JP2020138597A - 動力伝達軸に用いられる管体及び動力伝達軸 - Google Patents

動力伝達軸に用いられる管体及び動力伝達軸 Download PDF

Info

Publication number
JP2020138597A
JP2020138597A JP2019034006A JP2019034006A JP2020138597A JP 2020138597 A JP2020138597 A JP 2020138597A JP 2019034006 A JP2019034006 A JP 2019034006A JP 2019034006 A JP2019034006 A JP 2019034006A JP 2020138597 A JP2020138597 A JP 2020138597A
Authority
JP
Japan
Prior art keywords
power transmission
main body
transmission shaft
axis
inclined portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019034006A
Other languages
English (en)
Other versions
JP7324589B2 (ja
Inventor
森 健一
Kenichi Mori
健一 森
貴博 中山
Takahiro Nakayama
貴博 中山
一希 大田
Kazuki Ota
一希 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2019034006A priority Critical patent/JP7324589B2/ja
Publication of JP2020138597A publication Critical patent/JP2020138597A/ja
Application granted granted Critical
Publication of JP7324589B2 publication Critical patent/JP7324589B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

【課題】低コスト化を図れるとともに、軸線方向に所定の荷重が入力したときに確実に破損する動力伝達軸を提供する。【解決手段】回転することで動力を伝達する繊維強化プラスチック製の動力伝達軸に用いられる管体2である。管体2は、軸線O1を中心とする筒状の本体部10と、本体部10よりも縮径され、スタブシャフト4(連結部材)が接合される第二接続部30と、本体部10と第二接続部30との間に形成され、本体部10から第二接続部30に向かうに連れて外径が縮径された傾斜部40と、を備えている。傾斜部40は、軸線O1方向に曲線状に形成され、傾斜部40には、軸線O1方向に入力された荷重が所定値を超えると破損する脆弱部50が形成されている。脆弱部50は、傾斜部40のうち本体部10および第二接続部30の軸線に対する傾斜角度が最大となる部位である。【選択図】図2

