JP2020164793A - プリプレグ、金属張積層板、プリント配線板、多層配線基板および電子機器 - Google Patents

プリプレグ、金属張積層板、プリント配線板、多層配線基板および電子機器 Download PDF

Info

Publication number
JP2020164793A
JP2020164793A JP2020024385A JP2020024385A JP2020164793A JP 2020164793 A JP2020164793 A JP 2020164793A JP 2020024385 A JP2020024385 A JP 2020024385A JP 2020024385 A JP2020024385 A JP 2020024385A JP 2020164793 A JP2020164793 A JP 2020164793A
Authority
JP
Japan
Prior art keywords
group
compound
polyamide
monomer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020024385A
Other languages
English (en)
Inventor
英宣 小林
Hidenori Kobayashi
英宣 小林
祥太 森
Shota Mori
祥太 森
豪 阪口
Go Sakaguchi
豪 阪口
努 早坂
Tsutomu Hayasaka
努 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Publication of JP2020164793A publication Critical patent/JP2020164793A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Polyamides (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】誘電特性および低反り性に優れ、且つクラックの発生を効果的に低減できる信頼性の高いプリプレグ、金属張積層板等を提供する。【解決手段】基材と、基材に含浸された熱硬化性樹脂組成物の半硬化物とを備え、熱硬化性樹脂組成物は、カルボン酸の無水物基を有するスチレン系エラストマー(P1)と、前記無水物基と反応する、ポリイソシアネート成分(C1)、エポキシ化合物(C4)またはフェノール化合物(C5)のいずれかと前記無水物基と反応するポリイソシアネート成分(C1)を含有する組成物(I)等であり、熱硬化性樹脂組成物の硬化物は、比誘電率が4.0以下、誘電正接が0.010以下である、プリプレグである。【選択図】 なし

