JP2020178105A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2020178105A
JP2020178105A JP2019081277A JP2019081277A JP2020178105A JP 2020178105 A JP2020178105 A JP 2020178105A JP 2019081277 A JP2019081277 A JP 2019081277A JP 2019081277 A JP2019081277 A JP 2019081277A JP 2020178105 A JP2020178105 A JP 2020178105A
Authority
JP
Japan
Prior art keywords
grease
heat transfer
cooler
transfer plate
annular groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019081277A
Other languages
English (en)
Other versions
JP7169246B2 (ja
Inventor
内山 和典
Kazunori Uchiyama
和典 内山
袴田 尚樹
Naoki Hakamada
尚樹 袴田
亮 宮▲崎▼
Akira Miyazaki
亮 宮▲崎▼
忠史 吉田
Tadashi Yoshida
忠史 吉田
昌孝 出口
Masataka Deguchi
昌孝 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2019081277A priority Critical patent/JP7169246B2/ja
Publication of JP2020178105A publication Critical patent/JP2020178105A/ja
Application granted granted Critical
Publication of JP7169246B2 publication Critical patent/JP7169246B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】本明細書は、効率よくグリス抜けを抑制することができる半導体装置を開示する。【解決手段】本明細書が開示する半導体装置では、パワーカードと、そのパワーカードに対向している冷却器との間の間隙にグリスが充填されている。パワーカードは、伝熱板の一面が露出する状態で、半導体素子と伝熱板を樹脂パッケージで覆っている。このパワーカードの前記伝熱板が露出している面と冷却器の対向面の少なくとも一方には、対向面に直交する方向から見たときに、半導体素子と重なる領域に複数個の互いに交差する微小溝が設けられているとともに、半導体素子を取り囲む環状溝が設けられている。また、この半導体装置では、微小溝の深さが前記環状溝の深さよりも浅い。上述した半導体装置では、微小溝により伝熱板中央部のグリス抜けを抑制し、環状溝によりグリスの弾性を向上させることで、効率よくグリス抜けを抑制する。【選択図】図2