Description

本発明は、動力伝達軸に用いられる管体及び動力伝達軸に関する。
車両に搭載される動力伝達軸(プロペラシャフト)は、車両の前後方向に延在しており、原動機で発生して変速機で減速された動力を終減速装置に伝達している。このような動力伝達軸としては、繊維強化プラスチックで形成されたものがある。
繊維強化プラスチック製の筒状の動力伝達軸としては、本体部と、本体部よりも拡径された接続部と、本体部と接続部との間に形成された傾斜部と、を備え、接続部に自在継手のシャフト部が嵌め込まれているものがある(例えば、特許文献1参照)。
前記した動力伝達軸では、車両が前方から衝突され、動力伝達軸に所定値を超える衝突荷重が入力したときに、接続部に対してシャフト部がスライドして傾斜部の内面に接触することで、傾斜部が破損する。これにより、車体の前部に搭載されたエンジンや変速機が速やかに後退し、衝突エネルギーが車体の前部により吸収される。
また、動力伝達軸の他の構成としては、接続部の周壁部を多層に形成し、動力伝達軸に所定値を超えた衝突荷重が入力したときに、シャフト部とともに接続部の内層部が剥離して、シャフト部が後退するものがある(例えば、特許文献2参照)。
特開平9−175202号公報 特開平7−208445号公報
前記した従来の動力伝達軸において、所定値を超える衝突荷重が入力した場合のみに接続部に対してシャフト部がスライドする構成では、接続部とシャフト部との接合力を精度良く設定する必要がある。そのためには、接続部及びシャフト部の寸法を高精度に成形する必要があるため、製造コストが増加するという問題がある。
また、前記した従来の動力伝達軸において、衝突時にシャフト部とともに接続部の内周部が剥離する構成では、接続部の周壁部を多層に形成するため、製造コストが増加するという問題がある。
本発明は、前記した問題を解決し、低コスト化を図れるとともに、軸線方向に所定の荷重が入力したときに確実に破損する動力伝達軸に用いられる管体及び動力伝達軸を提供することを課題とする。
前記課題を解決するため、第一の発明は、回転することで動力を伝達する繊維強化プラスチック製の動力伝達軸に用いられる管体である。管体は、軸線を中心とする筒状の本体部と、前記本体部よりも縮径され、連結部材が接合される接続部と、前記本体部と前記接続部との間に形成され、前記本体部から前記接続部に向かうに連れて外径が縮径された傾斜部と、を備えている。前記傾斜部は、前記本体部の軸線方向に曲線状に形成され、前記傾斜部には、前記本体部の軸線方向に入力された荷重が所定値を超えると破損する脆弱部が形成されている。前記脆弱部は、前記傾斜部のうち前記本体部および前記接続部の軸線に対する傾斜角度が最大となる部位である。
前記課題を解決するため、第二の発明は、回転することで動力を伝達する繊維強化プラスチック製の動力伝達軸に用いられる管体である。管体は、軸線を中心とする筒状の本体部と、前記本体部よりも拡径され、連結部材が接合される接続部と、前記本体部と前記接続部との間に形成され、前記本体部から前記接続部に向かうに連れて外径が拡径された傾斜部と、を備えている。前記傾斜部は、前記本体部の軸線方向に曲線状に形成され、前記傾斜部には、前記本体部の軸線方向に入力された荷重が所定値を超えると破損する脆弱部が形成されている。前記脆弱部は、前記傾斜部のうち前記本体部および前記接続部の軸線に対する傾斜角度が最大となる部位である。
前記課題を解決するため、第三の発明は、動力伝達軸であって、前記した動力伝達軸に用いられる管体と、前記接続部に接合された前記連結部材と、を備えている。
本発明の動力伝達軸に用いられる管体を備えている動力伝達軸では、軸線方向に荷重が入力され、傾斜部にせん断力が作用すると、脆弱部に応力が集中する。そして、傾斜部に作用するせん断力が所定値を超えると、傾斜部の脆弱部が破損する。この構成では、接続部と連結部材との接合力を精度良く設定する必要がないため、接続部の成形が容易になる。
したがって、本発明の動力伝達軸に用いられる管体及び動力伝達軸では、接続部の成形が容易になることで、低コスト化を図れる。また、本発明の動力伝達軸に用いられる管体及び動力伝達軸では、傾斜部を曲線状に形成することで、軸線方向に入力した所定の荷重によって確実に破損するように設定できる。
