JP2020165655A - コンクリートの浮き検知方法 - Google Patents

コンクリートの浮き検知方法 Download PDF

Info

Publication number
JP2020165655A
JP2020165655A JP2019063281A JP2019063281A JP2020165655A JP 2020165655 A JP2020165655 A JP 2020165655A JP 2019063281 A JP2019063281 A JP 2019063281A JP 2019063281 A JP2019063281 A JP 2019063281A JP 2020165655 A JP2020165655 A JP 2020165655A
Authority
JP
Japan
Prior art keywords
wall surface
floating
cable tunnel
concrete
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019063281A
Other languages
English (en)
Other versions
JP7202950B2 (ja
Inventor
匠 重岡
Takumi Shigeoka
匠 重岡
斉藤 仁
Hitoshi Saito
仁 斉藤
克晴 佐藤
Katsuharu Sato
克晴 佐藤
大樹 嘉賀
Hiroki Kaga
大樹 嘉賀
光貴 中川
Koki Nakagawa
光貴 中川
隆之 作中
Takayuki Sakunaka
隆之 作中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosetsu Civil Engineering Consultant Inc
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tosetsu Civil Engineering Consultant Inc
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosetsu Civil Engineering Consultant Inc, Tokyo Electric Power Co Holdings Inc filed Critical Tosetsu Civil Engineering Consultant Inc
Priority to JP2019063281A priority Critical patent/JP7202950B2/ja
Publication of JP2020165655A publication Critical patent/JP2020165655A/ja
Application granted granted Critical
Publication of JP7202950B2 publication Critical patent/JP7202950B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

【課題】洞道壁面のコンクリートの浮きを容易且つ確実に検知することが可能な浮き検知方法を提供することを目的とする。【解決手段】本発明にかかる浮き検知方法の構成は、サーモグラフィー116と、サーモグラフィー116を支持する台車136と、台車136を走行させるレール118と、レール118の両端近傍から延びた所定の長さの脚部120、122とを備える撮影装置100を用いて洞道102の壁面104のコンクリートの浮きを検知する浮き検知方法であって、洞道102の壁面104をドライアイス202またはエアクーラーで冷却し、冷却してから所定時間経過した位置を撮影装置100で撮影し、洞道102の壁面104の温度分布からコンクリートの浮きを判断することを特徴とする。【選択図】図1

