JP2020123746A - Manufacturing method of light emitting device - Google Patents

Manufacturing method of light emitting device Download PDF

Info

Publication number
JP2020123746A
JP2020123746A JP2020078991A JP2020078991A JP2020123746A JP 2020123746 A JP2020123746 A JP 2020123746A JP 2020078991 A JP2020078991 A JP 2020078991A JP 2020078991 A JP2020078991 A JP 2020078991A JP 2020123746 A JP2020123746 A JP 2020123746A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting device
translucent
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020078991A
Other languages
Japanese (ja)
Other versions
JP7054020B2 (en
JP2020123746A5 (en
Inventor
利恵 前田
Rie Maeda
利恵 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2020078991A priority Critical patent/JP7054020B2/en
Publication of JP2020123746A publication Critical patent/JP2020123746A/en
Publication of JP2020123746A5 publication Critical patent/JP2020123746A5/en
Application granted granted Critical
Publication of JP7054020B2 publication Critical patent/JP7054020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a manufacturing method of a light emitting device which allows a translucent member to be arranged on a light emitting element more easily, in a proper place and in an appropriate shape.SOLUTION: A manufacturing method of a light emitting device includes preparing a plate-shaped transparent member 11, preparing a plurality of light emitting elements 12 each having an electrode arrangement surface on the side opposite to the main light emitting surface, bonding the plurality of light emitting elements to the upper surface of a substrate 13 such that the electrode arrangement surfaces face each other, arranging the main light emitting surfaces of the plurality of light emitting elements such that the main light emitting surfaces face each other via a translucent joining member 14 on the upper surface of the translucent member, placing a part of the joining member on the side surface of the light emitting element, removing a part of the translucent member to form a groove between the light emitting elements, forming a light reflecting member 16 at least in the groove, and cutting the light reflecting member and the substrate.SELECTED DRAWING: Figure 1G

Description

本開示は、発光装置の製造方法に関する。 The present disclosure relates to a method for manufacturing a light emitting device.

従来から液晶表示装置のバックライト等に、発光素子が搭載された発光装置が用いられ
ている。このような発光装置では、発光素子の上に、蛍光体を含む透光性部材が、透光性
の接合部材により接合されている。そして、このような発光装置の側方の光取り出し効率
を図るために、接合部材の発光素子側面における形状を円弧状にすることなどが提案され
ている(特許文献1)。
Conventionally, a light emitting device having a light emitting element is used for a backlight of a liquid crystal display device or the like. In such a light emitting device, a light transmissive member containing a phosphor is bonded onto the light emitting element by a light transmissive bonding member. Then, in order to improve the lateral light extraction efficiency of such a light emitting device, it has been proposed to make the shape of the joining member on the side surface of the light emitting element into an arc shape (Patent Document 1).

特開2013−12545号公報JP, 2013-12545, A

本開示は、発光素子の上に透光性部材を、より容易に、適所かつ適切な形状で、効率的
に配置することができる発光装置の製造方法を提供することを目的とする。
It is an object of the present disclosure to provide a method for manufacturing a light emitting device, which allows a translucent member to be arranged on a light emitting element more easily, in a proper place and in an appropriate shape, and efficiently.

本開示の発光装置の製造方法は、
板状の透光性部材を準備し、
主発光面と前記主発光面の反対側に電極配置面を有する複数の発光素子を準備し、
基板の上面に、前記電極配置面が対向するように前記複数の発光素子を接合し、
前記透光性部材の上面に、前記複数の発光素子の主発光面が、透光性の接合部材を介し
て対向するように配置し、
前記発光素子の側面に前記接合部材の一部を配置し、
前記発光素子間において、前記透光性部材を除去して溝を形成し、
少なくとも前記溝内に光反射性部材を形成し、
前記光反射性部材及び前記基板を切断することを含む発光装置の製造方法である。
The manufacturing method of the light emitting device of the present disclosure,
Prepare a plate-shaped transparent member,
Prepare a plurality of light emitting elements having an electrode arrangement surface on the side opposite to the main light emitting surface and the main light emitting surface,
The plurality of light emitting elements are bonded to the upper surface of the substrate so that the electrode arrangement surfaces face each other,
On the upper surface of the translucent member, the main light emitting surfaces of the plurality of light emitting elements are arranged so as to be opposed to each other via a translucent joining member,
A part of the joining member is arranged on a side surface of the light emitting element,
Between the light emitting elements, the translucent member is removed to form a groove,
Forming a light-reflecting member in at least the groove,
A method of manufacturing a light emitting device, comprising cutting the light reflective member and the substrate.

本開示によれば、発光素子の上に透光性部材を、より容易に、適所かつ適切な形状で、
効率的に配置することができる発光装置の製造方法を提供することができる。
According to the present disclosure, a translucent member on a light emitting element, more easily, in place and in an appropriate shape,
A method for manufacturing a light emitting device that can be efficiently arranged can be provided.

発光装置の製造方法の実施形態1を示す概略断面工程図である。FIG. 3 is a schematic cross-sectional process diagram showing Embodiment 1 of the method for manufacturing a light emitting device. 発光装置の製造方法の実施形態1を示す概略断面工程図である。FIG. 3 is a schematic cross-sectional process diagram showing Embodiment 1 of the method for manufacturing a light emitting device. 発光装置の製造方法の実施形態1を示す概略断面工程図である。FIG. 3 is a schematic cross-sectional process diagram showing Embodiment 1 of the method for manufacturing a light emitting device. 発光装置の製造方法の実施形態1を示す概略断面工程図である。FIG. 3 is a schematic cross-sectional process diagram showing Embodiment 1 of the method for manufacturing a light emitting device. 発光装置の製造方法の実施形態1を示す概略断面工程図である。FIG. 3 is a schematic cross-sectional process diagram showing Embodiment 1 of the method for manufacturing a light emitting device. 発光装置の製造方法の実施形態1を示す概略断面工程図である。FIG. 3 is a schematic cross-sectional process diagram showing Embodiment 1 of the method for manufacturing a light emitting device. 発光装置の製造方法の実施形態1を示す概略断面工程図である。FIG. 3 is a schematic cross-sectional process diagram showing Embodiment 1 of the method for manufacturing a light emitting device. 発光装置の製造方法の実施形態1を示す概略断面工程図である。FIG. 3 is a schematic cross-sectional process diagram showing Embodiment 1 of the method for manufacturing a light emitting device. 実施形態1の発光装置の製造方法で得られた発光装置の概略断面図である。3 is a schematic cross-sectional view of a light emitting device obtained by the method for manufacturing a light emitting device of Embodiment 1. FIG. 接合部材の透光性部材への配置方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the arrangement|positioning method to a translucent member of a joining member. 発光装置の製造方法の実施形態2を示す概略断面工程図である。It is a schematic sectional process drawing which shows Embodiment 2 of the manufacturing method of a light-emitting device. 発光装置の製造方法の実施形態3を示す概略断面工程図である。It is a schematic sectional process drawing which shows Embodiment 3 of the manufacturing method of a light-emitting device. 発光装置の製造方法の実施形態3を示す概略断面工程図である。It is a schematic sectional process drawing which shows Embodiment 3 of the manufacturing method of a light-emitting device. 発光装置の製造方法の実施形態3を示す概略断面工程図である。It is a schematic sectional process drawing which shows Embodiment 3 of the manufacturing method of a light-emitting device. 発光装置の製造方法の実施形態3を示す概略断面工程図である。It is a schematic sectional process drawing which shows Embodiment 3 of the manufacturing method of a light-emitting device. 発光装置の製造方法の実施形態4を示す概略断面工程図である。It is a schematic sectional process drawing which shows Embodiment 4 of the manufacturing method of a light-emitting device. 発光装置の製造方法の実施形態4を示す概略断面工程図である。It is a schematic sectional process drawing which shows Embodiment 4 of the manufacturing method of a light-emitting device. 発光装置の製造方法の実施形態1の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of Embodiment 1 of the manufacturing method of a light-emitting device. 発光装置の製造方法の実施形態1の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of Embodiment 1 of the manufacturing method of a light-emitting device.

以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、特定
的な記載がない限り、本発明を以下のものに限定しない。また、一の実施の形態、実施例
において説明する内容は、他の実施の形態、実施例にも適用可能である。各図面が示す部
材の大きさやアスペクト比や位置関係等は、説明を明確又は容易にするため、誇張又は省
略していることがある。
The light emitting device described below is for embodying the technical idea of the present invention, and unless otherwise specified, the present invention is not limited to the following. Further, the contents described in one embodiment and example can be applied to other embodiments and examples. The sizes, aspect ratios, positional relationships, and the like of the members illustrated in the drawings may be exaggerated or omitted in order to clarify or facilitate the description.