Description

本明細書が開示する技術は、半導体装置に関する。特に、パワーカードと、そのパワーカードに対向している冷却器との間の間隙にグリスが充填されている半導体装置に関する。
ハイブリット自動車や電気自動車などのモータに加える電力を制御するために、車載用半導体装置が開発されている。その半導体装置は、伝熱板の一面が露出する状態で半導体素子と伝熱板を樹脂パッケージで覆ったパワーカードを備えており、その伝熱板に対向するように冷却器を配置してパワーカードを冷却する。伝熱板と冷却器の間の熱抵抗を下げるために、伝熱板と冷却器との間の間隙にグリスを充填する技術が開発されている。本明細書では、パワーカードと冷却器がグリスを介して対向している半導体装置に関する技術を開示する。
半導体装置を運転すると、半導体素子が発熱し、伝熱板が膨張して厚みを増し、伝熱板と冷却器の間の距離が減少し、伝熱板と冷却器の間からグリスが押し出される。半導体装置が運転を停止すると、半導体素子が冷却され、伝熱板が収縮して厚みが減り、伝熱板と冷却器の間の距離が増大し、グリスが元に戻される。実際には、前記距離が増大する際に、グリスの一部が戻りきらない現象が生じる。これが繰り返されることによって、グリスが抜け、伝熱板と冷却器の間に気泡が入り込む現象が生じる。これを本明細書ではグリス抜けという。
グリス抜けの発生を防止する技術が、特許文献1に開示されている。この技術では、グリスが充填されるパワーカードと冷却器のいずれか一方の表面に、複数の渦巻き状の溝が二次元的に配置されている。この技術では、その複数の渦巻き状の溝によりグリスが移動しやすい平面の距離を短くすることで、グリス抜けを抑制している。
特開2016−062917号公報
発明者らは、通常は粘性流体として扱うグリスを粘弾性体として捉えることで、グリス抜けが発生するときのグリスの特性を解明し、その特性からグリス抜けを抑制することを想到した。粘弾性体は、粘性流体とは異なり、粘性と弾性の両方の性質を持つ。発明者らは、このグリスの弾性が、パワーカードと冷却板の間の隙間の体積が元に戻るときにグリスを伝熱板と冷却器の間に戻す要因であることを確認し、グリスの弾性が高ければグリスがよく戻ることを確認した。別言すれば、グリスの弾性が高くて粘性が低ければグリスは抜けにくく、逆にグリスの弾性が低くて粘性が高ければグリスが抜けやすいことを確認した。
さらに発明者らは、粘弾性体の特性の一つである損失正接に着目した。ここで、損失正接とは、粘弾性体の変形時における粘性と弾性の関係を表す指標である。損失正接が低ければグリスは弾性が高い。また、グリスの損失正接が高ければグリスは粘性が高い。すなわち、損失正接が低ければ、グリスは抜けにくく、損失正接が高ければ、グリスは抜けやすい。別言すれば、グリスの損失正接は、グリス抜けやすさと相関関係を持つ。また、発明者らは、この損失正接がグリスの存在空間の体積が変化した割合に略比例することを見出した。すなわち、グリスの弾性を高くするためには、グリスの存在空間の体積を増やすことが有効である。
グリスの存在空間の体積を増やすためには、パワーカードの表面に露出している伝熱板と冷却器との間の間隙を広くする必要がある。この間隙を広くすると、伝熱板と冷却器の間の熱抵抗が増加して冷却器の放熱性能が悪化する。
一方、特許文献1に開示される半導体装置では、伝熱板と冷却器との間の間隙が狭いため冷却器の放熱性能は悪化しない。しかしながら、特許文献1の半導体装置では、グリスの存在空間が確保できず、グリスの弾性が低下する。すなわち、特許文献1の半導体装置では、グリスは抜けやすい。本明細書では、上述したグリスの特性を生かすことで、効率よくグリス抜けを抑制することができる半導体装置を開示する。
本明細書が開示する半導体装置では、パワーカードと、そのパワーカードに対向している冷却器との間の間隙にグリスが充填されている。パワーカードは、伝熱板の一面が露出する状態で、半導体素子と伝熱板を樹脂パッケージで覆っている。このパワーカードの前記伝熱板が露出している面と冷却器の対向面の少なくとも一方には、対向面に直交する方向から見たときに、半導体素子と重なる領域に複数個の互いに交差する微小溝が設けられているとともに、半導体素子を取り囲む環状溝が設けられている。また、この半導体装置では、微小溝の深さが前記環状溝の深さよりも浅い。
図4を用いて後述するが、半導体素子が稼働する際の発熱量は、半導体素子の中央部で大きく、周辺部では小さい。上述した半導体装置の伝熱板の露出面と冷却器の対向面の少なくとも一方には、対向面に直交する方向から見たときに半導体素子と重なる領域に複数個の互いに交差する微小溝が設けられている。グリスは平面で移動しやすい。上述した半導体装置が有する微小溝は、互いに交差しているため、平面の距離が短くなる。このため、半導体素子の発熱量が大きい中央部では、この微小溝がグリスの移動を抑制する。
半導体素子の周辺部では、発熱量が小さいため伝熱板と冷却器の間の間隙を広くしても、冷却器の放熱性能への影響が少ない。上述した半導体装置の伝熱板の露出面と冷却器の対向面の少なくとも一方には、対向面に直交する方向から見たときに半導体素子を取り囲む環状溝が設けられている。この環状溝により、グリスの存在空間の体積が増加する。グリスの存在空間の体積が増加すると、グリスの弾性が高くなり、グリス抜けが発生しにくくなる。従って、本明細書が開示する半導体装置によれば、発熱量が大きい半導体素子と重なる部位では微小溝によってグリスの移動を抑制し、発熱量が小さい半導体素子の周辺部では環状溝によりグリス抜けを抑制する。すなわち、上述した半導体装置によれば、グリスの特性を生かすことで、冷却器の放熱性能への影響を抑えつつ、効率よくグリス抜けを抑制することができる。環状溝は、グリスの存在空間の体積を増加させるために設ける。一方、微小溝は、グリスが塗布される平面の直線距離を短くするために設ける。環状溝は深い方がよいが、微小溝は浅くてもよい。すなわち、微小溝の深さは環状溝の深さよりも浅くてよい。
