変動幅設定手段は、予め段階的に設定された周波数変動幅から所定の周波数変動幅を選択する周波数変動幅選択手段と、予め設定された周期および振幅を有する三角波を連続的に発生する三角波発生手段と、前記三角波発生手段で発生された三角波の振幅を電圧増幅させる増幅器と、前記周波数変動幅選択手段で選択された前記周波数変動幅に応じて前記増幅器の増幅度を設定する増幅度設定手段とを備えていることが好ましい。
【0030】
このような構成によれば、周波数変動幅選択手段で交流電圧信号として振動体に印加する電圧信号の周波数変動幅が選択される。この選択された周波数変動幅に応じて、三角波発生手段から発生された三角波が増幅器で増幅される。このように増幅された三角波の連続で構成される電圧信号を、電圧周波数変換手段で電圧レベルに応じた周波数を有する周波数信号に変換する。さらに、交流電圧信号の周波数をこの周波数信号の周波数変動幅を有するように変調する。すると、交流電圧印加手段から出力される交流電圧信号の周波数を所定周波数範囲において時間的に変動させることができる。
周波数変動幅選択手段には、予め段階的に周波数変動幅が設定されており、周波数の変動幅を選択する際に、予め設定された段階を選択するだけでよい。よって、周波数の変動に際して余計な演算等を行わないので、簡便であり、回路構成を簡略化することができ、また、応答速度を向上させることができる。
また、電圧の増幅度によって周波数変動幅を設定することは、周波数を直接変調する場合に比べて簡便であり、回路構成を簡略化することができる。
【0031】
本発明では、前記交流電圧印加手段から出力される交流電圧信号のデューティ比を調整するデューティ比調整手段を備えていることが好ましい。
【0032】
このような構成によれば、デューティ比調整手段により、交流電圧信号のデューティ比が調整される。すると、単位時間あたり振動体に交流電圧信号が印加される割合が調整され、振動体の駆動レベルが調整される。
デューティ比調整によるので、交流電圧信号の周波数を変化させることなく振動体の駆動レベルを調整することができる。よって、交流電圧信号の周波数変動の中心値設定や周波数変動幅の設定に影響を与えることなく、振動体の駆動レベルの調整を行うことができる。また、デューティ調整により必要な時間だけ通電すればよいので、エネルギー効率を向上させることができる。
【0033】
本発明では、前記振動体の駆動レベルの目標値を設定入力する目標値設定手段と、前記振動体の駆動レベルを検出する振動体駆動レベル検出手段とが設けられ、前記デューティ比調整手段は、設定入力された前記目標値と前記振動体駆動レベル検出手段で検出された駆動レベルとの差に基づいて前記交流電圧信号のデューティ比を調整することが好ましい。
【0034】
このような構成によれば、振動体の駆動レベルが振動体駆動レベル検出手段で検出され、この検出値と目標値との差に基づいて振動体の駆動レベルを目標値に維持するようにデューティ比が調整される。すると、目標値設定手段に設定された目標値で振動体の駆動レベルが一定に維持される。ここで、振動体の駆動レベルとしては、例えば、振動体の振動数や、あるいは、この振動体の振動で駆動される駆動体の駆動速度などを意味する。この駆動体が回転体である場合には、回転体の回転速度であってもよい。振動体駆動レベル検出手段は、振動体の振動数を検出してもよく、あるいは、振動体の振動で駆動される駆動体の駆動速度、振動体の振動で回転される回転体の回転速度を検出してもよい。
【0035】
本発明の駆動体駆動制御装置は、前記振動体は圧電素子であり、この圧電素子の振動により駆動される振動体駆動機構と、前記振動体駆動機構に対する摩擦接触にて駆動される駆動体と、請求項3ないし請求項13のいずれかに記載の振動体駆動制御装置とを備え、前記駆動検出手段は前記駆動体の駆動を検出することを特徴とする。
【0036】
このような構成において、振動体駆動制御装置によって圧電素子の駆動が駆動制御される。圧電素子の駆動により振動体駆動機構、例えば圧電アクチュエータが駆動される。振動体駆動機構の駆動により駆動体、例えばロータが駆動される。このとき、駆動検出手段は、駆動体の駆動を検出することにより振動体の駆動を検出する。
振動体駆動制御装置により振動体が確実に、かつ、効率よく駆動されるので、駆動体駆動制御装置は、確実に、かつ、効率よく駆動体を駆動させることができる。
【0037】
本発明の振動体駆動制御方法は、交流電圧信号の印加により振動する振動体の駆動を制御する振動体駆動制御方法であって、前記振動体に前記交流電圧信号を印加する交流電圧印加工程と、前記交流電圧印加工程において出力される前記交流電圧信号の周波数を所定周波数範囲において時間的に変動させる周波数変動工程とを備えることを特徴とする。
【0038】
このような構成において、周波数変動工程により交流電圧信号の周波数が所定周波数範囲において時間的に変動される。この変動する周波数を有する交流電圧信号が交流電圧印加工程により振動体に印加される。ここで、周波数変動工程により交流電圧信号の周波数が所定周波数範囲で変動されると、この周波数変動幅の中に振動体を振動(駆動)させる周波数(駆動周波数範囲)が含まれる可能性が高くなる。すると、交流電圧信号の印加によって振動体を駆動できる可能性が高くなる。
例えば、温度が低温から高温まで広い範囲で変化する際の駆動周波数範囲の変化範囲全域を含んで交流電圧信号の周波数を変動させれば、確実に振動体を振動させることができる。また、駆動周波数範囲が突発的に変化したとしても、この駆動周波数範囲の変化は周波数変動工程による交流電圧信号の周波数変動幅に含まれる可能性が高い。よって振動体を振動させる周波数が突発的に変化したとしても、振動体の振動を継続させることができる。
すなわち、交流電圧信号の周波数を変動させることにより、振動体を確実に駆動させることができ、また、振動体の駆動を確実に継続することができる。
【0039】
本発明の振動体駆動制御方法では、前記振動体の駆動を検出して駆動検出信号を出力する駆動検出工程を備え、前記周波数変動工程は、前記駆動検出工程による検出結果に応じて前記交流電圧信号の周波数を制御することが好ましい。
【0040】
本発明の振動体駆動制御方法では、前記周波数変動工程は、前記駆動検出工程から前記駆動検出信号を受けた場合に前記交流電圧信号の周波数変動幅を順次小さく設定する周波数変動幅設定工程を備えていることが好ましい。
【0041】
本発明の振動体駆動制御方法では、前記周波数変動工程は、前記駆動検出工程による検出結果に応じて前記交流電圧信号の周波数変動の変動中心を設定する中心値設定工程を備えていることが好ましい。
【0042】
本発明の振動体駆動制御方法では、前記中心値設定工程は、前記駆動検出信号が出力された時点で前記振動体に印加される前記交流電圧信号の周波数の値に基づいて前記交流電圧信号の周波数変動の変動中心を設定することが好ましい。
【0043】
本発明の振動体駆動制御方法では、前記中心値設定工程は、前記駆動検出信号が出力された時点で前記振動体に印加される前記交流電圧信号の周波数の値を前記交流電圧信号の周波数変動の変動中心として設定することが好ましい。
【0044】
本発明の振動体駆動制御方法では、前記中心値設定工程は、以前設定した前記変動中心と今回前記駆動検出信号が出力された時点で前記振動体に印加された前記交流電圧信号の周波数の値とに基づいて前記交流電圧信号の周波数変動の変動中心を設定することが好ましい。
【0045】
本発明の振動体駆動制御方法では、前記中心値設定工程は、前記交流電圧信号の周波数変動の中心値として前記振動体の共振周波数が初期設定されていることが好ましい。
【0046】
本発明の振動体駆動制御方法では、前記周波数変動工程は、前記駆動検出工程から前記駆動検出信号を受けた場合に前記交流電圧信号の周波数変動幅を順次小さく設定する周波数変動幅設定工程を備え、前記周波数変動幅設定工程は、所定の電圧変動幅を設定する電圧変動幅設定工程であり、前記中心値設定工程は、前記電圧変動幅設定工程で設定される電圧変動の中心電圧値を設定する中心電圧設定工程であり、前記周波数変動工程は、前記前記電圧変動幅設定工程および中心電圧設定工程で設定された中心値および変動幅を有する電圧信号を電圧レベルに応じた周波数信号に変換する電圧周波数変換工程を備えていることが好ましい。
【0047】