Description

本発明は、プリプレグに関する。また、前記プリプレグの硬化物からなる絶縁層を備える金属張積層板、プリント配線板および多層配線基板に関する。さらに、プリント配線板を搭載した電子機器および多層配線基板を搭載した電子機器に関する。
大量の情報を高速処理する技術の進展により、プリント配線板等に使用される信号の周波数帯はメガHz帯からギガHz帯に移行しつつある。周波数が高くなるほど電気信号の伝送損失が大きくなるため、高周波帯域での優れた誘電特性を有する電子材料とそれを用いたプリント配線板等の開発が必要になっている。
特許文献1には、誘電特性に優れた高周波回路基板を提供することを課題として、織布および/または不織布中に充填され、その表面を被覆する、エポキシ樹脂、硬化剤、フッ素樹脂フィラーを含む樹脂組成物の半硬化物を有するプリプレグが提案されている。
特開2016−166347号公報
プリプレグにおいては、低誘電率特性を満足することに加え、基板の反りの発生を低減することが求められている。しかし、反りを低減するためにフィラーを多量に添加すると、柔軟性が低下して硬くて脆くなり、クラックが発生しやすくなるという問題がある。このため、低誘電率特性を満たしつつ、低反り性を有し、且つ耐クラック性に優れるプリプレグおよびプリント配線板が切望されている。
本発明は上記背景に鑑みてなされたものであり、誘電特性および低反り性に優れ、且つクラックの発生を効果的に低減できる信頼性の高いプリプレグ、金属張積層板、プリント配線板、多層配線基板および電子機器を提供することを目的とする。
本発明者らが鋭意検討を重ねたところ、以下の態様において、本実施形態の課題を解決し得ることを見出し、本発明を完成するに至った。
[1]: 基材と、前記基材に含浸された熱硬化性樹脂組成物の半硬化物とを備え、
前記熱硬化性樹脂組成物は、
カルボン酸の無水物基を有するスチレン系エラストマー(P1)と、前記無水物基と反応する、ポリイソシアネート成分(C1)、エポキシ化合物(C4)またはフェノール化合物(C5)のいずれかと、を含有する組成物(I)、
側基にフェノール性水酸基を有するポリアミド樹脂(P2)と、前記フェノール性水酸基と反応し得る3官能以上の化合物(C2)とを含有する組成物(II)、または
カルボキシル基を有するポリウレタン樹脂(P3)と、前記カルボキシル基と反応し得るエポキシ化合物(C3)とを含有する組成物(III)であり、
前記熱硬化性樹脂組成物の硬化物は、
比誘電率が4.0以下、誘電正接が0.010以下であるプリプレグ。
[2] スチレン系エラストマー(P1)は、
オレフィンに由来する構成単位および共役ジエンに由来する構成単位の少なくともいずれかと、スチレン由来の構成単位とを有するブロック共重合体であり、ポリイソシアネート成分(C1)は、2個以上のイソシアネートを有するイソシアネート基含有化合物であり、
ポリアミド樹脂(P2)は、
以下の(i)および/または(ii)であり、更に、(i)のポリアミド樹脂(P2)は(iii)、(vi)を満足し、(ii)のポリアミド樹脂(P2)は(iv)〜(vi)を満足し、
化合物(C2)は以下の(vii)を満足し、
ポリウレタン樹脂(P3)は、ポリウレタンポリウレア樹脂である請求項1記載のプリプレグ。
(i)ポリアミド樹脂(P2)は、フェノール性水酸基および炭素数20〜60の炭化水素基(但し、前記フェノール性水酸基が結合する芳香環は含まない)が同一ポリマー内に含まれるポリアミド(A−1)である。
(ii)ポリアミド樹脂(P2)は、側基にフェノール性水酸基を含むポリアミド(a−1)と、炭素数20〜60の炭化水素基を含むポリアミド(a−2)とを混合したポリアミド(A−3)である。
(iii)ポリアミド(A−1)を構成する単量体として、フェノール性水酸基を具備する単量体および炭素数20〜60の炭化水素基を具備する単量体を含む。
(iv)ポリアミド(a−1)を構成する多塩基酸単量体または/およびポリアミン単量体に、フェノール性水酸基を具備する単量体を含み、且つ前記多塩基酸単量体および前記ポリアミン単量体に、炭素数20〜60の炭化水素基を具備する単量体を含まない。
(v)ポリアミド(a−2)を構成する前記多塩基酸単量体または/および前記ポリアミン単量体に、炭素数20〜60の炭化水素基を具備する単量体を含み、且つ前記多塩基酸単量体および前記ポリアミン単量体に、フェノール性水酸基を具備する単量体を含まない。
(vi)炭素数20〜60の炭化水素基を具備する単量体の少なくとも一部が、炭素数5〜10の環状構造を具備する化合物を含む。
(vii)化合物(C2)が、エポキシ基含有化合物、イソシアネート基含有化合物、カルボジイミド基含有化合物、金属キレート、金属アルコキシドおよび金属アシレートからなる群より選ばれる少なくとも1種である。
[3]: 前記熱硬化性樹脂組成物の硬化後の25℃での貯蔵弾性率が1〜5000MPaである[1]または[2]に記載のプリプレグ。
[4]: [1]〜[3]のいずれかに記載のプリプレグの硬化物からなる絶縁層と、
前記絶縁層の片面または両面上に形成された金属層と、を具備する金属張積層板。
[5]: [1]〜[3]のいずれかに記載のプリプレグの硬化物からなる絶縁層と、
前記絶縁層の片面又は両面上に形成された回路パターンと、を備えるプリント配線板。
[6]: 層間絶縁層および回路パターン層がそれぞれ2層以上積層された多層配線基板であって、前記層間絶縁層の少なくとも一つが、[1]〜[3]のいずれかに記載のプリプレグの硬化物からなる絶縁層である多層配線基板。
[7]: [5]に記載のプリント配線板または[6]に記載の多層配線基板を搭載した電子機器。
本発明によれば、誘電特性および低反り性に優れ、且つクラックの発生を効果的に低減できる信頼性の高いプリプレグ、金属張積層板、プリント配線板、多層配線基板および電子機器を提供することができる。
以下、本発明を適用した実施形態の一例について説明する。なお、本明細書において特定する数値は、実施形態または実施例に開示した方法により求められる値である。また、本明細書で特定する数値「A〜B」は、数値Aと数値Aより大きい値および数値Bと数値Bより小さい値を満たす範囲をいう。また、本明細書におけるシートとは、JISにおいて定義されるシートのみならず、フィルムも含むものとする。本明細書中に出てくる各種成分は特に注釈しない限り、それぞれ独立に一種単独でも二種以上を併用してもよい。
<<プリプレグ>>
本実施形態に係るプリプレグは、基材と、この基材に含浸された熱硬化性樹脂組成物の半硬化物を備える。プリプレグは、熱硬化性樹脂組成物を用いて公知の方法により製造できる。例えば、熱硬化性樹脂組成物を基材に含浸させ、続いて熱硬化性樹脂組成物を加熱乾燥せしめて半硬化(Bステージ化)することにより製造できる。
本実施形態の熱硬化性樹脂組成物には、以下の組成物(I)〜組成物(III)のいずれかを用いる。組成物(I)は、カルボン酸の無水物基を有するスチレン系エラストマー(P1)と、この無水物基と反応する、ポリイソシアネート成分(C1)、エポキシ化合物(C4)またはフェノール化合物(C5)のいずれかと、を含有する熱硬化性樹脂組成物である。以下、スチレン系エラストマー(P1)とポリイソシアネート成分(C1)を含有する熱硬化性樹脂組成物を組成物(I)−1、スチレン系エラストマー(P1)とエポキシ化合物(C4)を含有する熱硬化性樹脂組成物を組成物(I)−2、スチレン系エラストマー(P1)とフェノール化合物(C5)を含有する熱硬化性樹脂組成物を組成物(I)−3という。組成物(II)は、側基にフェノール性水酸基を有するポリアミド樹脂(P2)と、このフェノール性水酸基と反応し得る3官能以上の化合物(C2)とを含有する熱硬化性樹脂組成物である。組成物(III)は、カルボキシル基を有するポリウレタン樹脂(P3)と、前記カルボキシル基と反応し得るエポキシ化合物(C3)とを含有する熱硬化性樹脂組成物である。
本実施形態の熱硬化性樹脂組成物の硬化物は、誘電率を4.0以下、誘電正接を0.010以下とする。より好ましくは、誘電率が3.5以下、誘電正接が0.005以下であり、さらに好ましくは、誘電率が3.2以下、誘電正接が0.003以下である。誘電率および誘電正接の下限値は特に限定されないが、通常、誘電率は2.0以上であり、誘電正接は0.001以上である。熱硬化性樹脂組成物の硬化物の誘電率は、熱硬化性樹脂組成物の樹脂の種類、フィラーの種類や量により調整することができる。
本実施形態の熱硬化性樹脂組成物の硬化物の25℃での貯蔵弾性率は、1〜5000MPaであることが好ましい。より好ましくは、同貯蔵弾性率が5〜2000MPaの範囲であり、さらに好ましくは、同貯蔵弾性率が10〜1000MPaの範囲である。熱硬化性樹脂組成物の硬化物の25℃での貯蔵弾性率を1〜5000MPaとすることにより、プリプレグの硬化物は、低反り性に優れ、且つクラックの発生を抑制できるという優れた効果を有する。
熱硬化性樹脂組成物の基材に対する固形分付着量は、プリプレグに対する乾燥後の熱硬化性樹脂組成物の含有率において20〜90質量%とすることが好ましい。より好ましくは、30〜80質量%であり、さらに好ましくは40〜70質量%である。例えば、プリプレグ中の熱硬化性樹脂組成物の固形分付着量が20〜90質量%となるように、本実施形態の熱硬化性樹脂組成物を基材に含浸または塗工した後、例えば40〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させることにより製造することができる。
基材としては、公知の材料を制限なく利用できるが、有機繊維、無機繊維およびガラス繊維が例示できる。有機繊維としては、ポリイミド、ポリエステル、テトラフルオロエチレン、全芳香族ポリアミドなどが例示できる。無機繊維としては、炭素繊維が例示できる。ガラス繊維としては、Eガラスクロス、Dガラスクロス、Sガラスクロス、Qガラスクロス、NEガラスクロス、Lガラスクロス、Tガラスクロス、球状ガラスクロス、低誘電ガラスクロスなどが例示できる。これらのなかでも低熱膨張率の観点からは、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロスおよび有機繊維が好適である。基材は一種単独でも二種以上を併用してもよい。
基材の形状は、目的とする用途および性能に応じて適宜選択できる。具体例としては、織布、不織布、ロービンク、チョップドストランドマットおよびサーフェシングマット等が例示できる。織布の織り方としては、平織り、ななこ織り、綾織り等が例示できる。所望の特性に応じて、任意に選択・設計することができる。基材の厚さは、例えば、約0.01〜1.0mmの範囲とすることができる。薄膜化の観点からは500μm以下が好ましく、300μm以下がより好ましい。
基材は、必要に応じて、所望の特性を引き出すためにシランカップリング剤などで表面処理を施したり、機械的に開繊処理を施すことができる。その他、コロナ処理やプラズマ処理を行ってもよい。シランカップリング剤の表面処理は、アミノシランカップリング処理、ビニルシランカップリング処理、カチオニックシランカップリング処理、エポキシシランカップリング処理等がある。
基材に熱硬化性樹脂組成物を含浸させる方法は特に限定されないが、例えば、アルコール類、エーテル類、アセタール類、ケトン類、エステル類、アルコールエステル類、ケトンアルコール類、エーテルアルコール類、ケトンエーテル類、ケトンエステル類やエステルエーテル類などの有機溶媒を用いて熱硬化性樹脂組成物のワニスを調製し、ワニス中に基材を浸漬する方法、基材にワニスを塗布またはスプレー等により散布する方法、基材の両面を熱硬化性樹脂組成物からなる膜でラミネートする方法等が挙げられる。
<<熱硬化性樹脂組成物>>
本実施形態に係る熱硬化性樹脂組成物は、その硬化物の比誘電率が4.0以下であり、誘電正接が0.010以下であり、以下の組成物(I)−1、(I)−2、(I)−3、(II)、(III)のいずれかから選択される。
[[組成物(I)−1]]
組成物(I)−1は、カルボン酸の無水物基(以下、酸無水物基と略すこともある)を有するスチレン系エラストマー(P1)と、この酸無水物基と反応するポリイソシアネート成分(C1)を含有する熱硬化性樹脂組成物である。なお、本明細書において「エラストマー」とは、加硫処理を行わなくても、常温でゴム弾性を有するポリマーを指す。化学構造的にはABA型のブロックまたは(A−B)n型のマルチブロック構造を有するものが一般的である。また、スチレン系エラストマーとは、ポリスチレンを有するブロック(以下、ポリスチレンブロックとも称する)を有する共重合体をいう。
<スチレン系エラストマー(P1)>
スチレン系エラストマー(P1)は、カルボン酸の無水物基を有することが重要である。スチレン系エラストマー(P1)中の酸無水物基と後述するポリイソシアネート成分(C1)とを反応させることにより、耐熱性に優れるとともに、誘電率や誘電正接を低く抑える機能を担うイミド基を形成できる。
スチレン系エラストマー(P1)の好ましい例として、オレフィンに由来する構成単位および共役ジエンに由来する構成単位の少なくともいずれかと、スチレン由来の構成単位とを有するブロック共重合体がある。
ポリスチレン構造を分子中に有しているスチレン系エラストマー(P1)を用いることにより、優れた耐熱性を実現することができる。具体例としては、スチレン−ブタジエンブロック共重合体、スチレン−エチレン−プロピレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−エチレン−ブチレン−スチレンブロック共重合体、スチレン−エチレン−プロピレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体等が挙げられる。
なお、これらスチレン系エラストマー(P1)において、ポリスチレンブロック以外の部分は、まとめて1つのブロックと捉える。また、ポリスチレンブロック以外の部分のうち、2つ以上のモノマー由来の単位(残基)から形成されるブロックとして、上記の例では、エチレンとプロピレンとからなる共重合体や、エチレンとブチレンとからなる共重合体が例示できる。このようなポリスチレンブロック以外の2つ以上のモノマー由来の単位から形成されるブロックは、ランダム共重合体でもブロック共重合体でもよい。
イミド基は、酸無水物基とアミノ基との反応によっても形成できるが、以下の点で好ましくない。酸無水物基とアミノ基との第一段階目の反応、即ち、アミノ基による酸無水物基の開環反応は極めて速いので、熱硬化性接着剤としての可使時間が短くなるという問題がある。
酸無水物基とアミノ基との第二段階目の反応、即ち、アミック酸の閉環によるイミド基の生成反応は、酸無水物基とイソシアネート基との反応によるイミド基生成反応に比して高温加熱を要する。加熱が不充分だと、イミド基の前駆体であるアミック酸が残り、誘電率や誘電正接が高くなる。また、アミック酸が残っていると、後述するプリプレグ、またはプリプレグの硬化物を含む金属張積層体、プリント配線板および多層配線板等を半田浴または半田リフロー炉に入れた際に、水の脱離を伴うイミド化反応が爆発的に進行し、発泡を生じたりする。
なお、スチレン系エラストマー(P1)のカルボン酸の無水物基とポリイソシアネート成分(C)のイソシアネート基とを、150〜200℃程度で加熱硬化すると、耐熱性および絶縁性が向上し、誘電率や誘電正接が低くなるとともに、カルボン酸の無水物基とアミノ基との反応(上記第一段階および第二段階)の場合と同様に赤外線吸収スペクトルにおいて1700cm−2付近に新たなピークが観察されることから、イミド基が形成されたものと考察している。
スチレン系エラストマー(P1)への酸無水物基の導入方法は、スチレン系エラストマー(P1)を製造するための原料の1つとして酸無水物基を有するモノマーを他の原料と重合する方法、ポリマー合成後に側鎖に酸無水物基を導入する方法、グラフト化反応させる方法が例示できる。例えば、適量の無水マレイン酸等のエチレン性不飽和カルボン酸の無水物を共重合させる方法、スチレン系エラストマー(P1)を合成した後に、適量の無水マレイン酸等のエチレン性不飽和カルボン酸の無水物と過酸化物を用いてグラフト化反応させる方法が挙げられる。また、酸無水物の代わりに、適量のマレイン酸等のエチレン性不飽和カルボン酸を用いることもできる。この場合は、カルボン酸導入後に少なくとも一部が無水物基となるようにする。
スチレン系エラストマー(P1)は、エチレン性不飽和カルボン酸の無水物を除く100質量%中に、ポリスチレンブロックが5〜60質量%含まれることが好ましく、より好ましくは10〜50質量%、更に好ましくは20〜40質量%である。ポリスチレンブロックが5質量%以上であることにより、粘弾性に優れる硬化物が得られ、ポリスチレンブロックが60質量%以下であることにより、溶剤への溶解性が良くなり、熱硬化性樹脂組成物の溶液安定性が優れる。
スチレン系エラストマー(P1)の酸無水物基価は、0.1〜40mgCHONa/gであることが好ましく、より好ましくは1〜30mgCHONa/g、更に好ましくは5〜20mgCHONa/gである。酸無水物基価が0.1mgCHONa/g以上のスチレン系エラストマー(P1)を用いることにより、接着性を向上でき、耐熱性および絶縁性が向上する。酸無水物基価が40mgCHONa/g以下のスチレン系エラストマー(P1)を用いることにより、高周波電気信号が伝播するプリント配線板等に必要な低誘電率を発現できる。
なお、スチレン系エラストマー(P1)中の酸無水物基の一部が水やアルコールやアミンなどで開環され、カルボン酸の状態となっているものも、スチレン系エラストマー(P1)として使用できる。酸無水物基の一部が開環し、カルボン酸となっていることによって、後述する導電性回路への接着強度の向上が期待できる。しかし、酸無水物基の全てが開環し、カルボン酸となっているものを用いると、後述するポリイソシアネート成分(C1)との反応によりイミド基ではなくアミド基を生成することとなり、誘電正接が大きくなる。
酸無水物と開環しているカルボン酸の割合は、モル比で酸無水物:カルボン酸=100〜50:0〜50であることが好ましく、より好ましくは100〜75:0〜25である、更に好ましくは100〜85:0〜15である。
酸無水物基と開環しているカルボン酸の割合は、以下の方法により求めることができる。即ち、スチレン系エラストマー(P1)1gを中和するために要するナトリウムメトキシドの量(mg)を求め、これを全酸価とする。全酸価をナトリウムメトキシドの分子量で除することにより、スチレン系エラストマー(P1)1gに含まれるカルボン酸の量:X(mmol)を求める。全酸価にはスチレン系エラストマー(P1)1gに含まれている酸無水物基を酸価測定時に開環させたカルボン酸および酸価測定時には既に開環していたカルボン酸の両方が含まれる。
別途、酸無水物基価を、スチレン系エラストマー(P1)1gを中和するために要する過塩素酸の量(mmol)を求め、これをナトリウムメトキシドの量(mg)に換算し、酸無水物基価とする。酸無水物基価をナトリウムメトキシドの分子量で除することにより、スチレン系エラストマー(P1)1gに含まれる酸無水物基の量:Y(mmol)を求めることができる。
酸無水物基1モルが開環するとカルボン酸2モルとなるので、スチレン系エラストマー(P1)1gに含まれており、酸価測定時には既に開環していたカルボン酸の量をZ(mmol)とすると、
Z=X−2Y となる。
つまり、スチレン系エラストマー(P1)に含まれる酸無水物と開環しているカルボン酸の割合は、
Y:Z=Y:(X−2Y)となる。
なお、全酸価の基準であるナトリウムメトキシドの分子量と、酸無水物基価の基準である水酸化カリウムの分子量とは値が近い。そこで、全酸価をX’、酸無水物基価をY’、酸価測定時には既に開環していたカルボン酸由来の酸価をZ’とすると、簡易的には、
Z’=X’−2Y’とすることができ、
スチレン系エラストマー(P1)に含まれる酸無水物と開環しているカルボン酸の割合は、
Y’:Z’=Y’:(X’−2Y’)とできる。
スチレン系エラストマー(P1)は、質量平均均分子量が5,000〜1,000,000程度のものが好ましく、10,000〜500,000のものがより好ましく、25,000〜200,000のものがより好ましく、25,000〜100,000のものがより好ましい。
スチレン系エラストマー(P1)の市販品としては、例えば、旭化成社製のタフテックMシリーズや、クレイトンポリマージャパン社製のクレイトンFGシリーズ等が挙げられる。これは単独または2種以上を併用して用いられる。
<ポリイソシアネート成分(C1)>
ポリイソシアネート成分(C1)と前述のスチレン系エラストマー(P1)との反応により、耐熱性および絶縁性に優れ、誘電率や誘電正接の低い硬化物を得ることができる。ポリイソシアネート成分(C1)は、2個以上のイソシアネートを有するイソシアネート基含有化合物が好ましい。更に、接着性も付与することができる。イソシアネート基含有化合物としては、分子内にイソシアネート基を2つ以上有する化合物であればよく、特に限定されない。
1分子中にイソシアネート基を2個有するイソシアネート基含有化合物としては、具体的には、1,3−フェニレンジイソシアネート、4,4’−ジフェニルジイソシアネート、1,4−フェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−トルイジンジイソシアネート、ジアニシジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、等の芳香族ジイソシアネート、
トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2−プロピレンジイソシアネート、2,3−ブチレンジイソシアネート、1,3−ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、
ω,ω’−ジイソシアネート−1,3−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジエチルベンゼン、1,4−テトラメチルキシリレンジイソシアネート、1,3−テトラメチルキシリレンジイソシアネート等の芳香脂肪族ジイソシアネート、
3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート[別名:イソホロンジイソシアネート]、1,3−シクロペンタンジイソシアネート、1,3−シクロヘキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、1,3−ビス(イソシアネートメチル)シクロヘキサン、1,4−ビス(イソシアネートメチル)シクロヘキサン等の脂環族ジイソシアネートが挙げられる。
また、1分子中にイソシアネート基を3個有するイソシアネート基含有化合物としては、具体的には、2,4,6−トリイソシアネートトルエン、1,3,5−トリイソシアネートベンゼン等の芳香族ポリイソシアネート、リジントリイソシアネート等の脂肪族ポリイソシアネート、4,4’,4”−トリフェニルメタントリイソシアネート等の芳香脂肪族ポリイソシアネート、脂環族ポリイソシアネート等が挙げられ、前記で説明したジイソシアネートのトリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する3量体が挙げられる。
ポリイソシアネート成分(C1)のイソシアネート基の少なくとも一部がブロック化剤によりブロックされているブロック化イソシアネートを用いてもよい。具体例としては、ポリイソシアネート成分(C1)のイソシアネート基を、ε−カプロラクタム、MEK(メチルエチルケトン)オキシム、シクロヘキサノンオキシム、ピラゾール、フェノール等でブロックしたもの等が挙げられる。特に、イソシアヌレート環を有し、MEKオキシムやピラゾールでブロックされたヘキサメチレンジイソシアネート三量体の使用は、ポリイミドや銅に対する接着強度を高め、且つ耐熱性に優れるため、非常に好ましい。
スチレン系エラストマー(P1)中の酸無水物基1molに対するポリイソシアネート成分(C1)のイソシアネート基の含有量は、0.1〜20molの範囲が好ましく、0.5〜10molの範囲がより好ましく、1〜3molの範囲が更に好ましい。スチレン系エラストマー(P1)中の酸無水物基に対し、イソシアネート基の含有量を0.1mol以上とすることにより、架橋密度を増加させ、耐熱性、絶縁性、接着性を向上できる。イソシアネート基の含有量を20mol以下とすることにより、新たな極性基の生成を抑制し、誘電正接の悪化を抑制できる。
<シランカップリング剤、チオール化合物>
組成物(I)−1には、物性を損なわない範囲で、シランカップリング剤または/およびチオール化合物を含有させることができる。シランカップリング剤または/およびチオール化合物を、例えばスチレン系エラストマー(P1)と反応させることにより、耐熱性および絶縁性に優れ、誘電率や誘電正接の低い硬化物を得ることができる。更に、接着性も付与することができる。また、シランカップリング剤、チオール化合物を用いることにより、銅に代表される導電性パターン、導電層および樹脂フィルムに対する接着性を向上できる。また、誘電率や誘電正接を悪化させず、加湿後の半田耐熱性、プリプレグの硬化物の屈曲性、電気絶縁性も向上できる。
シランカップリング剤としては、N,SもしくはOを有するシランカップリング剤および/またはその加水分解縮合物が挙げられる。例えばビニルメトキシシラン、ビニルエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、トリス−(トリメトキシシリルプロピル)イソシアヌレート、3−ウレイドプロピルトリアルコキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−フェニルアミノプロピルトリメトキシシラン、1,2−エタンジアミン,N−{3−(トリメトキシシリル)プロピル}−,N−{(エテニルフェニル)メチル}誘導体・塩酸塩、ビニルトリアセトキシシラン、アリルトリメトキシシランに加え、官能基がアルコキシ基で保護されたシランカップリング剤や、スルフィド・ポリスルフィド系のシランカップリング剤、ポリマー型のアルコキシオリゴマータイプや多官能基タイプシランカップリング剤などを用いることができる。
チオール化合物は、例えば、チオール基と、直鎖または枝分かれの鎖状炭化水素基または環式の炭化水素基とを少なくとも含有する。チオール基を2つ以上含有してもよい。炭化水素基は飽和でもよく、不飽和でもよい。炭化水素基の水素原子の一部が水酸基、アミノ基、カルボキシル基、ハロゲン原子、アルコキシシリル基などで置換されていてもよい。無色のチオール類の一例として、1−プロパンチオール、3−メルカプトプロピオン酸、(3−メルカプトプロピル)トリメトキシシラン、1−ブタンチオール、2−ブタンチオール、イソブチルメルカプタン、イソアミルメルカプタン、シクロペンタンチオール、1−ヘキサンチオール、シクロヘキサンチオール、6−ヒドロキシ−1−ヘキサンチオール、6−アミノ−1−ヘキサンチオール塩酸塩、1−ヘプタンチオール、7−カルボキシ−1−ヘプタンチオール、7−アミド−1−ヘプタンチオール、1−オクタンチオール、tert−オクタンチオール、8−ヒドロキシ−1−オクタンチオール、8−アミノ−1−オクタンチオール塩酸塩、1H,1H,2H,2H−パーフルオロオクタンチオール、1−ノナンチオール、1−デカンチオール、10−カルボキシ−1−デカンチオール、10−アミド−1−デカンチオール、1−ナフタレンチオール、2−ナフタレンチオール、1−ウンデカンチオール、11−アミノ−1−ウンデカンチオール塩酸塩、11−ヒドロキシ−1−ウンデカンチオール、1−ドデカンチオール、1−テトラデカンチオール、1−ヘキサデカンチオール、16−ヒドロキシ−1−ヘキサデカンチオール、16−アミノ−1−ヘキサデカンチオール塩酸塩、1−オクタデカンチオール、1,4−ブタンジチオール、2,3−ブタンジチオール、1,6−ヘキサンジチオール、1,2−ベンゼンジチオール、1,9−ノナンジチオール、1,10−デカンジチオール、1,3,5−ベンゼントリチオール、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシランなどが挙げられる。チオール類は1種または2種以上を併用できる。
組成物(I)−1に含まれるシランカップリング剤または/およびチオール化合物の量は、特に限定されないが、スチレン系エラストマー(P1)の固形分100質量部に対して、合計で0.01〜50質量部含有することが好ましく、0.1〜25質量部含有することが更に好ましく、1〜15質量部含有することが更に好ましい。
チオール化合物やシランカップリング剤(硫黄原子を含まない)を含むことにより、プリプレグを硬化する際に、寸法安定性の向上、硬化物としての加湿後の耐熱性の向上に加え、接着性と低誘電率の両立、屈曲性と電気絶縁性の両立という二律背反し易い性能をよりバランスよく向上させることができる。
<フィラー>
組成物(I)−1には、難燃性の付与、樹脂組成物の流動性制御、硬化物の弾性率向上等の目的で、更にフィラーを添加することができる。フィラーとしては、特に限定されないが、形状としては球状、粉状、繊維状、針状、鱗片状等が挙げられる。