また、上述した半導体装置では、環状溝が樹脂パッケージに設けられていてもよい。樹脂パッケージは熱伝導率が低く、半導体素子が発した熱を冷却器に伝え難い。このため、パワーカードと冷却器の対向面との間の間隙が大きくなる環状溝を樹脂パッケージに設けることで、放熱性能への影響を抑えることができる。
逆に、環状溝は伝熱板に設けられていてもよい。樹脂パッケージよりも半導体素子に近い位置にある伝熱板に環状溝を設けることで、発熱量が大きい半導体素子と重なる部位からグリスが抜けるのを抑制することができる。
また、伝熱板に環状溝を設ける場合、半導体素子の中心から離れた位置に設けられている環状溝の幅は、半導体素子の中心から近い位置に設けられている環状溝の幅よりも広くしてもよい。このように環状溝の幅を変化させることで、半導体素子の発熱量が大きい伝熱板の中央に近い部位では環状溝の幅を狭くすることができるため、冷却器の放熱性能への影響を抑えることができる。また、伝熱板の半導体素子の発熱量が小さい周辺部に幅の広い環状溝を設けることで、冷却器の放熱性能への影響が小さい部位でグリスの存在する空間体積を増やし、グリスの弾性を高くしてグリス抜けを抑制することができる。
本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。
実施例の半導体装置の斜視図である。 図1の半導体装置のパワーカードの平面図である。 図2のIII−III線におけるパワーカードの部分断面図である。 半導体素子の発熱時の伝熱板の温度分布を示す平面図である。 第1変形例の半導体装置のパワーカードの平面図である。 第2変形例の半導体装置のパワーカードの平面図である。 第3変形例の半導体装置のパワーカードの平面図である。 第4変形例の半導体装置のパワーカードの平面図である。 第5変形例の半導体装置のパワーカードの平面図である。
図面を参照して実施例の半導体装置について説明する。図1は、実施例の半導体装置2の斜視図である。半導体装置2は、複数個のパワーカード20と複数個の冷却器8が積層されたユニットである。なお、図1では、一つのパワーカードだけに符号20を付し、他のパワーカードの符号は省略している。図1では、同様に一つの冷却器だけに符号8を付し、他の冷却器の符号は省略している。また、半導体装置2の全体が見えるように、半導体装置2を収容するケース16は仮想線で表現している。1個のパワーカード20は、2個の冷却器8で挟まれる。パワーカード20と一方の冷却器8との間には絶縁板22が挟まれており、パワーカード20と他方の冷却器8との間には絶縁板44が挟まれている。パワーカード20と、パワーカード20に対向している絶縁板22、44との間の間隙には、グリスが充填されている。図1では、理解を助けるため、1個のパワーカード20と絶縁板22、44を半導体装置2から抜き出して描いてある。
パワーカード20と冷却器8は、共に平板型であり、複数の側面のうち最大面積の平坦面(幅広面)が対向するように積層されている。パワーカード20と冷却器8は交互に積層されており、半導体装置2の積層方向の両端には冷却器8が位置している。冷却器8は、内部を冷媒が通る流路である。複数の冷却器8は、連結パイプ10、12で連結されている。半導体装置2の積層方向の一端に位置する冷却器8には、冷媒供給管4と冷媒排出管6が連結されている。冷媒供給管4を通じて供給される冷媒は、連結パイプ10を通じて全ての冷却器8に分配される。冷媒は各冷却器8を通る間に隣接するパワーカード20から熱を吸収する。各冷却器8を通った冷媒は連結パイプ12を通り、冷媒排出管6から排出される。冷媒は液体であり、具体的には、水、あるいは、不凍液である。
半導体装置2は積層方向の一端に板バネ14を伴ってケース16に収容される。板バネ14により、パワーカード20と絶縁板22、44と冷却器8が積層された半導体装置2は、積層方向の両側から加圧される。積層方向の加圧により、パワーカード20と絶縁板22、44と冷却器8の間の間隙を小さくすることができ、冷却効率が高まる。
パワーカード20について説明する。パワーカード20は、樹脂製のパッケージ34内に半導体素子24、26が封止されたデバイスである。半導体素子24、26は、電力変換用のスイッチング素子であり、具体的には、IGBT(Insulated Gate Bipolar Transistor)、あるいは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。絶縁板22と対向する一方の幅広面32には、伝熱板28、30が露出している。伝熱板28、30の露出面は矩形であり、外周に沿って凹部が設けられている。すなわち、伝熱板28、30は環状溝29a、31aを有している(図1では理解を助けるために環状溝29a、31aを強調して大きく描いてある)。幅広面32とは反対側の幅広面52(図1では不図示、図3参照)には、別の伝熱板48、50が露出している。伝熱板28、30同様に、伝熱板48、50も矩形であり、外周に環状溝49a、51aを有している。伝熱板28、30、48、50のそれぞれの露出面の一部には、後述する微小溝(図3参照)が設けられているが、図1では図示を省略している。半導体素子24は、伝熱板28、48で挟まれており、半導体素子26は、伝熱板30、50で挟まれている。なお、伝熱板28、30、48、50は銅により構成されている。
半導体素子24、26は、一方の表面にコレクタ電極が露出しており、他方の電極にエミッタ電極が露出している。伝熱板28、30、48、50は、パッケージ34の内部で半導体素子24、26のいずれかの電極と導通している。