本発明の振動体駆動制御方法では、前記電圧変動幅設定工程は、予め段階的に設定された周波数変動幅から所定の周波数変動幅を選択する周波数変動幅選択工程と、予め設定された周期および振幅を有する三角波を連続的に発生する三角波発生工程と、前記三角波発生工程で発生された三角波の振幅を電圧増幅させる増幅工程と、前記周波数変動幅選択工程で選択された前記周波数変動幅に応じて前記増幅工程の増幅度を設定する増幅度設定工程とを備えていることが好ましい。
【0048】
本発明の振動体駆動制御方法では、前記交流電圧印加工程から出力される交流電圧信号のデューティ比を調整するデューティ比調整工程を備えていることが好ましい。
【0049】
本発明の振動体駆動制御方法では、前記振動体の駆動レベルの目標値を設定入力する目標値設定工程と、前記振動体の駆動レベルを検出する振動体駆動レベル検出工程とが設けられ、前記デューティ比調整工程は、設定入力された前記目標値と前記振動体駆動レベル検出工程で検出された駆動レベルとの差に基づいて前記交流電圧信号のデューティ比を調整することが好ましい。
【0050】
このような構成によれば、上記振動体駆動制御装置と同様の作用効果を奏することができる。
また、上記振動体駆動制御方法の各制御方法の内容をコンピュータに実行させるようにプログラミングして振動体駆動制御プログラムとし、交流電圧信号の印加により振動する振動体の駆動を制御する振動体駆動制御装置に組み込んだコンピュータに実行させるようにしてもよい。また、上記振動体駆動制御方法の各制御方法の内容をコンピュータに実行させるようにプログラミングして振動体駆動制御プログラムとし、このプログラムをコンピュータ読み出し可能な記録媒体に記録してもよい。
【0051】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明の第1実施形態として、駆動制御回路5(振動体駆動制御装置)によって駆動制御される駆動体駆動制御装置としての液体吐出装置1を示す図である。図2は、液体吐出装置1の断面図である。
この液体吐出装置1は、本体ケース11と、本体ケース11に設置されるチューブ21と、本体ケース11に対して回転可能に設けられた駆動体としてのロータ22と、ロータ22の回転によってチューブ21上を転動するボール26と、ロータ22を回転させる駆動機構31と、ロータ22の回転を検出する回転検出手段41と、駆動機構31を駆動制御する駆動制御回路5とを備えて構成されている。
【0052】
本体ケース11は、図2に示されるように、一面が開口された略箱状の基部121と、基部121の開口を塞ぐカバー122とを備えて構成されている。
基部121は、チューブ21、ロータ22、駆動機構31および回転検出手段41を収納する。また、基部121には、チューブ21を設置するためのチューブガイド溝13と、ロータ22を回転可能に支持するための軸部14とが設けられている。
チューブガイド溝13は、略円形状の円形溝部131と、本体ケース11の外部から円形溝部131に連通して設けられた略直線状の2本の直線溝部132とを有している。
円形溝部131は、ロータ22の回転中心を中心とし、また、その半径はロータ22の半径よりも小さい円形である。直線溝部132は、互いに平行であり、一方は円形溝部131の略接線方向に形成され、他方は円形溝部131の中心から前記一方にわずかに近い位置に形成されている。
軸部14は、基部121に設けられた軸孔15に嵌合され、軸部14の外周面にはボールベアリング141が設けられている。ボールベアリング141の内側の軸受142は軸部14に固定され、外側のジャーナル143が軸部14を中心として回転自在とされている。
【0053】
チューブ21は、弾性を有する樹脂、例えば、テトラフルオロエチレン等のフッ素系樹脂で形成されている。チューブ21は、チューブガイド溝13のうち、直線溝部132の間を除く円形溝部131と直線溝部132とに設置される。
【0054】
ロータ22は、略円盤状で、中心にロータ軸孔23を有し、このロータ軸孔23にボールベアリング141を介して軸部14が挿入されて本体ケース11に対して回転自在に設けられている。ロータ22は、外周縁に平面方向に突出して形成された凸部24と、下面に円環状に形成されたボールガイド溝25とを備えている。
凸部24は、軸孔15を中心として略180度反対側に形成されている。
ボールガイド溝25は、ロータ22が本体ケース11に設置されたときにチューブガイド溝13の円形溝部131に対応する位置に形成されている。すなわち、円形溝部131とボールガイド溝25は同じ半径の円形である。
【0055】
ボール26は、二つ設けられ、ロータ22のボールガイド溝25と基部121のチューブガイド溝13との間に配置されている。ボール26は、ロータ22のボールガイド溝25によって基部121の側に押さえられチューブガイド溝13とともにチューブ21を圧閉し、ロータ22の回転とともにチューブ21上を転動する。
ここで、ロータ22が回転していないときには、ボール26はチューブ21を圧閉しない位置で保持されるが、ロータ22が回転をはじめるとボール26はボールガイド溝25に沿って転動され、互いに略180度となる位置関係でチューブ21を圧閉しながら転動される。ボール26が転動されると、チューブ21の圧閉位置がボール26の転動に応じて順次移動される。すると、チューブ21内の液体がチューブ21の圧閉位置の移動に伴って移動されチューブ21の一方端から他方端へ移動される。
【0056】
駆動機構31は、ロータ22を回転させる圧電アクチュエータ32と、圧電アクチュエータ32を支持する支持部材38とを備えて構成されている。
圧電アクチュエータ32は、略矩形平板上であり、図3(A)に示されるように、2枚の圧電素子33、34(振動体)と、この圧電素子33、34に挟まれた補強板35と、圧電素子33、34の表面に設けられた2枚の電極板36、37とを備えて構成されている。
【0057】
圧電素子33、34は、略長方形かつ板状であり、2枚の圧電素子33、34の分極方向が逆向きに配置されている。ここで、図3(A)中の矢印は、圧電素子33、34それぞれの分極方向を示している。圧電素子33、34の間に挟まれた補強板35が接地されている。圧電素子33、34の表面に設けられた2枚の電極板36、37には図示しないケーブル等が設けられる。このケーブルが一点で接続されてこの接続点に+V、−Vとを交互に繰り返す所定周波数の駆動電圧信号が印加される。
【0058】
補強板35は、略長方形かつ板状であり、圧電素子33、34よりも肉薄に形成されている。また、補強板35は、一長辺と一短辺が交わる一頂点に形成されロータ22に当接される当接部351と、当接部351とは対角位置に形成された凸部352とを備えている。当接部351は、その先端部分が緩やかな曲面に成形されている。
【0059】
支持部材38は、補強板35の長辺の略中央に対して垂直に当接する支持部本体381と、支持部本体381に設けられたばね部材382とを備えて構成されている。
支持部本体381は、基部121に設けられたピン16に挿通され、このピン16を中心として回転可能とされている。
ばね部材382は、略U字状であり、U字の一方の端部が支持部本体381に一体的に連続して設けられ、U字の他方の端部が基部121に設けられたストッパ17に当接されている。ばね部材382の付勢力により、支持部材38が補強板35を付勢し、当接部351がロータ22の外周面に当接される。
【0060】
ここで、圧電素子は、交流電圧を印加されると伸縮振動する性質を有する。特に、圧電素子33、34に対して、長手方向振動の共振周波数で交流電圧を印加すると、長手方向の伸縮振動を励振することができる。つまり、駆動電圧信号として圧電素子を振動させる駆動周波数範囲の交流電圧が電極板36、37に印加されると、圧電素子33、34に振動が励振される。駆動電圧信号の周波数を圧電素子33、34の長手方向振動の共振周波数とした場合に、圧電素子33、34が最も大きく長手方向に振動する。
ところで、補強板35には、対角位置に当接部351と凸部352とが設けられているので、圧電アクチュエータ32としては非対称な形状である。すると、圧電素子33、34に縦振動が発生した場合、この縦振動は、当接部351と凸部352で生ずる重量アンバランスにより長方形状の長手方向に平行方向の中線Lに対し非対称な振動となり、圧電素子33、34の板面を含む面内において縦振動とは直交する方向の屈曲振動が励振される(図3(B)参照)。また、予め屈曲振動の共振周波数が縦振動の共振周波数に近づくように、圧電素子33、34および補強板35で形成される長方形状の縦横寸法を設計しておく。すると、この縦振動と屈曲振動とにより、当接部351は楕円軌道を描いて運動する。図3(C)のように、当接部351をロータ22の外周部に当接させると、当接部351の楕円軌道によりロータ22が回転駆動される。