実施形態1
この実施形態の発光装置の製造方法は、
板状の透光性部材11を準備し(図1A)、
主発光面12aと、この主発光面12aの反対側に電極配置面12bを有する複数の発
光素子12を準備し(図1B)、
基板13の上面に、電極配置面12bが対向するように複数の発光素子12を接合し(
図1C)、
透光性部材11の上面に、複数の発光素子12の主発光面12aが、透光性の接合部材
14を介して対向するように配置し(図1D)、
発光素子12の側面12cに接合部材14の一部を配置し(図1E)、
発光素子12間において、透光性部材11の一部を除去して溝15を形成し、(図1F

少なくとも溝15内に光反射性部材16を形成し(図1G)、
光反射性部材16及び基板13を切断する(図1H)ことを含む。
Embodiment 1
The manufacturing method of the light emitting device of this embodiment is
Prepare a plate-shaped transparent member 11 (FIG. 1A),
A plurality of light emitting elements 12 having a main light emitting surface 12a and an electrode arrangement surface 12b on the opposite side of the main light emitting surface 12a are prepared (FIG. 1B),
A plurality of light emitting elements 12 are bonded to the upper surface of the substrate 13 so that the electrode placement surfaces 12b face each other (
FIG. 1C),
The main light emitting surfaces 12a of the plurality of light emitting elements 12 are arranged on the upper surface of the translucent member 11 so as to face each other with the translucent joining member 14 interposed therebetween (FIG. 1D).
A part of the joining member 14 is arranged on the side surface 12c of the light emitting element 12 (FIG. 1E),
Between the light emitting elements 12, a part of the translucent member 11 is removed to form a groove 15 (see FIG. 1F).
)
Forming a light-reflecting member 16 in at least the groove 15 (FIG. 1G),
Cutting the light reflective member 16 and the substrate 13 (FIG. 1H).

このように、板状の透光性部材に複数の発光素子を接合し、光反射性部材を一括して形
成し、これら光反射性部材及び基板を切断することにより、一括して複数の発光装置を容
易に得ることができる。これによって、発光素子の上及びその周辺に透光性部材を、適所
かつ適切な形状で、効率的に配置することが可能となる。
In this way, a plurality of light emitting elements are joined to a plate-shaped translucent member, a light reflecting member is collectively formed, and the light reflecting member and the substrate are cut, so that a plurality of light emitting members are collectively emitted. The device can be easily obtained. This makes it possible to efficiently dispose the translucent member on and around the light emitting element in a proper place and in an appropriate shape.

(透光性部材11の準備)
図1Aに示すように、透光性部材11を準備する。透光性部材11は、シート状及びフ
ィルム状を含む板状であればよい。透光性部材11は、複数の発光素子12を被覆し得る
程度の大きさ、つまり、複数の発光素子12の主発光面12aの合計平面積よりも大きけ
ればよい。例えば、20cm×10cm、3cm×3cm又は9cm×6cm等の大きさ
が挙げられる。透光性部材11の表面は平坦であってもよいし、凹凸が存在していてもよ
い。
(Preparation of translucent member 11)
As shown in FIG. 1A, the translucent member 11 is prepared. The translucent member 11 may have a plate shape including a sheet shape and a film shape. The translucent member 11 has only to be large enough to cover the plurality of light emitting elements 12, that is, larger than the total plane area of the main light emitting surfaces 12a of the plurality of light emitting elements 12. For example, the size may be 20 cm×10 cm, 3 cm×3 cm, or 9 cm×6 cm. The surface of the translucent member 11 may be flat or may have irregularities.

透光性部材11は、後述する発光素子12から出射される光を透過させ得るものであれ
ばよく、例えば、その光を60%以上、70%又は80%以上透過させるものが好ましい

透光性部材11は、透光性樹脂、ガラス、蛍光体の結晶又は焼結体等により形成するこ
とができる。また、透光性部材11は、透光性樹脂又はガラス等の透光性の材料に蛍光体
を含有するものでもよい。
透光性樹脂としては、例えば、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、
フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、TPX樹脂、ポリノルボルネン
樹脂又はこれらの樹脂を1種以上含むハイブリッド樹脂等が挙げられる。なかでもシリコ
ーン樹脂又はエポキシ樹脂が好ましく、特に耐光性、耐熱性に優れるシリコーン樹脂がよ
り好ましい。
The translucent member 11 may be any one that can transmit the light emitted from the light emitting element 12 described later, and for example, one that transmits 60% or more, 70% or 80% or more of the light is preferable.
The translucent member 11 can be formed of translucent resin, glass, crystal of phosphor, or sintered body. The translucent member 11 may be made of a translucent material such as translucent resin or glass containing a phosphor.
Examples of the translucent resin include silicone resin, silicone-modified resin, epoxy resin,
Examples thereof include a phenol resin, a polycarbonate resin, an acrylic resin, a TPX resin, a polynorbornene resin, and a hybrid resin containing one or more of these resins. Of these, a silicone resin or an epoxy resin is preferable, and a silicone resin having excellent light resistance and heat resistance is particularly preferable.

蛍光体としては、当該分野で公知のものが挙げられる。例えば、セリウムで賦活された
イットリウム・アルミニウム・ガーネット(YAG)系蛍光体、セリウムで賦活されたル
テチウム・アルミニウム・ガーネット(LAG)系蛍光体、ユウロピウム及び/又はクロ
ムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al−SiO)系蛍
光体、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)系蛍光体、β
サイアロン蛍光体、KSF系蛍光体(KSiF:Mn)、量子ドット蛍光体等と呼ば
れる半導体の微粒子などが挙げられる。これにより、可視波長の一次光及び二次光の混色
光(例えば白色系)を出射する発光装置、紫外光の一次光に励起されて可視波長の二次光
を出射する発光装置とすることができる。発光装置が液晶ディスプレイのバックライト等
に用いられる場合、発光素子12から発せられた青色光によって励起され、赤色発光する
蛍光体(例えばKSF系蛍光体)と、緑色発光する蛍光体(例えばβサイアロン蛍光体)
とを用いることが好ましい。これにより、発光装置を用いたディスプレイの色再現範囲を
広げることができる。
蛍光体の形状は、破砕状、球状、中空及び多孔質等のいずれでもよい。
蛍光体が透光性の材料に含有される場合は、例えば、蛍光体の平均粒径(メジアン径)
は、0.08〜10μm程度が挙げられる。蛍光体は、透光性部材11の重量に対して1
0〜60重量%含有されていることが好ましい。
透光性部材11として、ガラス、蛍光体の焼結体等の無機材料を用いる場合には、透光
性部材の劣化を低減できるため、信頼性の高い発光装置とすることができる。このような
発光装置は、例えば車のヘッドライト用光源等に用いることができる。
Examples of the phosphor include those known in the art. For example, cerium-activated yttrium-aluminum-garnet (YAG)-based phosphor, cerium-activated lutetium-aluminum-garnet (LAG)-based phosphor, europium- and/or chromium-activated nitrogen-containing calcium aluminosilicate (CaO-Al 2 O 3 -SiO 2) based phosphor, europium-activated silicates ((Sr, Ba) 2 SiO 4) phosphor, beta
Examples thereof include sialon phosphors, KSF-based phosphors (K 2 SiF 6 :Mn), and semiconductor fine particles called quantum dot phosphors. As a result, a light emitting device that emits mixed-color light (for example, white light) of primary light and secondary light of visible wavelength, and a light emitting device that emits secondary light of visible wavelength when excited by primary light of ultraviolet light can be provided. it can. When the light emitting device is used for a backlight of a liquid crystal display or the like, it is excited by blue light emitted from the light emitting element 12 to emit red light (for example, KSF-based phosphor) and green light emitting phosphor (for example, β-sialon). Phosphor)
It is preferable to use and. As a result, the color reproduction range of the display using the light emitting device can be expanded.
The shape of the phosphor may be crushed, spherical, hollow, porous, or the like.
When the phosphor is contained in a translucent material, for example, the average particle diameter (median diameter) of the phosphor
Is about 0.08 to 10 μm. The phosphor is 1 with respect to the weight of the translucent member 11.
It is preferably contained in an amount of 0 to 60% by weight.
When an inorganic material such as glass or a sintered body of a phosphor is used as the translucent member 11, deterioration of the translucent member can be reduced, so that a highly reliable light emitting device can be obtained. Such a light emitting device can be used, for example, as a light source for a vehicle headlight.