第一実施形態の動力伝達軸を示した側面図である。 第一実施形態の動力伝達軸の傾斜部を示した側断面図である。 第一実施形態の動力伝達軸において、脆弱部が破損した状態を示した側断面図である。 第二実施形態の動力伝達軸を示した側面図である。 第二実施形態の動力伝達軸の傾斜部を示した側断面図である。 第二実施形態の動力伝達軸において、脆弱部が破損した状態を示した側断面図である。 第三実施形態の動力伝達軸を示した側面図である。 第三実施形態の動力伝達軸の傾斜部を示した側断面図である。 第四実施形態の動力伝達軸を示した側面図である。 第四実施形態の動力伝達軸の傾斜部を示した側断面図である。
続いて、各実施形態の管体及び動力伝達軸について図面を参照しながら説明する。なお、各実施形態では、本発明の動力伝達軸を、FF(Front−engine Front−drive)ベースの四輪駆動車に搭載されるプロペラシャフトに適用した例を挙げる。また、各実施形態で共通する技術的要素には、共通の符号を付し、説明を省略する。
[第一実施形態]
図1に示すように、第一実施形態の動力伝達軸1は、車両の前後方向に延在する略円筒状の管体2(パイプ)を備えている。また、動力伝達軸1は、管体2の前端に接合されたカルダンジョイントのスタブヨーク3と、管体2の後端に接合された等速ジョイントのスタブシャフト4(特許請求の範囲における「連結部材」)と、を備えている。
動力伝達軸1は、スタブヨーク3を介して車体の前部に搭載された変速機に連結するとともに、スタブシャフト4を介して車体の後部に搭載された終減速装置と連結している。
そして、変速機から動力伝達軸1に動力(トルク)が伝達すると、動力伝達軸1が軸線O1回りに回転して、終減速装置に動力が伝達される。
管体2は、炭素繊維強化プラスチック(CFRP)製に形成されている。なお、本発明において繊維強化プラスチックに使用される強化繊維は、炭素繊維に限られず、ガラス繊維やアラミド繊維であってもよい。
管体2の製造方法は、図示しないマンドレルに連続炭素繊維を巻き付けて成形体を形成し、その後、成形体の外周にプリプレグ(炭素繊維に樹脂を含浸させたシート)を巻き付けている。よって、動力伝達軸1は、フィラメントワインディング法とシートワインディング法との二つの工法を取り入れられて製造されている。
ここで、フィラメントワインディング法によって製造される成形体は、繊維(炭素繊維)の連続性が保たれるため機械的強度(特にねじり強度)が高い。
また、シートワインディング法によれば、炭素繊維をマンドレルの軸線方向に延在するように配置することができ、軸線O1方向に高弾性化した成形体を製造できる。
つまり、上記した製造方法によれば、管体102の内部で、軸O1回りに巻回された繊維からなる繊維層と、軸線O1方向に延在する繊維からなる繊維層と、が積層しており、機械的強度が高く、かつ、軸線O1方向に高弾性化した管体2を製造できる。
なお、周方向に配向する繊維としてPAN系(Polyacrylonitrile)繊維が好ましく、軸線O1方向に配向する繊維としてピッチ繊維が好ましい。
なお、本発明の管体2は、上記した製造方法に限定されない。管体2の製造方法としては、マンドレルにプリプレグを巻き付けて成形体を形成し、その成形体の外周に連続炭素繊維を巻き付けてもよい。又は、管体2の製造方法としては、単一の製造方法(フィラメントワインディング法又はシートワインディング法)を用いてもよい。
管体2は、軸線O1を中心軸とする筒状の本体部10と、本体部10の前側に配置された第一接続部20と、本体部10の後側に配置された第二接続部30と、本体部10と第二接続部30との間に形成された傾斜部40と、を備えている。傾斜部40には、図2に示すように、脆弱部50が形成されている。
図1に示す本体部10を軸線O1を法線とする平面で切った場合には、本体部10の外周面の断面形状は円形状となっている。
また、本体部10の外径は、中央部から両端部11,12に向うに連れて縮径しており、中央部の外径は、両端部の外径よりも大きい。
つまり、 軸線O1に沿って本体部10を切った場合には、本体部10の外周面の断面形状は、緩やかな曲線を描き、外側に向けて突出する円弧状となっている。よって、本体部10の外形は、中央部が径方向外側に膨らんだ樽形状(バレル形状)となっている。
なお、第一実施形態の管体2では、軸線O1に沿って本体部10を切った場合に、本体部10の外周面の断面形状は円弧状となっているが、本発明においては、本体部10の外周面の断面形状を階段状に形成してもよい。
また、軸線O1に沿って本体部10を切った場合に、本体部10の外周面の断面形状が中央部から両端部11,12に向かうに連れて中心側に向かうように直線状に傾斜させてもよい。