【0061】
回転検出手段41は、前述したロータ22の外周縁に突出して形成された凸部24と、検出板ばね42と、検出部43とを備えて構成されている。
検出板ばね42は、一端が基部121に固定され、他端側の途中のロータ22側に曲折された曲折部421がロータ22の外周縁に当接されている。
検出部43は、基部121に固定されて設けられ、検出板ばね42の他端との接触状態を検出するものである。
ロータ22が回転しているとき、検出板ばね42の曲折部421がロータ22の外周縁の凸部24を除く部分に当接している場合には、検出板ばね42の他端が検出部43に接触している状態となる。ロータ22の凸部24が検出板ばね42の曲折部421に当たって、検出板ばね42がロータ22の外側に押し出されると、検出板ばね42の他端が検出部43から外れて非接触状態となる。ロータ22の凸部24は、略180度反対に設けられているので、ロータ22が半周するごとに検出部43と検出板ばね42が非接触となる。よって、検出板ばね42と検出部43の非接触が検出されることによって、ロータ22の略半周回転が検出される。
【0062】
図4に振動体駆動制御装置としての駆動制御回路5の構成を示す。この駆動制御回路5は、振動体である圧電素子33、34に駆動電圧信号(交流電圧信号)を印加し、駆動電圧信号の周波数を制御することで圧電素子33、34の振動を制御するものである。また、圧電素子33、34の振動を制御することにより、圧電アクチュエータ(振動体駆動機構)32を駆動制御するものである。
【0063】
駆動制御回路5は、圧電アクチュエータ32に印加する交流電圧の周波数に対応する電圧を出力する中央制御回路51と、中央制御回路51から出力される電圧をこのレベルに応じた周波数信号に変換する電圧周波数変換手段としての電圧制御発振器61と、電圧制御発振器61からの周波数を有する交流電圧を駆動電圧信号として圧電アクチュエータ32に印加する交流電圧印加手段としての駆動回路62と、単位時間あたりの駆動電圧信号のON/OFF比(デューティ比)を制御するデューティ比調整手段としてのデューティ比調整回路63とを備えて構成されている。
【0064】
中央制御回路51は、圧電アクチュエータ32に印加する駆動電圧信号の周波数変動幅に対応した電圧振幅を設定する周波数変動幅設定手段(電圧変動幅設定手段)としての変動幅設定部52と、圧電アクチュエータ32に印加する交流電圧の周波数の中心値に対応した電圧の中心値を設定する中心値設定手段(中心電圧設定手段)としての中心値設定部53と、変動幅設定部52による電圧と中心値設定部53による電圧を加算して圧電アクチュエータ32に印加する交流電圧の周波数に対応する電圧を出力する加算器54と、回転検出手段41からの検出信号を検出する駆動検出手段としての回転検出回路55と、起動時に設定を初期化する初期化回路56とを備えて構成されている。
【0065】
変動幅設定部52は、予め段階的に設定された周波数変動幅から所定の周波数変動幅を選択する周波数変動幅選択手段としてのゲインカウンタ521と、予め設定された周期および振幅を有する三角波を連続的に発生する三角波発生手段としての三角波発生回路523と、三角波発生回路523で発生された三角パルスの振幅を電圧増幅させる増幅器524と、ゲインカウンタ521で選択された周波数変動幅に応じて増幅器524の増幅度を設定する増幅度設定手段としてのマルチプレクサ525とを備えて構成されている。
【0066】
ゲインカウンタ521は、予め段階的に設定された周波数変動幅のテーブル522を備えている。テーブル522には、図5に示すように、ステップ4、ステップ3、ステップ2、ステップ1、ステップ0の5段階に設定された周波数変動幅が設定されている。ステップ4からステップ0にステップが下がるに従って周波数の変動幅が小さくなるように設定されており、ステップ4の周波数変動幅は16kHz、ステップ3の周波数変動幅は8kHz、ステップ2の周波数変動幅は4kHz、ステップ1の周波数変動幅は2kHz、ステップ0の周波数変動幅は1kHzである。
また、ゲインカウンタ521には、回転検出回路55でロータ22の回転が検出されない時間を測定するタイマーが設けられている。
ゲインカウンタ521は、まずはじめ初期化回路56によりプリセットされるとステップ4のもっとも変動幅の大きい周波数変動幅に設定される。
回転検出回路55でロータ22の回転が検出されると、回転検出回路55からゲインカウンタ521に信号が出力される。ゲインカウンタ521は、回転検出回路55からの信号を受けると、周波数変動幅のステップを1段階ずつ下げていく。すなわち、周波数変動幅を小さくしていく。また、ステップ番号が0になると、このステップ0の状態を維持する。
また、回転検出回路55でロータ22の回転が一定時間、例えば10秒以内に検出されなかった場合には、回転検出回路55からロータ回転の検出がないことがゲインカウンタ521に指令される。すると、ゲインカウンタ521は、周波数の変動幅を再びステップ4に設定する。
ゲインカウンタ521で設定された周波数変動幅のステップの番号はマルチプレクサ525に出力される。
【0067】
三角波発生回路523は、電圧値がある値まで直線的に増加したあと最初の値まで直線的に減少するような電気的パルス(三角パルス)が連続した三角波を発生させる。例えば、図6(B)に示される三角波が例示される。三角波発生回路523は、予め設定された一定周期および一定振幅の三角波を発生するが、電圧の振動の中心値は0Vである。例えば、周期が1Hzで、+1Vから−1Vまで振動する三角波を発生する。
【0068】
増幅器524は、三角波発生回路523で発生された三角波の電圧を増幅させるものであり、ゲインカウンタ521で設定された周波数変動幅に応じて電圧の振動幅を増大させる。例えば、図6(C)に示されるような電圧増幅が例示される。例えば、三角波発生回路523で1Vから−1Vまで振動する三角波が発生された場合、増幅器524によりこの三角波が3Vから−3Vまで振動する三角波に増幅される。
増幅器524は、増幅器524内のオペアンプ(不図示)による増幅率(ゲイン)を調整するための帰還抵抗として抵抗R0から抵抗R4を備えている。抵抗R0から抵抗R4は、ゲインカウンタ521で設定される周波数変動幅のステップに対応した電圧振幅が得られるように段階的にそれぞれ異なった抵抗値を有している。
抵抗R0から抵抗R4のそれぞれには、マルチプレクサ525でON/OFF制御されるアナログスイッチSW0からSW4が設けられている。このアナログスイッチSW0からSW4のON/OFFにより、抵抗R0から抵抗R4のいずれかが選択され、増幅器524の増幅率が決定される。周波数変動幅のステップ番号、帰還抵抗の番号およびアナログスイッチの番号は対応しており、例えば、周波数変動幅がステップ4に設定されたときには、アナログスイッチSW4がONになり、帰還抵抗R4が導通される。
増幅器524で増幅された電圧は加算器54に出力される。
【0069】
マルチプレクサ525は、ゲインカウンタ521で設定された周波数変動幅のステップ番号に基づいて増幅器524に設けられたアナログスイッチSW0からSW4のON/OFF制御を行う。アナログスイッチSW0からSW4の制御により、帰還抵抗R0から帰還抵抗R4のいずれかが選択され、ゲインカウンタ521で設定された周波数変動幅に対応した電圧の振幅を得るように増幅器524の増幅率が設定される。
【0070】
中心値設定部53は、圧電アクチュエータ32に印加される駆動電圧信号の周波数変動の中心値に対応する電圧値を加算器54に出力する。例えば、図6(A)に示される電圧の出力が例示される。また、中心値設定部53には、加算器54から出力される交流電圧が入力されている。
また、中心値設定部53には、回転検出回路55でロータ22の回転が検出されない時間を測定するタイマーが設けられている。