フィラーとしては、例えば、ポリテトラフルオロエチレン粉末、ポリエチレン粉末、ポリアクリル酸エステル粉末、エポキシ樹脂粉末、ポリアミド粉末、ポリウレタン粉末、ポリシロキサンン粉末等の他、シリコーン、アクリル、スチレンブタジエンゴム、ブタジエンゴム等を用いた多層構造のコアシェル等の高分子フィラー;
リン酸メラミン、ポリリン酸メラミン、リン酸グアニジン、ポリリン酸グアニジン、リン酸アンモニウム、ポリリン酸アンモニウム、リン酸アミドアンモニウム、ポリリン酸アミドアンモニウム、リン酸カルバメート、ポリリン酸カルバメート等の(ポリ)リン酸塩系化合物、有機リン酸エステル化合物、ホスファゼン化合物、ホスホン酸化合物、ジエチルホスフィン酸アルミニウム、メチルエチルホスフィン酸アルミニウム、ジフェニルホスフィン酸アルミニウム、エチルブチルホスフィン酸アルミニウム、メチルブチルホスフィン酸アルミニウム、ポリエチレンホスフィン酸アルミニウム等のホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、ホスホルアミド化合物等のリン系難燃フィラー;
ベンゾグアナミン、メラミン、メラム、メレム、メロン、メラミンシアヌレート、シアヌル酸化合物、イソシアヌル酸化合物、トリアゾール系化合物、テトラゾール化合物、ジアゾ化合物、尿素等の窒素系難燃フィラー;
シリカ、マイカ、タルク、カオリン、クレー、ハイドロタルサイト、ウォラストナイト、ゾノトライト、窒化ケイ素、窒化ホウ素、窒化アルミニウム、リン酸水素カルシウム、リン酸カルシウム、ガラスフレーク、水和ガラス、チタン酸カルシウム、セピオライト、硫酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水酸化バリウム、水酸化カルシウム、酸化チタン、酸化スズ、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化アンチモン、酸化ニッケル、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、ホウ酸亜鉛、ホウ酸アルミニウム等の無機フィラー等が挙げられる。
近年取り沙汰されている環境への影響を配慮すると、リン系難燃フィラーまたは窒素系難燃フィラー等のノンハロゲン系難燃剤を使用することが望ましい。中でも、組成物(I)−1との併用により、難燃性により効果のあるフィラーとして、ホスファゼン化合物、ホスフィン化合物、ポリリン酸メラミン、ポリリン酸アンモニウム、メラミンシアヌレートまたは水酸化化合物物等が例示できる。また、誘電率や誘電正接を更に低下させる点では、ポリテトラフルオロエチレン粉末、ホスフィン化合物の使用が好ましく、誘電特性のみならず接着性、屈曲性、電気絶縁性、耐熱性とのバランスに優れた硬化物を得ることができるようになる。フィラーは、単独又は複数を併用して用いられる。
フィラーの平均粒子径は、0.1〜25μmであることが好ましい。0.1μmに近い平均粒子径を示すフィラーを用いた場合、フィラーによる改質効果が得やすく、更に分散性や分散液の安定性が向上しやすい。また、25μmに近い平均粒子径を示すフィラーを用いた場合、硬化物の機械特性が向上しやすくなる。
フィラーの合計の含有量は、低反り性を損なわない範囲で添加することができる。スチレン系エラストマー(P1)100質量部に対して、例えば、0.01〜500質量部とすることができる。フィラーにより改質効果と硬化物の機械的特性を向上できる。
フィラーの添加方法は、従来公知の方法を制限なく利用できる。例えば、フィラーを含む分散液を用意し、スチレン系エラストマー(P1)の重合前、重合途中、または重合後の反応液にフィラーを含む分散液を3本ロールなどにより混錬する方法がある。また、フィラーを良好に分散させ、且つ分散状態を安定化させるために、分散剤または/および増粘剤等をプリプレグの特性に影響を及ぼさない範囲で用いてもよい。
<その他の成分>
組成物(I)−1には、必須成分および上述した任意成分の他に、目的を損なわない範囲で更に、エポキシ基含有化合物、オキセタン基含有化合物、アジリジン基含有化合物、カルボジイミド基含有化合物、ベンゾオキサジン化合物、β−ヒドロキシアルキルアミド基含有化合物を加えることができる。また、染料、顔料、酸化防止剤、重合禁止剤、消泡剤、レベリング剤、イオン捕集剤、保湿剤、粘度調整剤、防腐剤、抗菌剤、帯電防止剤、アンチブロッキング剤、紫外線吸収剤、赤外線吸収剤などを含むことができる。
上記エポキシ基含有化合物は、例えば、グリジシルエーテル型エポキシ樹脂、グリジシルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂または環状脂肪族(脂環型)エポキシ樹脂などのエポキシ樹脂が挙げられる。グリシジルエーテル型エポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、α−ナフトールノボラック型エポキシ樹脂、ビスフェノールA型ノボラック型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、トリス(グリシジルオキシフェニル)メタン、又はテトラキス(グリシジルオキシフェニル)エタン等が挙げられる。
グリシジルアミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、トリグリシジルメタアミノフェノール、又はテトラグリシジルメタキシリレンジアミン等が挙げられる。
オキセタン基含有化合物、アジリジン化合物、カルボジイミド基含有化合物、ベンゾオキサジン化合物、β−ヒドロキシアルキルアミド基含有化合物についての例示は省略するが、公知のものを適宜選択して使用できる。
[[組成物(II)]]
組成物(II)は、側基にフェノール性水酸基を含有するポリアミド樹脂(P2)(以下、「ポリアミド樹脂(P2)」とも称する)と、前述のフェノール性水酸基と反応し得る3官能以上の化合物(C2)(以下、「化合物(C2)」とも称する)とを含有する熱硬化性樹脂組成物である。
<ポリアミド樹脂(P2)>
ポリアミド樹脂(P2)は、単量体として、通常、2価以上の多塩基酸および/または酸無水物および/またはこれらの低級アルキルエステルから選ばれる多塩基酸化合物と、2価以上のポリアミン化合物とを用いて合成される。ポリアミド樹脂(P2)中のフェノール性水酸基は、3官能以上の化合物(C2)と熱硬化させることによって架橋構造を形成できる。
ポリアミド樹脂(P2)の好適な例として、以下の(i)および/または(ii)が挙げられる。即ち、(i)のポリアミド樹脂(P2)は、フェノール性水酸基および炭素数20〜60の炭化水素基(但し、前記フェノール性水酸基が結合する芳香環は含まない)が同一ポリマー内に含まれるポリアミド(A−1)である。(ii)のポリアミド樹脂(P2)は、側基にフェノール性水酸基を含むポリアミド(a−1)と、炭素数20〜60の炭化水素基(但し、前記フェノール性水酸基が結合する芳香環は含まない)を含むポリアミド(a−2)とを混合したポリアミド(A−3)である。
汎用性溶剤への溶解性および生産性の点からは、前者のポリアミド(A−1)が好ましい。なお、以降の説明において、炭素数20〜60の炭化水素基(但し、前記フェノール性水酸基が結合する芳香環は含まない)の括弧書きを省略するが、「炭素数20〜60の炭化水素基」というときは、前記括弧書きの条件を満たすものとする。また、「炭素数20〜60の炭化水素基」を「C20〜60炭化水素基」とも表記する。また、炭素数20〜60の炭化水素基とは、単量体の重合に寄与する官能基以外の残基の全部または一部に含まれる炭素数20〜60の炭化水素基をいい、炭素・水素以外の元素が含まれない連続した構造の炭素数をカウントする。より好ましくは、単量体の重合に寄与する官能基以外の残基の全部が炭素数20〜60の炭化水素基であることが好ましい。即ち、得られるポリアミド(A−1)に対して主鎖および当該主鎖に直結する側基又は側鎖を含めた連続する炭化水素基の炭素の総数をいい、脂肪族(脂環式を含む)の他、芳香環もカウント対象とする。但し、フェノール性水酸基が結合している芳香環は含まないものとする。また、このフェノール性水酸基が結合する芳香環を介して結合された炭化水素基は、それぞれ別の炭化水素基としてカウントするものとする。
更に、(i)のポリアミド樹脂(P2)の好適例として以下の(iii)、(vi)を満足するポリアミド樹脂、(ii)のポリアミド樹脂(P2)の好適例として(iv)〜(vi)を満足するポリアミド樹脂が挙げられる。
(iii)ポリアミド(A−1)を構成する単量体として、フェノール性水酸基を具備する単量体および炭素数20〜60の炭化水素基を具備する単量体を含む。なお、同種単量体内に、フェノール性水酸基と炭素数20〜60の炭化水素基を具備する単量体を用いてもよいことは言うまでもない。
(iv)ポリアミド(a−1)を構成する多塩基酸単量体または/およびポリアミン単量体に、フェノール性水酸基を具備する単量体を含み、且つ多塩基酸単量体およびポリアミン単量体に、炭素数20〜60の炭化水素基を具備する単量体を含まない。
(v)ポリアミド(a−2)を構成する多塩基酸単量体または/およびポリアミン単量体に、炭素数20〜60の炭化水素基を具備する単量体を含み、且つ多塩基酸単量体およびポリアミン単量体に、フェノール性水酸基を具備する単量体を含まない。
(vi)炭素数20〜60の炭化水素基を具備する単量体が、炭素数5〜10の環状構造を具備する化合物を含む。なお、「炭素数5〜10の環状構造を具備する化合物を含む」とは、炭素数20〜60の炭化水素基を具備する単量体の少なくとも一部に、炭素数5〜10の環状構造を具備する単量体が含まれるという意味である。
炭素数20〜60の炭化水素基を具備する単量体は、溶解性や屈曲性を効果的に引き出す観点から、炭素数24〜56の炭化水素基を具備する単量体がより好ましく、炭素数28〜48の炭化水素基を具備する単量体が更に好ましく、炭素数36〜44の炭化水素基を具備する単量体がさらに好ましい。
ポリアミド樹脂(P2)をプリプレグに用いることにより、耐熱性や耐薬品性を損なうことなく、耐湿熱性、柔軟性に優れた金属張積層板、プリント配線板および多層配線基板を提供できる。また、広範な汎用性の有機溶剤に使用できる熱硬化性樹脂組成物を提供できるというメリットもある。また、(i)または/および(ii)のポリアミド樹脂(P2)を用いたプリプレグを用いることにより、熱プレス時の寸法安定性、銅をはじめとする金属やポリイミド基材に対する接着性、半田リフロー時の耐熱性、プリプレグの硬化物を含む積層体(金属張積層体、プリント配線板等)を折りたたむ際の屈曲性、そして狭ピッチ配線回路のリークタッチを防ぐ電気絶縁性、高周波電気信号が伝播するプリント配線板をはじめとする高周波回路のプリプレグとして重要となる誘電率や誘電正接を著しく改善することができる。
ポリアミド樹脂(P2)を構成する単量体として、フェノール性水酸基を有する単量体を用い、主鎖骨格の側基に架橋点となる官能基(フェノール性水酸基)を導入することにより、熱硬化による架橋密度を高め、且つ熱プレス時の寸法安定性と半田リフロー時の耐熱性を付与できる。側基のフェノール性水酸基は、ポリアミド樹脂(P2)の原料として、後述するようにフェノール性水酸基を有する多塩基酸化合物(多塩基酸単量体)または/およびフェノール性水酸基を有するポリアミン化合物(ポリアミン単量体)を用いることができる。
また、ポリアミド樹脂(P2)に、C20〜60炭化水素基を導入することにより吸水率の高いアミド結合の濃度を相対的に低くできるので、絶縁信頼性や誘電特性を向上できる。さらに、C20〜60炭化水素基特有の柔軟性により、また、ポリアミド樹脂(P2)を構成する単量体中にフェノール性水酸基を導入することにより、屈曲性を向上できる。従って、折り畳性等が要求されるプリント配線板等のプリプレグとして好適に用いることができる。
ポリアミド樹脂(P2)中のC20〜60炭化水素基を具備する単量体として炭素数5〜10の環状構造を具備する化合物を含むことにより、分子の配列を阻害し、結晶性を低くすることができる。その結果、溶解性を向上させることができる。また、炭素数5〜10の環状構造を具備する化合物は、この環状構造以外の部分に自由度および疎水性の高い鎖状等のアルキル基などの炭化水素基を含む構造を有するので、より効果的に溶解性を高めることができると共に、誘電率および誘電正接を効果的に低下させる効果がある。C20〜60炭化水素基は、後述するようにポリアミド樹脂(P2)の原料としてC20〜60炭化水素基を有する多塩基酸化合物または/およびC20〜60炭化水素基を有するポリアミン化合物を用いることで導入できる。
ポリアミド樹脂(P2)は、フェノール性水酸基とC20〜60炭化水素基という2つの構造を有することにより、汎用性有機溶剤へ溶解でき、熱プレス時の寸法安定性の向上、誘電率や誘電正接を低くできると共に、接着性と耐熱性の両立、屈曲性と電気絶縁性の両立という二律背反を解決できる。以下、ポリアミド(A−1),(A−3)の好ましい形態について詳述する。
<ポリアミド(A−1)>
ポリアミド(A−1)は、多塩基酸単量体(m)とポリアミン単量体(m)とを重合してなり、側基にフェノール性水酸基を有し、且つ、同一ポリマー内にフェノール性水酸基およびC20〜60炭化水素基を有するものである。即ち、多塩基酸単量体(m)は、フェノール性水酸基を有する多塩基酸化合物、C20〜60炭化水素基を含む多塩基酸化合物およびその他の多塩基酸化合物からなる群より選ばれる少なくとも一種から、ポリアミン単量体(m)は、フェノール性水酸基を有するポリアミン化合物、C20〜60炭化水素基を含むポリアミン化合物およびその他のポリアミン化合物からなる群より選ばれる少なくとも一種から、ポリマー中にフェノール性水酸基およびC20〜60炭化水素基が含まれるように選定すればよい。
C20〜60炭化水素基を含む化合物およびフェノール性水酸基を有する化合物は、同種単量体内に含むように若しくは別の単量体に含むように、多塩基酸単量体(m)およびポリアミン単量体(m)を選定して重合することによりポリアミド(A−1)を得ることができる。
ここで、「同種の単量体内に含むように」とは、多塩基酸単量体(m)としてフェノール性水酸基を有する多塩基酸化合物と、C20〜60炭化水素基を含む多塩基酸化合物とを用いてもよいし、ポリアミン単量体(m)としてフェノール性水酸基を有するポリアミン化合物と、C20〜60炭化水素基を含むポリアミン化合物とを用いてもよい、との意である。
また、「別の単量体に含むように」とは、多塩基酸単量体(m)としてフェノール性水酸基を有する多塩基酸化合物を含み、且つポリアミン単量体(m)としてC20〜60炭化水素基を含むポリアミン化合物を含むようにしてもよいし、多塩基酸単量体(m)としてC20〜60炭化水素基を含む多塩基酸化合物を含み、且つポリアミン単量体(m)としてフェノール性水酸基を有するポリアミン化合物を含むようにしてもよい、との意である。
いずれの場合においても、その他の多塩基酸化合物やその他のポリアミン化合物は適宜用いることができる。
多塩基酸単量体(m)とポリアミン単量体(m)との重合により生成される主鎖に対し、側基に導入されたフェノール性水酸基は、架橋点としての機能を担う。即ち、ポリアミド(A−1)と、後述するフェノール性水酸基と反応し得る3官能以上の化合物(C2)とを熱硬化することにより密な架橋構造を形成できるようになる。その結果、熱プレス時の架橋途中においても寸法安定性が優れるとともに、熱硬化後の半田時の耐熱性も向上する。
また、C20〜60炭化水素基は、吸湿性の高いアミド結合の濃度を低くするとともに、柔軟性・屈曲性の付与・向上機能を担う。これにより、熱硬化した後の硬化物の吸湿性が下がり、耐湿熱性を向上させることや、高周波電気信号が伝播するプリント配線板において重要な因子である低誘電率化や低誘電正接化を付与できる。
多塩基酸単量体(m)たる多塩基酸化合物およびポリアミン単量体(m)たるポリアミン化合物は、2価以上の単量体であればよく、3価以上の単量体も適宜用いられる。2価の単量体と3価以上の単量体を組み合わせて、枝分かれ構造を導入しつつ、適切な分子量を調整してもよい。また、1価の単量体を用いて、分子量を適切に保つことも可能である。3価以上の単量体を一部に含ませることにより、凝集力を大きくできるという効果が得られる。3価以上の単量体は、全単量体中に0.1〜20mol%とすることが好ましく、1〜10mol%以下とすることがより好ましい。
二塩基酸単量体とジアミン単量体を用いてポリアミド樹脂(P2)を得た場合には、下記一般式(1)の構造単位を有する。
Figure 2020164793
一般式(1)中、Rは、構造単位毎に独立の構造を有していてもよい多塩基酸化合物残基である2価の連結基であり、Rは、構造単位毎に独立の構造を有していてもよいポリアミン化合物残基である2価の連結基であり、RおよびRの少なくとも一方は、フェノール性水酸基を有する連結基を含み、且つRおよびRの少なくとも一方は、C20〜60炭化水素基を有する連結基を含む。
ポリアミド(A−1)は、−CO−R−CO−NH−R−NH−で示される構造単位が少なくとも2以上繰り返されたものである。なお、本実施形態の趣旨を逸脱しない範囲において、一般式(1)の構造単位を1つ有し、且つ末端が封止された化合物が熱硬化性樹脂組成物に含まれてもよい。
フェノール性水酸基含有単量体およびC20〜60炭化水素基含有単量体は、二塩基酸化合物およびジアミン化合物のいずれかの単量体に少なくとも含まれていればよく、二塩基酸化合物およびジアミン化合物の両者にこれらの基がそれぞれ含まれていてもよい。例えば2種の二塩基酸化合物R1−1、R1−2および2種のジアミン化合物R2−1、R2−2を用いる場合、−CO−R1−1−CO−NH−R2−1−NH−、−CO−R1−1−CO−NH−R2−2−NH−、−CO−R1−2−CO−NH−R2−1−NH−、−CO−R1−2−CO−NH−R2−2−NH−の構造単位が含まれ得る。
<多塩基酸単量体(m)>
[フェノール性水酸基を有する多塩基酸化合物]
フェノール性水酸基を有する多塩基酸化合物は特に限定されないが、2−ヒドロキシイソフタル酸、4−ヒドロキシイソフタル酸、5−ヒドロキシイソフタル酸等のヒドロキシイソフタル酸、
2,5−ジヒドロキシイソフタル酸、2,4−ジヒドロキシイソフタル酸、4,6−ジヒドロキシイソフタル酸等のジヒドロキシイソフタル酸、
2−ヒドロキシテレフタル酸、
2,3−ジヒドロキシテレフタル酸、2,6−ジヒドロキシテレフタル酸等のジヒドロキシテレフタル酸、
4−ヒドロキシフタル酸、3−ヒドロキシフタル酸等のヒドロキシフタル酸、
3,4−ジヒドロキシフタル酸、3,5−ジヒドロキシフタル酸、4,5−ジヒドロキシフタル酸、3,6−ジヒドロキシフタル酸等のジヒドロキシフタル酸などが挙げられる。
更にこれらの酸無水物や例えば多塩基酸メチルエステルのようなエステル誘導体なども挙げられる。遊離多塩基酸や酸無水物の場合は脱水反応、エステル誘導体の場合は対応する脱アルコール反応となるという違いが生じるだけである。
なかでも、共重合性、入手の容易さなどの点から、5−ヒドロキシイソフタル酸が好ましい。
なお、5−ヒドロキシイソフタル酸を用いた場合、一般式(1)におけるR、即ち多塩基酸化合物残基である2価の連結基とは、前記5−ヒドロキシイソフタル酸から2つのカルボキシル基を除いた部分である。
[C20〜60炭化水素基を含む多塩基酸化合物]
C20〜60炭化水素基を含む多塩基酸化合物としては、好適な例として、炭素数10〜24の二重結合あるいは三重結合を1個以上有する一塩基性不飽和脂肪酸を反応させて得た、炭素数5〜10の環状構造を有する多塩基酸化合物を挙げることができる。反応の一例としては、ディールス−アルダー反応が挙げられる。例えば、大豆油脂肪酸、トール油脂肪酸、菜種油脂肪酸等の天然の脂肪酸およびこれらを精製したオレイン酸、リノール酸、リノレン酸、エルカ酸等を原料に用いてディールス−アルダー反応させて得た二量体化脂肪酸(ダイマー酸)を含む多塩基酸化合物が好適に用いられる。
環状構造は1つでも2つでもよく、2つの場合、2つの環が独立していてもよいし、連続していてもよい。環状構造としては、飽和の脂環構造、不飽和の脂環構造、芳香環が挙げられる。カルボキシル基は環状構造に直接結合することもできるが、溶解性向上、柔軟性向上の観点から、カルボキシル基は脂肪族鎖を介して環状構造と結合していることが好ましい。カルボキシル基と環状構造との間の炭素数は2〜25であることが好ましい。
また、C20〜60炭化水素基を含む多塩基酸化合物は、溶解性向上、柔軟性向上、誘電率および誘電正接の低下の観点から、環状構造以外の部分として自由度および疎水性の高い鎖状のアルキル基を有することが好ましい。アルキル基は1つの環状構造に対し2つ以上であることが好ましい。アルキル基の炭素数は2〜25であることが好ましい。
C20〜60炭化水素基を含む多塩基酸化合物は、通常ダイマー酸(二量体化脂肪酸)から誘導されるダイマーを残基として含む単量体を主成分とし、他に、原料の脂肪酸や三量体化以上の脂肪酸の組成物として得られるものである。中でも、C20〜60炭化水素基を含む単量体100質量%中に、ダイマー酸(二量体化脂肪酸)から誘導されるダイマーを残基として含む単量体の含有量が70質量%以上、好ましくは95質量%以上とすることが好ましい。また、ダイマーに対して水素添加(水添反応)して不飽和度を下げたものが、耐酸化性(特に高温域における着色)や合成時のゲル化抑制の観点から特に好適に用いられる。C20〜60炭化水素基を有する多塩基酸化合物としては、炭素数10〜24の一塩基性不飽和脂肪酸から誘導されるダイマーを残基として含む単量体(多塩基酸化合物)を用いることが好ましい。
さらにC20〜60炭化水素基を有する多塩基酸化合物の一部として、炭素数10〜24の一塩基性不飽和脂肪酸から誘導される、トリカルボン酸であるトリマーを残基として含む単量体を用いることが好ましい。
前記C20〜60炭化水素基を有する多塩基酸化合物は公知の反応によって得ることができるが、市販品を用いることもできる。市販品の例としては例えば、クローダジャパン社製の「プリポール1004」、「プリポール1006」、「プリポール1009」、「プリポール1013」、「プリポール1015」、「プリポール1017」、「プリポール1022」、「プリポール1025」、「プリポール1040」や、BASFジャパン社製の「エンポール1008」、「エンポール1012」、「エンポール1016」、「エンポール1026」、「エンポール1028」、「エンポール1043」、「エンポール1061」、「エンポール1062」などが挙げられる。これらの多塩基酸化合物は単独若しくは併用して用いることができる。なかでも炭素数36の「プリポール1009」は接着性を保持したまま、耐熱性、耐湿熱性、誘電率に優れるポリアミドが得られるという点から好適に用いることができる。また、プリポール1004は炭素数44の構造を持つことから、誘電率、屈曲性に優れるポリアミドが得られるという点から好適に用いることができる。また、三量体であるトリカルボン酸成分を約75質量%含有する「プリポール1040」を用いるとポリアミドの凝集力を向上することができ、熱プレス時の寸法安定性や耐熱性向上の点から好適に用いることができる。
なお、後述の「その他の多塩基酸化合物」の1つとして例示する3官能以上の単量体を3官能の多塩基酸化合物として利用することによっても凝集力を向上できる。しかし、後述の3官能以上の単量体は比較的低分子量であるのに対し、前記の三量体であるトリカルボン酸成分は相対的に大きな分子量なので、アミド結合の濃度を効率的に低下でき、誘電率、誘電正接を小さくできる点でより好ましい。
[その他の多塩基酸化合物]
フェノール性水酸基を有する多塩基酸化合物およびC20〜60炭化水素基を有する多塩基酸化合物以外の多塩基酸化合物としては、本実施形態の趣旨を逸脱しない範囲において特に限定されないが、二塩基酸化合物や3官能以上の多塩基酸化合物が挙げられる。
二塩基酸化合物としては、
フタル酸、イソフタル酸、テレフタル酸、1,4−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、ベンゾフェノン−4,4’−ジカルボン酸、4,4’−ビフェニルジカルボン酸などの芳香族二塩基酸、
シュウ酸、マロン酸、メチルマロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、りんご酸、酒石酸、チオりんご酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、ヘキサデカンジオン酸、ジグリコール酸などの脂肪族二塩基酸、
1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロペンタンジカルボン酸などの脂環族二塩基酸などが挙げられる。
3官能以上の多塩基酸化合物としては、トリメリット酸、水添トリメリット酸、ピロメリット酸、水添ピロメリット酸、1,4,5,8−ナフタレンテトラカルボン酸などが挙げられる。
これらの多塩基酸化合物は、フェノール性水酸基を有する多塩基酸化合物やC20〜60炭化水素基を有する多塩基酸化合物に対し、単独で使用してもよいし、複数を併用して用いてもよい。なかでも、イソフタル酸や1,4−シクロヘキサンジカルボン酸は屈曲性を保持したまま、より耐熱性に優れる強靭なポリアミドが得られるという点から好適に用いることができる。
また、3官能以上のものを使用することにより、ポリアミドに分岐構造を導入し、高分子量化でき、得られるポリアミドの凝集力を大きくできる。その結果、接着性、屈曲性、電気絶縁性に悪影響を与えずに、特に寸法安定性や耐熱性を向上させることができる。
さらに、多塩基酸化合物と併用して、一官能の塩基性化合物も使うことができる。一官能の化合物を使用することにより、ポリアミドの末端官能基となりうるカルボキシル基やアミノ基を減らすことができ、得られるポリアミドの分子量を制御できる。その結果、特にポリアミド樹脂の経時安定性を向上させることができる。
一塩基酸化合物としては、安息香酸、4−ヒドロキシ安息香酸、2-エチルヘキサン酸などが挙げられる。
<ポリアミン単量体(m)>
フェノール性水酸基を有するポリアミン化合物は特に限定されないが、下記一般式(2)で表されるポリアミンが挙げられる。
Figure 2020164793
式中Rは、直接結合、または炭素、水素、酸素、窒素、硫黄、またはハロゲンからなる基を示し、例えば、炭素数1〜30の2価の炭化水素基またはハロゲン原子によって水素の一部若しくは全部が置換されている炭素数1〜30の2価の炭化水素基、−(C=O)−、―SO−、−O−、−S−、―NH−(C=O)−、―(C=O)−O−、下記一般式(3)で表される基および下記一般式(4)で表される基が挙げられる。式中、rおよびsはそれぞれ独立に1〜20の整数を示し、Rは水素原子またはメチル基を示す。
Figure 2020164793
Figure 2020164793
上記Rは、直接結合が好ましい。
なお、一般式(2)の化合物を用いた場合、一般式(1)におけるR、即ちポリアミン化合物残基である2価の連結基とは、一般式(2)の化合物から2つのアミノ基を除いた部分である。
[C20〜60炭化水素基を含むポリアミン化合物]
C20〜60炭化水素基を含むポリアミン化合物としては、前述のC20〜60炭化水素基を有する多塩基酸化合物のカルボシキル基をアミノ基に転化した化合物が挙げられ、市販品の例としては例えば、クローダジャパン社製の「プリアミン1071」、「プリアミン1073」、「プリアミン1074」、「プリアミン1075」や、BASFジャパン社製の「バーサミン551」などが挙げられる。これらのポリアミン化合物は単独または併用して用いることができる。なかでも三量体であるトリアミン成分を約20〜25質量%含有する「プリアミン1071」を用いるとポリアミドの凝集力を向上することができ、熱プレス時の寸法安定性や耐熱性向上の点から好適に用いることができる。また、誘電率、誘電正接を低下する効果の点でも三量体であるトリアミンの利用が好ましい。
なお、ポリアミドの生産安定性の点から、ポリアミドの形成に供する全単量体100質量%中、三量体であるトリアミンおよび前述の三量体であるトリカルボン酸は合計で0.1〜20質量%であることが好ましく、1〜10質量%であることがより好ましい。
[その他のポリアミン化合物]
次に、フェノール性水酸基を有するポリアミン化合物およびC20〜60炭化水素基を有するポリアミン化合物以外のポリアミン化合物としては、本実施形態の趣旨を逸脱しない範囲で特に限定されないが、ジアミン化合物やトリアミン化合物等が挙げられる。
ジアミン化合物としては、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、1,5−ジアミノナフタレン、1,8−ジアミノナフタレン、2,3−ジアミノナフタレン、2,6−ジアミノトルエン、2,4−ジアミノトルエン、3,4−ジアミノトルエン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノ−1,2−ジフェニルエタン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルスルホンなどの芳香族ジアミン;