第一接続部20内には、スタブヨーク3のシャフト部(図示せず)が嵌め込まれている。第一接続部20の内周面は、スタブヨーク3のシャフト部の多角形状の外周面に倣った多角形状を呈している。このように、管体2とスタブヨーク3とが互いに相対回転しないように構成されている。
図2に示すように、第二接続部30内には、スタブシャフト4のシャフト部5が嵌め込まれている。
第二接続部30の内周面35は、スタブシャフト4のシャフト部5の多角形状の外周面6に倣った多角形状を呈している。このように、管体2とスタブシャフト4とが互いに相対回転しないように構成されている。
なお、第一実施形態では、第二接続部30の内周形状が多角形に形成されているが、本発明においては、その形状は限定されるものではなく、シャフト部5の外周面6の形状に合わせて形成する。
第二接続部30の外径は、スタブシャフト4のシャフト部5の外径に対応して形成されており、本体部10の後端部よりも小径となっている。
傾斜部40は、本体部10と第二接続部30との間に形成された円筒状の部位である。傾斜部40の外径は、本体部10から第二接続部30に向かうに連れて次第に縮径している。
傾斜部40は、軸線O1方向に曲線状に形成されている。第一実施形態では、軸線O1に沿って傾斜部40を切った場合に、傾斜部40の周壁部45の断面形状は、緩やかな曲線を描き、内側に向けて窪んだ円弧状となっている。第一実施形態では、傾斜部40の周壁部45の板厚が均一となっている。
傾斜部40の周壁部45は、後端部42側から前端部41側に向かうに連れて、軸線O1に対する傾斜角度が大きくなっている。つまり、傾斜部40の前端部41は、径方向に向けて延びている。そして、傾斜部40の周壁部45の前端部41は、軸線O1に対する傾斜角度θが最大となっている。
傾斜部40の前端部41と、本体部10の後端部12とは、屈曲して接続されている。また、傾斜部40の後部は、緩やかに湾曲しており、傾斜部40の後端部42と第二接続部30の前端部31とは、直線状に接続されている。
第一実施形態では、傾斜部40の前端部41が脆弱部50を構成している。脆弱部50は、軸線方向に荷重が入力されて、傾斜部40にせん断力が作用したときに、応力が集中する部位であり、傾斜部40のうちせん断強度が最も低下している。
以上のような第一実施形態の管体2を備えている動力伝達軸1では、車両が前方から衝突され、動力伝達軸1に対して軸線O1方向に衝突荷重が入力されると、傾斜部40にせん断力が作用する。このとき、傾斜部40の脆弱部50に応力が集中する。そして、傾斜部40に作用するせん断力が所定値を超えると、図3に示すように、傾斜部40の脆弱部50が破損する。よって、車両衝突時に動力伝達軸1が破損することで、車体の前部に搭載されたエンジンや変速機は速やかに後退し、衝突エネルギーは車体の前部により吸収される。
なお、図3では脆弱部50が破断されているが、本発明においては、動力伝達軸1に対して軸線O1方向に入力した荷重が所定値を超えたときに、脆弱部50が変形することで、動力伝達軸1の軸方向の長さが短くなるように構成されていればよい。
以上、第一実施形態の管体2及び動力伝達軸1では、図2に示すように、第二接続部30とスタブシャフト4との接合力を精度良く設定する必要がないため、第二接続部30の成形が容易になる。また、管体2及び動力伝達軸1では、傾斜部40を成形するときに、脆弱部50を容易に形成できる。
したがって、第一実施形態の管体2及び動力伝達軸1では、第二接続部30の成形が容易になることで、低コスト化を図れる。また、第一実施形態の管体2及び動力伝達軸1では、傾斜部40に脆弱部50を形成することで、軸線O1方向に入力した所定の荷重によって確実に破損するように設定できる。
また、管体2及び動力伝達軸1では、第二接続部30の外径が小さいため、軽量化及び低コスト化を図れる。
また、管体2及び動力伝達軸1では、図1に示すように、曲げ応力が集中し易い本体部10の中央部の外径が大径に形成されているため、所定の曲げ強度を有している。
また、管体2及び動力伝達軸1は、管体2が繊維強化プラスチックにより形成されているため、設計の自由が高く、更なる低コスト化を図れる。
[第二実施形態]
次に、本発明の第二実施形態に係る管体102を備えている動力伝達軸101について説明する。