初期状態では、中心値設定部53は、圧電素子33、34の標準状態での共振周波数に対応した電圧値が初期電圧値として設定され、この初期電圧値を加算器に出力する。例えば初期電圧値として10Vに設定される。この初期状態で回転検出回路55からロータ22の回転検出の信号を受けると、回転検出時点に加算器54から出力される電圧の値をホールドする。電圧値をホールドすると、中心値設定部53は、このホールドした電圧値を加算器54に出力する。例えば、ロータ回転検出時に加算器から8Vの電圧が出力されていれば、この電圧8Vをホールドする。
さらに、この状態で回転検出回路55からロータ22の回転検出の信号を受けると、回転検出時点で加算器54から出力される電圧値と現在中心値設定部53でホールドしている電圧値との和の2分の1の電圧値をホールドする。このホールドした電圧値を加算器54に出力する。例えば、ロータ回転検出時に加算器54から7Vの電圧が出力されていれば、この7Vと現在ホールドしている8Vとの和の2分の1の電圧7.5Vをホールドする。以後、回転検出時に加算器から出力される電圧値とホールドしている電圧値との和の2分の1の電圧をホールドし、このホールドした電圧値を加算器54に出力する。
中心値設定部53は、例えば、サンプルアンドホールド回路などで構成される。
【0071】
加算器54は、増幅器524からの交流電圧と中心値設定部53からの中心電圧とを加算して、圧電アクチュエータ32に印加する交流電圧の周波数に対応する電圧を出力する。
増幅器524からは、駆動電圧信号の周波数変動幅に対応した電圧振幅を有する交流電圧が入力される(図6(C)参照)。例えば、0Vを中心として3Vから−3Vまで振動する交流電流が入力される。中心値設定部53からは、駆動電圧信号の周波数振動の中心に対応した電圧値の電圧が入力される(図6(A)参照)。例えば、10Vの電圧が入力される。
加算器54は、増幅器524からの交流電圧と中心値設定部53からの中心電圧とを加算して、例えば、10Vを中心として13Vから7Vまで振動する交流電流を出力する。例えば、図6(D)に示される電圧加算が例示される。加算器54からの出力は、電圧制御発振器61に出力され、また、中心値設定部53に出力される。
【0072】
回転検出回路55は、回転検出手段41の検出部43と検出板ばね42との接触状態を回転検出手段41からの検出信号によってモニタする。回転検出回路55は、検出部43と検出板ばね42とが非接触になった時点の信号を検出すると、中心値設定部53とゲインカウンタ521とに回転検出信号を出力する。すなわち、ロータ22の半周回転ごとにロータ22の回転が検出され、回転検出回路55からロータ22の回転検出が中心値設定部53とゲインカウンタ521に知らされる。また、一定時間、例えば10秒以内にロータ22の回転検出がない場合には、ゲインカウンタ521と中心値設定部53とに一定時間ロータ22が回転していない旨の指令を出力する。
回転検出回路55は、回転検出手段41の検出板ばね42がロータ22の凸部24以外の位置で検出部43に対し非接触と接触とを繰り返すこと(チャタリング)によって生じる信号(チャタリング信号)に起因してロータ22の回転を誤検出することを防止するチャタリング防止回路等を備えている。
【0073】
初期化回路56は、起動時に、中心値設定部53とゲインカウンタ521とを初期化する。
初期化回路56は、中心値設定部53を初期化する際には、中心値設定部53にホールドされていた電圧値を解除させ、さらに、初期化回路56に予め設定されている初期化用の電圧値を初期化中心電圧として中心値設定部53に設定する。この初期化中心電圧としては、標準温度で圧電素子33、34の共振周波数に対応する電圧値などが例示される。
初期化回路56は、ゲインカウンタ521を初期化する際には、ゲインカウンタ521の周波数変動幅のステップを変動幅が一番大きいステップ4に設定する。
【0074】
電圧制御発振器61は、加算器54から出力された交流電圧に対して電圧レベルに応じた周波数信号を発振する。加算器54からは電圧値が振動する交流電圧が出力されるところ、電圧制御発振器61はこの交流電圧の電圧値をこの電圧レベルに応じた周波数レベルに読み替えて、電圧の振動を周波数の振動に変換する。例えば、図6(E)に示される電圧から周波数への変換が例示される。電圧制御発振器で変換された周波数信号は、駆動回路62に出力される。
中央制御回路51および電圧制御発振器61により、周波数変動手段が構成されている。
【0075】
駆動回路62は、電圧制御発振器61からの周波数を有する交流信号を駆動電圧信号として圧電アクチュエータ32に印加する。例えば、図6(F)に示されるような周波数変動を有する交流電圧の信号が例示される。圧電アクチュエータ32は、この駆動電圧信号により駆動される。
【0076】
デューティ比調整回路63は、駆動回路62に対して駆動電圧信号のON/OFF制御を行い、1周期内で駆動電圧信号を出力する時間の割合(デューティ比)を調整する。デューティ比調整回路63は、外部に臨んで設けられた外部入力手段によって入力操作され、外部入力手段による入力値に応じてデューティ比を調整することにより、圧電アクチュエータ32の駆動状態を調整する。すなわち、圧電アクチュエータ32の駆動状態が調整されることにより、ロータ22の回転速度が調整される。
【0077】
このような構成による駆動制御回路5の動作(振動体駆動制御方法)について説明する。
まず、起動時からロータ22を回転させるまでの動作について説明する。
起動する際には、外部から初期化回路56に起動させる指令を入力する。すると、初期化回路56によって、中心値設定部53に初期化中心電圧として標準温度での圧電素子33、34の共振周波数が設定され、加算器54に出力される(図6(A)参照)。さらに、ゲインカウンタ521に最も大きい周波数変動幅のステップであるステップ4が設定される。ゲインカウンタ521に設定されたステップの周波数変動幅に応じて、マルチプレクサ525により増幅器524のアナログスイッチSW4がON設定され、帰還抵抗R4が導通される。
三角波発生回路523から三角波が発生され(図6(B)参照)、この三角波が増幅器524によりゲインカウンタ521で設定された周波数変動幅に対応した電圧振幅に増幅される(図6(C)参照)。
【0078】
増幅器524で増幅された電圧と中心値設定部53からの中心値電圧とが加算器54で加算される(図6(D)参照)。加算器54で加算された電圧は、電圧制御発振器61で周波数に変換される(図6(E)参照)。デューティ比調整回路63によるデューティ比調整のもとで、電圧制御発振器61から出力される周波数を有する駆動電圧信号が駆動回路62から圧電アクチュエータ32に印加される(図6(F)参照)。すると、圧電アクチュエータ32の駆動によってロータ22が回転される。ロータ22の回転によりボール26が転動され、チューブ21から液体が吐出される。
【0079】
次に、ロータ22の回転検出に応じた駆動電圧信号の制御について図7を参照して説明する。
まず、初期化回路56によってゲインカウンタ521および中心値設定部53が初期状態に設定されている(ST1)。初期化されたはじめの状態では、ゲインカウンタ521による周波数変動幅がステップ4に設定され、中心値設定部53の中心電圧が圧電素子33、34の標準温度での共振周波数に設定された状態で圧電アクチュエータ32に駆動電圧信号が印加されている。このとき、圧電アクチュエータ32に印加される駆動電圧信号は、例えば、図8中のT1に例示されるように、圧電アクチュエータ32を駆動させる周波数(駆動周波数範囲)を含んで大きな周波数変動幅を有することになる。
この状態でロータ22の回転の有無が判定される(ST2)。ここで、ロータ22の回転検出の有無は、圧電アクチュエータ32に駆動電圧信号を印加してから10秒以内に回転検出手段41から検出信号が回転検出回路55に出力された場合に、ロータ22の回転が検出ありと判定する。逆に、圧電アクチュエータ32に駆動電圧信号を印加してから10秒以内に回転検出信号が出力されなかった場合に、ロータ22の回転検出なしと判定する。
【0080】
初期状態ST1においてロータ22の回転検出があった場合(ST2:YES)、ゲインカウンタ521の周波数変動幅のステップを1段階下げて(ST3)、ステップ3に設定する。さらに、中心値設定部53の中心電圧を回転検出があった時点で加算器54から出力された電圧値に設定する(ST4)。すると、例えば、図9中の点P1の時点でロータ22の回転検出があった場合では、この点P1の時点での周波数を中心とし、1段階小さい周波数変動幅の駆動電圧信号が圧電アクチュエータ32に印加されることになる(図8中T2参照)。