エチレンジアミン、1,3−プロパンジアミン、1,4−ブタンジアミン、1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,9−ノナンジアミン、1,12−ドデカメチレンジアミン、メタキシレンジアミンなどの脂肪族ポリアミン;
イソホロンジアミン、ノルボルナンジアミン、1,2−シクロヘキサンジアミン、1,3−シクロヘキサンジアミン、1,4−シクロヘキサンジアミン、4,4’―ジアミノジシクロヘキシルメタン、ピペラジンなどの脂環族ジアミン、などが挙げられる。
3官能以上のポリアミン化合物としては、1,2,4−トリアミノベンゼン、3,4,4’−トリアミノジフェニルエーテル、などが挙げられる。
なお、芳香環を有していてもアミノ基が直結していない場合は脂肪族等に分類する。
これらのポリアミン化合物は、フェノール性水酸基を有するポリアミンやC20〜60炭化水素基を有するポリアミンに対し、単独で使用してもよいし、複数を併用して用いてもよい。なかでも、イソホロンジアミンやノルボルナンジアミンは屈曲性を保持したまま、より耐熱性に優れる強靭なポリアミドが得られるという点から好適に用いることができる。
また、3官能以上のものを使用することにより、ポリアミドに分岐構造を導入し、高分子量化でき、得られるポリアミドの凝集力を大きくできる。その結果、接着性、屈曲性、電気絶縁性に悪影響を与えずに、特に寸法安定性や耐熱性を向上させることができる。
さらに、ポリアミン化合物と併用して、一官能のアミン化合物も使うことができる。一官能の化合物を使用することにより、ポリアミドの末端官能基となりうるカルボキシル基やアミノ基を減らすことができ、得られるポリアミドの分子量を制御できる。その結果、特にポリアミド樹脂の経時安定性を向上させることができる。一方で、末端官能基となりうるカルボキシル基やアミノ基を1官能の化合物で減らさない場合、樹脂中にフェノール基とカルボキシル基および/またはアミノ基が混在することになり、フェノール性水酸基と反応し得る3官能以上の化合物(C2)を併用した際に、それぞれの反応性の違いを利用して、加工性や接着性を向上できるため望ましい。一官能のアミン化合物としては、アニリン、4−アミノフェノール、2−エチルヘキシルアミンなどが挙げられる。
ポリアミド(A−1)は、寸法安定性、接着性、耐熱性、屈曲性、電気絶縁性等、特に向上させたい性能に応じて、前記の多塩基酸単量体(m1)、ポリアミン単量体(m2)を適宜選択して得ることができる。
なお、重合によって得られるポリアミド(A−1)は、フェノール性水酸基を有する成分とC20〜60炭化水素基を有する成分とをランダムに重合してなるものであってもよいし、ブロック重合体であってもよい。
即ち、複数種の多塩基酸単量体化合物の混合物と1種のポリアミン化合物を重合してもよいし、複数種の多塩基酸化合物の混合物と複数種のポリアミン化合物の混合物と重合してもよいし、1種の多塩基酸化合物と複数種のポリアミン化合物の混合物とを重合してもよいし、1種の多塩基酸化合物と1種のポリアミン化合物とを重合した後、末端に残る官能基に応じ、さらに他の多塩基酸化合物や他のポリアミン化合物を重合してもよい。
ポリアミド(A−1)は、用いられる全単量体、即ち、多塩基酸単量体(m)、ポリアミン単量体(m)、および必要に応じて用いられる一塩基酸や一官能のアミン化合物の合計100mol中に、C20〜60炭化水素基を含む化合物を10〜95mol%含むことが好ましく、14〜92mol%含むことがより好ましく、18〜88mol%含むことがさらに好ましい。
C20〜60炭化水素基を含む単量体のモル数の計算方法について説明する。まず、C20〜60炭化水素基を含む単量体の分子量(M)を下記式により求める。
M=(56.11×F×1000)/E
F:C20〜60炭化水素基を含む単量体の官能基数
E:C20〜60炭化水素基を含む単量体の酸価(mgKOH/g)
次いで、重合に供したC20〜60炭化水素基を含む化合物の質量を、前記分子量(M)で除することによって、重合に供したC20〜60炭化水素基を含む化合物のモル数を求める。
同様にして重合に供した各単量体のモル数を求め、それらを合計し重合に供した全単量体のモル数を求める。そして、C20〜60炭化水素基を含む化合物のモル数を全単量体のモル数で除することによって、C20〜60炭化水素基を含む化合物の占める割合(mol%)を求めることができる。
<ポリアミドエステル(A−2)>
ポリアミド樹脂(P2)の一種として、前記ポリアミド(A−1)のうち末端にカルボン酸を有するものに、さらにポリオール化合物を反応させてなる、側基のフェノール性水酸基と、C20〜60炭化水素基と、エステル結合とを有するポリアミドエステル(A−2)も用いることができる。
[ポリオール化合物]
エステル結合を導入する際に必要な化合物であるポリオール化合物について説明する。
ポリオール化合物としては、2個以上の水酸基を有した化合物であればよく、例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、ダイマージオール、水素添加ビスフェノールA、スピログリコール等の脂肪族あるいは脂環族ジオール類、
1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、4,4’−メチレンジフェノール、4,4’−ジヒドロキシビフェノール、o−,m−,およびp−ジヒドロキシベンゼン、1,2−インダンジオール、1,3−ナフタレンジオール、1,5−ナフタレンジオール、1,7−ナフタレンジオール、9,9’−ビス(4−ヒドロキシフェニル)フルオレン、9,9’−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン等の芳香族ジオール類等を挙げることができる。
その他、リン原子含有ジオール、硫黄原子含有ジオール、臭素原子含有ジオールなどが挙げられる。
また、その構造中に重合度2以上の繰り返し単位を有するものも使用することができ、ポリエステルポリオール類、ポリカーボネートポリオール類、ポリエーテルポリオール類、ポリブタジエンポリオール類、およびポリシロキサンポリオール類などが挙げられる。
これらポリオール化合物をポリアミド(A−1)に反応させ、エステル結合を導入することにより、エステル結合を有しない場合よりも汎用溶剤への溶解性を向上することができる。前記ポリアミドエステル(A−2)中のアミド結合とエステル結合の比率は、アミド結合/エステル結合=0.5以上であることが好ましく、0.7以上であることがより好ましく、1以上であることがさらに好ましい。
アミド結合/エステル結合を0.5以上とすることにより、アミド結合の優れた耐熱性、成型加工性および絶縁信頼性を活かしつつ、汎用性溶剤への溶解性を向上することができる。汎用性溶剤への溶解性よりも、耐熱性、成型加工性および絶縁信頼性が重用しされる場合は、アミド結合を多くすることが好ましい。
ポリアミドエステル(A−2)における理論上のアミド結合/エステル結合は以下のようにして求めることができる。
ポリアミド重合に供した多塩基酸化合物中のカルボキシル基のモル数とポリアミン化合物中のアミノ基のモル数の内、少ない方の官能基(即ち、アミノ基)のモル数をアミド結合のモル数とする。一方、ポリエステル重合に供したポリアミド中のカルボキシル基のモル数とポリオール化合物中のアルコール性水酸基のモル数の内、少ない方の官能基をエステル結合のモル数とする。そして、アミド結合のモル数をエステル結合のモル数を除することで、アミド結合/エステル結合のモル比が計算できる。
なお、カルボキシル基、アミノ基、アルコール性水酸基の各官能基のモル数は、それぞれが含まれる各単量体のモル数にそれぞれ単量体中に含まれる官能基数を掛けることで得られる。また、各単量体のモル数は、重合に供した単量体の質量と、その単量体の分子量とから求めることができる。
≪ポリアミド(A−3)≫
ポリアミド(A−3)は、ポリアミド(a−1)と(a−2)を混合してなるポリアミドである。ポリアミド(a−1)は、多塩基酸単量体(m)とポリアミン単量体(m)とを重合してなり、側基にフェノール性水酸基を有し、且つ、C20〜60炭化水素基は有さないものである。上記条件を満たせばよく、その他の多塩基酸単量体、ポリアミン単量体を適宜用いることができる。
即ち、多塩基酸単量体(m)は、フェノール性水酸基を有する多塩基酸化合物およびその他の多塩基酸化合物(但し、C20〜60炭化水素基を含む多塩基酸化合物は除く)からなる群より選ばれる少なくとも一種から、ポリアミン単量体(m)は、フェノール性水酸基を有するポリアミン化合物およびその他のポリアミン化合物(但し、C20〜60炭化水素基を含むポリアミン化合物は除く)からなる群より選ばれる少なくとも一種から、ポリマー中にフェノール性水酸基が含まれるように選定すればよい。
多塩基酸単量体(m)またはポリアミン単量体(m)の少なくとも一方がフェノール性水酸基を有する。2価の単量体と3価以上の単量体を組み合わせて、枝分かれ構造を導入しつつ、適切な分子量を調整してもよい。また、1価の単量体を用いて、分子量を適切に保つことも可能である。
即ち、ポリアミド(a−1)は、側基にフェノール性水酸基を有するが、C20〜60炭化水素基は有しないポリアミドである。
一方、多塩基酸単量体(m)は、C20〜60炭化水素基を含む多塩基酸化合物およびその他の多塩基酸化合物(但し、フェノール性水酸基を有する多塩基酸化合物は除く)からなる群より選ばれる少なくとも一種であり、ポリアミン単量体(m)は、C20〜60炭化水素基を含むポリアミン化合物およびその他のポリアミン化合物(但し、フェノール性水酸基を有するポリアミン化合物は除く)からなる群より選ばれる少なくとも一種であり、多塩基酸単量体(m)または前記ポリアミン単量体(m)の少なくも一方が、C20〜60炭化水素基を含む。
即ち、ポリアミド(a−2)は、C20〜60炭化水素基を有するが、側基にフェノール性水酸基は有しないポリアミドである。
つまり、ポリアミド(A−3)は、側基にフェノール性水酸基を有するが、C20〜60炭化水素基は有しないポリアミド(a−1)と、C20〜60炭化水素基を有するが、側基にフェノール性水酸基は有しないポリアミド(a−2)との混合物である。
後述するフェノール性水酸基と反応し得る3官能以上の化合物(C2)は、フェノール性水酸基と反応し得る他、カルボキシル基ないしアミノ基の少なくともいずれか一方とも反応し得る場合が多い。
ポリアミド(A−3)とフェノール性水酸基と反応し得る3官能以上の化合物(C2)とを含有する熱硬化性樹脂組成物を熱硬化する際、フェノール性水酸基と反応し得る3官能以上の化合物(C2)としてカルボキシル基ないしアミノ基の少なくともいずれか一方とも反応し得るものを用いると、ポリアミド(A−3)中のフェノール性水酸基を含むポリアミド(a−1)およびC20〜60炭化水素基を有するポリアミド(a−2)の有する、末端のカルボキシル基や末端のアミノ基も熱硬化反応に活用することができる。
フェノール性水酸基を含むポリアミド(a−1)と、C20〜60炭化水素基を有するポリアミド(a−2)との混合比は、ポリアミド(a−1)のフェノール性水酸基価や分子量にもよって適宜調整することが可能であるが、フェノール性水酸基を含むポリアミド:C20〜60炭化水素基を有するポリアミド=5:95〜80:20(質量比)であることが好ましく、10:90〜50:50であることが好ましい。
なお、ポリアミド(A−3)についていう「混合物」、「混合」とは、以下の場合を含む意である。即ち、前記ポリアミド(a−1)と前記ポリアミド(a−2)から予め混合物を得た後、後述するフェノール性水酸基と反応し得る3官能以上の化合物(C2)を配合する場合や、前記ポリアミド(a−1)と前記ポリアミド(a−2)と後述するフェノール性水酸基と反応し得る3官能以上の化合物(C2)とを配合する場合や、前記ポリアミド(a−1)と後述するフェノール性水酸基と反応し得る3官能以上の化合物(C2)とを配合した後、前記ポリアミド(a−2)を配合する場合や、その逆を含む意である。
多塩基酸単量体(m)としては、多塩基酸単量体(m)のうち、C20〜60炭化水素基を含む多塩基酸化合物以外のものを挙げることができる。また、一塩基性化合物も併用できる。
ポリアミン単量体(m)としては、ポリアミン単量体(m2)のうち、C20〜60炭化水素基を含むポリアミン化合物以外のものを挙げることができる。また、一官能のアミン化合物も併用できる。
多塩基酸単量体(m)としては、多塩基酸単量体(m)のうち、フェノール性水酸基を有する多塩基酸化合物以外のものを挙げることができる。また、一塩基性化合物も併用できる。
ポリアミン単量体(m)としては、ポリアミン単量体(m2)のうち、フェノール性水酸基を有するポリアミン化合物以外のものを挙げることができる。また、一官能のアミン化合物も併用できる。
ポリアミド(A−3)は、形成に用いられる全単量体、即ち、多塩基酸単量体(m)、ポリアミン単量体(m4)、多塩基酸単量体(m)、ポリアミン単量体(m)および必要に応じて用いられる一塩基酸や一官能のアミン化合物の合計100mol中に、C20〜60炭化水素基を含む化合物を10〜95mol%含むことが好ましく、14〜92mol%含むことがより好ましく、18〜88mol%含むことがさらに好ましい。
<ポリアミド樹脂(P2)のスペック>
続いて、ポリアミド樹脂(P2)のスペック(フェノール性水酸基価、重量平均分子量、ガラス転移温度)について説明する。
ポリアミド樹脂(P2)は、ポリアミドの側基にフェノール性水酸基を含んでいれば、末端がカルボキシル基であってもアミノ基であってもよいし、末端に官能基を有さなくてもよい。ポリアミドの側基に含まれるフェノール性水酸基の量は、フェノール性水酸基と反応し得る3官能以上の化合物(C2)の種類および量によって適宜調整することができる。
[フェノール性水酸基価]
具体的には、ポリアミド樹脂(P2)のフェノール性水酸基価は、1〜80mgKOH/gであることが好ましく、より好ましくは5〜60mgKOH/g、更に好ましくは5〜30mgKOH/gである。フェノール性水酸基価が1mgKOH/g以上のポリアミドを用いることによって、密な架橋構造を形成でき、硬化後の塗膜の耐性を向上することができる。また、フェノール性水酸基価が80mgKOH/g以下のポリアミドを用いることによって、硬度、接着性、屈曲性の良好な硬化塗膜を得ることができる。また、フェノール性水酸基価が1〜80mgKOH/gの範囲内において、1mgKOH/gに近い範囲のポリアミドを用いる場合、得られる塗膜の接着性や屈曲性が向上し、一方、80mgKOH/gに近い範囲のポリアミドを用いる場合、架橋点が多くなることから、最終的に得られる塗膜の耐熱性が向上する。このように、ポリアミド樹脂(P2)のフェノール性水酸基価は、1〜80mgKOH/gの範囲内で目的に応じて調整することが可能である。
上記フェノール性水酸基価は、(i)の場合には、単量体のうちのフェノール性水酸基を有する単量体の仕込み比(重合組成)によって調整可能である。また、(ii)の場合には、ポリアミド(a−1)、(a−2)のうちの全単量体のうちのフェノール性水酸基を有する単量体の比率によって調整可能である。例えば、多塩基酸化合物としてフェノール性水酸基を有する5−ヒドロキシイソフタル酸のみを用い、ポリアミン化合物としてフェノール性水酸基を有しないダイマージアミンのみを用いて反応させれば、最終的に得られるポリアミド樹脂(P2)のフェノール性水酸基価を80mgKOH/gに近くすることができ、硬化塗膜の耐熱性をより一層向上することができる。
なお、ポリアミド樹脂(P2)のうち、ポリアミド(A−3)の場合は、混合物のフェノール性水酸基価をポリアミド樹脂(P2)のフェノール性水酸基価とする。
[重量平均分子量]
ポリアミド樹脂(P2)のうち、ポリアミド(A−1)の重量平均分子量は、取扱い性および熱硬化性樹脂組成物にした際の接着性、耐熱性の点から3,000〜1,000,000であることが好ましく、5,000〜550,000であることがより好ましく、10,000〜300,000であることがさらに好ましい。
ポリアミド樹脂(P2)のうち、ポリアミド(a−1)の重量平均分子量は、後述する汎用性溶剤への溶解性の点から500〜30,000であることが好ましく、1000〜20,000であることがより好ましく、1,000〜10,000であることがさらに好ましい。
また、ポリアミド樹脂(P2)のうち、ポリアミド(a−2)の重量平均分子量は、ポリアミド(A−1)の場合と同様の範囲であることが好ましい。
[ポリアミド樹脂(P2)のガラス転移温温度]
ポリアミド樹脂(P2)のガラス転移温度は、−40℃〜120℃であることが好ましく、より好ましくは、−30℃〜80℃である。ポリアミド樹脂(P2)のガラス転移温度を−40℃〜120℃の範囲に調整することで、熱プレス時のはみ出しを抑制することができ、さらには基材に対する良好な埋め込み性が可能となり、接着性をより一層向上することができる。
ガラス転移温度の調整は、C20〜60炭化水素基を有する多塩基酸化合物またはC20〜60炭化水素基を有するポリアミン化合物の比率を適宜設定することによって可能となる。例えば、C20〜60炭化水素基を有する多塩基酸化合物またはC20〜60炭化水素基を有するポリアミン化合物の配合比率を高くすることにより、吸水率の高いアミド結合の濃度を低くすることや二量化脂肪酸特有の柔軟屈曲性を付与することができるため、ガラス転移温度は−40℃に近い範囲で調整することができる。
なお、ポリアミド樹脂(P2)のうち、ポリアミド(A−3)の場合は、混合物のガラス転移温度をポリアミド樹脂(P2)のガラス転移温度とする。
[ポリアミド樹脂(P2)の有機溶剤可溶性]
ポリアミド樹脂(P2)は、汎用性の有機溶剤に広範囲に可溶である。可溶であるとは、炭化水素系溶剤、アルコール系溶剤、ケトン系溶剤およびエステル系溶剤等の汎用の溶剤の混合溶剤95質量部に対して、25℃において、5質量部以上溶解することをいう。特にトルエン/イソプロパノール=50/50(質量比)の混合溶剤95質量部に25℃で5質量部以上溶解することが好ましい。
炭化水素系溶剤としてはベンゼン、トルエン、エチルベンゼン、キシレン、シクロヘキサン、ヘキサン等が挙げられる。アルコール系溶剤としてはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec−ブタノール、tert−ブタノール等が挙げられる。ケトン系溶剤としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。エステル系溶剤としては酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。
<ポリアミド樹脂(P2)の合成>
続いて、ポリアミド樹脂(P2)の合成方法について説明する。
ポリアミド樹脂(P2)の重合条件は特に限定されるものではなく、溶融重合、界面重合、溶液重合、塊状重合、固相重合、およびこれらの方法を組み合わせた公知の条件を利用することができる。一般に工業的には、触媒存在下あるいは非存在下において150〜300℃で1〜24時間程度の反応を行う。脱水あるいは脱アルコール反応を促進し、高温による着色、分解反応を避けるために、180〜270℃で大気圧以下の減圧下で反応を行うのが好ましい。
フェノール性水酸基含有のポリアミド(A−1)を合成する場合には、例えば、窒素充填したフラスコに、フェノール性水酸基を有する多塩基酸化合物または/およびフェノール性水酸基を有するポリアミン化合物、C20〜60炭化水素基を有する多塩基酸化合物または/およびC20〜60炭化水素基を有するポリアミン化合物、イオン交換水を所定量仕込み、20〜100℃で加熱・撹拌することで均一溶解ないし分散する。その後、前記イオン交換水および反応により生ずる水を除去しながら230℃まで徐々に昇温し、230℃に達したら15mmHg程度まで減圧し、1時間程度保持することでポリアミド(A−1)を得ることができる。
なお、多塩基酸化合物とポリアミン化合物とを混合すると、塩を形成し固まり易くなる。イオン交換水の存在下に両者を混合すると形成された塩が、イオン交換水に溶解ないし分散するので、安全性等の点からイオン交換水を利用することが好ましい。
エステル結合を有するフェノール性水酸基含有のポリアミドエステル(A−2)を合成する場合には、例えば、多塩基酸化合物の総モル比をポリアミン化合物の総モル数より多い割合で反応させて得られる末端カルボン酸のポリアミド(A−1)を合成した後、ポリオール化合物およびエステル化触媒を添加し、再び230℃まで徐々に昇温し、その後、1〜2mmHgまで減圧し3時間保持することでポリアミドエステル(A−2)を得ることができる。
ポリアミド(A−1)およびポリアミドエステル(A−2)を得るにあたり、使用されうる触媒の具体例としては、例えば、リン酸、亜リン酸、次亜リン酸、ピロリン酸、ポリリン酸およびこれらのアルカリ金属塩、アルカリ土類金属塩などの無機系リン化合物や、亜リン酸トリフェニル、亜リン酸ジフェニルなどの亜リン酸エステル、テトラブチルオルソチタネート、テトライソプロピルオルソチタネートなどのチタン系触媒、ジブチルスズオキシド、ジブチルスズラウレート、モノブチルヒドロキシスズオキシドなどのスズ系触媒、テトラブトキシジルコニウム、酢酸ジルコニウム、オクチル酸ジルコニウムなどのジルコニウム系触媒などが挙げられる。
これらは2種類以上を混合して用いることもできる。また、これらの触媒がポリアミド樹脂(P2)中に含有されていても本発明を実施する上で差し支えない。
また、副生物は使用した触媒の分解物、分解物の酸化物又はそれらの変性物や、オリゴマー等のアミド化合物等の副生物等の無機塩類の触媒であるが、ポリアミド樹脂(P2)に含有されていても差し支えない。
<フェノール性水酸基と反応し得る3官能以上の化合物(C2)>
本実施形態の熱硬化性樹脂組成物は、上記ポリアミド樹脂(P2)と、フェノール性水酸基と反応し得る3官能以上の化合物(C2)とを含むものである。フェノール性水酸基と反応し得る3官能以上の化合物(C2)について説明する。組成物(II)は、上述したポリアミド樹脂(P2)の硬化剤として、化合物(C2)を使用する。なお、3官能以上の化合物(C2)に加えて、フェノール性水酸基と反応し得る2官能の化合物(C)[以下、「化合物(C)」とも称する]も本実施形態の趣旨を逸脱しない範囲で加えることができる。化合物(C)を加える場合には、化合物(C2)100質量部に対して、架橋密度を効果的に高める観点から100質量部以下とすることが好ましく、60質量部以下とすることがより好ましい。
[エポキシ基含有化合物]
化合物(C2)として用い得る3官能以上のエポキシ基含有化合物としては、エポキシ基を分子内に有する化合物であればよく、特に限定されるものではないが、グリジシルエーテル型エポキシ樹脂、グリジシルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、又は環状脂肪族(脂環型)エポキシ樹脂などのエポキシ樹脂を用いることができる。
グリシジルエーテル型エポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、又はテトラキス(グリシジルオキシフェニル)エタン等が挙げられる。
グリシジルアミン型エポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルメタキシリレンジアミン等が挙げられる。
エポキシ基含有化合物としては、高接着性および耐熱性の点から、テトラキス(グリシジルオキシフェニル)エタン、又はテトラグリシジルジアミノジフェニルメタンを用いることが好ましい。
化合物(C)として用い得るエポキシ基含有化合物としては、例えば、グリシジルエーテル型エポキシ樹脂、環状脂肪族(脂環型)エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等が挙げられる。グリシジルエステル型エポキシ樹脂としては、例えば、ジグリシジルフタレート、ジグリシジルヘキサヒドロフタレート、又はジグリシジルテトラヒドロフタレート等が挙げられる。
環状脂肪族(脂環型)エポキシ樹脂としては、例えば、3’,4’−エポキシシクロへキシルメチル3,4−エポキシシクロヘキサンカルボキシレートなどが挙げられる。エポキシ基含有化合物としては、化合物(C2)を単独もしくは二種以上を併用して、或いは化合物(C2)に化合物(C)を組み合わせて用いることができる。
[イソシアネート化合物]
化合物(C2)として用い得るイソシアネート基含有化合物としては、イソシアネート基を分子内に3個以上有する化合物であればよく、特に限定されるものではない。イソシアネート基はブロック化剤でブロックされているもの、されていないもの、いずれも用いることができるが、ブロック化剤でブロックされているものが好ましい。
フェノール性水酸基と反応し得る2官能の化合物(C)として用い得るイソシアネート基含有化合物としては特に限定されないが、例えば、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート等の芳香族ジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート等の脂環族ジイソシアネート等が挙げられる。
フェノール性水酸基と反応し得る3官能以上の化合物(C2)として用い得る、イソシアネート基含有化合物としては、特に限定されないが、例えば、前記で説明したジイソシアネートのトリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する3量体が挙げられる。
ブロック化イソシアネート化合物しては、前記イソシアネート基含有化合物中のイソシアネート基がε−カプロラクタムやMEKオキシム等で保護されたブロック化イソシアネート基含有化合物であればよく、特に限定されるものではない。具体的には、前記イソシアネート基含有化合物のイソシアネート基を、ε−カプロラクタム、MEKオキシム、シクロヘキサノンオキシム、ピラゾール、フェノール等でブロックしたものなどが挙げられる。特に、イソシアヌレート環を有し、MEKオキシムやピラゾールでブロックされたヘキサメチレンジイソシアネート三量体は、本実施形態に使用した場合、保存安定性は勿論のこと、ポリイミドや銅等の接合材に対する接着強度や半田耐熱性に優れるため、非常に好ましい。
[カルボジイミド基含有化合物]
フェノール性水酸基と反応し得る3官能以上の化合物(C2)として用い得る、カルボジイミド基含有化合物としては、日清紡績社製のカルボジライトシリーズが挙げられる。その中でもカルボジライトV−01、03、05、07、09は有機溶剤との相溶性に優れており好ましい。
[金属キレート化合物]
フェノール性水酸基と反応し得る3官能以上の化合物(C2)として用い得る、金属キレート化合物としては、アルミニウムキレート化合物、チタンキレート化合物、ジルコニウムキレート化合物が挙げられるが、中心金属が鉄やコバルト、インジウム、など種々の金属でもキレート結合を形成しうるため、特に限定されるものではない。なお、ここでの金属キレート、および後述する金属アルコキシドと金属アシレートの官能基数は中心金属の価数として計算され、3官能以上、即ち、中心金属の価数が3以上のものが化合物(C2)として用い得る。
ここで組成物(II)に用いられるアルミニウムキレート化合物としては、代表的なものとして、アルミニウムアセチルアセトネート、アルミニウムエチルアセトアセテート等が挙げられる。
また、チタンキレート化合物としては、代表的なものとして、チタンアセチルアセトネート、チタンエチルアセトアセテート、チタンオクチレングリコレート、チタンラクテート、チタントリエタノールアミネート、ポリチタンアセチルアセチルアセトナート等が挙げられる。
また、ジルコニウムキレート化合物としては、代表的なものとして、ジルコニウムアセチルアセトネート、ジルコニウムエチルアセチルアセトネート、ジルコニウムラクテートアンモニウム塩、等が挙げられる。
[金属アルコキシド]
金属アルコキシド化合物としては、アルミニウムアルコキシド化合物、チタンアルコキシド化合物、ジルコニウムアルコキシド化合物が挙げられるが、中心金属が鉄やコバルト、インジウム、など種々の金属でもアルコキシド結合を形成しうるため、特に限定されるものではない。
また、アルミニウムアルコキシド化合物としては、代表的なものとして、アルミニウムイソプロピレート、アルミニウムブチレート、アルミニウムエチレート等が挙げられる。
また、チタンアルコキシド化合物としては、代表的なものとして、イソプロピルチタネート、ノルマルブチルチタネート、ブチルチタネートダイマー、テトラオクチルチタネート、ターシャリーアミルチタネート、ターシャリーブチルチタネート、テトラステアリルチタネート等が挙げられる。
また、ジルコニウムアルコキシド化合物としては、代表的なものとして、ノルマルプロピルジルコネート、ノルマルブチルジルコネート等が挙げられる。