図1に示すように、パワーカード20のパッケージ34の一つの幅狭面から3個の端子38、40、42が延びており、反対側の幅狭面からは制御端子36が延びている。パッケージ34の内部で2個の半導体素子24、26は、直列に接続されており、正極端子42は、パッケージ34の内部で、2個の半導体素子24、26の直列接続の正極側と導通している。負極端子40は、前記直列接続の負局側と導通している。中点端子38は、パッケージ34の内部で、前記直列接続の中点と導通している。端子38、40、42は、伝熱板28、30、48、50のいずれかを介して、半導体素子24、26の電極と導通している。半導体素子24、26と端子38、40、42の間の導電経路については説明を省略する。制御端子36は、半導体素子24、26のゲート電極、センスエミッタ電極、温度センサの端子などに接続されている。パッケージ34の内部における制御端子36の配線も図示と説明を省略する。
図2を参照してパワーカード20の表面の形状について説明する。図2は、パワーカードの平面視である。パワーカード20は、図2に示す平面視の方向に絶縁板22を介して冷却器8や別のパワーカードと積層される。すなわち、図2は、絶縁板22の対向面に直交する方向から見たときのパワーカード20の表面の形状を示している。伝熱板28、30は、平面視したときに周囲を樹脂製のパッケージ34に囲まれている。また、図2では、半導体素子24、26は破線で描かれており、伝熱板28の紙面奥側に半導体素子24が、伝熱板30の紙面奥側に半導体素子26が設けられている。すなわち、パワーカード20は、伝熱板28、30の一面が露出する状態で、半導体素子24、26と伝熱板28、30を樹脂製のパッケージ34で覆ったものである。
微小溝28a、30aについて説明する。微小溝28a、30aは、伝熱板28、30の露出面の一部に設けられた凹部である。ここでは微小溝28aについて説明する。図2に示すように、微小溝28aは、平面視で見たときに、円を描く複数個の凹部が集合したものである。図2に示すように、微小溝28aのそれぞれが描く円は、一部が重なるように配置されている。そのため、微小溝28aのそれぞれの円は、互いに交差している。また、図2に示すように、微小溝28aは、破線で示す半導体素子24と重なるように配置されている。すなわち、パワーカード20の伝熱板28が露出している面には、半導体素子24と重なる領域に複数個の互いに交差する微小溝28aが設けられている。なお、微小溝30aも微小溝28aと同様の形状であり、半導体素子26との関係も同様であるため、説明は省略する。
環状溝29a、31aについて説明する。先に述べたように、環状溝29a、31aは、伝熱板28、30の露出面の外周に設けられた凹部である。ここでは環状溝29aについて説明する。図2では、環状溝29aが設けられている領域を斜線で表している。環状溝29aは、図2に示すように、伝熱板28の外周のZ軸方向の辺に設けられた環状溝29aの幅は、伝熱板28の外周のY軸方向の辺に設けられた環状溝29aの幅の略2倍である。環状溝29aが設けられている領域を示す斜線の内側に半導体素子24が配置されている。すなわち、絶縁板22の対向面に直交する方向から見たときに、環状溝29aは半導体素子24を取り囲んでいる。なお、環状溝31aも環状溝29aと同様の形状であり、半導体素子26との関係も同様であるため、説明は省略する。
図2では、絶縁板22が一点鎖線で描かれている。伝熱板28、30は、平面視したときにその全体が絶縁板22と重なっている。先に述べたように、パワーカード20と絶縁板22の間の間隙には、グリスが塗布される。さらに、図2では、グリスが塗布されている領域が二点鎖線Gで描かれている。すなわち、少なくとも環状溝29a、31aの外周より内側に位置する間隙にはグリスが充填されている。本実施例では、二点鎖線Gに示すように、環状溝29a、31aの外周より外側にまでグリスが塗布されているが、外周より内側にあったグリスが内側に戻りきらず、内側に気泡が入ることをグリス抜けという。グリス本来の機能からいうと、内側にグリスが充填されていればよい。
また、パワーカード20の裏面についても、伝熱板48、50(図3参照)と、パッケージ34、絶縁板44(図3参照)の関係は同様である。また、伝熱板48、50の環状溝49a、51aと半導体素子24、26の関係は同様である。さらに、パワーカード20の裏面である幅広面52(図3参照)にも、表側の幅広面32と同様に絶縁板44との間の間隙にグリスが塗布されている。
図3を参照してパワーカード20とパワーカード20に対向している冷却器8との間の構造について説明する。図3は、図2のIII−III線におけるパワーカード20の部分断面図である。先に述べたように、半導体素子24は、一対の伝熱板28、48で挟まれている。半導体素子24は平坦なチップである。半導体素子24の図面上側(すなわち、X軸方向正側)幅広面にコレクタ電極が露出しており、図面下側の幅広面にはエミッタ電極が露出している。伝熱板28は、半導体素子24のコレクタ電極とハンダ54により接合しているとともに導通している。伝熱板48は、半導体素子24のエミッタ電極とハンダ54により接合しているとともに導通している。同様に、半導体素子26も、一対の伝熱板30、50によって挟まれている。半導体素子26も、ハンダ56により伝熱板30、50と接合しているとともに導通している。なお、半導体素子24と伝熱板28又は伝熱板48の間と、半導体素子26と伝熱板30又は伝熱板50の間には、必要に応じて銅などの導体で構成されるスペーサを設けてもよい。