第二実施形態の動力伝達軸101は、図4に示すように、管体102と、管体102の前端に接合されたスタブヨーク3と、管体102の後端に接合されたスタブシャフト4と、を備えている。
第二実施形態の管体102は、本体部110と、本体部110の前側に配置された第一接続部20と、本体部110の後側に配置された第二接続部30と、本体部110と第二接続部30との間に位置する傾斜部140と、を備えている。傾斜部140には、図5に示すように、脆弱部150が形成されている。
図4に示す第二実施形態の本体部110を軸線O1を法線とする平面で切った場合に、本体部110の外周面の断面形状は円形状となっている。本体部110の外径は、前端部111から後端部112まで均一である。つまり、第二実施形態の本体部110の外形は、ストレートな円筒体となっている。
第二実施形態の傾斜部140の周壁部145は、軸線O1方向に曲線状に形成されている。第二実施形態では、軸線O1に沿って傾斜部140を切った場合に、傾斜部140の周壁部145の断面形状は、緩やかな曲線を描き、外側に向けて突出した円弧状となっている。
第二実施形態の傾斜部140の周壁部は、前端部141側から後端部142側に向かうに連れて、軸線O1に対する傾斜角度が大きくなっている。つまり、傾斜部140の後端部142は、径方向に向けて延びている。また、第二接続部30の前端部31は、軸線O1方向に延びている。そして、傾斜部140の周壁部145の後端部142は、軸線O1に対する傾斜角度θが最大となっている。
傾斜部140の後端部142と、本体部10の第二接続部30の前端部31とは、屈曲して接続されている。また、傾斜部140の前部は、緩やかに湾曲しており、傾斜部140の前端部141と本体部110の後端部112とは、直線状に接続されている。第二実施形態では、傾斜部140の後端部142が脆弱部150を構成している。
以上のような第二実施形態の管体102を備えている動力伝達軸101では、車両が前方から衝突され、傾斜部140に作用するせん断力が所定値を超えると、図6に示すように、傾斜部140の脆弱部150が破損する。そして、車体の前部に搭載されたエンジンや変速機は速やかに後退し、衝突エネルギーは車体の前部により吸収される。
以上、図5に示す第二実施形態の管体102及び動力伝達軸101では、第一実施形態の動力伝達軸1(図2参照)と同様に、第二接続部30の成形が容易になり、さらに、本体部110の成形も容易になるため、低コスト化を図れる。また、第二実施形態の管体102及び動力伝達軸101では、傾斜部140に脆弱部150を形成することで、軸線O1方向に入力した所定の荷重によって確実に破損するように設定できる。
[第三実施形態]
次に、本発明の第三実施形態に係る管体202を備えている動力伝達軸201について説明する。
第三実施形態の動力伝達軸201は、図7に示すように、管体202と、管体202の前端に接合されたスタブヨーク3と、管体202の後端に接合されたスタブシャフト4と、を備えている。
第三実施形態の管体202は、本体部210と、本体部210の前側に配置された第一接続部20と、本体部210の後側に配置された第二接続部30と、本体部210と第二接続部30との間に位置する傾斜部240と、を備えている。傾斜部240には、図8に示すように、脆弱部250が形成されている。
図7に示す第三実施形態の本体部210を軸線O1を法線とする平面で切った場合に、本体部210の外周面の形状は円形状となっている。
本体部210の外径は、前端部211から中央部までが同一に形成され、中央部から後端部212に向うに連れて縮径している。よって、本体部210の前端部211及び中央部の外径は、後端部212の外径よりも大きい。
軸線O1に沿って本体部210を切った場合に、本体部210の外周面の断面形状は、前端部211から中央部までは直線状となっており、中央部から後端部212にかけて緩やかな曲線を描いて円弧状となっている。
図8に示すように、第三実施形態の傾斜部240を軸線O1に沿って切った場合に、傾斜部240の周壁部245の断面形状は、緩やかな曲線を描き、内側に向けて窪んだ円弧状となっている。そして、傾斜部240の前端部241が脆弱部250を構成している。
第三実施形態の傾斜部240の板厚は、第二接続部30側の後端部242から本体部10側の前端部241に向かうに連れて漸次薄くなっている。このため、傾斜部240の脆弱部250の板厚が最も薄くなっている。つまり、第三実施形態では、脆弱部250の板厚が最も薄くなっている。
なお、第三実施形態の動力伝達軸201では、傾斜部240全体の板厚が変化しているが、本発明においては、傾斜部240の一部区間において板厚を変化させてもよい。
また、傾斜部40の周壁部45の板厚を、本体部10側(前側)の端部(前端部、他端部)から第二接続部30側(後側)の端部(後端部、一端部)に向かうに連れて漸次薄くして、傾斜部40の後端部に脆弱部を設けてもよい。
以上のような第三実施形態の管体202を備えている動力伝達軸201では、車両が前方から衝突され、傾斜部240に作用するせん断力が所定値を超えると、傾斜部240の脆弱部250が破損する。そして、車体の前部に搭載されたエンジンや変速機は速やかに後退し、衝突エネルギーは車体の前部により吸収される。
以上、第三実施形態の管体202及び動力伝達軸201では、第一実施形態の動力伝達軸1(図2参照)と同様に、第二接続部30の成形が容易になり、さらに、本体部210の成形も容易になるため、低コスト化を図れる。また、第三実施形態の管体202及び動力伝達軸201では、傾斜部240に脆弱部250を形成することで、軸線O1方向に入力した所定の荷重によって確実に破損するように設定できる。
さらに、第三実施形態の管体202及び動力伝達軸201では、第二接続部30の小径化は、捩れ強度の低下を招くため、第二接続部30の板厚を本体部210の後端部212の板厚よりも厚くすることで、所定の捩じれ強度を有するようになっている。
[第四実施形態]
次に、本発明の第四実施形態に係る管体302を備えている動力伝達軸301について説明する。
第四実施形態の動力伝達軸301は、図9に示すように、管体302と、管体302の前端に接合されたスタブヨーク3と、管体302の後端に接合されたスタブシャフト4と、を備えている。
第三実施形態の管体302は、本体部10と、本体部10の前側に配置された第一接続部20と、本体部10の後側に配置された第二接続部330と、本体部10と第二接続部330との間に位置する傾斜部340と、を備えている。傾斜部340には、図10に示すように、脆弱部350が形成されている。
第四実施形態の本体部10の外形は、図9に示すように、中央部が径方向外側に膨らんだ樽形状(バレル形状)となっている。
第四実施形態の第二接続部330の外径は、図10に示すように、本体部10の後端部12よりも大径となっている。
第四実施形態の傾斜部340の外径は、本体部10から第二接続部330に向かうに連れて次第に拡径している。
第四実施形態の傾斜部340の周壁部345は、軸線O1方向に曲線状に形成されている。第四実施形態では、軸線O1に沿って傾斜部340を切った場合に、傾斜部340の周壁部345の断面形状は、緩やかな曲線を描き、外側に向けて突出した円弧状となっている。
第四実施形態の傾斜部340の周壁部345は、後端部342側から前端部341側に向かうに連れて、軸線O1に対する傾斜角度が大きくなっている。
傾斜部340の前端部341は、径方向に向けて延びている。そして、傾斜部340の前端部341が脆弱部350を構成している。
以上のような第四実施形態の管体302を備えている動力伝達軸301では、車両が前方から衝突され、傾斜部340に作用するせん断力が所定値を超えると、傾斜部340の脆弱部350が破損する。そして、車体の前部に搭載されたエンジンや変速機は速やかに後退し、衝突エネルギーは車体の前部により吸収される。
以上、第四実施形態の管体302及び動力伝達軸301では、第一実施形態の動力伝達軸1(図2参照)と同様に、第二接続部330の成形が容易になるため、低コスト化を図れる。また、第四実施形態の管体302及び動力伝達軸301では、傾斜部340に脆弱部350を形成することで、軸線O1方向に入力した所定の荷重によって確実に破損するように設定できる。
以上、各実施形態について説明したが、本発明は各実施形態で説明した例に限定されない。
例えば、各実施形態の動力伝達軸は、本体部と第二接続部との間に傾斜部を設け、その傾斜部に脆弱部を形成しているが、本体部と第一接続部との間に傾斜部を設け、その傾斜部に脆弱部を形成してもよい。
1,101,201,301 動力伝達軸
2,102,202,302 管体
3 スタブヨーク
4 スタブシャフト(連結部材)
10,110,210 本体部
20 第一接続部
30,330 第二接続部
40,140,240,340 傾斜部
45,145,245,345 周壁部
50,150,250,350 脆弱部
O1 軸線

Claims (10)

  1. 回転することで動力を伝達する繊維強化プラスチック製の動力伝達軸に用いられる管体であって、
    軸線を中心とする筒状の本体部と、
    前記本体部よりも縮径され、連結部材が接合される接続部と、
    前記本体部と前記接続部との間に形成され、前記本体部から前記接続部に向かうに連れて外径が縮径された傾斜部と、を備え、
    前記傾斜部は、前記本体部の軸線方向に曲線状に形成され、
    前記傾斜部には、前記本体部の軸線方向に入力された荷重が所定値を超えると破損する脆弱部が形成されており、
    前記脆弱部は、前記傾斜部のうち前記本体部および前記接続部の軸線に対する傾斜角度が最大となる部位であることを特徴とする動力伝達軸に用いられる管体。
  2. 回転することで動力を伝達する繊維強化プラスチック製の動力伝達軸に用いられる管体であって、
    軸線を中心とする筒状の本体部と、
    前記本体部よりも拡径され、連結部材が接合される接続部と、
    前記本体部と前記接続部との間に形成され、前記本体部から前記接続部に向かうに連れて外径が拡径された傾斜部と、を備え、
    前記傾斜部は、前記本体部の軸線方向に曲線状に形成され、
    前記傾斜部には、前記本体部の軸線方向に入力された荷重が所定値を超えると破損する脆弱部が形成されており、
    前記脆弱部は、前記傾斜部のうち前記本体部および前記接続部の軸線に対する傾斜角度が最大となる部位であることを特徴とする動力伝達軸に用いられる管体。
  3. 前記脆弱部は、前記傾斜部の前記本体部側の端部に形成されていることを特徴とする請求項1又は請求項2に記載の動力伝達軸に用いられる管体。
  4. 前記脆弱部は、前記傾斜部の前記接続部側の端部に形成されていることを特徴とする請求項1又は請求項2に記載の動力伝達軸に用いられる管体。
  5. 前記繊維強化プラスチックは、炭素繊維強化プラスチックであることを特徴とする請求項1から請求項4のいずれか一項に記載の動力伝達軸に用いられる管体。
  6. 前記接続部の内周形状は多角形に形成されていることを特徴とする請求項1から請求項5のいずれか一項に記載の動力伝達軸に用いられる管体。
  7. 前記本体部の外径は、中央部から両端部に向かうに連れて縮径されており、
    前記本体部の外周面は、前記両端部の一端部から他端部にかけて前記軸線方向に円弧状に形成されていることを特徴とする請求項1から請求項6のいずれか一項に記載の動力伝達軸に用いられる管体。
  8. 前記本体部の外径が一端部から他端部まで均一であることを特徴とする請求項1から請求項6のいずれか一項に記載の動力伝達軸に用いられる管体。
  9. 前記本体部の外径は、中央部から前記接続部側の一端部に向かうに連れて縮径されるとともに、中央部から他端部まで均一であり、
    前記本体部の中央部から一端部までの外周面は、前記軸線方向に曲線状に形成されていることを特徴とする請求項1から請求項6のいずれか一項に記載の動力伝達軸に用いられる管体。
  10. 請求項1から請求項9のいずれか一項に記載の動力伝達軸に用いられる管体と、
    前記接続部に接合された前記連結部材と、を備えていることを特徴とする動力伝達軸。
JP2019034006A 2019-02-27 2019-02-27 動力伝達軸に用いられる管体及び動力伝達軸 Active JP7324589B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019034006A JP7324589B2 (ja) 2019-02-27 2019-02-27 動力伝達軸に用いられる管体及び動力伝達軸

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019034006A JP7324589B2 (ja) 2019-02-27 2019-02-27 動力伝達軸に用いられる管体及び動力伝達軸

Publications (2)

Publication Number Publication Date
JP2020138597A true JP2020138597A (ja) 2020-09-03
JP7324589B2 JP7324589B2 (ja) 2023-08-10

Family

ID=72264285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034006A Active JP7324589B2 (ja) 2019-02-27 2019-02-27 動力伝達軸に用いられる管体及び動力伝達軸

Country Status (1)

Country Link
JP (1) JP7324589B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159930A (en) * 1978-06-06 1979-12-18 Hitachi Chem Co Ltd Drive shaft and manufacture thereof
JPH09175202A (ja) * 1995-12-28 1997-07-08 Honda Motor Co Ltd 車両用プロペラシャフト
JP2005255145A (ja) * 2004-02-10 2005-09-22 Jidosha Buhin Kogyo Co Ltd プロペラシャフト
JP2007170502A (ja) * 2005-12-20 2007-07-05 Showa Corp 自動車用衝撃吸収プロペラシャフト
DE102009009682A1 (de) * 2009-02-19 2010-08-26 Bayerische Motoren Werke Aktiengesellschaft Antriebswelle, insbesondere Gelenkwelle, insbesondere für Automobile und Motorräder
JP2016502478A (ja) * 2012-11-08 2016-01-28 デーナ、オータモウティヴ、システィムズ、グループ、エルエルシー 二次的形状を持つハイドロフォーミングされたドライブシャフト管
JP2018203153A (ja) * 2017-06-07 2018-12-27 トヨタ自動車株式会社 車両用プロペラシャフト

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159930A (en) * 1978-06-06 1979-12-18 Hitachi Chem Co Ltd Drive shaft and manufacture thereof
JPH09175202A (ja) * 1995-12-28 1997-07-08 Honda Motor Co Ltd 車両用プロペラシャフト
JP2005255145A (ja) * 2004-02-10 2005-09-22 Jidosha Buhin Kogyo Co Ltd プロペラシャフト
JP2007170502A (ja) * 2005-12-20 2007-07-05 Showa Corp 自動車用衝撃吸収プロペラシャフト
DE102009009682A1 (de) * 2009-02-19 2010-08-26 Bayerische Motoren Werke Aktiengesellschaft Antriebswelle, insbesondere Gelenkwelle, insbesondere für Automobile und Motorräder
JP2016502478A (ja) * 2012-11-08 2016-01-28 デーナ、オータモウティヴ、システィムズ、グループ、エルエルシー 二次的形状を持つハイドロフォーミングされたドライブシャフト管
JP2018203153A (ja) * 2017-06-07 2018-12-27 トヨタ自動車株式会社 車両用プロペラシャフト

Also Published As

Publication number Publication date
JP7324589B2 (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
US11940007B2 (en) Tubular body used for power transmission shaft and power transmission shaft
US11885375B2 (en) Tubular body used for power transmission shaft and power transmission shaft
CN112638689B (zh) 用于传动轴的管体和传动轴
JP7324589B2 (ja) 動力伝達軸に用いられる管体及び動力伝達軸
JP2007271079A (ja) トルク伝達軸
JP7264665B2 (ja) 動力伝達軸
JP6539422B1 (ja) 動力伝達軸の製造方法
KR101744705B1 (ko) 하이브리드 프로펠러 샤프트 및 이의 제조 방법
JP2020138343A (ja) 動力伝達軸に用いられる管体の製造方法
JP2020138338A (ja) マンドレル
JP2020138359A (ja) 動力伝達軸に用いられる管体の製造方法
JP2020138587A (ja) 動力伝達軸
JP6547081B1 (ja) 動力伝達軸の製造方法
JP2020139531A (ja) 動力伝達軸の製造方法
JP2020138364A (ja) 動力伝達軸に用いられる管体の製造方法
JP7201477B2 (ja) 動力伝達軸に用いられる管体の製造方法
EP3770449B1 (en) Power transmission shaft
JP2011190931A (ja) プロペラシャフト
JP2009143465A (ja) プロペラシャフト
JPH08103966A (ja) Frp筒体およびその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7324589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150