【0081】
ST3およびST4の設定状態で圧電アクチュエータ32に駆動電圧信号が印加される。この状態でロータ22の回転検出があった場合(ST5:YES)、ゲインカウンタ521の周波数変動幅のステップを1段階下げる(ST6)。さらに、中心値設定部53の中心値電圧を、現在ホールドしている電圧値と回転検出があった時点で加算器54から出力された電圧値との和の2分の1に設定する(ST7)。
例えば、図8中の点P2の時点でロータ22の回転検出があった場合では、この点P2の時点での周波数と前回のロータ回転検出時である点P1での周波数との和の2分の1の周波数を中心とし、さらに1段階小さい周波数変動幅の駆動電圧信号が圧電アクチュエータ32に印加されることになる(図8中T3参照)。
【0082】
ST6およびST7の設定状態で圧電アクチュエータ32に駆動電圧信号が印加される。この状態でロータ22の回転検出があった場合(ST8:YES)には、再びST6、ST7を繰り返す。すなわち、ゲインカウンタ521の周波数変動幅のステップを1段階下げ(ST6)、中心値設定部53の中心値電圧を、現在ホールドしている電圧値と回転検出があった時点で加算器54から出力された電圧値との和の2分の1に設定する(ST7)。
ただし、ST6を繰り返す際に、ゲインカウンタ521の周波数変動幅のステップが0に設定されていた場合は、ステップ0の状態を維持する。すると、例えば、図8中T4で示されるように、圧電アクチュエータ32を駆動できる周波数範囲に含まれる周波数を有する駆動電圧信号を圧電アクチュエータ32に印加することができる。よって、駆動電圧信号の全領域によって圧電アクチュエータ32を駆動できるので、圧電アクチュエータ32を効率よく駆動することができる。
【0083】
ロータ22の回転速度の調整について説明する。
ロータ22の回転速度を調整する場合には、デューティ比調整回路63に設けられた外部入力手段を操作する。例えば、ロータ22の回転速度を速くする場合は、外部入力手段によりデューティ比を調整して、駆動電圧信号が出力されているON状態が1周期の間でより長くなるようにする。すると、圧電アクチュエータ32の1周期内での駆動時間が長くなるので、その分ロータの回転が速くなる。ロータ22の回転速度を遅くする場合には、逆に、外部入力手段によりデューティ比を調整して駆動電圧信号が停止されているOFF状態がより長くなるようにする。
【0084】
以上このような構成からなる第1実施形態によれば、次の効果を奏することができる。
(1)仮に、周囲の温度変化など種種の要因によって圧電アクチュエータ32を駆動できる周波数に変動が生じていたとしても、ある程度大きな周波数変動幅の駆動電圧信号を用いるので、確実に圧電アクチュエータ32を駆動させることができる。特に、起動時には、最も周波数変動幅の大きいステップ4からはじめるので、圧電素子33、34の共振周波数が標準温度での値から変化していたとしても、圧電アクチュエータ32を駆動してロータ22を確実に回転させることができる。
【0085】
(2)ロータ22の回転検出があった時点での周波数を周波数変動中心とするので、駆動周波数範囲内の周波数を変動中心とする駆動電圧信号とすることができる。すると、周波数変動幅を小さくしても、この周波数変動幅は圧電アクチュエータ32を駆動できる周波数範囲を含んでいるか、もしくは圧電アクチュエータ32を駆動できる周波数範囲に含まれている可能性が高い。よって、周波数変動幅を一段階下げることができる。その結果、この周波数変動幅は、圧電アクチュエータ32を駆動できる周波数範囲から外れた領域をわずかしか有しないか、またはこの周波数変動幅の全領域で圧電アクチュエータ32を駆動することができる。その結果、圧電アクチュエータ32を駆動する単位時間あたりの効率を向上させることができる。
【0086】
(3)中心値設定部53で現設定されている駆動電圧信号の周波数変動の中心値と、今回、回転検出信号が出力された時点の駆動電圧信号の周波数との和の2分の1を駆動電圧信号の周波数変動の中心値として設定する。すると、2回の回転検出時の駆動電圧信号の周波数を平均することになる。よって、周波数変動の変動中心を駆動周波数範囲の真中に近く設定することができる。周波数変動の変動中心が駆動周波数範囲の真中の周波数に近ければ、駆動電圧信号の周波数変動幅のうち駆動周波数範囲から外れる部分を少なくできる。その結果、圧電アクチュエータ32を駆動するエネルギー効率を向上させることができる。
(4)デューティ比調整回路63により、駆動回路62から出力される駆動電圧信号のデューティ比調整により、ロータ22の回転数を制御する。デューティ比調整によるので、駆動電圧信号の周波数を変化させることなくロータ22の回転数を調整することができる。つまり、駆動電圧信号の周波数変動の中心値や周波数変動幅の設定に影響を与えることがない。また、デューティ比調整により必要な時間だけ通電すればよいので、エネルギー効率を向上させることができる。
(5)ゲインカウンタ521にテーブル522が設けられ、このテーブル522に予め周波数変動幅のステップが設定されている。よって、周波数の変動幅を変更する際に、単に、テーブル522に設定されたステップの選択を行うだけでよい。つまり、例えば、現在の周波数変動幅に対して所定係数を掛けたり所定数を加減したりする演算を必要としない。その結果、回路構成を簡略化できる。
(6)回転検出を行い、回転検出がない場合には、初期設定である周波数変動幅が一番大きなステップ4に戻る。仮に、ロータ22を回転させている最中に、種種の要因で駆動周波数範囲が変化してロータ22の回転が停止したとしても、再び大きな周波数変動の駆動電圧信号を圧電アクチュエータに印加する。よって、確実にロータ22を回転させることができる。
(7)起動時には、周波数変動の変動中心として標準温度での圧電素子33、34の共振周波数が設定されている。よって、通常の標準温度での使用に際しては、起動時から最も効率よく圧電アクチュエータ32を駆動することができる。
【0087】
(第2実施形態)
次に、本発明の振動体駆動制御装置の第2実施形態を図9に示す。第2実施形態の基本的構成は第1実施形態と同様であり、第2実施形態が第1実施形態と異なる点は、ロータ22の回転速度が設定入力される目標値設定回路631と、ロータの回転速度を検出する回転速度検出手段(振動体駆動レベル検出手段)としてのタコメータ632とが設けられている点である。
目標値設定回路631は、外部に臨んで設けられ外部操作可能な外部操作手段として例えば入力ボタン等(不図示)を有し、この外部操作手段によりロータ22の目標回転速度が設定入力される。例えば、1秒当たりロータが2回転(2Hz)となるように設定入力される。目標値設定回路631に設定入力された目標回転速度は、デューティ比調整回路63に出力される。
タコメータ632は、単位時間あたりのロータ22の回転数を検出する。タコメータ632は、単位時間あたりに回転検出回路から出力される回転検出信号をカウントすることにより、ロータ22の回転速度を計測する。タコメータ632で計測されたロータ回転速度はデューティ比調整回路63に出力される。なお、タコメータ632は、ロータ22の回転速度を検出することによって、圧電素子33、34の駆動レベルを検出する(振動体駆動レベル検出手段)、あるいは、圧電素子33、34の振動で駆動される圧電アクチュエータ32の駆動レベルを検出するものである。
【0088】
デューティ比調整回路63は、タコメータ632で計測されたロータ回転速度に基づいて、目標値設定回路631に設定された目標回転速度でロータ22を回転させるように駆動回路から出力される駆動電圧信号のデューティ比を調整する。
デューティ比調整回路63には、起動時に駆動回路62に出力する初期デューティ比が予め設定されている。例えば、初期デューティ比として100%のON状態で駆動電圧信号を出力するデューティ比が設定される。起動時には、この初期デューティ比で駆動電圧信号を出力させる。ロータ22が回転駆動されて、タコメータ632からロータ22の回転速度がデューティ比調整回路63に出力されると、デューティ比調整回路63は、検出された回転速度と目標値との比(調整量)に基づいて新たなデューティ比を設定する。例えば、目標値が2Hzであり、検出されたロータ回転速度が6Hzであった場合には、現在のデューティ比を2Hz/6Hz、つまり、3分の1にする。現在100%のON状態となるデューティ比に設定されていれば、100%/3で、デューティ比を33%のON状態とし、これを新たなデューティ比とする。