伝熱板28、30、48、50は、半導体素子24、26の熱を冷却器8に伝える役割と、半導体素子24、26の電極と端子38、40、42(図1参照)をつなぐ導電経路の役割を担う。伝熱板28、30、48、50は半導体素子24、26と導通している。また、冷却器8も、熱伝導率の高い金属、例えばアルミニウムで作られており、導電性を有している。伝熱板28、30、48、50と冷却器8の間の短絡を防止するため、パワーカード20とX軸正側の冷却器8の間には絶縁板22が挟まれている。一方、パワーカード20とX軸負側の冷却器8の間には絶縁板44が挟まれている。先に述べたように、パワーカード20と絶縁板22、44の間の間隙、及び、絶縁板22、44と冷却器8の間の間隙にはグリス46が塗布されている。グリス46は、熱の伝達効率を高めるために塗布されている。図3に示すように、パワーカード20の幅広面32、52の略全面における絶縁板22、44との間の間隙にグリス46は塗布されている。すなわち、グリス46は少なくとも環状溝29a、31a、49a、51aの内側に位置する間隙に充填されている。
半導体素子24、26を挟んでいる一対の冷却器8は、夫々、半導体素子24、26の両方の幅広面と対向している。先に述べたように、伝熱板28、48はパッケージ34の幅広面32、52の夫々に露出しており、幅広面32、52の略全面には、グリス46が塗布されている。幅広面32、52と冷却器8の間には、夫々に絶縁板22、44が挟まれている。絶縁板22、44と冷却器8の間にも、グリス46が塗布されている。半導体素子24の熱は、この伝熱板28、48、グリス46及び絶縁板22、44を通じて冷却器8に吸収される。同様に、半導体素子26の熱は、伝熱板30、50、グリス46及び絶縁板22、44を通じて冷却器8に吸収される。グリス46は空気よりも高い熱伝導率を有する。すなわち、半導体素子24、26と冷却器8の間にグリス抜けが発生すると、半導体素子24、26の熱が冷却器8に伝わりづらくなる。別言すれば、半導体素子24、26に対する冷却器8の放熱性能が悪化する。なお、冷却器8は、内部が空洞であり、その空洞が、冷媒の流路となっている。図2では冷媒はY軸正側の方向に流れる。即ち、半導体素子24から半導体素子26の方向に冷媒が流れる。すなわち、冷却器8による放熱性能を悪化させないためには、各環状溝の内側にグリス46が充填されていることが重要である。以下では、グリスが各環状溝の内側から外側に移動し、元の位置に戻らないことをグリス抜けと表現する。
ここで、一旦図4を参照して、半導体素子24、26が発熱したときの、伝熱板28、30の部位による温度差について説明する。図4に半導体素子24、26の発熱時に測定した伝熱板28、30の温度分布を示す。図4では伝熱板28、30の白く示されている部分は温度が高く、濃いハッチングで示されている部分は温度が低い。図4に示すように、伝熱板28、30の温度は、半導体素子24、26の中心部で高くなっている。また、半導体素子24、26の中心から離れるにつれて伝熱板28、30の温度は低くなっている。すなわち、半導体素子24、26が発熱すると、伝熱板28、30の中心部の温度が高い部分を介して熱が冷却器8(図3参照)に伝達される。別言すれば、冷却器8の放熱性能への影響が大きい部分は、図4に示す半導体素子24、26の中心部の白く示されている部分である。一方、半導体素子24、26の周辺部の放熱性能への影響は小さい。
図3に戻り、実施例の半導体装置2のパワーカード20が、グリス抜けを抑制するために採用する構造について、主に伝熱板28を参照して説明する。図2を参照して説明したように、伝熱板28の露出面の半導体素子24と重なる領域には、微小溝28aが設けられている。別言すれば、微小溝28aは、伝熱板28の半導体素子24と導通している部位の冷却器8と対向する側に設けられている。先に述べたように、半導体素子24の熱は、伝熱板28及びグリス46を介して冷却器8に吸収される。図4を参照して説明したように、半導体素子24の中心部では、伝熱板28の温度も高くなる。すなわち、パワーカード20は、伝熱板28の温度が高くなる部位に、微小溝28aを備えている。微小溝28aは、図2で説明したように、円を描く複数の凹部が交差している。このため、伝熱板28の微小溝28aが設けられている部位では、図3に示すように、平面の直線距離が短くなる。
実施例の半導体装置2が運転され、半導体素子24が発熱すると、伝熱板28は熱膨張する。先に述べたように、伝熱板28は、外周をパッケージ34により封止されている。そのため、伝熱板28は、熱膨張によって長手方向(すなわち、Y軸方向)に延びることができず、中央が絶縁板22に近づくように変形する。したがって、半導体素子24の発熱時には、伝熱板28の中央部で伝熱板28と絶縁板22の間の間隙が最も小さくなる。その結果、伝熱板28の中央部に充填されていたグリス46は、周囲のグリス46を伝熱板28の外周に押し出そうとする。
先に述べたように、伝熱板28の中央部には、微小溝28aが設けられている。そのため、伝熱板28の中央部では、平面の直線距離が短い。グリス46は、伝熱板28の露出面の平面に沿って移動する。すなわち、平面の直線距離が短い伝熱板28は、グリス46が移動しにくい。このように、微小溝28aは、伝熱板28の中央部で、グリス抜けを抑制する。
また、パワーカード20の伝熱板28周辺部には、環状溝29aが設けられている。図2で説明したように、環状溝29aは半導体素子24を取り囲んでいる。また、図3で示すように、環状溝29aは、微小溝28aより深い。そのため、環状溝29aは、微小溝28aよりもグリス46の存在空間の体積を増やすことができる。グリス46の存在空間が増えると、グリス46は弾性が高くなる。グリス46の弾性が高くなると、半導体装置2の運転が停止され、半導体素子24が発熱しなくなり常温に冷却されるときに、グリス46が環状溝29aの内側に戻りやすくなる。すなわち、環状溝29aは、グリス46の存在空間を増やすことで、グリス抜けを抑制する。