透光性部材11は、さらに、充填材(例えば、拡散剤、着色剤等)を含んでいてもよい
。例えば、シリカ、酸化チタン、酸化ジルコニウム、酸化マグネシウム、炭酸マグネシウ
ム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、酸化亜
鉛、チタン酸バリウム、酸化アルミニウム、酸化鉄、酸化クロム、酸化マンガン、ガラス
、カーボンブラック等が挙げられる。なかでも、酸化チタンは、水分などに対して比較的
安定で且つ高屈折率であり、また熱伝導性にも優れるため、好ましい。また、透光性部材
が液状の樹脂と粒子状の蛍光体とを含有した材料から製造される場合、透光性部材に微粒
子シリカを混合することが好ましい。これにより、透光性部材の材料にチクソ性を付与し
て蛍光体の沈降を低減し、蛍光体が均一に分散した透光性部材を得ることができる。充填
材の粒子の形状は、破砕状、球状、中空及び多孔質等のいずれでもよい。粒子の平均粒径
(メジアン径)は、0.08〜10μm程度が好ましい。これにより、高い効率で光散乱
効果を得られる。充填材は、例えば、透光性部材の重量に対して10〜60重量%含有さ
れていることが好ましい。例えば、透光性部材の光取り出し面側に充填材を含む層を設け
ることにより、色ムラの改善、発光装置のタック性の低減が期待できる。また、透光性部
材を樹脂で形成する場合には、熱伝導率の高い充填材を用いることにより、熱伝導性を改
善し、発光装置の信頼性を向上させることができる。
The translucent member 11 may further include a filler (for example, a diffusing agent, a coloring agent, etc.). For example, silica, titanium oxide, zirconium oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, zinc oxide, barium titanate, aluminum oxide, iron oxide, chromium oxide, manganese oxide, glass. , Carbon black and the like. Among them, titanium oxide is preferable because it is relatively stable to moisture and has a high refractive index and has excellent thermal conductivity. Further, when the translucent member is manufactured from a material containing a liquid resin and a particulate phosphor, it is preferable to mix fine particle silica with the translucent member. Thereby, thixotropy is imparted to the material of the translucent member, the sedimentation of the phosphor is reduced, and the translucent member in which the phosphor is uniformly dispersed can be obtained. The shape of the filler particles may be crushed, spherical, hollow or porous. The average particle diameter (median diameter) of the particles is preferably about 0.08 to 10 μm. Thereby, the light scattering effect can be obtained with high efficiency. The filler is preferably contained, for example, in an amount of 10 to 60% by weight based on the weight of the translucent member. For example, by providing a layer containing a filler on the light extraction surface side of the translucent member, improvement in color unevenness and reduction in tackiness of the light emitting device can be expected. Further, when the translucent member is formed of resin, by using a filler having high thermal conductivity, thermal conductivity can be improved and reliability of the light emitting device can be improved.

透光性部材11は、単層であってもよいし、後述するように、複数の層の積層構造であ
ってもよい。
透光性部材11の厚みは、発光装置の高さに影響する一方、薄くなると破損のおそれが
高まり、また、含有可能な蛍光体の量が制限される。従って、例えば、10〜300μm
が挙げられ、30〜200μmが好ましい。
The translucent member 11 may be a single layer or may have a laminated structure of a plurality of layers as described later.
While the thickness of the translucent member 11 affects the height of the light emitting device, the thickness of the translucent member 11 increases the risk of breakage, and limits the amount of phosphor that can be contained. Therefore, for example, 10 to 300 μm
And 30 to 200 μm is preferable.

透光性部材11は、例えば、液状の樹脂と必要に応じて蛍光体を混合した材料を、圧縮
成形、トランスファー成形、射出成形、スプレー、印刷、ポッティング等で形成してもよ
い。また、電気泳動堆積等で略均一な厚みに形成した蛍光体に、樹脂を含浸することによ
り形成することができる。
The translucent member 11 may be formed by, for example, compression molding, transfer molding, injection molding, spraying, printing, potting, or the like, using a material in which a liquid resin and a phosphor are mixed if necessary. Further, it can be formed by impregnating a resin into a phosphor formed to have a substantially uniform thickness by electrophoretic deposition or the like.

(発光素子12の準備)
図1Bに示すように、発光素子12は、主発光面12aと、この主発光面12aの反対
側に電極が配置された電極配置面12bとを有する。
発光素子12は、その大きさ、形状、発光波長等適宜選択することができる。複数の発
光素子12は、これら大きさ、形状、発光波長等が異なっていてもよいが、同じであるこ
とが好ましい。
(Preparation of light emitting element 12)
As shown in FIG. 1B, the light emitting element 12 has a main light emitting surface 12a and an electrode arrangement surface 12b on which an electrode is arranged on the opposite side of the main light emitting surface 12a.
The size, shape, emission wavelength and the like of the light emitting element 12 can be appropriately selected. The plurality of light emitting elements 12 may have different sizes, shapes, emission wavelengths, etc., but are preferably the same.

発光素子12は半導体積層体として、第1半導体層(例えば、n型半導体層)、発光層
、第2半導体層(例えば、p型半導体層)がこの順に積層され、同一面側(例えば、第2
半導体層側の面)に、第1半導体層に電気的に接続される第1電極と、第2半導体層に電
気的に接続される第2電極との双方を有する。これにより、後述する基板13に対向させ
て接合するフリップチップ実装を行うことができる。半導体積層体は、通常、成長基板上
に積層されるが、発光素子12としては、成長基板を伴っていてもよいし、有しないもの
でもよい。第1半導体層、発光層及び第2半導体層の種類、材料は特に限定されるもので
はなく、例えば、III−V族化合物半導体、II−VI族化合物半導体等、種々の半導
体が挙げられる。具体的には、InAlGa1−X−YN(0≦X、0≦Y、X+Y
≦1)等の窒化物系の半導体材料が挙げられる。各層の膜厚及び層構造は、当該分野で公
知のものを利用することができる。
半導体積層体は、平面視における形状は特に限定されるものではなく、四角形又はこれ
に近似する形状が好ましい。半導体積層体の平面視における大きさは、発光素子12の平
面視における大きさによって適宜調整することができる。例えば、半導体積層体、つまり
、発光素子12の長手方向の長さは、200μm〜1500μm、短手方向の長さは、5
0μm〜400μm、厚みは、80μm〜200μmが挙げられる。
The light emitting element 12 is a semiconductor laminated body in which a first semiconductor layer (for example, an n-type semiconductor layer), a light emitting layer, and a second semiconductor layer (for example, a p-type semiconductor layer) are laminated in this order, and the same surface side (for example, the first semiconductor layer) is formed. Two
The semiconductor layer-side surface) has both a first electrode electrically connected to the first semiconductor layer and a second electrode electrically connected to the second semiconductor layer. As a result, flip chip mounting can be performed in which the substrate 13 to be described later is opposed and bonded. The semiconductor laminated body is usually laminated on the growth substrate, but the light emitting element 12 may or may not be accompanied by the growth substrate. The types and materials of the first semiconductor layer, the light emitting layer, and the second semiconductor layer are not particularly limited, and examples thereof include various semiconductors such as III-V group compound semiconductors and II-VI group compound semiconductors. Specifically, In X Al Y Ga 1-X-Y N (0≦X, 0≦Y, X+Y
Nitride-based semiconductor materials such as ≦1) are listed. As the film thickness and layer structure of each layer, those known in the art can be used.
The shape of the semiconductor laminated body in plan view is not particularly limited, and a quadrangle or a shape similar thereto is preferable. The size of the semiconductor laminate in plan view can be appropriately adjusted depending on the size of the light emitting element 12 in plan view. For example, the length of the semiconductor laminated body, that is, the light emitting element 12 in the longitudinal direction is 200 μm to 1500 μm, and the length in the lateral direction is 5.
The thickness is 0 μm to 400 μm, and the thickness is 80 μm to 200 μm.

第1電極及び第2電極は、例えば、Au、Pt、Pd、Rh、Ni、W、Mo、Cr、
Ti等の金属又はこれらの合金の単層膜又は積層膜によって形成することができる。具体
的には、半導体層側からTi/Rh/Au、W/Pt/Au、Rh/Pt/Au、W/P
t/Au、Ni/Pt/Au、Ti/Rh等のように積層された積層膜が挙げられる。膜
厚は、当該分野で用いられる膜の膜厚のいずれでもよい。また、それぞれ第1半導体層及
び第2半導体層に近い側に、発光層から出射される光に対する反射率が電極のその他の材
料より高い材料層が、これら電極の一部として配置されることが好ましい。反射率が高い
材料としては、銀又は銀合金やアルミニウムを有する層が挙げられる。なお、銀又は銀合
金を用いる場合には、銀のマイグレーションを防止するために、その表面(好ましくは、
上面及び端面)を被覆する被覆層を形成することが好ましい。このような被覆層としては
、通常、導電材料として用いられている金属及び合金によって形成されるものであればよ
く、例えば、アルミニウム、銅、ニッケル等の金属を含有する単層又は積層層が挙げられ
る。
The first electrode and the second electrode are, for example, Au, Pt, Pd, Rh, Ni, W, Mo, Cr,
It can be formed by a single layer film or a laminated film of a metal such as Ti or an alloy thereof. Specifically, from the semiconductor layer side, Ti/Rh/Au, W/Pt/Au, Rh/Pt/Au, W/P
Examples thereof include laminated films such as t/Au, Ni/Pt/Au, and Ti/Rh. The film thickness may be any of film thicknesses used in the field. Further, a material layer having a higher reflectance for light emitted from the light emitting layer than the other materials of the electrode may be arranged as a part of these electrodes on the side close to the first semiconductor layer and the second semiconductor layer, respectively. preferable. As a material having high reflectance, a layer containing silver, a silver alloy, or aluminum can be given. When silver or a silver alloy is used, in order to prevent silver migration, its surface (preferably,
It is preferable to form a coating layer that covers the upper surface and the end surface. Such a coating layer may be one formed of a metal and an alloy which are usually used as a conductive material, and examples thereof include a single layer or a laminated layer containing a metal such as aluminum, copper or nickel. To be

発光素子12は、半導体積層体の電極配置面側に、電気的な接続を阻害しない範囲で、
DBR(分布ブラッグ反射器)層等を配置してもよい。DBRは、例えば、任意に酸化膜
等からなる下地層の上に、低屈折率層と高屈折率層とを積層させた多層構造であり、所定
の波長光を選択的に反射する。具体的には屈折率の異なる膜を波長の1/4の厚みで交互
に積層することにより、所定の波長を高効率に反射させることができる。材料として、S
i、Ti、Zr、Nb、Ta、Alからなる群より選択された少なくとも一種の酸化物又
は窒化物を含んで形成することができる。
The light emitting element 12 is provided on the electrode arrangement surface side of the semiconductor laminated body in a range not hindering electrical connection,
A DBR (distributed Bragg reflector) layer or the like may be arranged. The DBR has, for example, a multi-layer structure in which a low refractive index layer and a high refractive index layer are laminated on an underlayer which is optionally made of an oxide film or the like, and selectively reflects light of a predetermined wavelength. Specifically, by alternately laminating films having different refractive indexes with a thickness of ¼ of the wavelength, it is possible to reflect a predetermined wavelength with high efficiency. As a material, S
It can be formed by including at least one oxide or nitride selected from the group consisting of i, Ti, Zr, Nb, Ta, and Al.

(発光素子12の接合)
図1Cに示すように、基板13の上面に、電極配置面12bが対向するように、複数の
発光素子12を接合する。複数の発光素子12は、規則的に配置され、複数の発光素子1
2の間隔が略均等となるよう設けられることが好ましい。これによって、後述する切断を
より容易に制御することができる。
例えば、発光素子12同士の間隔は10μm〜1000μmとすることができ、例えば
、200μm〜800μmとすることが好ましい。これにより、後述する透光性の接合部
材14及び/又は光反射性部材16等の材料コストを低減することができる。
(Joining the light emitting element 12)
As shown in FIG. 1C, the plurality of light emitting elements 12 are bonded to the upper surface of the substrate 13 so that the electrode placement surface 12b faces each other. The plurality of light emitting elements 12 are regularly arranged, and the plurality of light emitting elements 1
It is preferable that the two are provided so as to be substantially even. This makes it possible to control the later-described cutting more easily.
For example, the distance between the light emitting elements 12 can be set to 10 μm to 1000 μm, and preferably set to 200 μm to 800 μm, for example. Thereby, the material cost of the translucent joining member 14 and/or the light reflecting member 16 described later can be reduced.

ここで用いられる基板13は、発光素子12を等間隔に配列するためにのみ用いる基板
であってもよいし、表面に正負の端子が配置された実装基板であってもよい。前者の場合
、一連の工程により発光装置を製造した後等に除去してもよい。後者の場合、発光素子1
2の各電極を、導電性の接合材により、正負の各端子に接続することが好ましい。
基板13は、例えば、樹脂フィルム、金属板、セラミック板等の単体又は複合体等によ
って形成されたものが挙げられる。基板13は剛性のものであってもよいし、可撓性を有
するものであってもよい。
The substrate 13 used here may be a substrate used only for arranging the light emitting elements 12 at equal intervals, or may be a mounting substrate having positive and negative terminals arranged on the surface. In the former case, it may be removed after the light emitting device is manufactured by a series of steps. In the latter case, the light emitting element 1
It is preferable that each of the electrodes 2 is connected to each of the positive and negative terminals by a conductive bonding material.
Examples of the substrate 13 include those formed of a resin film, a metal plate, a ceramic plate or the like alone or a composite. The substrate 13 may be rigid or flexible.

(透光性部材11への発光素子12の配置及び接合部材14の配置)
図1Dに示すように、透光性部材11の上面に、複数の発光素子12の主発光面12a
が、透光性の接合部材14を介して対向するように配置する。
発光素子12の透光性部材11への接合に用いられる透光性の接合部材14は、上述し
たように、発光素子から出射される光の60%以上を透過するものが好ましい。また、液
状であって、光又は熱等によって硬化させ得る材料であることが好ましい。このような接
合部材14としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェ
ノール樹脂などの熱硬化性樹脂を用いることが好ましい。また、接合部材14は、光を散
乱する添加物を添加してもよい。これにより、発光素子から出射された光を接合部材14
内で均一化することができる。
(Arrangement of Light-Emitting Element 12 and Arrangement of Joining Member 14 on Translucent Member 11)
As shown in FIG. 1D, the main light emitting surface 12 a of the plurality of light emitting elements 12 is provided on the upper surface of the translucent member 11.
Are arranged so as to face each other with the translucent joining member 14 interposed therebetween.
As described above, the translucent joining member 14 used for joining the light emitting element 12 to the translucent member 11 preferably transmits 60% or more of the light emitted from the light emitting element. Further, it is preferable that the material is a liquid and can be cured by light or heat. As such a joining member 14, it is particularly preferable to use a thermosetting resin such as a silicone resin, a silicone-modified resin, an epoxy resin, or a phenol resin. Further, the joining member 14 may be added with an additive that scatters light. As a result, the light emitted from the light emitting element is supplied to the joining member 14
Can be homogenized within.

透光性の接合部材14は、例えば、図2に示すように、板状の透光性部材11を準備す
る際に、透光性部材11の上面に接合部材14を配置して用いることができる。なお、後
述するように、接合部材14は、発光素子12の主発光面12aに予め配置していてもよ
い。
The translucent joining member 14 may be used by disposing the joining member 14 on the upper surface of the translucent member 11 when the plate-shaped translucent member 11 is prepared, as shown in FIG. 2, for example. it can. As will be described later, the joining member 14 may be arranged in advance on the main light emitting surface 12a of the light emitting element 12.

接合部材14は、発光素子12と透光性部材11を接着するのに十分な量であることを
要し、発光素子12の側面12cの一部又は全部を被覆し得る量とすることが好ましい。
さらには、発光素子12の側面12cの全部を被覆し得る量とすることがより好ましい。
特に、接合部材14は、図1Eに示すように、隣接する複数の発光素子12の間に接合
部材14が連続するように存在する、つまり、発光素子12の側面12cと隣接する発光
素子12の両方の側面12cの間が接合部材14によって繋がる状態になるように、十分
な量で配置することが好ましい。これにより、複数の発光素子12から発せられる光を接
合部材14の内部において均一化させることができ、発光装置から出射される光のムラを
低減することができる。
隣接する複数の発光素子12の間に接合部材14を連続するように存在させるために、
例えば、図1Eの矢印で示す方向に押圧するか、透光性部材側から押圧することが好まし
い。この場合の圧力は、例えば、1.0〜2.5Kgが挙げられる。さらに、圧力負荷の
後、接合部材14を硬化させるために、接合部材14に熱又は光等を負荷することがより
好ましい。これにより、発光素子12と透光性部材とを、強固に、かつ適所に固定するこ
とができる。ここでの熱は、例えば、300℃以下が好ましく、150〜200℃がより
好ましい。
The bonding member 14 needs to have a sufficient amount to bond the light emitting element 12 and the translucent member 11, and preferably has an amount capable of covering a part or all of the side surface 12c of the light emitting element 12. ..
Furthermore, it is more preferable that the amount is such that the entire side surface 12c of the light emitting element 12 can be covered.
In particular, as shown in FIG. 1E, the joining member 14 exists such that the joining member 14 is continuous between a plurality of adjacent light emitting elements 12, that is, the side surface 12c of the light emitting element 12 is adjacent to the light emitting element 12. It is preferable to dispose a sufficient amount so that both side surfaces 12c are connected by the joining member 14. Thereby, the light emitted from the plurality of light emitting elements 12 can be made uniform inside the bonding member 14, and the unevenness of the light emitted from the light emitting device can be reduced.
In order to allow the joining member 14 to continuously exist between the plurality of adjacent light emitting elements 12,
For example, it is preferable to press in the direction shown by the arrow in FIG. 1E or press from the transparent member side. The pressure in this case is, for example, 1.0 to 2.5 Kg. Further, it is more preferable to apply heat, light or the like to the joining member 14 in order to cure the joining member 14 after the pressure load. As a result, the light emitting element 12 and the translucent member can be firmly fixed in place. The heat here is preferably, for example, 300° C. or lower, and more preferably 150 to 200° C.

また、例えば、図1Eに示すように、接合部材14は発光素子12間で接合部材14を
発光素子12の側面12cに接する部分の厚みが、発光素子12の側面12cから離間す
る部分の厚みよりも厚くなるように配置することがさらに好ましい。換言すると、発光素
子12間において、接合部材14の外面が透光性部材11側に曲線の凹部を形成するよう
に配置することが好ましい。発光素子12間で切断した際、発光素子12の側面12cに
配置された接合部材14の外面が、切断面に向かって広がる傾斜を有することができる。
これにより、発光素子12の側面12cから出射する光を、より効率よく透光性部材11
に取り出すことができる。
接合部材は、発光素子の側面をできるだけ多く覆っていることが好ましい。発光素子1
2の側面の50%以上、好ましくは70%以上、より好ましくは90%以上を覆っている
ことが好ましい。これにより、発光素子12の側面12cから出射する光を、より効率よ
く透光性部材11に取り出すことができる。
Further, for example, as shown in FIG. 1E, in the joining member 14, the thickness of the portion where the joining member 14 is in contact with the side surface 12c of the light emitting element 12 between the light emitting elements 12 is smaller than the thickness of the portion separated from the side surface 12c of the light emitting element 12. It is more preferable to arrange so as to be thick. In other words, it is preferable to arrange the bonding member 14 so that the outer surface of the bonding member 14 forms a curved concave portion on the light transmissive member 11 side between the light emitting elements 12. When cut between the light emitting elements 12, the outer surface of the joining member 14 disposed on the side surface 12c of the light emitting element 12 may have a slope that widens toward the cut surface.
As a result, the light emitted from the side surface 12c of the light emitting element 12 can more efficiently transmit the light transmitting member 11.
Can be taken out.
It is preferable that the bonding member covers the side surface of the light emitting element as much as possible. Light emitting element 1
It is preferable to cover 50% or more, preferably 70% or more, and more preferably 90% or more of the second side surface. Thereby, the light emitted from the side surface 12c of the light emitting element 12 can be more efficiently extracted to the translucent member 11.

(溝15の形成)
図1Fに示すように、発光素子12間において、透光性部材11の一部を除去して溝1
5を形成する。透光性部材11を除去して形成する溝15は、例えば、発光素子12間の
間隔よりも小さい幅とすることが好ましく、発光素子12の側面12cから100μm以
上の幅の透光性部材11を残す幅とすることがより好ましい。具体的には、溝15の幅は
、5μm〜10μmが挙げられる。溝15は、深さ方向に一定の幅であることが好ましい
が、深さ方向に漸次又は急峻に、幅広又は幅狭であってもよい。
また、溝15は、透光性部材11の厚み方向の全部を除去する深さで形成することが好
ましく、透光性の接合部材14の厚み方向の全部を除去することがより好ましい。溝15
を形成する位置は、発光素子12間の中央部分であることが好ましいことから、透光性の
接合部材14の最も厚みが薄い部分の全厚みを除去することがさらに好ましい。具体的に
は、溝15の深さは、150μm〜210μmが挙げられる。
(Formation of groove 15)
As shown in FIG. 1F, a part of the translucent member 11 is removed between the light emitting elements 12 to remove the groove 1
5 is formed. The groove 15 formed by removing the translucent member 11 preferably has a width smaller than the interval between the light emitting elements 12, and the translucent member 11 has a width of 100 μm or more from the side surface 12c of the light emitting element 12. Is more preferable. Specifically, the width of the groove 15 may be 5 μm to 10 μm. The groove 15 preferably has a constant width in the depth direction, but may be wide or narrow gradually or steeply in the depth direction.
Further, it is preferable that the groove 15 is formed to a depth that removes the entire translucent member 11 in the thickness direction, and it is more preferable to remove the translucent joining member 14 entirely in the thickness direction. Groove 15
Since it is preferable that the position where is formed is the central portion between the light emitting elements 12, it is more preferable to remove the entire thickness of the thinnest portion of the translucent bonding member 14. Specifically, the depth of the groove 15 is 150 μm to 210 μm.

このような溝15を形成することにより、発光素子12の周辺及び発光素子12と基板
13との間に、後述する光反射性部材16を容易に形成することができる。さらに、溝1
5の幅を調整することにより、発光素子12の側面12cを被覆する透光性の接合部材1
4の厚みを任意に設定することができ、発光素子12から出射された光を接合部材14内
において均一化するか、光の反射又は散乱を制御することが可能となる。
By forming such a groove 15, a light reflecting member 16 described later can be easily formed around the light emitting element 12 and between the light emitting element 12 and the substrate 13. Furthermore, groove 1
The translucent joining member 1 that covers the side surface 12c of the light emitting element 12 by adjusting the width of
The thickness of 4 can be arbitrarily set, and the light emitted from the light emitting element 12 can be made uniform in the bonding member 14, or the reflection or scattering of light can be controlled.

溝15は、部分的な研磨又は研削、切削、トムソン加工、超音波加工、レーザ加工、又
は、先端がV字型等の刃を使用したダイシング等を利用して形成することができる。
The groove 15 can be formed by utilizing partial polishing or grinding, cutting, Thomson processing, ultrasonic processing, laser processing, or dicing using a blade having a V-shaped tip.

(光反射性部材16の形成)
図1Gに示すように、少なくとも溝15内に光反射性部材16を形成する。光反射性部
材16は、溝15内の内壁の全部を被覆するように形成することが好ましく、さらに、発
光素子12の周囲及び発光素子12と基板13との間の一部又は全部を被覆するように形
成することがより好ましい。これにより、発光素子から出射された光を、主発光面12a
から透光性部材内を通して、その上方から効率的に取り出すことができる。また、溝15
内の全部に光反射性部材16を埋め込むことにより、透光性部材11の側面が光反射性部
材16に被覆される。これにより、発光領域と非発光領域とのコントラストが高い、見切
り性のある発光装置を得ることができる。
(Formation of light reflecting member 16)
As shown in FIG. 1G, the light reflecting member 16 is formed in at least the groove 15. The light reflecting member 16 is preferably formed so as to cover the entire inner wall of the groove 15, and further covers a part or the whole of the periphery of the light emitting element 12 and between the light emitting element 12 and the substrate 13. It is more preferable to form as described above. As a result, the light emitted from the light emitting element is transmitted to the main light emitting surface 12a.
Can be efficiently taken out from above through the inside of the translucent member. Also, the groove 15
By embedding the light-reflecting member 16 in the entire inside, the side surface of the light-transmitting member 11 is covered with the light-reflecting member 16. Accordingly, it is possible to obtain a light emitting device having a high contrast between the light emitting region and the non-light emitting region and having a parting property.

光反射性部材16は、発光素子12から出射される光を反射することができる材料から
形成されることが好ましい。具体的には、上述した透光性樹脂と同様の樹脂材料に、光反
射性物質を含有させることにより形成することができる。光反射性物質としては、酸化チ
タン、酸化ケイ素、酸化ジルコニウム、酸化マグネシウム、酸化イットリウム、イットリ
ア安定化ジルコニア、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、酸化亜鉛、
チタン酸バリウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ホウ素、ムラ
イト等が挙げられる。なかでも酸化チタンは、水分等に対して比較的安定でかつ高屈折率
であるため好ましい。
光反射性部材16は、圧縮成形、トランスファー成形、射出成形等の金型成形、印刷、
ポッティング等によって形成することができる。なかでも、圧縮成形、トランスファー成
形を利用することがより容易であることから、好ましい。
The light reflecting member 16 is preferably made of a material capable of reflecting the light emitted from the light emitting element 12. Specifically, it can be formed by containing a light-reflecting substance in a resin material similar to the above-mentioned light-transmitting resin. As the light-reflecting substance, titanium oxide, silicon oxide, zirconium oxide, magnesium oxide, yttrium oxide, yttria-stabilized zirconia, calcium carbonate, calcium hydroxide, calcium silicate, zinc oxide,
Examples thereof include barium titanate, potassium titanate, alumina, aluminum nitride, boron nitride and mullite. Of these, titanium oxide is preferable because it is relatively stable against moisture and has a high refractive index.
The light-reflecting member 16 is used for mold molding such as compression molding, transfer molding, injection molding, printing,
It can be formed by potting or the like. Of these, compression molding and transfer molding are preferable because they are easier to use.

光反射性部材16は、各発光素子12の主発光面12aに接合された透光性部材11の
上面と面一となるように形成することが好ましい。これによって、薄型で見切り性のある
発光装置を製造することができる。
The light reflecting member 16 is preferably formed so as to be flush with the upper surface of the translucent member 11 joined to the main light emitting surface 12 a of each light emitting element 12. This makes it possible to manufacture a thin light emitting device having a parting property.

(切断)
図1Hに示すように、光反射性部材16及び基板13を切断する。これによって、発光
装置を複数得ることができる。切断は、各発光素子12間で、1つの発光素子12毎に行
ってもよいし、複数の発光素子12毎に行ってもよい。後者により、複数の発光素子12
を有する発光装置を得ることができる。
切断は、ダイシング、トムソン加工、超音波加工、レーザ加工等の方法を利用すること
ができる。
切断は、隣接する透光性部材11の間で、隣接する透光性部材11間の間隔に相当する
光反射性部材を除去するように行ってもよく、隣接する透光性部材11の間で、透光性部
材11の側面を光反射性部材が被覆するように、透光性部材11間の間隔よりも小さい幅
で光反射性部材を除去するように行うことがさらに好ましい。これにより、透光性部材1
1の側面からの光出射を防止して、見切り性のある発光装置を得ることができる。
なお、光反射性部材16を形成した後または切断の後、基板13を除去してもよい。光
反射性部材16を形成した後に基板13が除去されている場合には、光反射性部材16の
みを切断してもよい。
(Cut)
As shown in FIG. 1H, the light reflecting member 16 and the substrate 13 are cut. Thereby, a plurality of light emitting devices can be obtained. The cutting may be performed between the light emitting elements 12 for each one light emitting element 12 or for each of the plurality of light emitting elements 12. By the latter, a plurality of light emitting elements 12
It is possible to obtain a light emitting device having.
For the cutting, a method such as dicing, Thomson processing, ultrasonic processing, or laser processing can be used.
The cutting may be performed between adjacent translucent members 11 so as to remove the light reflective members corresponding to the intervals between the adjacent translucent members 11, and between the adjacent translucent members 11. It is more preferable to remove the light reflecting member with a width smaller than the interval between the light transmitting members 11 so that the side surface of the light transmitting member 11 is covered with the light reflecting member. Thereby, the translucent member 1
It is possible to prevent the light from being emitted from the side surface of No. 1 and obtain a light emitting device having a parting property.
The substrate 13 may be removed after forming the light reflecting member 16 or after cutting. When the substrate 13 is removed after forming the light reflecting member 16, only the light reflecting member 16 may be cut.

(発光装置)
上述した製造方法により製造された発光装置は、図1Iに示すように、透光性部材の側
面及び接合部材の外面を光反射性部材で被覆されている。また、接合部材の外面は、透光
性部材に向かって広がる傾斜を有している。このことにより、発光素子12の側面12c
から出射する光を、より効率よく透光性部材11に取り出すことができ、かつ、発光領域
と非発光領域とのコントラストが高い、見切り性のある発光装置とすることができる。さ
らに、溝形成時に発光素子間の接合部材の一部、かつ、厚み方向の全部を除去するため、
透光性部材の側面と接合部材の外面の一部が面一となっている。これにより、小型の発光
装置とすることができる。
(Light emitting device)
In the light emitting device manufactured by the manufacturing method described above, as shown in FIG. 1I, the side surface of the translucent member and the outer surface of the joining member are covered with the light reflecting member. Further, the outer surface of the joining member has an inclination that widens toward the translucent member. As a result, the side surface 12c of the light emitting element 12
Light emitted from the can be extracted to the translucent member 11 more efficiently, and a light-emitting device having a high cutoff with a high contrast between the light-emitting region and the non-light-emitting region can be obtained. Furthermore, in order to remove a part of the joining member between the light emitting elements and the entire thickness direction at the time of forming the groove,
A side surface of the translucent member and a part of an outer surface of the joining member are flush with each other. Thereby, a small light emitting device can be obtained.

(変形例)
溝15を形成する工程において、溝15形成箇所を必要に応じて選択してよい。溝15
を、例えば図1Fに示すように、各発光素子12間で形成してもよいし、1つの発光素子
12毎に行ってもよいし、複数の発光素子12毎に行ってもよい。
発光素子12間で溝15を形成し、且つ、複数の発光素子12毎に切断することで、図
6Aに示すように、各発光素子12間に見切りのある複数の発光素子12を有する発光装
置を得ることができる。これにより、発光領域と非発光領域とのコントラストが高い、見
切り性の良好な発光装置を得ることができる。
(Modification)
In the step of forming the groove 15, the place where the groove 15 is formed may be selected as necessary. Groove 15
May be formed between the respective light emitting elements 12 as shown in FIG. 1F, may be performed for each one light emitting element 12, or may be performed for each of the plurality of light emitting elements 12.
By forming the groove 15 between the light emitting elements 12 and cutting each of the plurality of light emitting elements 12, as shown in FIG. 6A, a light emitting device having a plurality of light emitting elements 12 with a partition between the light emitting elements 12. Can be obtained. Accordingly, it is possible to obtain a light emitting device having a high contrast between the light emitting region and the non-light emitting region and having a good parting property.

溝15は、切断する発光素子12間にのみ形成してもよい。溝15内に光反射性部材1
6を形成し、溝15を形成した発光素子12間で切断することで、図6Bに示すように、
接合部材及び透光性部材が発光素子間で繋がっている、複数の発光素子12を有する発光
装置を得ることができる。
また、発光素子12間を接合する接合部材14は、繋がっていても、それぞれ離間して
いてもよい。図6Bに示すように、発光素子12間を繋ぐように接合部材14が位置する
ことが好ましい。このようにすることで、発光素子12間からも接合部材を介して発光素
子12の光を透光性部材に導光することができるので、発光装置の輝度ムラを低減するこ
とができる。
The groove 15 may be formed only between the light emitting elements 12 to be cut. Light reflecting member 1 in groove 15
6 is formed and cut between the light emitting elements 12 in which the grooves 15 are formed, as shown in FIG. 6B,
It is possible to obtain a light emitting device having a plurality of light emitting elements 12 in which the joining member and the translucent member are connected between the light emitting elements.
Further, the joining members 14 joining the light emitting elements 12 may be connected to each other or may be separated from each other. As shown in FIG. 6B, it is preferable that the joining member 14 be located so as to connect the light emitting elements 12. By doing so, since the light of the light emitting element 12 can be guided to the translucent member from between the light emitting elements 12 through the joining member, it is possible to reduce the uneven brightness of the light emitting device.

実施形態2
この実施形態の発光装置の製造方法は、単層構造の透光性部材11を準備することに代
えて、積層構造の透光性部材21を準備する工程を含む。
積層構造の透光性部材21は、例えば、蛍光体を含有する蛍光体含有層21bと、蛍光
体を含有しない蛍光体非含有層21aとの積層体又はそれらの3層以上の交互積層体であ
ってもよい。また、異なる種類の蛍光体を含有する複数の蛍光体含有層が積層された構造
、これに蛍光体非含有層がさらに積層された構造でもよい。例えば、緑色に発光する蛍光
体を含有した層と赤色に発光する蛍光体を含有した層とを別々に形成し、貼り合せて2層
構造の透光性部材としてもよい。蛍光体含有層21b又は蛍光体非含有層21aを形成し
、その上面にスプレー法等で蛍光体含有層21b及び/又は蛍光体非含有層21aを形成
した2層以上の構造の透光性部材としてもよい。
Embodiment 2
The method for manufacturing the light emitting device of this embodiment includes a step of preparing the translucent member 21 having a laminated structure, instead of preparing the translucent member 11 having a single layer structure.
The translucent member 21 having a laminated structure is, for example, a laminate of a phosphor-containing layer 21b containing a phosphor and a phosphor-free layer 21a containing no phosphor, or an alternating laminate of three or more layers thereof. It may be. Further, it may have a structure in which a plurality of phosphor-containing layers containing different types of phosphors are stacked, or a structure in which a non-phosphor-containing layer is further stacked. For example, a layer containing a phosphor that emits green light and a layer containing a phosphor that emits red light may be separately formed and then bonded together to form a translucent member having a two-layer structure. A translucent member having a structure of two or more layers in which the phosphor-containing layer 21b or the phosphor-free layer 21a is formed, and the phosphor-containing layer 21b and/or the phosphor-free layer 21a is formed on the upper surface thereof by a spray method or the like. May be

蛍光体含有層21bと、蛍光体非含有層21aとの2層構造の透光性部材21として、
水分及び/又は外部環境に弱い蛍光体、例えば、KSF蛍光体が含有される場合には、発
光素子の主発光面に遠い側に蛍光体非含有層21aを配置することが好ましい。そのため
、図3に示すように、透光性部材を準備する際に、透光性部材21の蛍光体含有層21b
の一面に透光性部材11を配置することが好ましい。
これにより、水分等に弱い蛍光体を蛍光体非含有層21aによって保護し、つまり、蛍
光体が外部環境に露出されるのを抑制し、蛍光体の劣化を防止することができる。
蛍光体含有層と、蛍光体非含有層11aとを含む場合、例えば、蛍光体含有層の厚みを
、10〜250μmとすることが挙げられ、30〜200μmとすることが好ましい。
As a translucent member 21 having a two-layer structure of a phosphor-containing layer 21b and a phosphor-free layer 21a,
When a fluorescent substance that is sensitive to moisture and/or the external environment, such as a KSF fluorescent substance, is contained, it is preferable to dispose the fluorescent substance-free layer 21a on the side far from the main light emitting surface of the light emitting element. Therefore, as shown in FIG. 3, when the translucent member is prepared, the phosphor-containing layer 21b of the translucent member 21 is prepared.
It is preferable to dispose the translucent member 11 on one surface.
This makes it possible to protect the phosphor, which is weak against moisture and the like, by the phosphor-free layer 21a, that is, to prevent the phosphor from being exposed to the external environment and prevent the phosphor from being deteriorated.
When the phosphor-containing layer and the phosphor-non-containing layer 11a are included, for example, the thickness of the phosphor-containing layer is 10 to 250 μm, and preferably 30 to 200 μm.

上記以外の製造方法は、実質的に実施形態1と同様であり、実施形態1と同様の効果を
有する。
なお、透光性部材21を用いる場合であっても、後述するように、透光性部材21に接
合部材14を配置することに代えて、発光素子12の主発光面12aに接合部材14を予
め配置してもよい。
The manufacturing method other than the above is substantially the same as that of the first embodiment and has the same effect as that of the first embodiment.
Even when the translucent member 21 is used, as described later, instead of disposing the joining member 14 on the translucent member 21, the joining member 14 is provided on the main light emitting surface 12a of the light emitting element 12. It may be arranged in advance.

実施形態3
この実施形態の発光装置の製造方法は、透光性部材11、21の上面に接合部材を予め
配置することに代えて、図4に示すように、発光素子12の主発光面12aに接合部材1
4を予め配置する工程を含む。
発光素子12の主発光面12a上への接合部材14の配置は、基板13の上面に発光素
子12を接合した後に行うことが好ましい。
Embodiment 3
In the method for manufacturing the light emitting device of this embodiment, as shown in FIG. 4, instead of previously disposing the joining member on the upper surfaces of the translucent members 11 and 21, the joining member is attached to the main light emitting surface 12 a of the light emitting element 12. 1
4 is placed in advance.
The joining member 14 is preferably arranged on the main light emitting surface 12a of the light emitting element 12 after the light emitting element 12 is joined to the upper surface of the substrate 13.

図4Aに示すように、例えば、基板13に接合された複数の発光素子12を、図4Bに
示すように、平坦な基台17上に配置された接合部材14に、図4Cに示すように、接触
させることにより、図4Dに示すように、複数の発光素子12の主発光面12aに配置す
ることによって実施することができる。
これにより、複数の発光素子12に対して一括に、かつ均一に、適当な量で、接合部材
14を配置することができる。発光素子12を接合部材14に接触させる際、用いる接合
部材14によって、熱を負荷してもよい。あるいは、発光素子12の主発光面12a上に
、接合部材14をピン転写、ディスペンス、印刷等の方法を用いて、配置してもよい。
上記以外の製造方法は、実質的に実施形態1と同様であり、実施形態1と同様の効果を
有する。
As shown in FIG. 4A, for example, as shown in FIG. 4B, a plurality of light emitting elements 12 joined to a substrate 13 are joined to a joining member 14 arranged on a flat base 17, and as shown in FIG. 4C. , By placing them on the main light emitting surface 12a of the plurality of light emitting elements 12, as shown in FIG. 4D.
Accordingly, the bonding members 14 can be arranged collectively and uniformly with respect to the plurality of light emitting elements 12 in an appropriate amount. When the light emitting element 12 is brought into contact with the joining member 14, heat may be loaded by the joining member 14 used. Alternatively, the bonding member 14 may be arranged on the main light emitting surface 12a of the light emitting element 12 by using a method such as pin transfer, dispensing, or printing.
The manufacturing method other than the above is substantially the same as that of the first embodiment and has the same effect as that of the first embodiment.

実施形態4
この実施形態の発光装置の製造方法は、光反射性部材16を、図5Aに示すように、透
光性部材11を含む発光素子12の全部を埋設するように、つまり、透光性部材11の上
面を覆うように形成する。
その後、図5Bに示すように、透光性部材11の上面上に配置された光反射性部材16
を除去し、光反射性部材16が透光性部材11の上面と面一となるように、透光性部材1
1を露出させてもよい。
光反射性部材16は、研磨又は研削、切削、ポリッシング、CMP、超音波加工、レー
ザ加工等を利用して除去することができる。
Embodiment 4
In the method for manufacturing the light emitting device of this embodiment, as shown in FIG. 5A, the light reflecting member 16 is embedded in the entire light emitting element 12 including the light transmitting member 11, that is, the light transmitting member 11. Is formed so as to cover the upper surface of the.
Thereafter, as shown in FIG. 5B, the light reflecting member 16 disposed on the upper surface of the light transmitting member 11.
Of the transparent member 1 so that the light reflecting member 16 is flush with the upper surface of the transparent member 11.
1 may be exposed.
The light reflecting member 16 can be removed by polishing, grinding, cutting, polishing, CMP, ultrasonic processing, laser processing, or the like.

この場合、特に、蛍光体含有層21bと、蛍光体非含有層21aとの2層構造の透光性
部材21を用いて、発光素子の主発光面に遠い側に蛍光体非含有層21aを配置すること
により、光反射性部材16とともに透光性部材21の一部まで除去することとなっても、
透光性部材21における蛍光体量を変動させることを防止することができる。よって、安
定した光変換を確保することができる。
上記以外の製造方法は、実質的に実施形態1と同様であり、実施形態1と同様の効果を
有する。
In this case, in particular, using the translucent member 21 having a two-layer structure of the phosphor-containing layer 21b and the phosphor-non-containing layer 21a, the phosphor-free layer 21a is provided on the side far from the main light emitting surface of the light emitting element. By disposing, even if a part of the light transmissive member 21 is removed together with the light reflective member 16,
It is possible to prevent the amount of phosphor in the translucent member 21 from varying. Therefore, stable light conversion can be ensured.
The manufacturing method other than the above is substantially the same as that of the first embodiment and has the same effect as that of the first embodiment.

10 発光装置
11、21 透光性部材
12 発光素子
12a 主発光面
12b 電極配置面
12c 側面
13 基板
14 接合部材
15 溝
16 光反射性部材
17 基台
21a 蛍光体非含有層
21b 蛍光体含有層
DESCRIPTION OF SYMBOLS 10 Light emitting device 11, 21 Light transmissive member 12 Light emitting element 12a Main light emitting surface 12b Electrode arrangement surface 12c Side surface 13 Substrate 14 Joining member 15 Groove 16 Light reflecting member 17 Base 21a Phosphor-free layer 21b Phosphor-containing layer

Claims (8)

板状の透光性部材を準備し、
主発光面と前記主発光面の反対側に電極配置面を有する複数の発光素子を準備し、
基板の上面に、前記電極配置面が対向するように前記複数の発光素子を接合し、
前記透光性部材の上面に、前記複数の発光素子の前記主発光面が、透光性の接合部材を
介して対向するように配置し、
前記発光素子の側面に前記接合部材の一部を配置し、
前記発光素子間において、前記透光性部材の一部を除去して溝を形成し、
少なくとも前記溝内に光反射性部材を形成し、
前記光反射性部材及び前記基板を切断することを含む発光装置の製造方法。
Prepare a plate-shaped transparent member,
Prepare a plurality of light emitting elements having an electrode arrangement surface on the side opposite to the main light emitting surface and the main light emitting surface,
The plurality of light emitting elements are bonded to the upper surface of the substrate so that the electrode arrangement surfaces face each other,
On the upper surface of the translucent member, the main light emitting surfaces of the plurality of light emitting elements are arranged so as to face each other via a translucent joining member,
A part of the joining member is arranged on a side surface of the light emitting element,
Between the light emitting elements, a part of the translucent member is removed to form a groove,
Forming a light-reflecting member in at least the groove,
A method of manufacturing a light emitting device, comprising cutting the light reflecting member and the substrate.
前記接合部材を、前記発光素子の側面に接する部分の厚みが前記発光素子の側面から離
間する部分の厚みよりも厚くなるように配置する請求項1に記載の発光装置の製造方法。
The method for manufacturing a light emitting device according to claim 1, wherein the joining member is arranged such that a thickness of a portion in contact with a side surface of the light emitting element is thicker than a thickness of a portion spaced from the side surface of the light emitting element.
前記透光性部材を、蛍光体含有層と蛍光体非含有層との積層体として準備し、
前記蛍光体含有層に、前記主発光面が対向するように前記発光素子を配置する請求項1
又は2に記載の発光装置の製造方法。
The translucent member is prepared as a laminate of a phosphor-containing layer and a phosphor-free layer,
The light emitting element is arranged in the phosphor-containing layer so that the main light emitting surface faces the phosphor.
Or the method for manufacturing the light-emitting device according to item 2.
前記板状の透光性部材を準備する工程は、
前記透光性部材の上面に前記接合部材を配置する工程を含む請求項1から3のいずれか
一項に記載の発光装置の製造方法。
The step of preparing the plate-shaped translucent member,
The method for manufacturing a light emitting device according to claim 1, further comprising: disposing the joining member on an upper surface of the translucent member.
前記基板の上面に前記発光素子を接合する工程の後に、
前記発光素子の前記主発光面上に、前記接合部材を配置する工程を有する請求項1から
3のいずれか一項に記載の発光装置の製造方法。
After the step of bonding the light emitting device to the upper surface of the substrate,
The method for manufacturing a light emitting device according to claim 1, further comprising: disposing the joining member on the main light emitting surface of the light emitting element.
前記発光素子の側面に前記接合部材の一部を配置する工程は、
隣接する前記発光素子の両方の側面と前記接合部材が接するように配置する工程を含む
請求項1から5のいずれか一項に記載の発光装置の製造方法。
The step of disposing a part of the joining member on the side surface of the light emitting element,
The method for manufacturing a light emitting device according to claim 1, further comprising a step of disposing the bonding member so that both side surfaces of the light emitting elements adjacent to each other are in contact with each other.
前記発光素子間において、前記透光性部材を除去して前記溝を形成する工程は、前記接
合部材の一部を除去する工程を含む請求項1から6のいずれか一項に記載の発光装置の製
造方法。
The light emitting device according to claim 1, wherein the step of removing the translucent member between the light emitting elements to form the groove includes a step of removing a part of the joining member. Manufacturing method.
前記光反射性部材を形成する工程は、
前記透光性部材の前記上面を覆う工程と、
前記透光性部材の前記上面に配置された前記光反射性部材を除去し、前記透光性部材を
露出させる工程を含む請求項1から7のいずれか一項に記載の発光装置の製造方法。
The step of forming the light reflective member,
Covering the upper surface of the translucent member,
The method for manufacturing a light-emitting device according to claim 1, further comprising the step of removing the light-reflecting member arranged on the upper surface of the translucent member to expose the translucent member. ..
JP2020078991A 2020-04-28 2020-04-28 Light emitting device Active JP7054020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020078991A JP7054020B2 (en) 2020-04-28 2020-04-28 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020078991A JP7054020B2 (en) 2020-04-28 2020-04-28 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017146627A Division JP6699634B2 (en) 2017-07-28 2017-07-28 Method for manufacturing light emitting device

Publications (3)

Publication Number Publication Date
JP2020123746A true JP2020123746A (en) 2020-08-13
JP2020123746A5 JP2020123746A5 (en) 2020-09-24
JP7054020B2 JP7054020B2 (en) 2022-04-13

Family

ID=71992992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020078991A Active JP7054020B2 (en) 2020-04-28 2020-04-28 Light emitting device

Country Status (1)

Country Link
JP (1) JP7054020B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110153A (en) * 2001-06-11 2003-04-11 Lumileds Lighting Us Llc Fluorescent material conversion light-emitting device
WO2011099384A1 (en) * 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
JP2012004303A (en) * 2010-06-16 2012-01-05 Stanley Electric Co Ltd Light emitting device and method of manufacturing the same
JP2013012545A (en) * 2011-06-28 2013-01-17 Citizen Electronics Co Ltd Light-emitting device and manufacturing method therefor
JP2013021175A (en) * 2011-07-12 2013-01-31 Toshiba Corp Semiconductor light-emitting element
JP2014027208A (en) * 2012-07-30 2014-02-06 Nichia Chem Ind Ltd Light-emitting device and manufacturing method of the same
JP2014110333A (en) * 2012-12-03 2014-06-12 Citizen Holdings Co Ltd Led device and manufacturing method thereof
JP2014120722A (en) * 2012-12-19 2014-06-30 Nichia Chem Ind Ltd Light emitting device and manufacturing method of the same
JP2015023162A (en) * 2013-07-19 2015-02-02 日亜化学工業株式会社 Light-emitting device
JP2015138839A (en) * 2014-01-21 2015-07-30 豊田合成株式会社 Light emitting device and manufacturing method of the same
JP2016115729A (en) * 2014-12-11 2016-06-23 日亜化学工業株式会社 Method of manufacturing light-emitting device
JP2016225596A (en) * 2015-05-29 2016-12-28 日亜化学工業株式会社 Light-emitting device, manufacturing method of coating member, and manufacturing method of light-emitting device
JP2017050321A (en) * 2015-08-31 2017-03-09 日亜化学工業株式会社 Manufacturing method for light-emitting device
US20170084587A1 (en) * 2015-09-18 2017-03-23 Genesis Photonics Inc. Light-emitting device
JP2017069368A (en) * 2015-09-30 2017-04-06 日亜化学工業株式会社 Method of manufacturing light-emitting device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110153A (en) * 2001-06-11 2003-04-11 Lumileds Lighting Us Llc Fluorescent material conversion light-emitting device
WO2011099384A1 (en) * 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
JP2012004303A (en) * 2010-06-16 2012-01-05 Stanley Electric Co Ltd Light emitting device and method of manufacturing the same
JP2013012545A (en) * 2011-06-28 2013-01-17 Citizen Electronics Co Ltd Light-emitting device and manufacturing method therefor
JP2013021175A (en) * 2011-07-12 2013-01-31 Toshiba Corp Semiconductor light-emitting element
JP2014027208A (en) * 2012-07-30 2014-02-06 Nichia Chem Ind Ltd Light-emitting device and manufacturing method of the same
JP2014110333A (en) * 2012-12-03 2014-06-12 Citizen Holdings Co Ltd Led device and manufacturing method thereof
JP2014120722A (en) * 2012-12-19 2014-06-30 Nichia Chem Ind Ltd Light emitting device and manufacturing method of the same
JP2015023162A (en) * 2013-07-19 2015-02-02 日亜化学工業株式会社 Light-emitting device
JP2015138839A (en) * 2014-01-21 2015-07-30 豊田合成株式会社 Light emitting device and manufacturing method of the same
JP2016115729A (en) * 2014-12-11 2016-06-23 日亜化学工業株式会社 Method of manufacturing light-emitting device
JP2016225596A (en) * 2015-05-29 2016-12-28 日亜化学工業株式会社 Light-emitting device, manufacturing method of coating member, and manufacturing method of light-emitting device
JP2017050321A (en) * 2015-08-31 2017-03-09 日亜化学工業株式会社 Manufacturing method for light-emitting device
US20170084587A1 (en) * 2015-09-18 2017-03-23 Genesis Photonics Inc. Light-emitting device
JP2017069368A (en) * 2015-09-30 2017-04-06 日亜化学工業株式会社 Method of manufacturing light-emitting device

Also Published As

Publication number Publication date
JP7054020B2 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
JP6699634B2 (en) Method for manufacturing light emitting device
US10230029B2 (en) Light emitting device and method of manufacturing the same
JP6205897B2 (en) Light emitting device and manufacturing method thereof
JP6139071B2 (en) Light emitting device and manufacturing method thereof
CN108231974B (en) Method for manufacturing light emitting device
JP6398323B2 (en) Manufacturing method of semiconductor light emitting device
EP2704223A1 (en) Light emitting device and method for manufacturing the same
TWI767942B (en) Method for manufacturing a linear lighting device and linear lighting device
JP6566016B2 (en) Method for manufacturing light emitting device
US11329203B2 (en) Light emitting device including covering member and optical member
JP2019009429A (en) Light-emitting device
JP2019176081A (en) Light-emitting device and method for manufacturing the same
JP6511809B2 (en) Light emitting device, method of mounting the same, and method of manufacturing light source device
JP6460189B2 (en) Light emitting device and manufacturing method thereof
US11056623B2 (en) Light-emitting device and method of manufacturing light-emitting device
JP7174215B2 (en) Light-emitting device manufacturing method and light-emitting device
JP7054020B2 (en) Light emitting device
JP6519127B2 (en) Method of manufacturing light emitting device
JP6784287B2 (en) Light emitting device and its manufacturing method
WO2024071218A1 (en) Light emitting device and method for manufacturing light emitting device
JP2023163404A (en) Light emission device and light emission module
JP2019029546A (en) Method of manufacturing semiconductor light-emitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7054020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150