【0089】
ロータ22の回転速度調整を行うデューティ比調整の動作について図10を参照して説明する。
まず、外部操作入力によって目標値設定回路631にロータ回転速度の目標値を設定する(ST11)。駆動制御回路5が起動され、圧電アクチュエータ32の駆動を行う駆動電圧信号が駆動回路62から出力されると、デューティ比調整回路63は、初期設定されている初期デューティを駆動回路62に出力する(ST12)。ロータ22が回転駆動を始めると、タコメータ632によって単位時間あたりの回転検出回路からの回転検出信号がカウントされ、ロータ22の回転速度が検出される(ST13)。デューティ比調整回路63は、目標値設定回路631に設定された目標値と検出されたロータ回転速度との比からデューティ比を調整する調整量を算出する(ST14)。デューティ比調整回路63は、この調整量に基づいて新たにデューティ比を算出する(ST15)。すなわち、現在のデューティ比に調整量をかけることにより、新たなデューティ比を設定する。この新たに設定されたデューティ比がデューティ比調整回路63から駆動回路に出力される(ST16)。
以後、続けてタコメータ632によりロータ22の回転速度検出が行われ(ST13)、ロータ22の回転速度が設定された目標値になるように、デューティ比の調整が行われる。
【0090】
このような構成によれば、前記実施形態の効果(1)から(7)に加えて、次の効果を奏することができる。
(8)目標値設定回路631が設けられ、タコメータ632によりロータ回転速度がフィードバック制御されるので、目標値を設定すれば自動的にデューティ比が調整されロータ回転速度が目標値一定で維持される。
【0091】
(第3実施形態)
次に、本発明の振動体駆動制御装置の第3実施形態を図11に示す。
この第3実施形態が第1実施形態と異なる点は、中央制御回路51の構成にある。
中央制御回路51は、駆動電圧信号の周波数の中心値および変動幅の情報についての設定を行う情報設定部64と、情報設定部64で設定された中心値および変動幅を有する駆動電圧信号の周波数に対応した電圧の三角波を発生する三角波発生回路523とを備えて構成されている。なお、デューティ比調整回路は設けられていない。また、回転検出回路55は、回転検出信号を情報設定部に出力する。電圧制御発振器61および駆動回路62は第1実施形態と同様である。
【0092】
情報設定部64は、駆動電圧信号の周波数変動の変動中心を設定する中心値情報設定部641と、駆動電圧信号の周波数の変動幅を設定する変動幅情報設定部642とを備えて構成されている。
中心値情報設定部641の働きは、基本的に第1実施形態における中心値設定部53と同様である。すなわち、駆動電圧信号の周波数変動の変動中心を設定する。この設定した周波数変動中心に対応する電圧値の情報を中心値情報として三角波発生回路523に出力する。また、中心値情報設定部641には、初期設定として、標準温度における圧電素子33、34の共振周波数に対応する電圧情報が初期中心値情報として設定されている。中心値情報設定部641は、初期設定状態で回転検出回路55から回転検出信号を受けた場合、回転検出信号が出力されている時点で三角波発生回路523から出力される電圧値を周波数変動の変動中心とする。また、2回目以降の回転検出信号に対しては、現在設定している中心値と今回回転検出信号が出力された時点で三角波発生回路523から出力された三角波の電圧との和の2分の1を新たな中心値情報として設定する。
回転検出回路55から一定時間、例えば、10秒以上ロータ回転検出の信号が出力されない場合には、中心値情報を初期設定に戻す。
【0093】
変動幅情報設定部642の働きは、基本的に第1実施形態におけるゲインカウンタ521と同様である。すなわち、駆動電圧信号の周波数変動の変動幅を設定し、この設定した周波数変動幅に対応する電圧の情報を変動幅情報として三角波発生回路523に出力する。また、変動幅情報設定部642には、予め段階的に設定された周波数変動幅のテーブルを備える。このテーブルとしては第1実施形態と同様のテーブルが例示される。変動幅情報設定部642は、初期設定として周波数変動幅のうち最も大きい周波数変動幅に設定されている。変動幅情報設定部642は、回転検出回路から回転検出信号を受けた場合には、周波数変動幅を順次小さく設定する。
回転検出回路55から一定時間、例えば、10秒以上ロータ回転検出の信号が出力されない場合には、周波数変動幅を初期設定に戻す。
【0094】
三角波発生回路523は、情報設定部64(中心値情報設定部641、変動幅情報設定部642)で設定された情報に基づいて、三角波を発生させる。つまり、中心値情報設定部641で設定された中心電圧で、変動幅情報設定部642で設定された電圧変動幅を有する三角波を発生させる。
三角波発生回路523で発生された三角波は、電圧制御発振器61で、電圧レベルに応じた周波数を有する交流電圧に変換される。電圧制御発振器61からの交流電圧は駆動回路62により駆動電圧信号として圧電アクチュエータ32に印加される。この駆動電圧信号の印加により圧電アクチュエータ32が駆動される。
【0095】
このような構成によれば、前記実施形態の効果(1)(2)(3)(5)(6)(7)に加えて、次の効果を奏することができる。
(9)情報設定部64で中心値情報および周波数変動幅情報を設定して、この情報に基づく三角波が三角波発生回路523で発生される。よって、第1実施形態に比べると電圧を増幅したり、電圧を加算したりする必要がないので、回路構成を簡略化できる。
なお、情報設定部64は、CPU(中央処理装置)、メモリ(記憶装置)等を備えたコンピュータにより構成し、このコンピュータに所定のプログラムを組み込んで中心値情報設定部641、変動幅情報設定部642としての機能を実現させるようにしてもよい。このような構成によれば、情報設定部64はソフト的に情報を処理する構成とできる。すると、回路構成を簡略化できる。また、中心値情報設定部641や変動幅情報設定部642の設定内容を容易に変更することができる。
【0096】
尚、本発明の振動体駆動制御装置および振動体駆動制御方法は、上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、図12(A)に示す構成により、図12(B)に示されるように周波数変動幅一定の駆動電圧信号を圧電アクチュエータに印加するものとしてもよい。つまり、三角波発生回路523で一定の電圧振幅を有する三角波を発生させ、この三角波を電圧制御発振器61で電圧レベルに応じた周波数を有する交流信号に変換する。この交流信号を駆動回路62から駆動電圧信号として圧電アクチュエータ32に印加するようにしてもよい。このような構成において、三角波発生回路523で発生される三角波の電圧振幅をある程度大きく、例えば、高温から低温までの共振周波数の変化を含む程度に設定しておけば、ロータ22を確実に回転させることができる。また、第1実施形態から第3実施形態のようにロータ22の回転検出に応じて駆動電圧信号の周波数変動幅や変動中心を制御するものではないので、回路構成が簡略化される。
【0097】
また、温度測定手段を設けて、この温度測定手段による温度測定の結果により初期状態での周波数変動の変動中心および変動幅を設定するようにしてもよい。例えば、温度測定手段として熱電対やサーミスタを設け、この温度測定結果を初期化回路56に入力し、図4に示される温度と駆動周波数範囲との関係に基づいて周波数変動の変動中心および変動幅を設定するようにしてもよい。このような構成によれば、温度がさまざまに異なる環境であっても、起動時からできる限り駆動電圧信号の周波数変動幅のうち駆動周波数範囲から外れる部分を少なくできる。その結果、振動体を駆動するエネルギー効率を向上させることができる。
【0098】
第1実施形態、第2実施形態および第3実施形態において、ゲインカウンタ521に設けられるテーブル522に設定される周波数変動幅のステップは、上記実施形態に限られない。例えば、ステップが下がるにつれて周波数変動幅が2分の1になるものの他、ステップが下がるにつれて1より小さい所定係数を掛けてもよく、所定数ずつ小さくなるものでもよい。また、ステップと周波数変動幅との関係は規則的でなくてもよい。