実施例の半導体装置2が備えるパワーカード20は、伝熱板28の露出面に設けられた微小溝28aによって、半導体素子24の発熱時に伝熱板28の中央部から周辺部にグリス46が移動することを抑制する。また、環状溝29aによって、伝熱板28の冷却時にグリス46が環状溝29aの内側に戻りやすくする。半導体素子24と重複する領域に設けられた微小溝28aは環状溝29aよりも浅く形成されている。このため、伝熱板28と冷却器8の間の間隙は広くならない。その結果、伝熱板28は、半導体素子24が発生させた熱を効率よく冷却器8へ伝達することができる。一方、環状溝29aは、微小溝28aよりも深く形成されているが、環状溝29aは、半導体素子24の周辺を取り囲むように設けられているため、伝熱板28から冷却器8へ伝達する熱は減少しない。このように、実施例の半導体装置2が備えるパワーカード20は、2種類の深さの異なる溝を利用することで、グリス46の弾性という特性を生かし、冷却器8の放熱性能に影響を与えずに効率よくグリス抜けを抑制することができる。なお、微小溝28aと、環状溝29aの深さ、幅等の形状については、充填されるグリスの特性、半導体素子24の発熱温度等によって異なる。また、図3に示す他の伝熱板30、48、50にそれぞれ設けられている微小溝30a、48a、50a及び環状溝31a、49a、51aについでも同様であるため、説明は省略する。
以下、図面を参照して微小溝及び環状溝の形状の変形例について説明する。図5に微小溝の変形例である微小溝28b、30bが設けられたパワーカード20の平面図を示す。図5に示すように、微小溝28b、30bは、平面視で見たときに、略正三角形を描く複数個の凹部が集合したものである。微小溝28bのそれぞれが描く三角形は、一部が重なるように配置されており、それぞれの三角形は、互いに交差している。また、図5に示すように、微小溝28b、30bは、破線で示す半導体素子24、26と重なるように配置されている。このような微小溝28b、30bであっても、図2で説明した微小溝28aと同様に、伝熱板28、30の平面の直線距離を短くし、グリスの移動を抑制することができる。
また、微小溝は、図6の58a、58bに示すように、平面視で見たときに、略正方形を描く複数個の凹部が集合したものであってもよい。上述したように、微小溝58a、58bは、伝熱板58の平面の直線距離を短くし、グリスの移動を抑制する。
図2に示す伝熱板28、30とは異なり、2個の半導体素子24、26にわたってY軸方向に延びる矩形の伝熱板58は、2個の半導体素子24、26と接続されている。また、図6の環状溝34aは、伝熱板58の一部ではなく、パッケージ34に形成されている。環状溝34aは、2個の半導体素子24、26の周囲を取り囲んでいる。パッケージ34に環状溝34aを形成することで、半導体素子24、26の放熱に寄与する伝熱板58と冷却器8(図3参照)の間の間隙は広くならない。すなわち、パッケージ34に環状溝34aを形成することで、冷却器8の放熱性能の悪化をさらに抑えることができる。
図7に示す変形例では、環状溝29a、31aからの距離によって、微小溝のそれぞれが描く円の径を変化させている。図7に示すように、環状溝29a、31aに近い位置に配置されている微小溝28c、30cは、径の大きい円により構成されている。一方、環状溝29a、31aから離れた位置に配置されている微小溝28d、30dは径の小さい円により構成されている。先に述べたように、環状溝29a、31aに近い位置では、グリスの弾性が上がるためグリスは抜けにくい。そのため、環状溝29a、31aによりグリスが抜けにくい環状溝29a、31aに近い部位では、径の大きな円の微小溝にすることで、伝熱板の露出面の一部に微小溝を形成する工程(例えば、レーザ加工)の時間を短縮することができる。
また、環状溝の幅も、冷却器の放熱性能への影響が小さい部位では広くしてもよい。図8、図9を用いて、環状溝の変形例を説明する。図8に示す環状溝29b、31bは、幅が半導体素子24、26の中心に近い位置では幅W1であり、半導体素子24、26の中心から離れている伝熱板28、30の角部では幅W2である。図8に示すように、幅W2は幅W1よりも広い。このように、発熱元である半導体素子24、26の中心から離れている環状溝の幅を広くすることで、冷却器の放熱性能への影響が小さい部位でグリスの存在空間をさらに増やすことができる。すなわち、グリスの弾性を高くすることでグリス抜けを抑制することができる。
さらに、図9に示す環状溝29c、31cのように、環状溝の内側の角部が円弧を描くように形成してもよい。環状溝29c、31cは、幅が半導体素子24、26の中心に近い位置では幅W3であり、半導体素子24、26の中心から離れている伝熱板28、30の角部では幅W4である。図9に示すように、幅W4は幅W3よりも広い。すなわち、上述したように、冷却器の放熱性能への影響が小さい部位でグリスの存在空間を増やし、グリスの弾性を高くすることでグリス抜けを抑制することができる。
実施例の留意点を以下に述べる。実施例の半導体装置2のパワーカード20は、2個の半導体素子24、26を備えているが、本明細書が開示する技術は、これに限定されず、1個またはさらに多数の半導体素子を備えるパワーカードを有する半導体装置にも適用することができる。また、環状溝は、絶縁板に設けられていてもよい。また、絶縁板が必要ない半導体装置の場合は、冷却器の表面に環状溝を設けてもよい。さらに、環状溝の断面形状は矩形に限定されない。例えば、断面形状が三角形の環状溝でもよい。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:半導体装置
4:冷媒供給管
6:冷媒排出管
8:冷却器
10、12:連結パイプ
14:板バネ
16:ケース
20、20a、20b:パワーカード
22、44:絶縁板
24、26:半導体素子
28、30、48、50、58:伝熱板
28a〜d、30a〜d、48a、50a、58a:微小溝
29a〜c、31〜c、34a、49a、51a:環状溝
32、52:幅広面
34:パッケージ
36:制御端子
38、40、42:電極端子
46:グリス
54:ハンダ
W1〜W4:幅