[金属アシレート]
金属アシレート化合物としては、アルミニウムアシレート化合物、チタンアシレート化合物、ジルコニウムアシレート化合物が挙げられるが、中心金属が鉄やコバルト、インジウム、など種々の金属でもアルコキシド結合を形成しうるため、特に限定されるものではない。
3官能以上の化合物(C2)は、一分子中に同種の官能基が3官能以上含まれている他、官能基が合計で3官能以上含まれている官能基も含む。例えば、キレート、アルコキシドおよびアシレートが1つの分子中に混在したものも好適に用いることができる。
化合物(C2)は一種のみを単独で用いてもよいし、複数を併用してもよい。複数を併用した場合、フェノール基とカルボキシル基および/またはアミノ基が混在したポリアミド樹脂(P2)を用いた際、それぞれの反応性の違いを利用した、加工性や接着性が向上するといった相乗効果が発揮されるため、望ましい。中でも、「金属キレート、金属アルコキシド、金属アシレートからなる群より選ばれる少なくとも一つ」と「3官能以上のエポキシ基含有化合物」は反応性が大きく違うこと、また、向上できる物性の特徴が違うことから、大きな相乗効果が期待できるため、好ましい。化合物(C2)の使用量は、硬化性樹脂組成物の用途等を考慮して決定すればよく、特に限定されるものではないが、ポリアミド樹脂(P2)100質量部に対して、0.5〜100質量部の割合で加えることが好ましく、1〜80質量部の割合で加えることがより好ましい。化合物(C2)を使用することにより、硬化性樹脂組成物の架橋密度を適度な値に調節することができるので、硬化後の塗膜の各種物性をより一層向上させることができる。化合物(C2)の使用量が0.5質量部に近いと、加熱硬化後の塗膜の架橋密度が高くなりすぎることを抑えることができ、所望の屈曲性や接着性を発揮することができる。さらに、極性官能基の増加を抑えることで所望の誘電率や誘電正接、耐湿熱性を発揮することができる。また、該使用量が100質量部に近いと、加熱硬化後の架橋密度を一層高くすることができ、その結果、塗膜の電気絶縁性などの塗膜耐性を向上することができる。
組成物(II)では、カルボキシル基と反応し得る化合物や、アミノ基と反応し得る化合物を、前記化合物(C2)と併用することができる。
カルボキシル基と反応し得る化合物としては、アジリジン化合物、β―ヒドロキシアルキルアミド基含有化合物、ジシアンジアミドが挙げられる。アミノ基と反応し得る化合物としては、マレイミド化合物が挙げられる。
特に、2,2’−ビスヒドロキシメチルブタノールトリス[3−(1−アジリジニル)プロピオネート]は、本実施形態に使用した場合、熱プレス時のはみ出しを抑制でき、且つ硬化塗膜の柔軟性を保持したまま耐熱性を向上できるため、本実施形態において好ましく用いられる。
組成物(II)では、硬化促進剤として硬化反応に直接寄与する化合物を含有することができる。硬化促進剤としては、ホスフィン化合物、ホスホニウム塩、イミダゾール化合物、3級アミン化合物等が挙げられる。
組成物(II)は、ポリアミド樹脂(P2)、化合物(C2)を必須とし、適宜有機溶剤を含有することができる。
低沸点の溶剤としては、トルエン、シクロヘキサン、ヘキサン、イソプロパノール、メチルエチルケトン、酢酸エチル等が挙げられる。高沸点の溶剤としては、カルビトールアセテート、メトキシプロピルアセテート、シクロヘキサノン、ジイソブチルケトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド等が挙げられる。有機溶剤を適宜単独で、または複数用いることができる。
ポリアミド樹脂(P2)を生成する際に溶剤を用いる場合には、前記溶剤を含む組成物(II)とすることもできるし、ポリアミド樹脂(P2)生成時の溶剤を留去した後、新たに別の溶剤を添加し、液状の組成物(II)を得ることもできる。
組成物(II)の固形分は、5〜80質量%、好ましくは取り扱い性の観点から10〜50質量%である。
<その他の添加剤>
組成物(II)には、目的を損なわない範囲で任意成分として更に、組成物(I)−1で例示したその他の成分(添加剤)を含むことができる。染料、顔料、難燃剤、酸化防止剤、重合禁止剤、消泡剤、レベリング剤、イオン捕集剤、保湿剤、粘度調整剤、防腐剤、抗菌剤、帯電防止剤、アンチブロッキング剤、紫外線吸収剤、赤外線吸収剤、フィラー等を添加することができる。
フィラーとしては、組成物(I)−1と同様のフィラーを好適に用いることができる。
特に電子材料用途で回路に直接接するような絶縁部材(例えば回路保護膜、カバーレイ層、層間絶縁材料など)や、回路周辺の高熱となりうる部材(プリント配線板、支持基板など)に本実施形態のプリプレグを用いる場合は、難燃剤の併用が好ましい。
[[組成物(III)]]
組成物(III)は、ポリウレタン樹脂(P3)と、このポリウレタン樹脂と反応し得るエポキシ化合物(C3)とを含有する熱硬化性樹脂組成物である。このポリウレタン樹脂には、ポリウレタンポリウレア樹脂も含む。
カルボキシル基含有のポリウレタン樹脂(P3)の合成方法としては以下が例示できる。例えば、ポリオール化合物、ジイソシアネート化合物及びカルボキシル基を有するジオール化合物を反応させることで製造できる。また、ポリウレタン樹脂(P3)の合成時に、ジイソシアネート化合物を過剰に配合し、末端にイソシアネート基を有するカルボキシル基含有ウレタンプレポリマーを合成し、次いでジアミン化合物を反応させることでウレア基を導入したウレタンウレア樹脂を製造することもできる。
ポリオール化合物とは、重量平均分子量が500以上で水酸基を2個以上有する化合物をいう。具体的には例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、エチレンオキサイド/プロピレンオキサイドのブロック共重合体又はランダム共重合体、ポリテトラメチレングリコール、テトラメチレングリコールとネオペンチルグリコールとのブロック共重合体又はランダム共重合体等のポリエーテルポリオール類;
多価アルコール又はポリエーテルポリオールと無水マレイン酸、マレイン酸、フマル酸、無水イタコン酸、イタコン酸、アジピン酸、イソフタル酸等の多塩基酸との縮合物であるポリエステルポリオール類;グリコールまたはビスフェノールと炭酸エステルとの反応、あるいは、グリコールまたはビスフェノールにアルカリの存在下でホスゲンを作用させる反応などで得られるポリカーボネートポリオール類;
カプロラクトン変性ポリテトラメチレンポリオール等のカプロラクトン変性ポリオール、ポリオレフィン系ポリオール、水添ポリブタジエンポリオール等のポリブタジエン系ポリオール、シリコーン系ポリオール等のポリオールが挙げられる。これらポリオール化合物は1種のみを単独で用いてもよいし、2種類以上を併用してもよい。
カルボキシル基を有するジオール化合物としては、分子中に2個の水酸基と1個以上のカルボキシル基を有する化合物であれば特に制限はないが、例えば、ジメチロールブタン酸、ジメチロールプロピオン酸、およびこれらの誘導体(カプロラクトン付加物、エチレンオキサイド付加物、プロピレンオキサイド付加物など)、3−ヒドロキシサリチル酸、4−ヒドロキシサリチル酸、5−ヒドロキシサリチル酸、2−カルボキシ−1,4−シクロヘキサンジメタノールなどが挙げられる。これらのカルボキシル基を有するジオール化合物は1種のみを単独で用いてもよいし、2種類以上を併用してもよい。
ジイソシアネート化合物としては、芳香族ジイソシアネート、脂肪族ジイソシアネート、芳香脂肪族ジイソシアネート、脂環族ジイソシアネート等を挙げることができる。
芳香族ジイソシアネートとしては、例えば、1,3−フェニレンジイソシアネート、4,4’−ジフェニルジイソシアネート、1,4−フェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−トルイジンジイソシアネート、2,4,6−トリイソシアネートトルエン、1,3,5−トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、4,4’,4”−トリフェニルメタントリイソシアネート等が挙げられる。
脂肪族ジイソシアネートは、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2−プロピレンジイソシアネート、2,3−ブチレンジイソシアネート、1,3−ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート等が挙げられる。
芳香脂肪族ジイソシアネートは、例えばω,ω’−ジイソシアネート−1,3−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジメチルベンゼン、ω,ω’−ジイソシアネート−1,4−ジエチルベンゼン、1,4−テトラメチルキシリレンジイソシアネート、1,3−テトラメチルキシリレンジイソシアネート等が挙げられる。
脂環族ジイソシアネートは、例えば3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート[別名:イソホロンジイソシアネート]、1,3−シクロペンタンジイソシアネート、1,3−シクロヘキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、1,3−ビス(イソシアネートメチル)シクロヘキサン、1,4−ビス(イソシアネートメチル)シクロヘキサン等が挙げられる。
これらのジイソシアネート化合物は1種のみを単独で用いてもよいし、2種類以上を併用してもよい。
ジアミン化合物は、鎖延長剤として働くものであり、例えば、ジアミノベンゼン、ジアミノトルエン、ジアミノジメチルベンゼン、ジアミノメシチレン、ジアミノクロロベンゼン、ジアミノニトロベンゼン、ジアミノアゾベンゼン、ジアミノナフタレン、ジアミノビフェニル、ジアミノジメトキシビフェニル、ジアミノジフェニルエーテル、ジアミノジメチルジフェニルエーテル、メチレンジアニリン、メチレンビス(メチルアニリン)、メチレンビス(ジメチルアニリン)、メチレンビス(メトキシアニリン)、メチレンビス(ジメトキシアニリン)、メチレンビス(エチルアニリン)、メチレンビス(ジエチルアニリン)、メチレンビス(エトキシアニリン)、メチレンビス(ジエトキシアニリン)、メチレンビス(ジブロモアニリン)、イソプロピリデンジアニリン、ヘキサフルオロイソプロピリデンジアニリン、ジアミノベンゾフェノン、ジアミノジメチルベンゾフェノン、ジアミノアントラキノン、ジアミノジフェニルチオエーテル、ジアミノジメチルジフェニルチオエーテル、ジアミノジフェニルスルホン、ジアミノジフェニルスルホキシドや、ジアミノフルオレンなどの芳香族ポリアミン;
エチレンポリアミン、プロパンポリアミン、ヒドロキシプロパンポリアミン、ブタンポリアミン、ヘプタンポリアミン、ヘキサンポリアミン、ジアミノジエチルアミン、ジアミノジプロピルアミン、アザペンタンポリアミンや、トリアザウンデカンポリアミン、ノナメチレンポリアミン、ウンデカメチレンポリアミン、ドデカメチレンポリアミン、メチルペンタメチレンポリアミン、2,2,4(または2,4,4)−トリメチルヘキサメチレンポリアミンや炭素数20〜48のポリアミン化合物などの脂肪族ポリアミン;
ビス−(4,4′−アミノシクロヘキシル)メタン、メタキシリレンポリアミン、パラキシリレンポリアミン、イソホロンポリアミン、ノルボルナンポリアミン、シクロペンタンポリアミン、シクロヘキサンポリアミン、ピペラジン、ホモピペラジンなどの脂環族ポリアミンを使用することができる。
ポリウレタン樹脂(P3)は、ウレア基を導入したウレタンウレア樹脂を用いることが好ましい。ウレア基を導入することにより、接着性やフレキシブル性を向上しやすくなる。
<エポキシ化合物(C3)>
エポキシ化合物(C3)として用い得るエポキシ基含有化合物としては、エポキシ基を分子内に有する化合物であればよく、特に限定されるものではないが、グリジシルエーテル型エポキシ樹脂、グリジシルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、又は環状脂肪族(脂環型)エポキシ樹脂などのエポキシ樹脂を用いることができる。エポキシ基の官能基数は特に限定されないが、2官能以上であることが好ましく、3官能以上であることがより好ましい。具体例としては、組成物(II)で例示した化合物(C2)と同様の化合物を例示できる。また、分子内に少なくとも1個以上の窒素原子を有するエポキシ化合物が例示できる。
分子内に少なくとも1個以上の3級窒素原子を有するエポキシ化合物を用いることにより、誘電率、誘電正接を改善しつつ、金属接着性、耐熱性を改善することができる。これは、3級窒素原子を有するエポキシ化合物特有の性質である高い反応性により、所定の硬化条件での反応率を高くすることができ、硬化物の架橋密度が向上し、高い弾性率を得ることができる。その結果、誘電特性を左右する吸水率を抑えることができる。また、窒素原子は様々な配位形態をとることが可能であり、金属と有機化合物間の接着を強くサポートし、金属接着性にも優れる。
分子内に少なくとも1個以上の3級窒素原子を有するエポキシ化合物を用いた場合、化合物中に含まれる窒素原子によって所定硬化条件での反応率を高くすることができるため、未反応の低分子化合物による弾性率の低下や吸水率の増加を抑制することができ、更には窒素原子由来の金属密着性を高められることから、良好な誘電特性と各種特性とを同時に満足できる。
分子内に少なくとも1個以上の3級窒素原子を有するエポキシ化合物は、エポキシ基を分子内に含有する化合物中に窒素化合物を少なくとも1個以上有していればよく、特に限定されるものではない。分子内に少なくとも1個以上の3級窒素原子を有するエポキシ化合物としては、具体的にはN−グリシジルフタルイミドや下記式(5)から(15)で表される構造のエポキシ化合物が挙げられる。
Figure 2020164793
Figure 2020164793
Figure 2020164793
Figure 2020164793
Figure 2020164793
Figure 2020164793
Figure 2020164793
Figure 2020164793
Figure 2020164793
Figure 2020164793
Figure 2020164793
ただし、Xはそれぞれ、炭素数0〜6の脂肪族基、または芳香族基を表し、Yはメチレン基、エチレン基、トリメチレン基、エチリデン基、イソプロピリデン基、ビニレン基、ビニリデン基、オキシ基、イミノ基、チオ基、スルホニル基のいずれかを表し、R〜Rは水素原子または、炭素数1〜6の脂肪族基を表し、jは0〜4の整数を表す。
いずれも熱硬化性および、低い吸湿性の観点から誘電特性の面で優れており好ましいが、特に、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N',N'−テトラグリシジル−m−キシレンジアミン、トリグリシジル−m−アミノフェノール、トリグリシジル−p−アミノフェノール、4,4’−メチレンビス[N,N−ビス(オキシラニルメチル)アニリン]は多官能であり、組成物(III)に使用した場合、誘電特性に加え、プリプレグの硬化物の耐熱性が向上する傾向があり、特に好ましい。また、N,N−ジグリシジルアニリンやN,N−ジグリシジルトルイジンは2官能であり、組成物(III)に使用した場合、誘電特性に加え、硬化塗膜のフレキシブル性やポリイミドや銅に対する接着性が向上する傾向があり、好ましい。
[[組成物(I)−2]]
組成物(I)−2は、酸無水物基(カルボン酸の無水物基)を有するスチレン系エラストマー(P1)と、この酸無水物基と反応するエポキシ化合物(C4)を含有する熱硬化性樹脂組成物である。スチレン系エラストマー(P1)は、組成物(I)−1と共通するので説明を省略する。スチレン系エラストマー(P1)中の酸無水物基とエポキシ化合物(C4)とを反応させることにより、耐熱性に優れるとともに、誘電率や誘電正接を低く抑える機能を担うエステル基を形成できる。
<エポキシ化合物(C4)>
エポキシ化合物(C4)と前述のスチレン系エラストマー(P1)との反応により、耐熱性および絶縁性に優れ、誘電率や誘電正接の低い硬化物を得ることができる。エポキシ化合物(C4)は、エポキシ基を1個以上有していればよく特に限定されないが、2個以上のエポキシ基を有するエポキシ化合物が好適であり、3個以上のエポキシ基を有するエポキシ化合物がより好適である。これらの中でも、3個以上のエポキシ基を有するグリシジルアミン系のエポキシ化合物が特に好適である。エポキシ化合物(C4)を用いることにより、更に接着性も付与することができる。
エポキシ化合物(C4)として用い得るエポキシ基含有化合物としては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ビスフェノールA・エピクロロヒドリン型エポキシ樹脂、ビスフェノールF・エピクロロヒドリン型エポキシ樹脂、ビフェノール・エピクロロヒドリン型エポキシ樹脂、グリセリン・エピクロロヒドリン付加物のポリグリシジルエーテル、レゾルシノールジグリシジルエーテル、ポリブタジエンジグリシジルエーテル、ヒドロキノンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、水添ビスフェノールA型ジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ジフェニルスルホンジグリシジルエーテル、ジヒドロキシベンゾフェノンジグリシジルエーテル、ビフェノールジグリシジルエーテル、ジフェニルメタンジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、ビスクレゾールフルオレンジグリシジルエーテル、ビスフェノキシエタノールフルオレンジグリシジルエーテル、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N−ジグリシジルアニリン、N,N−ジグリシジルトルイジン、特開2004−156024号公報、特開2004−315595号公報、特開2004−323777号公報に開示されている柔軟性に優れたエポキシ化合物や、下記式で表される構造のエポキシ化合物等が挙げられる。
Figure 2020164793
Figure 2020164793
Figure 2020164793
また、グリジシルエーテル型エポキシ樹脂、グリジシルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、又は環状脂肪族(脂環型)エポキシ樹脂などのエポキシ樹脂が例示できる。具体例として、組成物(II)で例示した化合物(C2)、組成物(III)で例示した化合物(C3)と同様の化合物を例示できる。
また、分子内に少なくとも1個以上の窒素原子を有するエポキシ化合物を用いることにより、より効果的に誘電率、誘電正接を改善しつつ、金属接着性、耐熱性を改善することができる。その理由は、組成物(III)で説明した通りであり、スチレン系エラストマー(P1)と、この酸無水物基と反応するエポキシ化合物(C4)においても同様の効果が得られる。
分子内に少なくとも1個以上の3級窒素原子を有するエポキシ化合物の好適例は、組成物(III)で例示した化合物が挙げられる。具体的には、N−グリシジルフタルイミドや上記式(5)〜(15)で表される構造のエポキシ化合物が挙げられる。
いずれも熱硬化性および、低い吸湿性の観点から誘電特性の面で優れており好ましいが、特に、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N',N'−テトラグリシジル−m−キシレンジアミン、トリグリシジル−m−アミノフェノール、トリグリシジル−p−アミノフェノール、4,4’−メチレンビス[N,N−ビス(オキシラニルメチル)アニリン]は多官能であり、組成物(I)−2に使用した場合、誘電特性に加え、プリプレグの硬化物の耐熱性が向上する傾向があり、特に好ましい。また、N,N−ジグリシジルアニリンやN,N−ジグリシジルトルイジンは2官能であり、組成物(I)−2に使用した場合、誘電特性に加え、硬化塗膜のフレキシブル性やポリイミドや銅に対する接着性が向上する傾向があり、好ましい。
市販品では、jER603(3官能多官能グリシジルアミン化合物、N,N−ビス(2,3−エポキシプロピル)−4−(2,3−エポキシプロポキシ)アニリン)、jER604(3官能多官能グリシジルアミン化合物、N,N,N’,N’−テトラグリシジルー4,4’−ジアミノジフェニルエタン)、TETRAD−X(4官能多官能グリシジルアミン化合物)等が例示できる。
スチレン系エラストマー(P1)中の酸無水物基1molに対するエポキシ化合物(C4)のエポキシ基の含有量は、0.1〜20molの範囲が好ましく、0.5〜10molの範囲がより好ましく、1〜5molの範囲が更に好ましい。スチレン系エラストマー(P1)中の酸無水物基に対し、エポキシ基の含有量を0.1mol以上とすることにより、架橋密度を増加させ、耐熱性、絶縁性、接着性を向上できる。エポキシ基の含有量を20mol以下とすることにより、新たな極性基の生成を抑制し、誘電正接の悪化を抑制できる。
組成物(I)−2には、物性を損なわない範囲で、シランカップリング剤または/およびチオール化合物を含有させることができる。その効果は組成物(I)−1で説明した通りである。また、シランカップリング剤およびチオール化合物の好適例および好適含有量は、組成物(I)−1と同様である。
組成物(I)−2には、難燃性の付与、樹脂組成物の流動性制御、硬化物の弾性率向上等の目的で、更にフィラーを添加することができる。形状やフィラーの好適例、平均粒子径および含有量の好適範囲、並びに添加方法等は、組成物(I)−1と同様である。
組成物(I)−2には、必須成分および上述した任意成分の他に、目的を損なわない範囲で更に、オキセタン基含有化合物、アジリジン基含有化合物、カルボジイミド基含有化合物、ベンゾオキサジン化合物、β−ヒドロキシアルキルアミド基含有化合物を加えることができる。また、染料、顔料、酸化防止剤、重合禁止剤、消泡剤、レベリング剤、イオン捕集剤、保湿剤、粘度調整剤、防腐剤、抗菌剤、帯電防止剤、アンチブロッキング剤、紫外線吸収剤、赤外線吸収剤などを含むことができる。
[[組成物(I)−3]]
組成物(I)−3は、酸無水物基(カルボン酸の無水物基)を有するスチレン系エラストマー(P1)と、この酸無水物基と反応するフェノール化合物(C5)を含有する熱硬化性樹脂組成物である。
スチレン系エラストマー(P1)は、組成物(I)−1と共通するので説明を省略する。
スチレン系エラストマー(P1)中の酸無水物基とフェノール化合物(C5)とを反応させることにより、耐熱性に優れるとともに、誘電率や誘電正接を低く抑える機能を担うエステル基を形成できる。
<フェノール化合物(C5)>
フェノール化合物(C5)と前述のスチレン系エラストマー(P1)との反応により、耐熱性および絶縁性に優れ、誘電率や誘電正接の低い硬化物を得ることができる。フェノール化合物(C5)は、フェノール性水酸基を1個以上有していればよく特に限定されないが、2個以上のフェノール性水酸基を有するフェノール化合物が好適であり、3個以上のフェノール性水酸基を有するフェノール化合物がより好適である。更に、接着性も付与することができる。
フェノール化合物(C5)として用い得るフェノール性水酸基含有化合物としては、例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン(別名:ビスフェノールA)が代表例であり、その他にも、ビス(4−ヒドロキシフェノル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−n−プロパン、1,1−ビス(4−ヒドロキシフェニル)−n−ブタン、1,1−ビス(4−ヒドロキシフェニル)−n−ペンタン、1,1−ビス(4−ヒドロキシフェニル)−n−ヘキサン、1,1−ビス(4−ヒドロキシフェニル)−n−ヘプタン、1,1−ビス(4−ヒドロキシフェニル)−n−オクタン、1,1−ビス(4−ヒドロキシフェニル)−n−ノナン、1,1−ビス(4−ヒドロキシフェニル)−n−デカン、ビス(4−ヒドロキシフェニル)フェニルメタン、ビス(4−ヒドロキシフェニル)ナフチルメタン、ビス(4−ヒドロキシフェニル)トルイルメタン、ビス(4−ヒドロキシフェニル)−(4−エチルフェニル)メタン、ビス(4−ヒドロキシフェニル)−(4−n−プロピルフェニル)メタン、ビス(4−ヒドロキシフェニル)−(4−イソプロピルフェニル)メタン、ビス(4−ヒドロキシフェニル)−(4−n−ブチルフェニル)メタン、ビス(4−ヒドロキシフェニル)−(4−ペンチルフェニル)メタン、ビス(4−ヒドロキシフェニル)−(4−ヘキシルフェニル)メタン、ビス(4−ヒドロキシフェニル)−(4−フルオロフェニル)メタン、ビス(4−ヒドロキシフェニル)−(4−クロロフェニル)メタン、ビス(4−ヒドロキシフェニル)−(2−フルオロフェニル)メタン、ビス(4−ヒドロキシフェニル)−(2−クロロフェニル)メタン、ビス(4−ヒドロキシフェニル)テトラフルオロフェニルメタン、ビス(4−ヒドロキシフェニル)テトラクロロフェニルメタン、ビス(3−メチル−4−ヒドロキシフェニル)メタン、ビス(3,5−ジメチル−4−ヒドロキシフェニル)メタン、ビス(3−エチル−4−ヒドロキシフェニル)メタン、ビス(3−イソブチル−4−ヒドロキシフェニル)メタン、ビス(3−t−ブチル−4−ヒドロキシフェニル)−1−フェニルメタン、ビス(3−フェニル−4−ヒドロキシフェニル)−1−フェニルメタン、ビス(3−フルオロ−4−ヒドロキシフェニル)メタン、ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)メタン、ビス(3−クロロ−4−ヒドロキシフェニル)メタン、ビス(3,5−ジクロロ−4−ヒドロキシフェニル)メタン、1,1−ビス(3−メチル−4−ヒドロキシフェニル)エタン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、1,1−ビス(3−エチル−4−ヒドロキシフェニル)エタン、1,1−ビス(3−イソブチル−4−ヒドロキシフェニル)エタン、1,1−ビス(3−フルオロ−4−ヒドロキシフェニル)エタン、1,1−ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)エタン、1,1−ビス(3−クロロ−4−ヒドロキシフェニル)エタン、1,1−ビス(3,5−ジクロロ−4−ヒドロキシフェニル)エタン等の中心炭素に水素原子が結合しているビスフェノール類;
2,2−ビス(4−ヒドロキシフェニル)−n−ブタン、2,2−ビス(4−ヒドロキシフェニル)−n−ペンタン、2,2−ビス(4−ヒドロキシフェニル)−n−ヘキサン、2,2−ビス(4−ヒドロキシフェニル)−n−ヘプタン、2,2−ビス(4−ヒドロキシフェニル)−n−オクタン、2,2−ビス(4−ヒドロキシフェニル)−n−ノナン、2,2−ビス(4−ヒドロキシフェニル)−n−デカン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン(通称ビスフェノールP)、1,1−ビス(4−ヒドロキシフェニル)−1−ナフチルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−トルイルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−(4−エチルフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−(4−n−プロピルフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−(4−イソプロピルフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−(4−n−ブチルフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−(4−ペンチルフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−(4−ヘキシルフェニル)エタン、1,1−ビス(3−t−ブチル−4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(3−フェニル−4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−(4−フルオロフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−(4−クロロフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−(2−フルオロフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−(2−クロロフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−テトラフルオロフェニルエタン、1,1−ビス(4−ヒドロキシフェニル)−1−テトラクロロフェニルエタン等の中心炭素に1つのメチル基が結合しているビスフェノール類;