あるいは、ゲインカウンタ521は、テーブル522を備えず、ロータ回転検出があるたびに現在の周波数変動幅に対して所定係数を掛けるなり、所定数を引くなどにより新たな周波数変動幅を演算して設定してもよい。
なお、初期設定における周波数変動幅は、16kHzに限らず、高温から低温における駆動周波数範囲のすべてを含むようにより大きな周波数であってもよく、あるいは、逆に初期設定での周波数変動幅を小さい値、例えば、1ないし3Hz程度にしてもよい。初期設定での周波数変動を小さく設定した場合において、ロータが回転しない場合には、周波数変動幅を順次大きくするようにしてもよい。
【0099】
中心値設定部53は、ロータ22の回転検出時に加算器54から出力される電圧値をホールドするか、または、現在の中心値設定値と次のロータ回転検出時に加算器から出力される電圧値との和の2分の1を新たな中心値としてホールドするが、その他、以前に設定した中心値のいくつかと次のロータ回転検出時に加算器から出力される電圧値とを平均化した値を新たな中心値として設定してもよい。または、常に、ロータ回転検出時に加算器から出力される電圧値を新たな中心値として設定してもよい。なお、中心値設定部53には、加算器54から出力される電圧値がフィードバックされているが、駆動回路62から出力される駆動電圧信号をフィードバックして周波数をモニターするようにしてもよい。
【0100】
上記実施形態においては、駆動検出手段として、回転検出回路によりロータの回転を検出して圧電アクチュエータの駆動を検出しているが、この他、例えば、圧電アクチュエータ32の振動状態を直接検出するようにしてもよい。
【0101】
ロータ22の回転速度を調整する方法としては、駆動電圧信号のデューティ比を調整する他、例えば、変動幅設定部52において設定する周波数変動幅や中心値設定部53において設定する周波数の中心値の変化によって行ってもよい。例えば、ロータ22の回転を遅くする場合には、駆動電圧信号の周波数の変動幅を大きくしたり周波数の中心値を駆動周波数範囲から外はずして、駆動電圧信号のうち駆動周波数範囲を外れる部分を大きくしたりしてもよい。ロータ22の回転速度を速くする場合には、逆に、駆動電圧信号の変動幅や中心値を調整して、駆動電圧信号が駆動周波数範囲に入るようにするとよい。このような構成によれば、デューティ比調整回路が必要ないので、回路構成を簡略化することができる。また、ロータ22の駆動を開始させる場合には、駆動電圧信号の周波数を圧電アクチュエータ32の共振周波数に徐々に近づくようにし、また、ロータ22の駆動を停止させる場合には、駆動電圧信号の周波数を圧電アクチュエータ32の共振周波数から徐々に遠ざけるようにしてもよい。すると、ロータ22と圧電アクチュエータ32との接触部(当接部351)の磨耗を少なくし、また、この接触部からの異音の発生を防止することができる。
【0102】
また、第3実施形態において、情報設定部64をコンピュータで構成した場合には、このコンピュータ内のメモリに所定の制御プログラムをインターネット等の通信手段や、CD−ROMおよびメモリカード等の記録媒体を介してインストールし、このインストールされたプログラムでコンピュータを動作させて中心値情報設定部641や変動幅情報設定部642として機能させてもよい。
【0103】
振動体としての圧電素子の振動で駆動される振動体駆動機構としては、圧電アクチュエータに限られず、例えば、超音波モータなどでもよく、特に限定されるものではない。
また、振動体駆動機構を備えた駆動体駆動制御装置としては液体吐出装置の例を示したが、これに限られるものではない。例えば、圧電アクチュエータ(振動体駆動機構)の当接部をカレンダ送り車(ロータ)の外周に当接してカレンダ送り車を回転させて、このカレンダ送り車により日付を表示するカレンダ表示車を間欠回転させて日送りを行わす時計、ことに腕時計であってもよい。あるいは、残金額表示機能を有し、残金額表示用の桁車の駆動ロータ外周を上記圧電アクチュエータの当接部で駆動する表示車ユニットを各桁毎に設けたICカードであってもよく、その他の電子機器であってもよい。
【0104】
【発明の効果】
本発明の振動体駆動制御装置および振動体駆動制御方法によれば、振動体を確実に駆動でき、また、本発明の駆動体駆動制御装置によれば、振動体を有する振動体駆動機構により駆動される駆動体を確実に駆動できるという優れた効果を奏することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態として、駆動制御回路(振動体駆動制御装置)によって駆動制御される液体吐出装置を示す図である。
【図2】前記第1実施形態において、液体吐出装置の断面図である。
【図3】前記第1実施形態において、圧電アクチュエータの構成と、圧電アクチュエータの駆動の様子を示す図である。
【図4】前記第1実施形態において、駆動制御回路の構成を示す図である。
【図5】前記第1実施形態において、テーブルに設定される周波数変動幅を示す図である。
【図6】前記第1実施形態において、駆動制御回路における信号の例を示す図である。
【図7】前記第1実施形態において、ロータ回転検出に応じた駆動電圧信号の制御を示すフローチャートである。
【図8】前記第1実施形態において、ロータ回転検出に応じて制御される駆動電圧信号の例を示す図である。
【図9】本発明の第2実施形態の構成を示す図である。
【図10】前記第2実施形態において、駆動電圧信号のデューティ比調整を行うフローチャートである。
【図11】本発明の第3実施形態の構成を示す図である。
【図12】本発明の変形例を示す図である。
【図13】駆動周波数範囲と温度との関係を示す図である。
【符号の説明】
1…液体吐出装置(駆動体駆動制御装置)、5…駆動制御回路(振動体駆動制御装置)、32…圧電アクチュエータ(振動体駆動機構)、33、34…圧電素子(振動体)、41…回転検出手段、51…中央制御回路(周波数変動手段)、52…変動幅設定部(周波数変動幅設定手段、電圧変動幅設定手段)、53…中心値設定部(中心値設定手段、中心電圧設定手段)、54…加算器、55…回転検出回路(駆動検出手段)、56…初期化回路、61…電圧制御発振器(周波数変動手段)、62…駆動回路(交流電圧印加手段)、63…デューティ比調整回路(デューティ比調整手段)、64…情報設定部、521…ゲインカウンタ(周波数変動幅選択部)、522…テーブル、523…三角波発生回路(三角波発生手段)、524…増幅器、525…マルチプレクサ(増幅度設定手段)、631…目標値設定回路(目標値設定手段)、632…タコメータ(振動体駆動レベル検出手段)、641…中心値情報設定部、642…変動幅情報設定部

Claims (11)

  1. 駆動電圧信号を印加することで振動する振動体と、
    前記振動体が当接して駆動される被駆動体の駆動を検出して駆動検出信号を出力する駆動検出手段と、
    前記駆動電圧信号の周波数を、所定の周波数変動幅で常に連続的に周波数変動させる周波数変動手段と、
    前記所定の周波数変動幅を可変する周波数変動幅設定手段とを有し、
    前記周波数変動幅設定手段は、前記駆動検出手段により所定時間内に前記被駆動体の駆動が検出された場合は前記周波数変動幅を予め設定された周波数変動幅まで順次狭めていくと共に、前記周波数変動幅を順次狭めていく際に、前記駆動検出手段により前記所定時間内に前記被駆動体の駆動が検出されなかった場合は、前記周波数変動幅を駆動開始時の周波数変動幅に戻す、
    ことを特徴とする振動体駆動制御装置。
  2. 請求項1 に記載の振動体駆動制御装置において、
    前記所定周波数範囲は、温度が− 1 0 ℃ である場合に前記振動体を駆動させる前記交流電圧信号の周波数から温度が6 0 ℃ である場合に前記振動体を駆動させる前記交流電圧信号の周波数までの範囲であることを特徴とする振動体駆動制御装置。
  3. 請求項1に記載の振動体駆動制御装置において、
    前記周波数変動手段は、前記駆動検出手段による検出結果に応じて前記交流電圧信号の周波数変動の変動中心を設定する中心値設定手段を備えていることを特徴とする振動体駆動制御装置。
  4. 請求項3 に記載の振動体駆動制御装置において、