Claims (4)

  1. パワーカードと、そのパワーカードに対向している冷却器との間の間隙にグリスが充填されている半導体装置であって、
    前記パワーカードは、伝熱板の一面が露出する状態で、半導体素子と伝熱板を樹脂パッケージで覆ったものであり、
    前記パワーカードの前記伝熱板が露出している面と、前記冷却器の対向面の少なくとも一方には、前記対向面に直交する方向から見たときに、前記半導体素子と重なる領域に複数個の互いに交差する微小溝が設けられているとともに、前記半導体素子を取り囲む環状溝が設けられており、
    前記微小溝の深さが前記環状溝の深さよりも浅い、半導体装置。
  2. 前記環状溝は、前記樹脂パッケージに設けられている、請求項1に記載の半導体装置。
  3. 前記環状溝は、前記伝熱板に設けられている、請求項1に記載の半導体装置。
  4. 前記半導体素子の中心から離れた位置に設けられている前記環状溝の幅は、前記半導体素子の中心から近い位置に設けられている前記環状溝の幅よりも広い、請求項3に記載の半導体装置。
JP2019081277A 2019-04-22 2019-04-22 半導体装置 Active JP7169246B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019081277A JP7169246B2 (ja) 2019-04-22 2019-04-22 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019081277A JP7169246B2 (ja) 2019-04-22 2019-04-22 半導体装置

Publications (2)

Publication Number Publication Date
JP2020178105A true JP2020178105A (ja) 2020-10-29
JP7169246B2 JP7169246B2 (ja) 2022-11-10

Family

ID=72936273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019081277A Active JP7169246B2 (ja) 2019-04-22 2019-04-22 半導体装置

Country Status (1)

Country Link
JP (1) JP7169246B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162475A1 (ja) * 2022-02-25 2023-08-31 日立Astemo株式会社 半導体装置及び電力変換装置
JP7455058B2 (ja) 2020-12-28 2024-03-25 三菱電機株式会社 半導体モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310987A (ja) * 2004-04-20 2005-11-04 Denso Corp 半導体モジュール実装構造、カード状半導体モジュール及びカード状半導体モジュール密着用受熱部材
JP2006269639A (ja) * 2005-03-23 2006-10-05 Denso Corp 放熱装置および車載電子機器
WO2015097874A1 (ja) * 2013-12-27 2015-07-02 三菱電機株式会社 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310987A (ja) * 2004-04-20 2005-11-04 Denso Corp 半導体モジュール実装構造、カード状半導体モジュール及びカード状半導体モジュール密着用受熱部材
JP2006269639A (ja) * 2005-03-23 2006-10-05 Denso Corp 放熱装置および車載電子機器
WO2015097874A1 (ja) * 2013-12-27 2015-07-02 三菱電機株式会社 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455058B2 (ja) 2020-12-28 2024-03-25 三菱電機株式会社 半導体モジュール
WO2023162475A1 (ja) * 2022-02-25 2023-08-31 日立Astemo株式会社 半導体装置及び電力変換装置

Also Published As

Publication number Publication date
JP7169246B2 (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
JP4379339B2 (ja) 半導体冷却装置
US9287193B2 (en) Semiconductor device
WO2015107870A1 (ja) 半導体装置
JP6286543B2 (ja) パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法
JP2007165620A (ja) 半導体冷却構造
JP2020178105A (ja) 半導体装置
JP2012057872A (ja) Ehd流体を用いた冷却装置
JP4531087B2 (ja) 電力用半導体装置
JP2019033226A (ja) 半導体装置
JP6483565B2 (ja) 半導体装置
JP2014212625A (ja) Ehdポンプ
JP2016105441A (ja) 電力変換器
JP2012169429A (ja) 熱交換器
JP4482824B2 (ja) 両面冷却型半導体装置
JP2016054223A (ja) 半導体装置
JP2016054221A (ja) 半導体装置
JP7215210B2 (ja) 半導体装置
JP2017079305A (ja) 冷却器
JP2016225339A (ja) 半導体装置
JP2016062917A (ja) 半導体装置
JP2019140332A (ja) 半導体装置
JP2020043305A (ja) パワーカード
JP2016066660A (ja) 半導体装置
JP2019120416A (ja) 平面型ヒートパイプ
CN219741077U (zh) 散热模组及具有该散热模组的浸没式液冷的电子设备

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221028

R150 Certificate of patent or registration of utility model

Ref document number: 7169246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150