2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン(通称ビスフェノールC)、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−エチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−イソブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−フルオロ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−クロロ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジクロロ−4−ヒドロキシフェニル)プロパン等の中心炭素に2つのメチル基が結合しているビスフェノール類;
ビス(4−ヒドロキシフェニル)−1,1−ジフェニルメタン、ビス(3−メチル−4−ヒドロキシフェニル)−1,1−ジフェニルメタン、ビス(3−t−ブチル−4−ヒドロキシフェニル)−1,1−ジフェニルメタン、ビス(3−フェニル−4−ヒドロキシフェニル)−1,1−ジフェニルメタン、ビス(3−クロロ−4−ヒドロキシフェニル)−1,1−ジフェニルメタン等のジフェニルメタン誘導体であるビスフェノール類;
1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(通称ビスフェノールZ)、1,1−ビス(3−メチル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−エチル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−イソブチル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−フルオロ−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3−クロロ−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3,5−ジクロロ−4−ヒドロキシフェニル)シクロヘキサン等のシクロヘキサン誘導体であるビスフェノール類;
1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(3−メチル−4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(3−エチル−4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(3−イソブチル−4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(3−フルオロ−4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン等の−3,3,5−トリメチルシクロヘキサン誘導体であるビスフェノール類;
9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−エチル−4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−イソブチル−4−ヒドロキシフェニル)フルオレン、1,1−ビス(3−フルオロ−4−ヒドロキシフェニル)フルオレン、9,9−ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)フルオレン等のフルオレン誘導体であるビスフェノール類;
1,1−ビス(4−ヒドロキシフェニル)−シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロオクタン、1,1−ビス(4−ヒドロキシフェニル)シクロノナン、1,1−ビス(4−ヒドロキシフェニル)シクロデカン等のシクロアルカン誘導体であるビスフェノール類;
4,4’−ビフェノール等の芳香族環が直接結合したビフェノール類;
ビス(4−ヒドロキシフェニル)スルホン、ビス(3−メチル−4−ヒドロキシフェニル)スルホン、ビス(3,5−ジメチル−4−ヒドロキシフェニル)スルホン、ビス(3−エチル−4−ヒドロキシフェニル)スルホン、ビス(3−イソブチル−4−ヒドロキシフェニル)スルホン、ビス(3−フルオロ−4−ヒドロキシフェニル)スルホン、ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)スルホン等のスルホン誘導体であるビスフェノール類;
ビス(4−ヒドロキシフェニル)エーテル、ビス(3−メチル−4−ヒドロキシフェニル)エーテル、ビス(3,5−ジメチル−4−ヒドロキシフェニル)エーテル、ビス(3−エチル−4−ヒドロキシフェニル)エーテル、ビス(3−イソブチル−4−ヒドロキシフェニル)エーテル、ビス(3−フルオロ−4−ヒドロキシフェニル)エーテル、ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)エーテル等のエーテル結合を有するビスフェノール類;
ビス(4−ヒドロキシフェニル)スルフィド、ビス(3−メチル−4−ヒドロキシフェニル)スルフィド、ビス(3,5−ジメチル−4−ヒドロキシフェニル)スルフィド、ビス(3−エチル−4−ヒドロキシフェニル)スルフィド、ビス(3−イソブチル−4−ヒドロキシフェニル)スルフィド、ビス(3−フルオロ−4−ヒドロキシフェニル)スルフィド、ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)スルフィド等のスルフィド結合を有するビスフェノール類;
ビス(4−ヒドロキシフェニル)スルホキシド、ビス(3−メチル−4−ヒドロキシフェニル)スルホキシド、ビス(3,5−ジメチル−4−ヒドロキシフェニル)スルホキシド、ビス(3−エチル−4−ヒドロキシフェニル)スルホキシド、ビス(3−イソブチル−4−ヒドロキシフェニル)スルホキシド、ビス(3−フルオロ−4−ヒドロキシフェニル)スルホキシド、ビス(3,5−ジフルオロ−4−ヒドロキシフェニル)スルホキシド等のスルホキシド誘導体であるビスフェノール類;
フェノールフタレイン等のヘテロ原子含有脂肪族環を有するビスフェノール類;
ビス(2,3,5,6−テトラフルオロ−4−ヒドロキシフェニル)ジフルオロメタン、1,1−ビス(2,3,5,6−テトラフルオロ−4−ヒドロキシフェニル)パーフルオロエタン、2,2−ビス(2,3,5,6−テトラフルオロ−4−ヒドロキシフェニル)パーフルオロプロパン等の炭素−水素結合のないビスフェノール類等を挙げることができる。
さらに、ヒドロキノン、レゾルシノール、カテコール、メチルヒドロキノン等のジヒドロキシベンゼン類;1,5−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン等のジヒドロキシナフタレン類等を挙げることができる。
スチレン系エラストマー(P1)中の酸無水物基1molに対するフェノール化合物(C5)のフェノール性水酸基の含有量は、0.1〜20molの範囲が好ましく、0.5〜10molの範囲がより好ましく、1〜3molの範囲が更に好ましい。スチレン系エラストマー(P1)中の酸無水物基に対し、フェノール性水酸基の含有量を0.1mol以上とすることにより、架橋密度を増加させ、耐熱性、絶縁性、接着性を向上できる。エポキシ基の含有量を20mol以下とすることにより、新たな極性基の生成を抑制し、誘電正接の悪化を抑制できる。
組成物(I)−2には、物性を損なわない範囲で、シランカップリング剤または/およびチオール化合物を含有させることができる。その効果は組成物(I)−1で説明した通りである。また、シランカップリング剤およびチオール化合物の好適例および好適含有量は、組成物(I)−1と同様である。
組成物(I)−3には、難燃性の付与、樹脂組成物の流動性制御、硬化物の弾性率向上等の目的で、更にフィラーを添加することができる。形状やフィラーの好適例、平均粒子径および含有量の好適範囲、並びに添加方法等は、組成物(I)−1と同様である。
組成物(I)−3には、必須成分および上述した任意成分の他に、目的を損なわない範囲で更に、組成物(I)−1で例示した化合物、添加剤を加えることができる。
組成物(I)−1〜(I)−3、(II)、(III)のいずれかの熱硬化性樹脂組成物の半硬化物を用いることにより、誘電特性および低反り性に優れ、且つクラックの発生を効果的に低減できる信頼性の高いプリプレグを提供することができる。
[金属張積層板]
本実施形態に係る金属張積層板は、少なくともプリプレグの硬化物からなる絶縁層(以下、単に絶縁層(プリプレグの硬化物)とも称する)と金属層を含む積層体である。本実施形態に係る金属張積層板は、例えば、金属層とプリプレグを積層した後、加熱圧着によりプリプレグを硬化せしめることにより、金属張積層板を得ることができる。加熱圧着法は、公知の方法を利用できる。温度は120〜200℃、圧力は0.5〜10MPa、加熱時間は0.5〜5時間等により熱プレスする方法がある。
金属張積層板の積層構成としては、金属層/絶縁層(プリプレグの硬化物)の2層の積層体、金属層/絶縁層(プリプレグの硬化物)//金属層の複層からなる積層体、或いは金属層/絶縁層(プリプレグの硬化物)/金属層/絶縁層(プリプレグの硬化物)/金属層等の交互に積層された多層構造を有する金属張積層板が例示できる。また、絶縁層(プリプレグの硬化物)以外の絶縁層が積層体に含まれていてもよい。例えば、金属層/絶縁層(プリプレグの硬化物)/絶縁層(樹脂シート)の積層体、金属層/絶縁層(プリプレグの硬化物)/絶縁層(樹脂シート)/金属層、金属層/絶縁層(プリプレグの硬化物)/絶縁層(樹脂シート)/金属層/絶縁層(プリプレグの硬化物)/絶縁層(樹脂シート)/金属層等の多層構造の積層体等が例示できる。また、絶縁層(プリプレグの硬化物)の厚みを調整するためにプリプレグを複数枚重ねて硬化させることもできる。また、金属層以外の導電層が積層されていてもよい。樹脂シートにはフィラー等が含まれていてもよい。
プリプレグに用いる基材の特性に異方性がある場合(例えば、引張強度等に異方性がある場合)、複数枚のプリプレグの重ね合わせ方向を調整して、強度を補強するようにすることもできる。例えば、2枚のプリプレグを、異方性のある第一方向が実質的に90°ずれるように重ね合わせることができる。また、例えば、不織布のプリプレグと織布のプリプレグを積層させてプリプレグの積層体を形成したり、組成物(I)〜(III)の熱硬化性樹脂組成物からなるプリプレグを任意に積層させてプリプレグの積層体を形成したり、本実施形態に係るプリプレグと、その他のプリプレグの積層体としてもよい。
金属層の材質は特に限定されず、銅、銀、アルミニウム、ステンレスなどを用いることができる。金属箔や蒸着膜を用いることができる。また、銅の場合、電解銅や圧延銅が好適に用いられる。金属層は、パターニングされていない層であっても、パターニングされている層であってもよい。金属層の厚みは例えば0.1〜50μmとすることができる。好ましくは1〜35μmであり、より好ましくは6〜18μmである。
例えば、金属層/絶縁層(プリプレグの硬化物)/金属層の層構成を有する金属張積層板は、絶縁層(プリプレグの硬化物)の両主面上に形成された金属層に回路パターンを形成することにより、回路パターン層を有する回路基板を得ることができる。絶縁層には、スルーホールなどを形成してもよい。コア基板にビルドアッププロセスによって、絶縁層(プリプレグの硬化物)または/および絶縁層(樹脂シート等)を重ね合わせて、ビアを形成し、多層化してもよい。回路基板は、例えば、サブトラクティブ法により金属張積層板の金属層を所望の回路パターンに形成する方法や、アディティブ法により絶縁層(プリプレグの硬化物)の片面または両面に所望の回路パターンを形成することにより得ることができる。
[プリント配線板]
本実施形態のプリント配線板は、本実施形態のプリプレグ又は金属張積層板を用いて製造される。本実施形態のプリント配線板は、例えば、本実施形態の金属張積層板の表面に回路を形成して製造することができる。また、本実施形態の金属張積層板の導体層を通常のエッチング法によって配線や回路を形成し、本実施形態のプリプレグを介して配線加工した積層板を複数積層し、加熱プレス加工することによって一括して多層化することもできる。その後、ドリル加工又はレーザ加工によるスルーホール又はビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を経て多層プリント配線板を製造することができる。また、プリント配線板は電子機器に搭載して好適に利用できる。
[多層配線基板]
多層配線基板は、コア基板の片面または両面に、層間絶縁層および回路パターンが形成された導電層が交互に積層された基板である。コア基板としては、上述した回路基板、ガラスエポキシ基板、シリコン基板、窒化アルミニウム基板等のセラミック基板、ビスマレイミド−トリアジン樹脂基板等が例示できる。
層間絶縁層として、本実施形態の絶縁層(プリプレグの硬化物)を用いることができる。絶縁層(プリプレグの硬化物)の他に、低誘電特性を有する樹脂シートの硬化物を用いてもよい。層間絶縁層には、絶縁層(プリプレグの硬化物)と低誘電特性を有する樹脂シートの積層体を導電層と交互に積層してもよい。また、各層間絶縁層は異なる構成としてもよい。
多層配線基板は、例えば、コア基板の片面または両面にプリプレグを積層して硬化させてプリプレグの硬化物からなる絶縁層を形成した後、ドリル加工やレーザ加工などによりこの絶縁層(プリプレグの硬化物)に開口部を設け、導電材を充填してビアを形成し、この層間絶縁層上に回路層を積層する。その後、さらにプリプレグを積層して硬化し、ビアを形成する工程を繰り返すことで多層回路基板を形成することができる。
本実施形態のプリプレグを用いることにより、高周波特性の優れた回路基板を提供できる。このため、高周波信号により通信される多層配線基板として好適に用いることができる。また、多層配線基板は電子機器に搭載して好適に利用できる。
以下に、実施例により、本発明を更に具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における、「部」および「%」は、「質量部」および「質量%」をそれぞれ表し、Mwは重量平均分子量を意味する。
[合成例1]<スチレン系エラストマー(P1)の合成例>
ポリマーのブロック比において(以下、同様)スチレン:[エチレン/ブチレン]=15:85(質量%)、重量平均分子量55000のスチレン系エラストマー(P1)100gに対して、無水マレイン酸1.03g、ベンゾイルパーオキサイド0.1g、イルガノックス1010(BASFジャパン社製、酸化防止剤)0.6gをドライブレンドし、ベント付き32ミリの二軸押出機を用いて、更に混合し、溶融混錬し、ペレット状サンプルを得た。混合、溶融混練時の二軸押出機の温度は、ホッパー下部40℃、混合ゾーン80℃、反応ゾーン170℃、ダイス180℃とした。
得られたペレット状サンプル100質量部に、アセトン85質量部、ヘプタン85質量部を加え、耐圧反応器中、85℃で2時間加熱攪拌した。同操作終了後、金網でペレットを回収し、これを140℃、0.1Torrで20時間真空乾燥して、酸無水物基を有するスチレン−ブタジエンブロック共重合体を得た。分子量分布は狭く、重量平均分子量は60000、全酸価は11.2mgCHONa/g、酸無水物価は5.6mgCHONa/gであった。
合成例1のMwの測定は東ソ−社製GPC(ゲルパーミエーションクロマトグラフィ)「HPC−8020」を用いた。GPCは溶媒(THF;テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィ−である。本発明における測定は、カラムに「LF−604」(昭和電工社製:迅速分析用GPCカラム:6mmID×150mmサイズ)を直列に2本接続して用い、流量0.6mL/min、カラム温度40℃の条件で行い、重量平均分子量(Mw)の決定はポリスチレン換算で行った。
合成例1の全酸価は、樹脂固形1g中に含まれる酸無水物基およびカルボン酸を中和するために必要なナトリウムメトキシドの量(mg)で表したものである。共栓三角フラスコ中に試料約1gを精密に量り採り、シクロヘキサノン溶媒100mLを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、30秒間保持する。その後、溶液が淡紅色を呈するまで0.1Nのナトリウムメトキシド溶液で滴定する。酸価は次式により求めた(単位:mgCHONa/g)。
酸価(mgCHONa/g)=(5.412×a×F)/S
但し、
S:試料の採取量(g)
a:0.1Nのナトリウムメトキシド溶液の消費量(mL)
F:0.1Nのナトリウムメトキシド溶液の力価
合成例1の酸無水物価の測定は、共栓三角フラスコ中に試料約1gを精密に量り採り、1,4−ジオキサン溶媒100mLを加えて溶解した。試料中の酸無水物基の量よりも多いオクチルアミン、1,4−ジオキサン、水の混合溶液(質量の混合比は1.49/800/80)を10mL加えて15分攪拌し、酸無水物基と反応させた。その後、過剰のオクチルアミンを0.02M過塩素酸、1,4−ジオキサンの混合溶液で滴定した。また、試料を加えていない、オクチルアミン、1,4−ジオキサン、水の混合溶液(質量の混合比は1.49/800/80)10mLもブランクとして測定を実施した。酸無水物価は次式により求めた(単位:mgCH3ONa/g)
酸無水物価(mgCH3ONa/g)=0.02×(B−S)×F×54.12/W
B:ブランクの滴定量(mL)
S:試料の滴定量(mL)
W:試料固形量(g)
F:0.02mol/L過塩素酸の力価
合成例1の酸無水物基と開環しているカルボン酸の割合は、以下の方法により求めた。
酸無水物基:開環しているカルボン酸=酸無水物基価:(全酸価−酸無水物基価×2)
[合成例2]<ポリアミド樹脂(P2)の合成例>
撹拌機、還流冷却管、窒素導入管、導入管、温度計を備えた4口フラスコに、炭素数36の多塩基酸化合物としてプリポール1009(クローダジャパン社製、C36ダイマー酸、C6の環状構造を1つ有する化合物を含む(酸価:195mgKOH/g)を324.6g、フェノール性水酸基を有する多塩基酸化合物として5−ヒドロキシイソフタル酸を25.7g(0.14mol)、ワンダミンHM(新日本理化社製、4,4’−ジアミノジシクロヘキシルメタン)を138.6g、イオン交換水を100g仕込み、発熱の温度が一定になるまで撹拌した。温度が安定したら110℃まで昇温し、水の流出を確認してから、30分後に温度を120℃に昇温し、その後、30分ごとに10℃ずつ昇温しながら脱水反応を続けた。温度が230℃になったら、そのままの温度で3時間反応を続け、約2kPaの真空下で1時間保持し、温度を低下させた。最後に、酸化防止剤を添加し、重量平均分子量21200、酸価10.6mgKOH/g、アミン価0.3mgKOH/g、フェノール性水酸基価16.2mgKOH/g、ガラス転移温度50℃のポリアミド(A−1)を得た。なお、反応に供した全単量体100mol%中、C20〜60炭化水素基を有する単量体は、41.4mol%である。
合成例2のフェノール性水酸基価は、フェノール性水酸基含有ポリアミド1g中に含まれるフェノール性水酸基の量を、フェノール性水酸基をアセチル化させたときにフェノール性水酸基と結合した酢酸を中和するために必要な水酸化カリウムの量(mg)で表したものである。フェノール性水酸基価は、JIS K0070に準じて測定した。本発明において、末端カルボン酸のフェノール性水酸基含有ポリアミドのフェノール性水酸基価を算出する場合には、下記式に示す通り、酸価を考慮して計算する。
合成例2のフェノール性水酸基価の測定は以下の通りとした。
共栓三角フラスコ中に試料約1gを精密に量り採り、シクロヘキサノン溶媒100mLを加えて溶解する。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mLとした溶液)を正確に5mL加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、30秒間持続する。その後、溶液が淡紅色を呈するまで0.5Nアルコール性水酸化カリウム溶液で滴定する。
水酸基価は次式により求めた(単位:mgKOH/g)。
水酸基価(mgKOH/g)=[{(b−a)×F×28.05}/S]+D
但し、
S:試料の採取量(g)
a:0.5Nアルコール性水酸化カリウム溶液の消費量(mL)
b:空実験の0.5Nアルコール性水酸化カリウム溶液の消費量(mL)
F:0.5Nアルコール性水酸化カリウム溶液の力価
D:酸価(mgKOH/g)
合成例2の酸価は以下の方法により求めた。
共栓三角フラスコ中に試料約1gを精密に量り採り、シクロヘキサノン溶媒100mLを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、30秒間保持する。その後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定する。酸価は次式により求めた(単位:mgKOH/g)。
酸価(mgKOH/g)=(5.611×a×F)/S
但し、
S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(mL)
F:0.1Nアルコール性水酸化カリウム溶液の力価
合成例2のアミン価は以下の方法により求めた。
共栓三角フラスコ中に試料約1gを精密に量り採り、シクロヘキサノン溶媒100mLを加えて溶解する。これに、別途0.20gのMethyl Orangeを蒸溜水50mLに溶解した液と、0.28gのXylene Cyanol FFをメタノール50mLに溶解した液とを混合して調製した指示薬を2、3滴加え、30秒間保持する。その後、溶液が青灰色を呈するまで0.1Nアルコール性塩酸溶液で滴定する。アミン価は次式により求めた(単位:mgKOH/g)。
酸価(mgKOH/g)=(5.611×a×F)/S
但し、
S:試料の採取量(g)
a:0.1Nアルコール性塩酸溶液の消費量(mL)
F:0.1Nアルコール性塩酸溶液の力価
合成例2のMwは以下の方法により求めた。
Mwの測定は昭和電工社製GPC(ゲルパーミエーションクロマトグラフィー)「GPC-101」を用いた。GPCは溶媒(THF;テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィーである。本発明における測定は、カラムに「KF−805L」(昭和電工社製:GPCカラム:8mmID×300mmサイズ)を直列に2本接続して用い、試料濃度1wt%、流量1.0ml/min、圧力3.8MPa、カラム温度40℃の条件で行い、重量平均分子量(Mw)の決定はポリスチレン換算で行った。データ解析はメーカー内蔵ソフトを使用して検量線および分子量、ピーク面積を算出し、保持時間17.9〜30.0分の範囲を分析対象として質量平均分子量を求めた。
合成例2のポリアミド樹脂(P2)ガラス転移温度の測定方法は以下の通りとした。
溶剤を乾燥除去したポリアミド樹脂(P2)について、メトラー・トレド社製「DSC−1」を使用し、サンプル量約5mgをアルミニウム製標準容器に秤量し、温度変調振幅±1℃、温度変調周期60秒、昇温速度2℃/分の条件にて、−80〜200℃まで測定し、可逆成分の示差熱曲線からガラス転移温度を求めた。
[合成例3]<ポリウレタン樹脂(P3)の合成例>
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、アジピン酸と3−メチル−1,5−ペンタンジオールとから得られるMn=1002であるジオール352部、ジメチロールブタン酸32部、イソホロンジイソシアネート176部、及びトルエン40部を仕込み、窒素雰囲気下90℃で3時間反応させた。これに、トルエン300部を加えて、末端にイソシアネート基を有するウレタンプレポリマーの溶液を得た。次に、イソホロンジアミン32部、ジ−n−ブチルアミン4部、2−プロパノール342部、及びトルエン576部を混合したものに、得られたウレタンプレポリマーの溶液810部を添加し、70℃で3時間反応させ、Mw=35,000、酸価21mgKOH/gであるポリウレタンポリウレア樹脂の溶液を得た。これに、トルエン144部、2−プロパノール72部を加えて、固形分50%であるポリウレタンポリウレア樹脂溶液を得た。
合成例3のTgの測定は、示差走査熱量測定(メトラー・トレド社製「DSC−1」)によって測定した。また、合成例3のMwの測定は合成例1と同様の方法で行った。また、酸価は、熱硬化性樹脂1gをメチルエチルケトン40mLに溶解し、京都電子工業社製自動滴定装置「AT−510」にビュレットとして同社製「APB−510−20B」を接続したものを使用した。滴定試薬としては0.1mol/Lのエタノール性KOH溶液を用いて電位差滴定を行い、樹脂1gあたりのKOHのmg数を算出した。
[プリプレグおよび金属張積層体の作製](実施例1〜5及び比較例1)
樹脂、硬化剤、難燃剤及び希釈溶剤にメチルエチルケトンを使用して、表1に示した配合割合(固形質量部)で混合して固形分60質量%の熱硬化性樹脂組成物を得た。
次に、上記熱硬化性樹脂組成物を、ガラス繊布(長さ530mm、幅530mm、厚さ0.18mm、日東紡績社製)に含浸塗工し,100℃で10分加熱乾燥して樹脂含有量48質量%のプリプレグを得た。このプリプレグを4枚重ね,12μmの電解銅箔を上下に配置し,圧力2.5MPa、温度180℃で60分間プレスを行って,銅張積層板を得た。得られた樹脂板の評価結果を表1に示す。
比誘電率
実施例1〜5および比較例1の樹脂組成物を、剥離性シート上に塗工して乾燥することにより、樹脂層の片面が剥離性シートで覆われたシートを得た。その後、同様にしてシートをもう一組得、樹脂層側を重ね合わせて、樹脂層の両面に剥離性シートが形成された、即ち、剥離性シートにより重ね合わせた樹脂層が挟持された両面剥離性シート付き樹脂組成物シートを形成した。
次いで、片側の剥離性シートを除去し、180℃の条件で1時間熱硬化させ後、反対側の剥離性シートを除去し、評価用試験片を作製した。この試験片について、エー・イー・ティー社製の誘電率測定装置を用い、空洞共振器法により、測定温度23℃、測定周波数5GHzにおける比誘電率および誘電正接を求めた。
A・・・比誘電率が3.2以下である。
B・・・比誘電率が3.2より大きく3.5以下である。
C・・・比誘電率が3.5より大きく4.0以下である。
D・・・比誘電率が4.0より大きい。
誘電正接
A・・・誘電正接が0.003以下である。
B・・・誘電正接が0.003より大きく0.005以下である。
C・・・誘電正接が0.005より大きく0.010以下である。
D・・・誘電正接が0.010より大きい。
貯蔵弾性率
次に、上記樹脂組成物を剥離性PETフィルムの剥離処理面に乾燥膜厚が0.1mmとなる用アプリケーターを使用して塗工し、100℃3分乾燥し塗工シートを得た。その後、同様に作製したもう一方の塗工シートをロールラミネーターで張り合わせ、さらに熱プレス機で170℃、2MPaで熱プレスすることで塗工シート上の樹脂組成物を硬化させた。その後、剥離性PETフィルムを剥がし、動的弾性率測定装置DVA−200(アイティー計測制御社製)を用いて、測定試料に対して変形様式「引張り」、周波数10Hz、昇温速度10℃/分、測定温度範囲30〜300℃の条件で測定を行い、25℃における貯蔵弾性率とTgを求めた。
はぜ折試験(柔軟性の評価)
はぜ折試験は、半径15mmの曲げ特性試験を行った。長さ200mm、幅50mmの銅張積層板の電解銅箔を全面エッチングした評価基板を用意した。そして、この評価基板に対し、厚さ30mmのスペーサをはさみ二つ折りにし、上下から重さ200gのステンレス製の鏡板で押さえて、半径15mmの曲げ部分を形成した。5分後、評価基板を元にもどし、曲げ部分に折れ、クラックの有無を目視で確認した。評価基準は以下の通りとした。
○:クラックが確認されない。
×:クラックが確認された。
本実施例および比較例に用いた樹脂等は以下の通りである。
(樹脂)
・樹脂1:クレゾールノボラック型エポキシ樹脂、DIC社製、N−680
・樹脂2:レゾール型フェノール樹脂、DIC社製、J−325
・樹脂3:エポキシ樹脂、三菱ケミカル社製、JER1031S
(硬化剤)
・硬化剤1:TETRAD−X、三菱ガス化学社製、4官能多官能グリシジルアミン化合物
・硬化剤2:24A−100:旭化成ケミカル社製、ヘキサメチレンジイソシアネート(以下、HDIと略す)のビウレット体
・硬化剤3:ジシアンジアミド、三菱ケミカル社製、DYCY7
・硬化剤4:2−フェニルイミダゾール、四国化成社製、2PZ
・硬化剤5:ZC700、マツモトファインケミカル社製、4官能Zrキレート化合物
(難燃剤)
・難燃剤1:ホスフィン酸アルミニウム
Figure 2020164793