    前記中心値設定手段は、前記駆動検出信号が出力された時点で前記振動体に印加される前記交流電圧信号の周波数の値に基づいて前記交流電圧信号の周波数変動の変動中心を設定することを特徴とする振動体駆動制御装置。
  5. 請求項4 に記載の振動体駆動制御装置において、
    前記中心値設定手段は、前記駆動検出信号が出力された時点で前記振動体に印加される前記交流電圧信号の周波数の値を前記交流電圧信号の周波数変動の変動中心として設定することを特徴とする振動体駆動制御装置。
  6. 請求項4 に記載の振動体駆動制御装置において、
    前記中心値設定手段は、以前設定した前記変動中心と今回前記駆動検出信号が出力された時点で前記振動体に印加された前記交流電圧信号の周波数の値とに基づいて前記交流電圧信号の周波数変動の変動中心を設定することを特徴とする振動体駆動制御装置。
  7. 請求項3 ないし請求項6 のいずれかに記載の振動体駆動制御装置において、
    前記中心値設定手段は、前記交流電圧信号の周波数変動の中心値として前記振動体の共振周波数が初期設定されていることを特徴とする振動体駆動制御装置。
  8. 請求項3 ないし請求項7 のいずれかに記載の振動体駆動制御装置において
    記周波数変動幅設定手段は、所定の電圧変動幅を設定する電圧変動幅設定手段であり、
    前記中心値設定手段は、前記電圧変動幅設定手段で設定される電圧変動の中心電圧値を設定する中心電圧設定手段であり、
    前記周波数変動手段は、前記電圧変動幅設定手段および前記中心電圧設定手段で設定された変動幅および中心値を有する電圧信号を電圧レベルに応じた周波数信号に変換する電圧周波数変換手段を備えていることを特徴とする振動体駆動制御装置。
  9. 請求項1 ないし請求項8 のいずれかに記載の振動体駆動制御装置において、
    前記交流電圧印加手段から出力される交流電圧信号のデューティ比を調整するデューティ比調整手段を備えていることを特徴とする振動体駆動制御装置。
  10. 請求項9 に記載の振動体駆動制御装置において、
    前記振動体の駆動レベルの目標値を設定入力する目標値設定手段と、前記振動体の駆動レベルを検出する振動体駆動レベル検出手段とが設けられ、前記デューティ比調整手段は、設定入力された前記目標値と前記振動体駆動レベル検出手段で検出された駆動レベルとの差に基づいて前記交流電圧信号のデューティ比を調整することを特徴とする振動体駆動制御装置。
  11. 前記振動体は圧電素子であり、
    この圧電素子の振動により駆動される振動体駆動機構と、
    前記振動体駆動機構に対する摩擦接触にて駆動される駆動体と、
    請求項1 ないし請求項1 0 のいずれかに記載の振動体駆動制御装置とを備え、
    前記駆動検出手段は前記駆動体の駆動を検出することを特徴とする駆動体駆動制御装置。
JP2002303213A 2002-10-17 2002-10-17 振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法 Expired - Fee Related JP4438278B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303213A JP4438278B2 (ja) 2002-10-17 2002-10-17 振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303213A JP4438278B2 (ja) 2002-10-17 2002-10-17 振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法

Publications (2)

Publication Number Publication Date
JP2004140928A JP2004140928A (ja) 2004-05-13
JP4438278B2 true JP4438278B2 (ja) 2010-03-24

Family

ID=32451074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303213A Expired - Fee Related JP4438278B2 (ja) 2002-10-17 2002-10-17 振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法

Country Status (1)

Country Link
JP (1) JP4438278B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894308B2 (ja) * 2006-03-13 2012-03-14 コニカミノルタオプト株式会社 駆動装置
JP2010162487A (ja) * 2009-01-16 2010-07-29 Sony Corp 圧電振動機器システムおよび電子機器
JP5941394B2 (ja) * 2012-10-18 2016-06-29 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP7191547B2 (ja) * 2018-05-11 2022-12-19 キヤノン株式会社 振動型駆動装置、電子機器及び振動型アクチュエータの制御方法
JP7318300B2 (ja) * 2019-04-26 2023-08-01 セイコーエプソン株式会社 圧電駆動装置の制御方法、圧電駆動装置およびロボット
JP7238581B2 (ja) * 2019-04-26 2023-03-14 セイコーエプソン株式会社 圧電駆動装置の制御方法、圧電駆動装置およびロボット

Also Published As

Publication number Publication date
JP2004140928A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
JP2746877B2 (ja) 超音波振動を利用した超音波モーター
JP4525943B2 (ja) 超音波モータの駆動方法
US20070159507A1 (en) Piezoelectric actuator drive control method, piezoelectric actuator drive control apparatus, and electronic device
JP3332832B2 (ja) 振動型アクチュエータ装置
JP4438278B2 (ja) 振動体駆動制御装置、駆動体駆動制御装置および振動体駆動制御方法
US6144140A (en) Ultrasonic motor and electronic device fitted with ultrasonic motor
JP4478407B2 (ja) 制御装置およびプログラム
JP4774827B2 (ja) 圧電アクチュエータの駆動制御装置、電子機器および圧電アクチュエータの駆動制御方法
JP2002112564A (ja) アクチュエータの駆動装置
JP2003033056A (ja) 超音波モータ制御回路
JPH09163765A (ja) 超音波モータの駆動方法およびその駆動回路
JP2010074912A (ja) 超音波モータ
JP2002165469A (ja) 圧電アクチュエータ
WO2005119666A1 (ja) 光ディスク装置
JP2001078472A (ja) 超音波モータの駆動装置及び超音波モータの駆動方法
JP2000184757A (ja) 振動波駆動装置および振動型モータの駆動装置
JP3315525B2 (ja) 振動駆動装置
JP2012090437A (ja) 振動型駆動装置の駆動方法、振動型駆動装置および撮像装置
JP2906378B2 (ja) 超音波モータ
JPH02303378A (ja) 超音波モータの駆動装置
JPH10191661A (ja) 振動装置およびこれを備えた装置
JPH10155288A (ja) 超音波モータの駆動装置
JP2885391B2 (ja) 超音波モーター
JP4064110B2 (ja) 超音波モータ駆動制御装置
JP2003021779A (ja) カメラ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees