JP2020166053A - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
JP2020166053A
JP2020166053A JP2019064447A JP2019064447A JP2020166053A JP 2020166053 A JP2020166053 A JP 2020166053A JP 2019064447 A JP2019064447 A JP 2019064447A JP 2019064447 A JP2019064447 A JP 2019064447A JP 2020166053 A JP2020166053 A JP 2020166053A
Authority
JP
Japan
Prior art keywords
substrate
resin
electrode
modulation
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019064447A
Other languages
English (en)
Other versions
JP7207086B2 (ja
Inventor
宏佑 岡橋
Kosuke OKAHASHI
宏佑 岡橋
徳一 宮崎
Tokuichi Miyazaki
徳一 宮崎
将之 本谷
Masayuki Motoya
将之 本谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2019064447A priority Critical patent/JP7207086B2/ja
Priority to US17/593,924 priority patent/US20220179247A1/en
Priority to PCT/JP2019/031908 priority patent/WO2020194782A1/ja
Priority to CN201980094910.1A priority patent/CN113646694B/zh
Publication of JP2020166053A publication Critical patent/JP2020166053A/ja
Application granted granted Critical
Publication of JP7207086B2 publication Critical patent/JP7207086B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3

Abstract

【課題】変調電極により発生する基板の応力を低減させることで、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能な光変調器を提供する。【解決手段】光変調器1は、電気光学効果を有する基板5と、基板5に形成された光導波路10と、基板5上に設けられており、光導波路10を伝搬する光波を変調する変調電極(信号電極Sおよび接地電極G)とを備えており、変調電極の底面の一部と、変調電極の底面の一部に対向する基板5との間に、変調電極により発生する基板5の応力を低減させる樹脂8が配設されていることを特徴とする。【選択図】図5

Description

本発明は、電気光学効果を有する基板と、基板に形成された光導波路と、光導波路を伝搬する光波を変調するための変調電極とを備えた光変調器に関する。
近年、光通信分野や光計測分野において、ニオブ酸リチウム(LiNbO:以下LNと記載)等の電気光学効果を有する基板上に光導波路を形成するとともに、光導波路内を伝搬する光波を変調する金属製の変調電極を形成した光変調器が使用されている。
下記の特許文献1には、接地電極の底面の一部と基板の相当部分との間にギャップを設けた光変調器が開示されている。また、下記の特許文献2には、接地電極が第1電極部と第1電極部の内部に配設された第2電極部とを備えた光変調器が開示されている。
また、光変調周波数の広帯域化を実現するために、変調信号であるマイクロ波と光波との速度整合を図ることが重要である。このため、基板の厚さを薄くする基板の薄板化を行うことによって、マイクロ波と光波との速度整合を図るとともに、駆動電源の低減を図る試みが行われている。
特開平6−235891号公報 特開2010−181454号公報
例えば基板はLNを材料とし変調電極は金属製であることから、基板と変調電極とは線膨張率が異なる。このため、温度変化に伴う線膨張率差によって、変調電極が接触する付近では基板に内部応力が生じる。また、基板には、基板上に配置された変調電極からの圧縮応力が生じ、特に厚さの薄い基板ではこの圧縮応力を無視することができない。基板にこのような内部応力や圧縮応力等の応力が生じると基板がダメージを受け、基板にひび割れ等が発生してしまうという問題がある。
また、基板はLN等の電気光学効果を有する材料で作られており、電気を印加して屈折率を変化させることで光変調が行われる。しかしながら、基板に応力が生じると、光弾性効果によって基板の屈折率が変化してしまい、光波の伝搬速度が変化してしまうという問題がある。その結果、例えばマッハツェンダー構造を有する光変調器では、マッハツェンダー構造における合波の際に位相差が生じてしまい、バイアス電圧の変動等の特性劣化が発生してしまうという問題がある。
このような問題を解決するための方法の1つとして、例えばバッファ層を形成して応力緩和を行うことが考えられる。しかしながら、従来のスパッタ成膜により形成されるバッファ層は膜厚が薄く、特に基板の厚さが薄い場合には、基板に生じる応力を十分に緩和することができないという問題がある。また、バッファ層には、一般的にはSiO等の剛性が高い材料(SiOのヤング率:72〜74GPa)が用いられる。このように剛性の高い材料からなるバッファ層では、変調電極による基板への応力の影響が大きく現れ、特に基板の厚さが薄い場合には、基板に生じる応力を十分に緩和することができないという問題がある。
なお、特許文献1や特許文献2に開示されている光変調器は、チャーピング発生の抑制、変調効率の低下の防止、駆動電圧の抑制等の作用が得られるものであるが、変調電極による基板の応力を低減させる作用は少ない。したがって、特許文献1や特許文献2に開示されている光変調器は、本発明が取り組む上記の課題を解決できるものではない。
本発明は、上記の課題を解決するため、変調電極により発生する基板の応力を低減させることで、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能な光変調器を提供することを目的とする。
上記課題を解決するため、本発明に係る光変調器は以下のような技術的特徴を有する。
(1) 本発明に係る光変調器は、上記の目的を達成するため、電気光学効果を有する基板と、前記基板に形成された光導波路と、前記基板上に設けられており、前記光導波路を伝搬する光波を変調する変調電極と、を備える光変調器であって、前記変調電極の底面の一部と、前記変調電極の底面の一部に対向する前記基板との間に、樹脂が配設されていることを特徴とする。
この構成により、変調電極の底面の一部と変調電極の底面の一部に対向する基板との間に配設された樹脂によって、変調電極により発生する基板の応力を低減させることができる。樹脂は従来のスパッタ成膜により形成されるバッファ層と比べて大きな膜厚を確保することができ、変調電極による基板への応力の影響を抑えることができる。また、樹脂は上述したバッファ層に用いられるSiO等の材料と比べて剛性の低い材料(樹脂のヤング率:おおよそ1〜2GPa)であり、変調電極と基板との間に線膨張率差があっても、線膨張率差により生じる応力を緩和する緩衝材としての役割を果たす。その結果、樹脂の配設によって、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能となる。
(2) 上記(1)に記載の光変調器において、前記変調電極が前記光導波路の一部に沿って配置された信号電極および接地電極からなり、前記信号電極および前記接地電極の少なくとも一方の底面の一部と、前記信号電極および前記接地電極の少なくとも一方の底面の一部に対向する前記基板との間に、前記樹脂が配設されていることを特徴とする。
この構成により、信号電極および接地電極の少なくとも一方の底面の一部と当該信号電極および接地電極の少なくとも一方の底面の一部に対向する基板との間に配設された樹脂によって、当該信号電極および前記接地電極の少なくとも一方により発生する基板の応力を低減させることができ、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能となる。
(3) 上記(2)に記載の光変調器において、前記信号電極と前記基板との間に前記樹脂が配設される場合には、前記樹脂の幅が前記信号電極の幅の1/3以下に設定され、
前記接地電極と前記基板との間に前記樹脂が配設される場合には、前記樹脂の幅が前記接地電極の幅の1/2以下に設定されることを特徴とする。
この構成により、樹脂の幅と変調電極の幅との比率を上記のように設定することにより、光導波路への実効的な電界印加が可能となるとともに、変調電極の基板からの剥離を抑えることが可能となる。
(4) 上記(1)から(3)のいずれか1つに記載の光変調器において、前記変調電極内に前記樹脂が配設されていることを特徴とする。
この構成により、通常の基板上に樹脂を形成して、その後、樹脂が埋設されるように電極を形成することで、変調電極の底面の一部と変調電極の底面の一部に対向する基板との間に、容易かつ確実に樹脂を配設することが可能となる。
(5) 上記(1)から(4)のいずれか1つに記載の光変調器において、変調対象である一対の光導波路に対して左右対称の電界が印加されるように、前記樹脂が配設されていることを特徴とする。
この構成により、例えばマッハツェンダー型導波路等における一対の光導波路に対して左右対称となる電界を印加することができ、電界の非対称性により生じ得る変調効率の非均一性や、変調効率の非対称性に起因するチャーピングの発生等を抑えることが可能となる。
(6) 上記(1)から(5)のいずれか1つに記載の光変調器において、前記変調電極の底面と前記基板との接触面が前記光導波路の近位側に配置されるように前記樹脂が配設されていることを特徴とする。
この構成により、光導波路に対して効率的に電界を集中させることが可能となり、光導波路における光波の変調効率を向上させることが可能となる。
(7) 上記(1)から(6)のいずれか1つに記載の光変調器において、前記樹脂の厚さが1.0μm以上であることを特徴とする。
この構成により、変調電極により発生する基板の応力を確実に低減させることができる厚さの樹脂を、変調電極の底面の一部と変調電極の底面の一部に対向する基板との間に配設することができ、基板に対するダメージをより確実に防ぐとともに、変調器の特性劣化をより確実に防ぐことが可能となる。
(8) 上記(1)から(7)のいずれか1つに記載の光変調器において、前記樹脂は、熱可塑性樹脂および熱硬化性樹脂のいずれか一方であることを特徴とする。
この構成により、熱可塑性樹脂および熱硬化性樹脂のいずれか一方を材料とするフォトレジストを用いて、変調電極により発生する基板の応力を低減させることができ、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能となる。特に、フォトリソグラフィプロセスによって基板上に樹脂を形成することができ、樹脂のパターン形状や厚さ等を精度良く容易にコントロールすることが可能となる。
(9) 上記(1)から(8)のいずれか1つに記載の光変調器において、前記基板の厚さが4.0μm以下であることを特徴とする。
この構成により、基板の薄板化に伴って基板に生じる応力の影響が大きくなる場合であっても、変調電極の底面の一部と変調電極の底面の一部に対向する基板との間に配設された樹脂によって、変調電極により発生する基板の応力を低減させることができ、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能となる。
(10) 上記(1)から(9)のいずれか1つに記載の光変調器において、前記基板上に突設されたリブ部が前記光導波路として用いられることを特徴とする。
この構成により、リブ型導波路による基板に伴って基板に生じる応力の影響が大きくなる場合であっても、変調電極の底面の一部と変調電極の底面の一部に対向する基板との間に配設された樹脂によって変調電極により発生する基板の応力を低減させることができ、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能となる。
(11) 上記(1)から(10)のいずれか1つに記載の光変調器において、前記変調電極は金属からなり、前記基板はニオブ酸リチウムからなることを特徴とする。
この構成により、ニオブ酸リチウムを材料とする基板と金属製の変調電極との線膨張率差によって応力が生じる場合であっても、その応力を低減させることができ、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能となる。
(12) 上記(1)から(11)のいずれか1つに記載の光変調器において、複数のマッハツェンダー部により前記光導波路が形成されていることを特徴とする。
この構成により、様々な変調方式に対応した光信号を生成することが可能な複数のマッハツェンダー型光導波路が集積されたマッハツェンダー型光変調器において、変調電極の底面の一部と変調電極の底面の一部に対向する基板との間に配設された樹脂によって、変調電極により発生する基板の応力を低減させることができ、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能となる。
本発明によれば、光変調器において、変調電極により発生する基板の応力を低減させることで、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能となる。
本発明の実施の形態において、光変調器を構成する基板上に形成された光導波路の一例を説明するための平面図である。 本発明の実施の形態における光変調器の断面構造の一例を示す図であり、(a)は図1の線分P−Pの矢視断面図であり、(b)は基板内に光導波路が形成された別例の光変調器の断面構造の一例を示す図である。 本発明の実施の形態における光変調器の一例を模式的に示す平面図であり、図1の領域Rにおける樹脂の配設パターンを模式的に示す図である。 本発明の実施の形態における光変調器の一例を模式的に示す平面図であり、(a)〜(c)はそれぞれ、図1の領域Rにおける樹脂の配設パターンの派生例を示す図である。 本発明の実施の形態における光変調器の断面構造の第1の例を示す図である。 本発明の実施の形態における光変調器の断面構造の第2の例を示す図である。 本発明の実施の形態における光変調器の断面構造の第3の例を示す図である。 本発明の実施の形態における光変調器の断面構造の第4の例を示す図である。 本発明の実施の形態における光変調器の断面構造の第5の例を示す図である。 本発明の実施の形態における光変調器の断面構造の第6の例を示す図である。
以下、本発明の実施の形態における光変調器について説明する。
図1は、本発明の実施の形態において、光変調器を構成する基板上に形成された光導波路の一例を説明するための平面図である。なお、図面では、光変調器の幅方向をX軸、光変調器の長手方向をY軸、光変調器の厚さ方向をZ軸と定義する。
図1に示す光変調器1は、複数のマッハツェンダー型光導波路が集積された光変調器1であり、ネスト型光変調器とも呼ばれる。複数のマッハツェンダー型光導波路が集積された光変調器1は、様々な変調方式に対応した光信号を生成することができる。図1には一例として、複数のマッハツェンダー型光導波路が集積された光変調器1が図示されているが、本発明はこの構造に限定されるものではなく、例えば単一のマッハツェンダー型光導波路を有する光変調器1であってもよい。
図1に示すように、本発明の実施の形態における光変調器1は、電気光学効果を有する材料で形成された基板5上に形成された光導波路10を備える。図1に示す光変調器1は、外部から光信号が導入される入射導波路を分岐する第1分岐部2a、第1分岐部2aで分岐された光導波路10を更に分岐する第2分岐部2b、第2分岐部2bで分岐された光導波路10を更に分岐する第3分岐部2cを備えており、3段階の分岐を経て合計8本の並行導波路が形成されている。第1〜第3分岐部2a〜2cは光カプラ等により実現される。各並行導波路を伝搬する光波の位相は、例えば各並行導波路近傍に配置された金属製の変調電極(図1には不図示)を用いて各並行導波路に印加される電界11により調整される。
また、各並行導波路を伝搬した光波は、上記の第1〜第3分岐部2a〜2cの各々に対応する第1〜第3合成部3a〜3cにおいて合波された後、出射導波路から外部へ出力される。具体的には、図1に示す光変調器1は、第3分岐部2cで分岐された並行導波路を合成する第3合成部3c、第2分岐部2bで分岐された光導波路10を合成する第2合成部3b、第1分岐部2aで分岐された光導波路10を合成する第1合成部3aを備えており、3段階の合成を経て出射導波路から光信号が出力される。第1〜第3分岐部2a〜2cと同様に、第1〜第3合成部3a〜3cも光カプラ等により実現される。
図2(a)は、本発明の実施の形態における光変調器1の断面構造の一例を示す図であり、図1の線分P−Pの矢視断面図である。図3は、本発明の実施の形態における光変調器1の一例を模式的に示す平面図であり、図1の領域Rにおける樹脂8の配設パターンを模式的に示す図である。
図2(a)の断面構造に示すように、光変調器1は、補強基板7の上に基板5が設けられており、さらに基板5の上に変調電極が設けられた構造を有している。
基板5は、電気光学効果を有する材料により形成されている。従来の基板は厚さが8〜10μm程度あるのに対し、本発明の実施の形態における基板5は、例えば厚さが1.0〜2.0μm程度の極めて薄い薄板を用いることが可能である。基板5には、電気光学効果を有する材料として、例えばLNを用いることが可能であるが、タンタル酸リチウム(LiTaO)やジルコン酸チタン酸鉛ランタン(PLZT)等が用いられてもよい。図2(a)には一例として、作用部(変調部)で変調電極間に光導波路10が配置されるXカットの基板5を用いたLN変調器である光変調器1の断面構造が図示されている。ただし、作用部で変調電極間に光導波路10が配置されるXカットの基板5のLN変調器であってもよく、変調電極下に光導波路10が配置されるZカットの基板5のLN変調器であってもよい。
図2(a)に示すように、基板5上にはリブ部6が設けられている。リブ部6は、基板5の表面に対して突設されており、光波を閉じ込める作用を有することから光導波路10として利用される。図2(a)には一例として、基板5上にリブ部6が形成されたリブ型基板を有する光変調器1が図示されているが、この構造に限定されるものではなく、図2(b)のように例えば金属の熱拡散により基板5内に光導波路10が形成された光変調器1であってもよい。
従来の基板5の厚さは8.0〜10.0μmであったのに対し、リブ型基板の厚さは1.0〜2.0μmと極めて薄くすることができ、マイクロ波と光波との速度整合や駆動電源の低減を図ることが可能となる。ただし、このように極めて薄い基板5では、基板5上に配置された変調電極からの圧縮応力の影響が大きく現れ、基板5がダメージを受けてひび割れ等が発生してしまう問題があるが、本発明はこの問題に対処することができる。
本発明の実施の形態における光変調器1では、例えば、リブ部6を含めた基板5の厚さAの最大値は4.0μm、リブ部6の幅Bの最大値は4.0μm、リブ部6の高さCの最大値は2.0μmであり、厚さAと幅Bとの比率は1:1である。リブ部や基板等は設計上小さければ小さいほど良いため、上記の厚さA、幅B、高さCの最小値は、製造プロセスにおける最小化の限界値となる。また、光の閉じ込めの観点からも、光のシングルモード条件が維持される範囲内の寸法であれば、厚さAおよび幅Bの各々の寸法は小さければ小さいほど光が閉じ込められるため好ましい。
変調電極は、信号電極Sおよび接地電極Gを含んでいる。変調電極は、例えば、基板5上にTi/Auを蒸着した後、フォトリソグラフィプロセスにより電極のパターニングを行うことで形成される。なお、変調電極は適切な金属であればよく、基板5上に変調電極を形成する方法も特に限定されるものではない。変調電極の厚さは、例えば20μm以上である。
信号電極Sは、例えば図5に示すように光導波路10に電界11を印加するための電極であり、例えば、光導波路10と並行して延在するように配置されている。不図示であるが、信号電極Sには、信号源および終端抵抗に接続されており、信号源から高周波電気信号が供給されて終端抵抗で終端されるようになっている。接地電極Gは、基準電位点に接続された電極であり、例えば、信号電極Sと同様に光導波路10と並行して延在するように配置されている。信号電極Sと接地電極Gとは離隔して設けられており、信号電極Sと接地電極Gとの間に電界11が形成される。信号電極Sおよび接地電極Gは、例えばコプレーナ線路を構成している。
補強基板7は、極めて薄い基板5の強度を補い、基板5および基板5上の変調電極等を安定して支持可能とする部材である。補強基板7は、基板5の裏側に直接接合されるか、接着剤等で基板5の裏側に貼り合わされている。基板5と補強基板7とを直接接合する場合には、補強基板7は、例えば基板5の材料(例えばLN)より誘電率の低い材料を用いることが可能である。一方、基板5と補強基板7とを接着剤で貼り合わせる場合には、補強基板7は、例えば基板5と同一の材料(例えばLN)を用いることが可能である。この場合には、基板5の材料(例えばLN)より誘電率および屈折率が低い接着剤が用いられ、基板5と補強基板7との間の接着剤層の厚さは例えば30μm以上とする。
図2(a)に示すように、変調電極と基板5との間には、樹脂8が部分的に配設されている。また、図3の配設パターンに示すように、樹脂8は、例えば光波の伝搬方向である光導波路10が延在する方向に沿って、変調電極と基板5との間に延在するように配設されている。樹脂8は、その粘弾性特性により変調電極と基板5との間で応力を緩和する緩衝材としての役割を果たす。一般的にバッファ層に用いられるSiO等の剛性が高い材料(SiOのヤング率:72〜74GPa)と比べて、樹脂8は剛性の低い材料(樹脂のヤング率:おおよそ1〜2GPa)であり、変調電極と基板5との間の線膨張率差により生じる応力を緩和する緩衝材としての役割を果たすことができる。
なお、図2(a)に示す一例では、信号電極Sと基板5との間および接地電極Gと基板5との間の両方に樹脂8が配設されているが、信号電極Sと基板5との間および接地電極Gと基板5との間のどちらか一方にのみ樹脂8が配設されてもよい。
変調電極と基板5との間に樹脂8が部分的に配設されることにより、変調電極と樹脂8との接触面、変調電極と基板5との接触面、基板5と樹脂8との接触面が生じ、樹脂8を配設した分だけ変調電極と基板5との接触面積を低減させることが可能となる。これにより、変調電極によって基板5に生じる応力を低減させることが可能となる。
樹脂8は、熱可塑性樹脂または熱硬化性樹脂等の樹脂であり、一例として、ポリアミド系樹脂、メラミン系樹脂、フェノール系樹脂、アミノ系樹脂、エポキシ系樹脂等を含む。
また、樹脂8は、例えば永久レジストであり、熱硬化型の樹脂を材料とするフォトレジストである。光導波路素子の製造工程において、スピンコートにより基板5上に樹脂8を塗布し、通常の一般的なフォトリソグラフィプロセスによってパターニングを行った後に熱硬化をさせることにより、変調電極と基板5との間に樹脂8を配設することができる。フォトリソグラフィプロセスによるパターニングは、従来のスパッタ成膜と比較して微細なパターン形状を高精度で形成することが可能であり、本発明の実施の形態における基板5上の樹脂形成に好適である。また、従来のスパッタ成膜で形成されるバッファ層は膜厚が薄かったが、一方、スピンコートによって樹脂8を塗布した場合には、1μm以上の膜厚であれば自在に膜厚をコントロールすることが可能であり、本発明の実施の形態における基板5上の樹脂形成に好適である。なお、基板5上に樹脂8を形成した後に、樹脂8が埋設されるように電極を形成することで、変調電極と基板5との間に、容易かつ確実に樹脂8を部分的に配設することが可能となる。
なお、図3には、樹脂8の配設パターンとして、光導波路10の延在方向に沿って変調電極と基板5との間に樹脂8が延在するように配設された例を示しているが、例えば図4(a)〜(c)に示すような配設パターンを採用することも可能である。
図4(a)〜(c)は、本発明の実施の形態における光変調器1の一例を模式的に示す平面図であり、図1の領域Rにおける樹脂8の配設パターンの派生例を模式的に示す図である。
図4(a)に示す配設パターンでは、樹脂8は、複数の樹脂8のセル(図4(a)では4つの樹脂8のセル)が、光導波路10の延在方向に沿って配列されている。図4(b)に示す配設パターンでは、1つの変調電極内に複数の樹脂8が幅方向に配設されているとともに、これらの樹脂8が、光導波路10の延在方向に沿って配設されている。図4(c)に示す配設パターンでは、1つの変調電極内に複数の樹脂8が幅方向に配設されているとともに、これらの樹脂8が、光導波路10の延在方向に沿って断続的に配設されている。
なお、本実施の形態で説明した幅方向および光導波路10の延在方向における樹脂8の配設パターンはあくまでも一例であり、本発明の目的である変調電極によって基板5に生じる応力の緩和を達成するものであれば任意の配設パターンを採用することができる。
一方、ピーリング試験の結果から、変調電極と樹脂8との密着強度AS1、変調電極と基板5との密着強度AS2、樹脂8と基板5との密着強度AS3の関係は、AS1<AS2≦AS3であることが得られている。すなわち、変調電極と樹脂8との密着強度AS1は、変調電極と基板5との密着強度AS2および樹脂8と基板5との密着強度AS3に比べて小さい。したがって、変調電極と樹脂8との接触面積を低減させるパターンを採用することで、密着性の脆弱化による変調電極の基板5からの剥離を抑えることが可能となる。
上述のように、変調電極と基板5との接触面積を低減させた場合には基板5に生じる応力を低減させることが可能であり、変調電極と樹脂8との接触面積を低減させた場合には変調電極の剥離を抑えることが可能となる。ただし、変調電極と基板5との接触面積の低減と変調電極と樹脂8との接触面積の低減とは相反関係にある。すなわち、樹脂8の幅を大きくすると変調電極と基板5との接触面積を低減させることができる一方、変調電極と樹脂8との接触面積は増大してしまう。また、樹脂8の幅を小さくすると変調電極と樹脂8との接触面積を低減させることができる一方、変調電極と基板5との接触面積は増大してしまう。
電界11は、信号電極Sから接地電極Gに向かって信号電極Sの表面から垂直に出射されて接地電極Gの表面に垂直に入射される。また、誘電率を比較した場合、例えば基板5の材料として用いられるLNの誘電率(ε11=43、ε33=28)は、樹脂8の誘電率(ε=3〜4)に比べて高い。電界11は誘電率が高い材料に集中することから、樹脂8が配設された場合には、信号電極Sから接地電極Gへ向かう電界は基板5側に集中し、変調電極と基板5との接触面が光導波路10に印加される電界11の出入口面となる。樹脂8の幅が変調電極の幅に対して大きすぎると光導波路10に対して電界11を適切に印加できなくなるおそれがある。また、電界11が出射される信号電極Sと基板5との接触面は、電界11が入射される接地電極Gと基板5との接触面よりも大きく設定されることが好ましい。なお、本明細書では、電界11の向きが信号電極Sから接地電極Gに向かう方向であることから、信号電極Sと基板5との接触面を電界11の入口面と表現し、接地電極Gと基板5との接触面を電界11の出口面と表現する。
以上の観点から、本発明の実施の形態では、信号電極Sと基板5との間に配設される樹脂8の幅は、信号電極Sの幅に対して1/3以下に設定される。また、接地電極Gと基板5との間に配設される樹脂8の幅は、接地電極Gの幅に対して1/2以下に設定される。樹脂8の幅と変調電極の幅との比率を上記のように設定することにより、光導波路10への実効的な電界印加が可能となるとともに、変調電極の基板5からの剥離を抑えた構造を実現することが可能となる。なお、1つの変調電極に対して幅方向に複数の樹脂8が配設される場合(例えば、1つの信号電極Sに複数の樹脂8が配設された場合を示す図8参照)、複数の樹脂8の幅の総和を樹脂8の幅とみなす。
本明細書では、「変調電極と基板5との間に樹脂8が部分的に配設される」とは、変調電極の底面の一部と、変調電極の底面の一部に対向する基板5との間に、樹脂8が配設されることを意味する。より具体的には、例えば上記の比率に従って樹脂8の幅が変調電極の幅よりも小さく設定され、樹脂8の配設により、変調電極と樹脂8との接触面、変調電極と基板5との接触面、基板5と樹脂8との接触面の3つの接触面が生じることを意味する。
変調電極と基板5との間に配設される樹脂8の配設位置は特に限定されるものではないが、以下、いくつかの例を挙げながら、樹脂8の配設位置と、当該樹脂8の配設位置において信号電極Sと接地電極Gとの間に形成される電界11の状態とについて説明する。
図5は、本発明の実施の形態における光変調器1の断面構造の第1の例を示す図である。図5の断面構造は、図1の線分P−Pの矢視断面図に図示されている断面構造と同一であるが、さらに図5には、信号電極Sと接地電極Gとの間に形成される電界11の状態および光導波路10が示されている。
図5には、LN変調器において作用部で変調電極間に光導波路10が配置されるXカットの基板5上に信号電極Sおよび接地電極Gが設けられており、基板5のリブ部6を光導波路10として用いる光変調器1の断面構造が示されている。信号電極Sと接地電極Gとの間に形成される電界11は、リブ部6内に形成された光導波路10に印加され、信号源から供給する電気信号を制御することによって電界強度を調整し、光導波路10内を伝搬する光波が適切に変調されるようになっている。
信号電極Sと接地電極Gとの間に電界11が形成される際、樹脂8の存在により電界11の出入口面が変調電極と基板5との接触面に絞られる。例えば図5に示すように、樹脂8は信号電極Sおよび接地電極Gの幅方向中央部に配設されており、信号電極Sの幅方向端部において信号電極Sと基板5とが接触し、接地電極Gの幅方向端部において接地電極Gと基板5とが接触する構造とする。この構造により、樹脂8によって電界11の出入口面が絞られ、かつ、電界11の出入口面を光導波路10の近位側に偏って配置させることができる。その結果、光導波路10に対して効率的に電界11を集中させることが可能となり、光導波路10における光波の変調効率を向上させることが可能となる。
図6は、本発明の実施の形態における光変調器1の断面構造の第2の例を示す図である。図6には、光変調器1の断面構造とともに、信号電極Sと接地電極Gとの間に形成される電界11の状態および光導波路10が示されている。
図6には、LN変調器において変調電極下に光導波路10が配置されるZカットの基板5上に信号電極Sおよび接地電極Gが設けられており、基板5のリブ部6を光導波路10として用いる光変調器1の断面構造が示されている。図6に示すように基板5がZカットの場合には、信号電極Sはリブ部6の上に設けられるが、信号電極Sによる光の吸収を抑えるため、光導波路10と信号電極Sとの間にはバッファ層や透明電極層等の光の吸収のない層が配置される場合がある。
図6には一例として、信号電極Sと基板5のリブ部6との間に樹脂8は配設されず、接地電極Gと基板5との間にのみ樹脂8が配設されている場合が示されている。接地電極Gには、幅方向中央部に樹脂8が配設されている。この場合、樹脂8の存在により、接地電極Gの幅方向端部において接地電極Gと基板5とが接触する構造となる。この構造により、樹脂8によって電界11の出口面が絞られ、かつ、電界11の出口面を光導波路10の近位側に偏って配置させることができる。その結果、光導波路10に対して効率的に電界11を集中させることが可能となり、光導波路10における光波の変調効率を向上させることが可能となる。
図7は、本発明の実施の形態における光変調器1の断面構造の第3の例を示す図である。図7には、光変調器1の断面構造とともに、信号電極Sと接地電極G1、G2との間に形成される電界11の状態および光導波路10が示されている。
図7には、LN変調器において変調電極下に光導波路10が配置されるZカットの基板5上に信号電極Sおよび接地電極G1、G2が設けられており、基板5のリブ部6を光導波路10として用いる光変調器1の断面構造が示されている。図7に示すように基板5がZカットの場合には、信号電極Sはリブ部6の上に設けられるが、信号電極Sによる光の吸収を抑えるため、光導波路10と信号電極Sとの間にはバッファ層や透明電極層等の光の吸収のない層が配置される場合がある。
図6の断面構造と図7の断面構造とを比較した場合、図6の断面構造では中央付近に1つの接地電極Gが配置された構成となっている一方、図7の断面構造では、中央付近に2つに分割された接地電極G2が配置された構成となっている。図6の中央付近の接地電極Gの幅方向の寸法は、2本の光導波路10の幅方向の寸法に応じて大きくなってしまう場合がある。これに対し、図7の断面構造では、図6の中央付近の接地電極Gにスリットを入れることで2つの接地電極G2に分けられている。図7の2つの接地電極G2と基板5との接触面積は、図6の接地電極Gと基板5との接触面積よりも小さいことから、図7に示す構成は、図6に示す構成と比べて変調電極によって基板5に生じる応力が緩和された構成となっている。
図7には一例として、信号電極Sと基板5のリブ部6との間に樹脂8は配設されず、接地電極G1、G2と基板5との間にのみ樹脂8が配設されている場合が示されている。接地電極G1には幅方向中央部に樹脂8が配設されている。一方、接地電極G2には、幅方向端部であって光導波路10の遠位側に樹脂8が配設されている。この構造により、樹脂8によって電界11の出口面が絞られ、かつ、電界11の出口面を光導波路10の近位側に偏って配置させることができる。その結果、光導波路10に対して効率的に電界11を集中させることが可能となり、光導波路10における光波の変調効率を向上させることが可能となる。
図8は、本発明の実施の形態における光変調器1の断面構造の第4の例を示す図である。図8には、光変調器1の断面構造とともに、信号電極Sと接地電極Gとの間に形成される電界11の状態および光導波路10が示されている。
図8には、LN変調器において変調電極下に光導波路10が配置されるZカットの基板5上に信号電極Sおよび接地電極Gが設けられており、基板5のリブ部6を光導波路10として用いる光変調器1の断面構造が示されている。図8に示すように基板5がZカットの場合には、信号電極Sはリブ部6の上に設けられるが、信号電極Sによる光の吸収を抑えるため、光導波路10と信号電極Sとの間にはバッファ層や透明電極層等の光の吸収のない層が配置される場合がある。
図8には一例として、信号電極Sと基板5のリブ部6との間および接地電極Gと基板5との間に樹脂8が配設されている場合が示されている。信号電極Sには、幅方向端部に樹脂8が配設されている。接地電極Gには、幅方向中央部に樹脂8が配設されている。例えば図8に示すように、信号電極Sの幅方向中央部において信号電極Sと基板5とが接触し、かつ、接地電極Gの幅方向端部において接地電極Gと基板5とが接触する構造とする。この構造により、樹脂8によって電界11の出入口面が絞られ、電界11を信号電極S下方の光導波路10に集中させるとともに、電界11の出口面を光導波路10の近位側に偏って配置させることができる。その結果、光導波路10に対して効率的に電界11を集中させることが可能となり、光導波路10における光波の変調効率を向上させることが可能となる。
図9は、本発明の実施の形態における光変調器1の断面構造の第5の例を示す図である。図9の断面構造は、図5の断面構造と類似しているが、図5の断面構造では樹脂8が変調電極内に配設されているのに対し、図9の断面構造では樹脂8が基板5内に配設されている点で異なっている。
図9に示すように、樹脂8が基板5内に配設されている場合も、樹脂8が変調電極内に配設されている図5の断面構造と同様の作用効果を奏する。図9の断面構造においても、樹脂8の配設により電界11の出入口面を光導波路10の近位側に偏って配置させることができる。その結果、光導波路10に対して効率的に電界11を集中させることが可能となり、光導波路10における光波の変調効率を向上させることが可能となる。
図10は、本発明の実施の形態における光変調器1の断面構造の第6の例を示す図である。図10の断面構造は、図5の断面構造と類似しているが、図5の断面構造では樹脂8が変調電極内に配設されているのに対し、図10の断面構造では樹脂8が変調電極および基板5の両方にまたがって配設されている点で異なる。
図10に示すように、樹脂8が変調電極および基板5の両方にまたがって配設されている場合も、樹脂8が変調電極内に配設されている図5の断面構造と同様の作用効果を奏する。図10の断面構造においても、樹脂8の配設により電界11の出入口面を光導波路10の近位側に偏って配置させることができる。その結果、光導波路10に対して効率的に電界11を集中させることが可能となり、光導波路10における光波の変調効率を向上させることが可能となる。
ここでは、図5の断面構造と図9および図10の断面構造と比較しながら、樹脂8が基板5内や変調電極および基板5の両方にまたがって配設される場合について説明しているが、例えば図6〜図8の断面構造やその他任意の断面構造において、樹脂8が基板5内や変調電極および基板5の両方にまたがって配設されてもよい。
また、図5〜図10の断面構造では、信号電極Sや接地電極Gと基板5との接触面が光導波路10に対して左右対称となるように、樹脂8が配設されている。このように樹脂8を配設することで、光導波路10に対して効率良く電界を印加することが可能である。さらに、図5〜図10の断面構造では、例えばマッハツェンダー型導波路等における一対の並行導波路に対して印加される電界が左右対称となるように、樹脂8が配置されている。このように樹脂8を配設することで、一対の並行導波路に対して左右対称となる電界11を印加することができるようになる。その結果、電界11の非対称性により生じ得る変調効率の非均一性や変調効率の非対称性に起因するチャーピングの発生等を抑えることが可能となる。
また、図5〜図10の断面構造は、図3および図4の配設パターンや任意の配設パターンに適用することができる。図5〜図10の断面構造は、変調電極によって基板5に生じる応力を緩和する効果に加えて、電界11を光導波路10に効率良く集中させて光導波路10における光波の変調効率を向上させる効果を有している。すなわち、本発明は、変調電極と基板5との間に樹脂8を部分的に配設することで、変調電極によって基板5に生じる応力を低減させることが可能であり、これに加えて、応力緩和効果を持つ樹脂8の配設位置を適宜設計することで、電界11を光導波路10に効率良く集中させて光導波路10における光波の変調効率を向上させることが可能である。
また、本実施の形態では、基板5上にリブ部6が形成されたリブ型基板を一例に挙げて説明している。しかしながら上述したように、本発明は、リブ型基板に限定されず、例えば金属の熱拡散により基板5内に光導波路10が形成される通常の基板(図2(b)参照)に対しても適用することができる。図2(b)に示すような通常の基板においても同様に、図3および図4の配設パターンや任意の配設パターンで樹脂8を配設することが可能である。また、図2(b)に示すような通常の基板においても同様に、図9および図10に示す位置に樹脂8を配設することが可能である。
また、本実施の形態では、1つの信号電極Sの両側に接地電極Gが1つずつ配置されたコプレーナ線路構造を一例に挙げて説明している。しかしながら、本発明はこのようなコプレーナ線路構造に限定されず、例えば、並行する2つの信号電極Sの両側に接地電極Gが1つずつ配置された差動線路を有するコプレーナ線路構造が採用されてもよい。
本発明は、上記の実施の形態や変形例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例および設計変更等をその技術的範囲内に包含するものである。
本発明は、変調電極により発生する基板の応力を低減させることで、基板に対するダメージを防ぐとともに、変調器の特性劣化を防ぐことが可能な光変調器を提供し、光通信分野や光計測分野等に適用可能である。
1 光変調器
2a〜2c 分岐部
3a〜3c 合成部
5 基板
6 リブ部
7 補強基板
8 樹脂
10 光導波路
11 電界
G、G1、G2 接地電極
S 信号電極

Claims (12)

  1. 電気光学効果を有する基板と、
    前記基板に形成された光導波路と、
    前記基板上に設けられており、前記光導波路を伝搬する光波を変調する変調電極と、を備える光変調器であって、
    前記変調電極の底面の一部と、前記変調電極の底面の一部に対向する前記基板との間に、樹脂が配設されていることを特徴とする光変調器。
  2. 前記変調電極が前記光導波路の一部に沿って配置された信号電極および接地電極からなり、前記信号電極および前記接地電極の少なくとも一方の底面の一部と、前記信号電極および前記接地電極の少なくとも一方に対向する前記基板との間に、前記樹脂が配設されていることを特徴とする請求項1に記載の光変調器。
  3. 前記信号電極と前記基板との間に前記樹脂が配設される場合には、前記樹脂の幅が前記信号電極の幅の1/3以下に設定され、
    前記接地電極と前記基板との間に前記樹脂が配設される場合には、前記樹脂の幅が前記接地電極の幅の1/2以下に設定されることを特徴とする請求項2に記載の光変調器。
  4. 前記変調電極内に前記樹脂が配設されていることを特徴とする請求項1から3のいずれか1つに記載の光変調器。
  5. 前記変調電極と前記基板との接触面が前記光導波路に対して左右対称となるように前記樹脂が配設されていることを特徴とする請求項1から4のいずれか1つに記載の光変調器。
  6. 前記変調電極の底面と前記基板との接触面が前記光導波路の近位側に配置されるように前記樹脂が配設されていることを特徴とする請求項1から5のいずれか1つに記載の光変調器。
  7. 前記樹脂の厚さが1.0μm以上であることを特徴とする請求項1から6のいずれか1つに記載の光変調器。
  8. 前記樹脂は、熱可塑性樹脂および熱硬化性樹脂のいずれか一方であることを特徴とする請求項1から7のいずれか1つに記載の光変調器。
  9. 前記基板の厚さが4.0μm以下であることを特徴とする請求項1から8のいずれか1つに記載の光変調器。
  10. 前記基板上に突設されたリブ部が前記光導波路として用いられることを特徴とする請求項1から9のいずれか1つに記載の光変調器。
  11. 前記変調電極は金属からなり、前記基板はニオブ酸リチウムからなることを特徴とする請求項1から10のいずれか1つに記載の光変調器。
  12. 複数のマッハツェンダー部により前記光導波路が形成されていることを特徴とする請求項1から11のいずれか1つに記載の光変調器。
JP2019064447A 2019-03-28 2019-03-28 光変調器 Active JP7207086B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019064447A JP7207086B2 (ja) 2019-03-28 2019-03-28 光変調器
US17/593,924 US20220179247A1 (en) 2019-03-28 2019-08-14 Optical modulator
PCT/JP2019/031908 WO2020194782A1 (ja) 2019-03-28 2019-08-14 光変調器
CN201980094910.1A CN113646694B (zh) 2019-03-28 2019-08-14 光调制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064447A JP7207086B2 (ja) 2019-03-28 2019-03-28 光変調器

Publications (2)

Publication Number Publication Date
JP2020166053A true JP2020166053A (ja) 2020-10-08
JP7207086B2 JP7207086B2 (ja) 2023-01-18

Family

ID=72608866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064447A Active JP7207086B2 (ja) 2019-03-28 2019-03-28 光変調器

Country Status (4)

Country Link
US (1) US20220179247A1 (ja)
JP (1) JP7207086B2 (ja)
CN (1) CN113646694B (ja)
WO (1) WO2020194782A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297289A (ja) * 1996-05-08 1997-11-18 Nippon Telegr & Teleph Corp <Ntt> 光制御デバイスとその動作方法
JP2010256761A (ja) * 2009-04-28 2010-11-11 Nec Corp 半導体マッハツェンダー光変調器及びその製造方法、半導体光集積素子及びその製造方法
JP2014071383A (ja) * 2012-09-28 2014-04-21 Sumitomo Osaka Cement Co Ltd 光変調器
JP2017054033A (ja) * 2015-09-10 2017-03-16 凸版印刷株式会社 高分子光導波路およびその製造方法
US9664931B1 (en) * 2012-11-16 2017-05-30 Hrl Laboratories, Llc Electro-optic modulation structures
JP2017129834A (ja) * 2015-08-21 2017-07-27 Tdk株式会社 光導波路素子およびこれを用いた光変調器
US20170299811A1 (en) * 2016-04-15 2017-10-19 Northwestern University X(2) Modulators and Related Devices with Barium Titanate Photonic Crystal Waveguides

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409238B1 (en) * 1989-07-20 1995-02-15 Nec Corporation Optical control device
JPH09211403A (ja) * 1996-02-01 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 光制御素子
US5895742A (en) * 1996-07-19 1999-04-20 Uniphase Telecommunications Products, Inc. Velocity-matched traveling-wave electro-optical modulator using a benzocyclobutene buffer layer
JP3362105B2 (ja) * 1997-03-31 2003-01-07 住友大阪セメント株式会社 導波路型光変調器
JP3049245B2 (ja) * 1998-08-10 2000-06-05 住友大阪セメント株式会社 導波路型光変調器
US6846428B2 (en) * 2001-03-20 2005-01-25 Wisconsin Alumni Research Foundation Thin film lithium niobate and method of producing the same
JP2006243376A (ja) * 2005-03-03 2006-09-14 Ricoh Co Ltd 有機導波路型光変調器
JP2008039859A (ja) * 2006-08-01 2008-02-21 Fujitsu Ltd 光変調器
JP2014066940A (ja) * 2012-09-26 2014-04-17 Sumitomo Osaka Cement Co Ltd 光変調器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297289A (ja) * 1996-05-08 1997-11-18 Nippon Telegr & Teleph Corp <Ntt> 光制御デバイスとその動作方法
JP2010256761A (ja) * 2009-04-28 2010-11-11 Nec Corp 半導体マッハツェンダー光変調器及びその製造方法、半導体光集積素子及びその製造方法
JP2014071383A (ja) * 2012-09-28 2014-04-21 Sumitomo Osaka Cement Co Ltd 光変調器
US9664931B1 (en) * 2012-11-16 2017-05-30 Hrl Laboratories, Llc Electro-optic modulation structures
JP2017129834A (ja) * 2015-08-21 2017-07-27 Tdk株式会社 光導波路素子およびこれを用いた光変調器
JP2017054033A (ja) * 2015-09-10 2017-03-16 凸版印刷株式会社 高分子光導波路およびその製造方法
US20170299811A1 (en) * 2016-04-15 2017-10-19 Northwestern University X(2) Modulators and Related Devices with Barium Titanate Photonic Crystal Waveguides

Also Published As

Publication number Publication date
CN113646694B (zh) 2024-04-09
JP7207086B2 (ja) 2023-01-18
US20220179247A1 (en) 2022-06-09
WO2020194782A1 (ja) 2020-10-01
CN113646694A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
US8923658B2 (en) Optical waveguide device
US8406578B2 (en) Mach-zehnder waveguide type optical modulator
JP2603437B2 (ja) 周期的ドメイン反転電気・光変調器
JP4847177B2 (ja) 光変調素子
JP2008089936A (ja) 光制御素子
JP2004157500A (ja) 光変調器
US6600843B2 (en) Optical modulator
JP2007264488A (ja) 光導波路素子
US6571026B2 (en) Traveling wave optical modulators and a method for the production thereof
JP2022056979A (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
WO2007058366A1 (ja) 光導波路デバイス
JP2001235714A (ja) 進行波形光変調器およびその製造方法
JP4771451B2 (ja) 進行波型光変調器
US7088874B2 (en) Electro-optic devices, including modulators and switches
US10578893B2 (en) Optical waveguide element
JP3695708B2 (ja) 光変調器
WO2020194782A1 (ja) 光変調器
JP2012073328A (ja) 光変調器
US20070081755A1 (en) Optical modulator
JP2001004967A (ja) 光導波路素子
WO2021131272A1 (ja) 光導波路素子および光変調器
WO2024069952A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
JP4544479B2 (ja) 光導波路型変調器
JP3556873B2 (ja) 光変調方法及び光変調器
JPH06250131A (ja) 光制御素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7207086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150