Claims (7)

  1. 基材と、前記基材に含浸された熱硬化性樹脂組成物の半硬化物とを備え、
    前記熱硬化性樹脂組成物は、
    カルボン酸の無水物基を有するスチレン系エラストマー(P1)と、前記無水物基と反応する、ポリイソシアネート成分(C1)、エポキシ化合物(C4)またはフェノール化合物(C5)のいずれかと、を含有する組成物(I)、
    側基にフェノール性水酸基を有するポリアミド樹脂(P2)と、前記フェノール性水酸基と反応し得る3官能以上の化合物(C2)とを含有する組成物(II)、または
    カルボキシル基を有するポリウレタン樹脂(P3)と、前記カルボキシル基と反応し得るエポキシ化合物(C3)とを含有する組成物(III)であり、
    前記熱硬化性樹脂組成物の硬化物は、
    比誘電率が4.0以下、誘電正接が0.010以下であるプリプレグ。
  2. スチレン系エラストマー(P1)は、
    オレフィンに由来する構成単位および共役ジエンに由来する構成単位の少なくともいずれかと、スチレン由来の構成単位とを有するブロック共重合体であり、ポリイソシアネート成分(C1)は、2個以上のイソシアネートを有するイソシアネート基含有化合物であり、
    ポリアミド樹脂(P2)は、
    以下の(i)および/または(ii)であり、更に、(i)のポリアミド樹脂(P2)は(iii)、(vi)を満足し、(ii)のポリアミド樹脂(P2)は(iv)〜(vi)を満足し、
    化合物(C2)は以下の(vii)を満足し、
    ポリウレタン樹脂(P3)は、ポリウレタンポリウレア樹脂である請求項1記載のプリプレグ。
    (i)ポリアミド樹脂(P2)は、フェノール性水酸基および炭素数20〜60の炭化水素基(但し、前記フェノール性水酸基が結合する芳香環は含まない)が同一ポリマー内に含まれるポリアミド(A−1)である。
    (ii)ポリアミド樹脂(P2)は、側基にフェノール性水酸基を含むポリアミド(a−1)と、炭素数20〜60の炭化水素基を含むポリアミド(a−2)とを混合したポリアミド(A−3)である。
    (iii)ポリアミド(A−1)を構成する単量体として、フェノール性水酸基を具備する単量体および炭素数20〜60の炭化水素基を具備する単量体を含む。
    (iv)ポリアミド(a−1)を構成する多塩基酸単量体または/およびポリアミン単量体に、フェノール性水酸基を具備する単量体を含み、且つ前記多塩基酸単量体および前記ポリアミン単量体に、炭素数20〜60の炭化水素基を具備する単量体を含まない。
    (v)ポリアミド(a−2)を構成する前記多塩基酸単量体または/および前記ポリアミン単量体に、炭素数20〜60の炭化水素基を具備する単量体を含み、且つ前記多塩基酸単量体および前記ポリアミン単量体に、フェノール性水酸基を具備する単量体を含まない。
    (vi)炭素数20〜60の炭化水素基を具備する単量体の少なくとも一部が、炭素数5〜10の環状構造を具備する化合物を含む。
    (vii)化合物(C2)が、エポキシ基含有化合物、イソシアネート基含有化合物、カルボジイミド基含有化合物、金属キレート、金属アルコキシドおよび金属アシレートからなる群より選ばれる少なくとも1種である。
  3. 前記熱硬化性樹脂組成物の硬化後の25℃での貯蔵弾性率が1〜5000MPaである請求項1又は2に記載のプリプレグ。
  4. 請求項1〜3のいずれかに記載のプリプレグの硬化物からなる絶縁層と、前記絶縁層の片面または両面上に形成された金属層と、を具備する金属張積層板。
  5. 請求項1〜3のいずれかに記載のプリプレグの硬化物からなる絶縁層と、
    前記絶縁層の片面又は両面上に形成された回路パターンと、を備えるプリント配線板。
  6. 層間絶縁層および回路パターン層がそれぞれ2層以上積層された多層配線基板であって、
    前記層間絶縁層の少なくとも一つが、請求項1〜3のいずれかに記載のプリプレグの硬化物からなる絶縁層である多層配線基板。
  7. 請求項5に記載のプリント配線板または請求項6に記載の多層配線基板を搭載した電子機器。
JP2020024385A 2019-03-29 2020-02-17 プリプレグ、金属張積層板、プリント配線板、多層配線基板および電子機器 Pending JP2020164793A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065269 2019-03-29
JP2019065269 2019-03-29