Description

本発明は、洞道壁面のコンクリートの浮きを検知する浮き検知方法に関する。
トンネルや橋梁などの構造物では、損傷の有無などを確認するために定期的な点検が必要となる。このような点検は、例えば構造物の壁面の画像を撮影することで実施され、大型のカメラを搭載した車両を走行させながらトンネル内を撮影したり、アームにカメラを取付けて橋梁の桁下を撮影したりしていた。
しかしながら、単に壁面の画像を撮影しただけであると、壁面におけるコンクリートの浮きや剥離は、その画像から判断することが難しい。このため、作業員が壁面をハンマー等によって叩きながら打音検査を行い、音の違いを聞き分けることにより、コンクリートの浮きや剥離を判断していた。このような方法であると、作業者が作業に熟練していなければ、コンクリートの浮きや剥離を正確に判断することが難しい。
コンクリートの浮きや剥離を正確且つ定量的に判断する方法としては、例えば特許文献1のモルタル浮き部の探査方法を用いることが考えられる。特許文献1のモルタルの浮き部の探査方法では、コンクリートにモルタル層を塗着した壁表面に蒸発液を塗布し、その後、壁表面温度を測定することにより、モルタル層のコンクリートからの浮きの有無を判定している。蒸発液とは、アルコール、ベンジンやエーテル等の揮発性の液体である。特許文献1によれば、かかる方法を用いることにより、モルタルの浮き部の所在位置を、熟練を要することなく、しかも精度良く探査することができるとしている。
特開平8−145923号公報
点検対象となる構造物が、開放された現場であったり換気設備が整っている現場であったりする場合には、特許文献1のモルタル浮き部の探査方法を用いることができる。しかし、洞道内の壁面が点検対象である場合、洞道内では、壁面付近にケーブルが敷設されていて、且つ換気設備が十分に整っているとは限らない。したがって、洞道では、蒸発液としてアルコール、ベンジンやエーテル等の引火性を有する液体を使用することは避けるべきである。また、仮に冷却液として引火性のない水道水を使用したとしても、洞道内では蒸発が極めて遅いため、冷却液として機能しにくい。このため、洞道内の壁面が点検対象である場合、特許文献1の方法を採用することができなかった。
本発明は、このような課題に鑑み、洞道壁面のコンクリートの浮きを容易且つ確実に検知することが可能な浮き検知方法を提供することを目的としている。
上記課題を解決するために、本発明にかかる浮き検知方法の代表的な構成は、サーモグラフィーと、サーモグラフィーを支持する台車と、台車を走行させるレールと、レールの両端近傍から延びた所定の長さの脚部とを備える撮影装置を用いて洞道壁面のコンクリートの浮きを検知する浮き検知方法であって、洞道壁面をドライアイスまたはエアクーラーで冷却し、冷却してから所定時間経過した位置を撮影装置で撮影し、洞道壁面の温度分布からコンクリートの浮きを判断することを特徴とする。
上記構成では、まず洞道壁面をドライアイスまたはエアクーラーで冷却する。コンクリートの浮きがない場合、冷却から所定時間経過すると壁面の温度は冷却前の温度近くまで戻る。一方、コンクリートの浮きがある場合、亀裂の中の空気が断熱層となり、浮きの部分は、冷却から所定時間経過しても冷却された状態となる。したがって、冷却後から所定時間経過後の洞道壁面の温度分布をサーモグラフィーで撮影することにより、洞道壁面のコンクリートの浮きを容易且つ確実に検知することが可能となる。
このとき、冷却に用いられる部材がドライアイスまたはエアクーラーであるため、洞道内における引火が発生することがない。したがって、上述した効果を安全に得ることが可能である。またサーモグラフィーによって撮影された温度分布の画像は、温度ごとに異なる色が表示されるため、洞道壁面の温度分布を視覚的に把握することができる。
上記ドライアイスを容器に収容し、容器に備えられたファンで冷気を洞道壁面に吹き付けるとよい。これにより、ファンによってドライアイスの冷気を洞道壁面に好適に吹き付けることができ、洞道壁面を効率的に冷却することが可能となる。
上記エアクーラーのノズルを容器に接続し、容器に備えられたファンで冷気を洞道壁面に吹き付けるとよい。これにより、ファンによってエアクーラーの冷気を洞道壁面に好適に吹き付けることができ、洞道壁面を効率的に冷却することが可能となる。
上記エアクーラーのノズルより面積が大きく且つ密閉性を有するヘッドにエアクーラーのノズルを接続し、ヘッドを介して洞道壁面を冷却するとよい。かかる構成によれば、エアクーラーの冷気を洞道壁面のより広い面積に吹き付けることができる。したがって、洞道壁面を更に効率的に冷却することが可能となる。
本発明によれば、洞道壁面のコンクリートの浮きを容易且つ確実に検知することが可能なコンクリートの浮き検知方法を提供することができる。
本実施形態にかかるコンクリートの浮き検知方法を適用する洞道を説明する図である。 本実施形態の浮き検知方法で使用する撮影装置の斜視図である。 本実施形態の浮き検知方法の手順を説明する図である。 コンクリートの浮きと温度変化を説明する図である。 冷却材のバリエーションを説明する図である。 冷却材のバリエーションを説明する図である。 冷却材のバリエーションを説明する図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
図1は、本実施形態にかかるコンクリートの浮き検知方法(以下、単に「浮き検知方法」という。)を適用する洞道を説明する図である。本実施形態にかかる浮き検知方法では、図1に示す洞道102の壁面104のコンクリートの浮きを検知する。図1に示すように、洞道102は、例えばシールド工法により掘削され、その壁面104がセグメントと呼ばれる板で補強された構造体である。セグメントは、コンクリートブロックであるため、経年劣化によるひび割れが生じる場合がある。そのため、洞道102内では、壁面104の損傷の有無などを確認するために定期的な点検が必要となる。
洞道102内では、電力ケーブルや通信ケーブルなどの複数のケーブル106が収容され、壁面104付近に敷設されている。壁面104付近には、上下方向に延びる縦金物108が設置されている。縦金物108には、腕金110が取付けられている。腕金110は、上下に離間して複数段設けられていて、壁面104から遠ざかるように水平に延びている。ケーブル106は、縦金物108に取付けられた腕金110上に設置され、洞道102内の壁面104付近に沿って敷設されている。
図2は、本実施形態の浮き検知方法で使用する撮影装置100の斜視図である。撮影装置100は、洞道102内の壁面104(図1参照)を撮影するための装置である。撮影装置100は、図2に示すように撮影用治具101を含んでいる。撮影用治具101は、カメラ114およびサーモグラフィー116を走行させるレール118と、一対の脚部120、122と、一対の足部124、126とを備える。一対の脚部120、122は、レール118の両端128、130の近傍から所定方向(ここでは一例として、サーモグラフィー116の撮影方向)に延びていて、所定の長さを有している。
一対の足部124、126は、一対の脚部120、122の先端132、134に設けられ、洞道102内の壁面104に対して脚部120、122を所定の角度(ここでは直角)に固定する。具体的には、一対の足部124、126は、レール118および一対の脚部120、122のいずれの長手方向とも直交する方向に延び、さらに一対の脚部120、122から双方向(両方向)に延びてT字形状を成している。
ここで壁面104に対して脚部120、122を所定の角度で確実に固定するためには、一対の足部124、126を2辺として含む平面(四辺形)を形成する必要がある。このため、この平面を形成できるのであれば、一対の足部124、126の長手方向は、必ずしもレール118の長手方向に直交する必要はない。
ただし一対の足部124、126の長手方向が、レール118の長手方向に平行になってしまうと平面を形成できず、脚部120、122を壁面104に対して安定して固定できない。このため、一対の足部124、126は、レール118の長手方向と平行にならない方向に延びるよう設定されている。
撮影装置100は、撮影用治具101に加え、カメラ114と、サーモグラフィー116と、台車136とをさらに備える。カメラ114は通常の可視光の画像を撮影し、サーモグラフィー116は赤外線画像(温度分布の画像)を撮影する。カメラ114およびサーモグラフィー116は、レール118を走行可能な台車136に搭載されている。可視画像と赤外線画像を同時に撮影して、目に見えるひび割れなどの劣化を可視画像で記録し、目に見えない浮きを赤外線で記録する。
台車136にはさらに、カメラ114の両側付近にライト138、140が搭載されている。このため、カメラ114は、光源であるライト138、140と共にレール118を走行可能であり、最小限の光源で暗い場所でも洞道102内の壁面104を撮影できる。
ここで撮影対象物である洞道102内の壁面104に対するレール118の距離および角度について説明する。レール118は、その両端128、130近傍からサーモグラフィー116の撮影方向に延びた所定の長さの脚部120、122によって、洞道102内の壁面104から一定の距離となる。
レール118はさらに、洞道102内の壁面104に対して脚部120、122を所定の角度に固定する足部124、126によって、洞道102内の壁面104に対して一定の角度となる。このため、レール118は、洞道102内の壁面104に対して一定の距離かつ一定の角度に維持される。
図3は、本実施形態の浮き検知方法の手順を説明する図である。本実施形態の浮き検知方法では、まず作業員P1は、ドライアイスやエアクーラー等の後述する冷却材を用いて洞道102の壁面104を冷却する。そして、冷却してから所定時間、例えば1分経過したら、作業員P2は、所定時間が経過した位置を図2に示す撮影装置100を用いて撮影する。作業員P2が撮影している間、作業員P1は、次の検査箇所の冷却を行う。
撮影を行う際には、まず作業員P2は、脚部120、122および足部124、126を、ケーブル106を避けるようにして壁面104に向かって進入させ、さらに足部124、126を壁面104に押し付ける。これにより、ケーブル106と壁面104との間であって狭いスペースしか確保できない場所112であっても、レール118は、壁面104から一定の距離かつ一定の角度に維持される。つぎに作業者114は、レール118上でサーモグラフィー116を走行させることにより、一定の距離かつ一定の角度で洞道102内の壁面104を撮影する。
本実施形態の浮き検知方法では、サーモグラフィー116によって画像を撮影したら、その画像における洞道102の壁面104の温度分布を参照し、コンクリートの浮きを判断する。
図4はコンクリートの浮きと温度変化を説明する図である。図4(a)に示すようにコンクリートの壁面104には、鉄筋105に発生した錆105aが膨張して、コンクリートに亀裂104aが生じ、浮き104bが発生しているとする。この壁面104を冷却すると図4(b)に示すように、浮き104bの部分も、それ以外の部分も冷却される(冷却されている範囲を図に水平ハッチングで示す)。そして冷却から所定時間経過すると、壁面104の深部から熱が伝達されて、壁面104の表面はあたためられる。コンクリートの浮きがない場合には、冷却から所定時間経過すると壁面104の温度は一様に冷却前の温度近くまで戻る。
しかしながら浮き104bがある場合には、図4(c)に示すように亀裂104aの中の空気が断熱層となる。すると、浮き104bの部分は温まるのが遅いため、冷却から所定時間経過しても温度が低く、浮き104bと浮き以外の部分との間に温度差が生じる。したがって、冷却後から所定時間経過後の洞道102の壁面104の温度分布をサーモグラフィー116で撮影することにより、洞道102の壁面104のコンクリートの浮きを容易且つ確実に検知することが可能となる。
特に本実施形態の浮き検知方法では、冷却材としてドライアイスやエアクーラーを用いるため、洞道102内における引火が発生することがない。したがって、上述した効果を安全に得ることが可能である。またサーモグラフィー116によって撮影された温度分布の画像は、温度ごとに異なる色で表示されるため、洞道102の壁面104の温度分布を視覚的に把握することができる。
図5−図7は、冷却材のバリエーションを説明する図である。図5(a)に示す冷却材200aは、ドライアイス202、断熱材204、および容器206を有する。冷却材200aでは、ドライアイス202は容器206に収容され、それらの間には断熱材204が配置される。そして、作業員P1が容器206を把持しながらドライアイス202を洞道102の壁面104に擦り付けることにより、洞道102の壁面104が冷却される。このとき、容器206とドライアイス202との間に断熱材204が配置されていることにより、作業員P1の手への冷気の伝達を抑制することが可能となる。
図5(b)に示す冷却材200bは、ドライアイス202を収容する容器206の蓋208にファン210が備えられている。これにより、ドライアイス202を容器206に収容して蓋208を取り付けた状態で、その蓋208を洞道102の壁面104に押し付けることにより、ファン210によってドライアイス202の冷気が洞道102の壁面104に吹き付けられる。したがって、作業員P1が手作業でドライアイス202を擦り付ける場合に比して、洞道102の壁面104を効率的に冷却することが可能となる。また壁面104に凹凸が多くドライアイスのブロックの表面が密着しにくい場合であっても、冷気を吹き付ける方式であれば表面をむらなく冷却することができる。なお、ファン210の電源としては、例えばモバイルバッテリー(不図示)を好適に用いることができる。
図6(a)に示す冷却材200cはエアクーラーである。冷却材200cでは、コンプレッサ(不図示)からの圧縮空気が供給口222に供給される。すると、圧縮空気は、冷却材200c内において膨張しながら高速回転し、渦流となって排出口224に向かって移動する。このとき、排出口224から排出されなかった残留空気は、回転しながら冷気となって噴出口226に流れる。これにより、冷却材200cの噴出口226から冷気が噴出される。このようなエアクーラーを冷却材200cとすることによっても洞道102の壁面104を好適に冷却することが可能である。
図6(b)に示す冷却材200dは、図5(b)に示す容器206およびその蓋208、ならびに図6(a)に示す冷却材200c(エアクーラー)を組み合わせて構成される。図6(b)に示す200dでは、ドライアイス202を収容していない状態の容器206に冷却材200c(エアクーラー)のノズル228を接続している。これにより、冷却材200cからの冷気をファン210によって洞道102の壁面104に吹き付けることができる。したがって、単に冷却材200cだけを用いた場合に比して、より広い面積を効率的に冷却することが可能となる。
図7(a)に示す冷却材200eは、図6(a)に示す冷却材200c(エアクーラー)、およびヘッド230を組み合わせて構成される。ヘッド230は、エアクーラーである冷却材200cのノズル228より面積が大きく且つ密閉性を有する。またヘッド230には、冷却材200cのノズル228の径と略同じ径の接続穴232が形成されている。
そして、図7(b)に示すように、ヘッド230の接続穴232に冷却材200cのノズル228を接続して冷却材200cから冷気を噴出することにより、ヘッド230を介して洞道102の壁面104が冷却される。これにより、単に冷却材200cだけを用いた場合に比して、より広い面積を効率的に冷却することが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明は、洞道壁面のコンクリートの浮きを検知する浮き検知方法として利用することができる。
100…撮影装置、101…撮影用治具、102…洞道、104…壁面、104a…亀裂、104b…浮き、105…鉄筋、105a…錆、106…ケーブル、108…縦金物、110…腕金、114…カメラ、116…サーモグラフィー、118…レール、120…脚部、122…脚部、124…足部、126…足部、128…両端、130…両端、132…先端、134…先端、136…台車、138…ライト、140…ライト、200a…冷却材、200b…冷却材、200c…冷却材、202…ドライアイス、204…断熱材、206…容器、208…蓋、210…ファン、222…供給口、224…排出口、226…噴出口、228…ノズル、230…ヘッド、232…接続穴

Claims (4)

  1. サーモグラフィーと、該サーモグラフィーを支持する台車と、該台車を走行させるレールと、該レールの両端近傍から延びた所定の長さの脚部とを備える撮影装置を用いて洞道壁面のコンクリートの浮きを検知する浮き検知方法であって、
    前記洞道壁面をドライアイスまたはエアクーラーで冷却し、
    冷却してから所定時間経過した位置を前記撮影装置で撮影し、
    前記洞道壁面の温度分布からコンクリートの浮きを判断することを特徴とするコンクリートの浮き検知方法。
  2. 前記ドライアイスを容器に収容し、該容器に備えられたファンで冷気を前記洞道壁面に吹き付けることを特徴とする請求項1に記載のコンクリートの浮き検知方法。
  3. 前記エアクーラーのノズルを容器に接続し、該容器に備えられたファンで冷気を前記洞道壁面に吹き付けることを特徴とする請求項1に記載のコンクリートの浮き検知方法。
  4. 前記エアクーラーのノズルより面積が大きく且つ密閉性を有するヘッドに該エアクーラーのノズルを接続し、該ヘッドを介して前記洞道壁面を冷却することを特徴とする請求項1に記載のコンクリートの浮き検知方法。
JP2019063281A 2019-03-28 2019-03-28 コンクリートの浮き検知方法 Active JP7202950B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019063281A JP7202950B2 (ja) 2019-03-28 2019-03-28 コンクリートの浮き検知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019063281A JP7202950B2 (ja) 2019-03-28 2019-03-28 コンクリートの浮き検知方法

Publications (2)

Publication Number Publication Date
JP2020165655A true JP2020165655A (ja) 2020-10-08
JP7202950B2 JP7202950B2 (ja) 2023-01-12

Family

ID=72714140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019063281A Active JP7202950B2 (ja) 2019-03-28 2019-03-28 コンクリートの浮き検知方法

Country Status (1)

Country Link
JP (1) JP7202950B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295148A (ja) * 1988-05-20 1989-11-28 Nkk Corp 物体表面のクラツク検出方法
JPH08145923A (ja) * 1994-11-15 1996-06-07 Nippon Steel Corp モルタル浮き部の探査方法
JPH09145649A (ja) * 1995-11-29 1997-06-06 Nitto Chem Ind Co Ltd 構造物外壁の浮き欠陥の検知方法
JP2002001249A (ja) * 2000-06-26 2002-01-08 Mie Koki Kk コンクリート構造物表面処理システム
JP2002156347A (ja) * 2000-11-15 2002-05-31 Mitsubishi Heavy Ind Ltd 構造物検査装置、構造物検査用搬送車、及び、構造物検査方法
JP2006189410A (ja) * 2004-12-07 2006-07-20 Raito Kogyo Co Ltd 構造物の非破壊検査方法及びその装置
JP2012181194A (ja) * 2011-02-28 2012-09-20 Siemens Ag 繊維強化された積層構造体におけるしわを検出する方法並びに繊維強化された積層構造体の熱スキャンを実施するための補助装置
JP2015049194A (ja) * 2013-09-03 2015-03-16 株式会社ブイ・テクノロジー 構造物の非破壊検査装置及び検査システム
JP2015219014A (ja) * 2014-05-14 2015-12-07 コニカミノルタ株式会社 物体診断装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295148A (ja) * 1988-05-20 1989-11-28 Nkk Corp 物体表面のクラツク検出方法
JPH08145923A (ja) * 1994-11-15 1996-06-07 Nippon Steel Corp モルタル浮き部の探査方法
JPH09145649A (ja) * 1995-11-29 1997-06-06 Nitto Chem Ind Co Ltd 構造物外壁の浮き欠陥の検知方法
JP2002001249A (ja) * 2000-06-26 2002-01-08 Mie Koki Kk コンクリート構造物表面処理システム
JP2002156347A (ja) * 2000-11-15 2002-05-31 Mitsubishi Heavy Ind Ltd 構造物検査装置、構造物検査用搬送車、及び、構造物検査方法
JP2006189410A (ja) * 2004-12-07 2006-07-20 Raito Kogyo Co Ltd 構造物の非破壊検査方法及びその装置
JP2012181194A (ja) * 2011-02-28 2012-09-20 Siemens Ag 繊維強化された積層構造体におけるしわを検出する方法並びに繊維強化された積層構造体の熱スキャンを実施するための補助装置
JP2015049194A (ja) * 2013-09-03 2015-03-16 株式会社ブイ・テクノロジー 構造物の非破壊検査装置及び検査システム
JP2015219014A (ja) * 2014-05-14 2015-12-07 コニカミノルタ株式会社 物体診断装置

Also Published As

Publication number Publication date
JP7202950B2 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
CN110161043A (zh) 一种地铁隧道结构综合检测车
US7073979B2 (en) Method and apparatus for performing sewer maintenance with a thermal sensor
CN113984288B (zh) 一种电缆隧道衬砌渗漏水检测装置及方法
CA2863461C (en) Inspection and repair module
US6995565B1 (en) Thermographic wiring inspection
CN108765620A (zh) 一种联网电力电网线路自动巡检方法
JP2020165655A (ja) コンクリートの浮き検知方法
US20200072554A1 (en) Process and device for measuring wear of a refractory lining of a receptacle intended to contain molten metal
KR102562086B1 (ko) 가스누설 검사장치
CN113466610A (zh) 一种电缆坑道排障装置及电缆坑道排障方法
KR100937059B1 (ko) 고소 작업용 도장기계
CN206456572U (zh) 一种航空检测机器人
JP2004294318A (ja) 橋梁の点検装置および橋梁の点検方法
CN110977926B (zh) 电缆隧道巡检机器人的局部放电定位方法、系统及介质
JP2002131234A (ja) 高所点検装置
WO2011065755A2 (ko) 압축열을 이용한 비파괴 시험 시스템 및 방법
KR20150057204A (ko) 고온 검사대상물의 결함검사장치 및 방법
JP2009244144A (ja) 赤外線検出による被検体用台及びそれを用いた被検体欠陥部等の赤外線検査方法
US10861146B2 (en) Delayed petroleum coking vessel inspection device and method
CN212579856U (zh) 一种轨道巡检仪
JPH09127286A (ja) 原子力発電プラントの点検補修装置および方法
KR102679476B1 (ko) 드론을 이용한 위험물저장탱크의 헬륨 누출 검사 시스템 및 이를 이용한 검사 방법
CN221223993U (zh) 一种钢包测温装置
CN110868571A (zh) 一种电力一次设备缺陷紧急监视处理装置
JP2020076688A (ja) 検査装置および検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7202950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150