Publications (1)

Publication Number Publication Date
JP2020164793A true JP2020164793A (ja) 2020-10-08

Family

ID=72715781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020024385A Pending JP2020164793A (ja) 2019-03-29 2020-02-17 プリプレグ、金属張積層板、プリント配線板、多層配線基板および電子機器

Country Status (1)

Country Link
JP (1) JP2020164793A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656874A (zh) * 2020-12-23 2022-06-24 日铁化学材料株式会社 聚酰亚胺组合物、树脂膜、层叠体、覆盖膜、带树脂的铜箔、覆金属层叠板及电路基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256137A (ja) * 2001-02-28 2002-09-11 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物およびプリプレグ
JP2009263569A (ja) * 2008-04-28 2009-11-12 Hitachi Chem Co Ltd 薄層石英ガラスクロスを含むプリプレグ、およびそれを用いた配線板
JP2014101399A (ja) * 2012-11-16 2014-06-05 Hitachi Chemical Co Ltd シアネートエステル系樹脂組成物、これを用いたプリプレグ、及び積層板
WO2016001949A1 (ja) * 2014-07-02 2016-01-07 東洋インキScホールディングス株式会社 熱硬化性樹脂組成物、ポリアミド、接着性シート、硬化物およびプリント配線板
WO2016129565A1 (ja) * 2015-02-09 2016-08-18 株式会社有沢製作所 低誘電樹脂組成物
JP2018123269A (ja) * 2017-02-03 2018-08-09 東洋インキScホールディングス株式会社 熱硬化性接着シート、およびその利用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256137A (ja) * 2001-02-28 2002-09-11 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物およびプリプレグ
JP2009263569A (ja) * 2008-04-28 2009-11-12 Hitachi Chem Co Ltd 薄層石英ガラスクロスを含むプリプレグ、およびそれを用いた配線板
JP2014101399A (ja) * 2012-11-16 2014-06-05 Hitachi Chemical Co Ltd シアネートエステル系樹脂組成物、これを用いたプリプレグ、及び積層板
WO2016001949A1 (ja) * 2014-07-02 2016-01-07 東洋インキScホールディングス株式会社 熱硬化性樹脂組成物、ポリアミド、接着性シート、硬化物およびプリント配線板
WO2016129565A1 (ja) * 2015-02-09 2016-08-18 株式会社有沢製作所 低誘電樹脂組成物
JP2018123269A (ja) * 2017-02-03 2018-08-09 東洋インキScホールディングス株式会社 熱硬化性接着シート、およびその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
グラスファイバー, JPN7023004510, 24 September 2006 (2006-09-24), JP, ISSN: 0005210363 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656874A (zh) * 2020-12-23 2022-06-24 日铁化学材料株式会社 聚酰亚胺组合物、树脂膜、层叠体、覆盖膜、带树脂的铜箔、覆金属层叠板及电路基板

Similar Documents

Publication Publication Date Title
TWI695022B (zh) 含有噁唑烷酮環的環氧樹脂、其製造方法、環氧樹脂組成物、其固化物及其應用
US11359055B2 (en) Thermosetting resin composition, prepreg, laminate and multilayer printed wiring board
JP6074830B2 (ja) 熱硬化性樹脂組成物、接着性シート、硬化物およびプリント配線板
CN106467653B (zh) 阻燃性环氧树脂组合物、预浸料、绝缘片、粘着片、层叠板、密封材料、浇铸材料及固化物
JP5264133B2 (ja) エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ及び金属張積層板
WO2017154995A1 (ja) 積層体およびその製造方法、並びに接着層付樹脂フィルム
KR20080074037A (ko) 프리프레그 및 라미네이트
KR101520202B1 (ko) 수지 조성물, 이것을 포함하는 보호막, 드라이 필름, 회로 기판 및 다층 회로 기판
JP2020200454A (ja) 熱伝導材料用熱硬化性樹脂組成物およびその硬化物、電子部品並びに電子機器
JP2014141603A (ja) 誘電特性に優れる接着剤組成物、それを用いた接着剤シート、およびプリント配線板
KR101749369B1 (ko) 필름용 조성물, 및 그것에 의한 접착 필름 및 커버레이 필름
TW202219107A (zh) 硬化性樹脂、硬化性樹脂組成物、硬化物、清漆、預浸體、積層體及電路基板
TW202028347A (zh) 環氧樹脂組成物及其硬化物、預浸料、絕緣片材、黏接片材、積層板、密封材、澆鑄材
CN113993951A (zh) 马来酰亚胺树脂组合物、预浸料、层叠板、树脂膜、多层印刷线路板及半导体封装体
WO2008072630A1 (ja) ポリアミド樹脂、並びにそれを用いるエポキシ樹脂組成物及びその用途
JP2020164793A (ja) プリプレグ、金属張積層板、プリント配線板、多層配線基板および電子機器
TW201516070A (zh) 環氧樹脂組成物及其硬化物
JP7338758B2 (ja) 樹脂組成物
WO2022075221A1 (ja) 樹脂組成物、樹脂付き金属箔、プリプレグ、積層板、多層プリント配線板及び半導体パッケージ
JP2022150798A (ja) 樹脂組成物
CN116490348A (zh) 马来酰亚胺树脂组合物、预浸料、树脂膜、层叠板、印刷布线板和半导体封装
JP2020021851A (ja) 樹脂シート、多層フレキシブル基板及びその製造方法、並びに、半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240425

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514