JP2020122678A - アンテナ装置及び測定方法 - Google Patents

アンテナ装置及び測定方法 Download PDF

Info

Publication number
JP2020122678A
JP2020122678A JP2019013517A JP2019013517A JP2020122678A JP 2020122678 A JP2020122678 A JP 2020122678A JP 2019013517 A JP2019013517 A JP 2019013517A JP 2019013517 A JP2019013517 A JP 2019013517A JP 2020122678 A JP2020122678 A JP 2020122678A
Authority
JP
Japan
Prior art keywords
antenna
signal
measurement
test
dut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019013517A
Other languages
English (en)
Other versions
JP6836607B2 (ja
Inventor
友彦 丸尾
Tomohiko Maruo
友彦 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2019013517A priority Critical patent/JP6836607B2/ja
Priority to CN202010017004.6A priority patent/CN111490329B/zh
Priority to US16/742,409 priority patent/US10958361B2/en
Publication of JP2020122678A publication Critical patent/JP2020122678A/ja
Application granted granted Critical
Publication of JP6836607B2 publication Critical patent/JP6836607B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/225Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/18Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is movable and the reflecting device is fixed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

【課題】電波暗箱の大型化、及び被試験対象と測定用アンテナ間の距離に依存した電力ロスの増大を回避しつつ効率的なスプリアス測定を実現可能なアンテナ装置及び測定方法を提供する。【解決手段】アンテナ装置1は、OTAチャンバ50の内部空間51内に、アンテナ110を有するDUT100を基準点中心に全球面走査するDUT走査機構56と、基準点から近傍界測定範囲内の距離に配置される複数のアンテナ6A、6B、6C、6Dと、全球面走査の実行中、規定の周波数帯の無線信号を送受信中のアンテナ110から放射されるスプリアス周波数帯の無線信号のアンテナ6A、6B、6C、6Dによる受信信号に基づいて、TRP(全球面放射電力)関する近傍界測定処理をそれぞれ行う信号解析装置30A、30B、30C、30Dと、を備えて構成されている。【選択図】図1

Description

本発明は、OTA(Over The Air)環境下での試験中に被試験対象のアンテナから放射されるスプリアス信号の近傍界測定を行うアンテナ装置及び測定方法に関する。
近年、マルチメディアの進展に伴い、セルラ、無線LAN等の無線通信用のアンテナが実装された無線端末(スマートフォン等)が盛んに生産されるようになっている。今後は、特に、ミリ波帯の広帯域な信号を使用するIEEE802.11adや5Gセルラ等に対応した無線信号を送受信する無線端末が求められている。
無線端末の製造工場においては、無線端末が備えている無線通信用のアンテナに対して、通信規格ごとに定められた送信電波の出力レベルや受信感度を測定し、所定の基準を満たすか否かを判定する性能試験が行われる。
無線端末の世代移行に伴いその試験方法も変わりつつある。例えば、5G NRシステム(New Radio System)用の無線端末(以下、5G無線端末)を被試験対象(Device Under Test:DUT)とする性能試験においては、周囲の電波環境に影響されないコンパクト・アンテナ・テスト・レンジ(Compact Antenna test Range:以下、CATR)と称する電波暗箱(OTAチャンバ)を用いたOTA試験が実施される。
OTA試験においては、CATR内に、DUT及び試験用アンテナを収容し、試験用アンテナからDUTに対する試験信号の送信と、試験信号を受信したDUTのアンテナ(以下、被試験対象アンテナ)から送信される被測定信号の試験用アンテナでの受信を無線通信により行いつつ、被試験対象アンテナが使用する周波数帯域(目的周波数帯)の無線信号の測定が行われる。
特に、5G無線端末を対象とするOTA試験については、目的周波数帯の無線信号の測定の他、スプリアス測定を行うことも義務付けられている。スプリアス測定とは、試験中にDUTのアンテナから放射される目的外周波数信号、すなわち、スプリアス周波数帯の無線信号(スプリアス信号)を測定する処理である。
無線端末の性能試験に係る従来の測定方法の一つとして、電磁波がシールド可能なルーム内に配置した測定対象の無線モジュールを対象とし、回転機構を構成する回転シート、モジュール回転アームを第1の回転軸及び第2の回転軸を中心にそれぞれ180度、360度回転させつつ、アンテナから送信した無線信号に対する無線モジュールの3次元の放射パターンを測定装置で測定する技術が知られている(例えば、特許文献1参照)。
また、5G無線端末の性能試験のために従来の測定方法としては、近傍界領域(Reactive Near Fieldを除く)のEIRP(Equivarent Isotropically Radiated Power:等価等方性放射電力)サンプルに基づいてTRP(Total Radiated Power:全球面放射電力)を測定する技術も知られている(例えば、非特許文献1参照)。
米国特許第9,377,495号明細書 3GPP TR 38.803 V14.2.0(2017-09)技術仕様書 (3GPP(Third Generation Partnership Project) 2017年9月発行、10.2.2.5章 OTA measurements in the radiative near field欄(第159頁から第161頁))
OTA環境下で5G無線端末をDUTとして目的周波数信号とスプリアス信号の測定を行う場合、CATRは、被試験対象アンテナを有するDUTと、試験用アンテナと、スプリアス測定用のアンテナ(以下、測定用アンテナ)を収容する構成をとる。スプリアス信号を複数の周波数帯域に分けて測定する場合は、複数の測定用アンテナが必要となる。
CATRを用いる従来の測定装置では、被試験対象アンテナが使用する目的周波数帯の無線信号、あるいは目的外周波数帯の無線信号(スプリアス信号)のいずれの測定についても遠方界(Far Field)での測定を行うことが一般的であった。
遠方界測定では、例えば測定用アンテナをDUTからの遠方界領域に配置する必要があるという第1の特徴と、DUTと測定用アンテナ間の距離が大きくなるほど該測定用アンテナに対する放射電力の減衰(以下、電力ロス)が増大する、つまり、放射電力は、DUTと測定用アンテナとの間の距離に依存するという第2の特徴が知られている。
第1の特徴については、CATRのコンパクト化の観点から、Direct Far Field(DFF)方式のものに代えて、DUTのアンテナと試験用アンテナとの間の信号伝搬路中に回転放物面を有する反射器(リフレクタ)を配置したIndirect Far Field(IFF)方式のものを採用する動きもみられる。
また、第2の特徴については、例えば、図15の表図に示す例では、太枠で囲まれた部分の値に着目すると、最大直線サイズが15cm、使用周波数が28GHz(ミリ波帯)のDUTをアンテナから420cm離して配置した場合と、同サイズで使用周波数が100GHzのDUTをアンテナから1500cm離して配置した場合とでは、後者の方の電力ロス(Path Loss)が大きいことが分かる。
一方、近傍界(Near Field)測定については、非特許文献1に、「波が平面でないという事実に関する測定アンテナの影響は、プローブの補償により処理される。TRPの場合、球面全体の全放射電力は、試験対象と測定アンテナとの間の距離に依存しない。」という記載があり、近傍界でのTRP測定においては、DUTと測定用アンテナとの間の距離に依存しない全球面放射電力が得られることが示唆されている。
しかしながら、従来のIFF方式の測定装置では、CATR内で、DUTからリフレクタを介した遠方界領域内に測定用アンテナを配置し、該測定用アンテナの受信信号に基づいてスプリアス信号の遠方界測定を行うものはあったが、DUTから近傍界領域内の距離に測定用アンテナを配置したものは存在しなかった。
このため、従来の測定装置では、被試験用アンテナが放射するスプリアス信号を測定するには遠方界測定による方法しかなく、CATRの小型化維持には限界があり、しかも、DUTと測定用アンテナ間の距離に依存して電力ロスが生じる測定結果しかを得ることができなかった。また、従来は、スプリアス信号を複数の周波数帯に分けて測定するためには、各周波数帯を使用する複数の測定用アンテナを用意し、該各測定用アンテナを付け替えて使用する必要があり、スプリアス測定が煩雑になるという問題点があった。
本発明は、このような従来の課題を解決するためになされたものであって、電波暗箱の大型化、及び被試験対象と測定用アンテナ間の距離に依存した電力ロスの増大を回避しつつ効率的なスプリアス測定を実現可能なアンテナ装置及び測定方法を提供することを目的とする。
上記課題を解決するために、本発明の請求項1に係るアンテナ装置は、周囲の電波環境に影響されない内部空間(51)を有する電波暗箱(50)と、前記内部空間内で、球座標系の中心を基準点とし、被試験用アンテナ(110)を有する被試験対象(100)を、前記球座標系の予め設定された全ての方位を順次向くように前記基準点を中心に回転駆動する全球面走査を実行する走査手段(56)と、前記基準点から近傍界測定範囲内の距離に配置される測定用アンテナ(6)と、前記全球面走査の実行中、規定の周波数帯の無線信号を送受信中の前記被試験対象アンテナから放射されるスプリアス周波数帯の無線信号を前記測定用アンテナで受信し、前記測定用アンテナの受信信号に基づいて、前記スプリアス周波数帯の無線信号の電力に関する近傍界測定処理を行う近傍界測定処理手段(30)と、を有する構成である。
この構成により、本発明の請求項1に係るアンテナ装置は、測定用アンテナを被試験対象が配置される基準点から近傍界測定範囲内の距離に配置することで、電波暗箱の大型化を回避できる。また、近傍界測定範囲内の距離に配置した測定用アンテナの受信信号に基づく近傍界測定処理によれば、測定用アンテナと被試験対象間の距離に依存せず、電力ロスが少なく、測定時間が短縮されたスプリアス測定を実現できる。
また、本発明の請求項2に係るアンテナ装置は、前記近傍界測定処理手段は、前記測定用アンテナの受信信号に基づいて前記全ての方位についてのEIRP(等価等方性放射電力)を測定するとともに、前記全ての方位の前記EIRPの総和であるTRP(全球面放射電力)を測定する構成である。
この構成により、本発明の請求項2に係るアンテナ装置は、球座標系の全ての方位についてそれぞれEIRPを測定し、当該各EIRPの総和を求める演算によってTRPを求めることができ、近傍界測定処理手段におけるスプリアス測定処理を簡略化できる。
また、本発明の請求項3に係るアンテナ装置は、複数の前記測定用アンテナ(6A、6B、6C、6D)を有し、前記各測定用アンテナは、前記規定の周波数帯より低い周波数帯から高い周波数帯までを含む前記スプリアス周波数帯の予め区分された複数の区分周波数帯の無線信号をそれぞれ使用し、前記近傍界測定処理手段は、前記全球面走査の実行中、前記各測定用アンテナの受信信号に基づいて、前記スプリアス周波数帯の予め区分された複数の区分周波数帯ごとに前記近傍界測定処理を行う構成である。
この構成により、本発明の請求項3に係るアンテナ装置は、複数の測定用アンテナを用いる場合でも、電波暗箱のコンパクト化を維持しつつ、各測定用アンテナを切り替える手間を要せずに被試験対象の1回の全球面走査によってDUTについて広範な周波数帯域の効率的なスプリアス測定を実現できる。
また、本発明の請求項4に係るアンテナ装置は、前記規定の周波数帯の無線信号を使用する試験用アンテナ(5)と、前記全球面走査時、前記試験用アンテナを介して前記被試験対象に試験信号を出力するとともに、前記試験信号が入力された前記被試験対象から出力される被測定信号を前記試験用アンテナで受信し、受信した前記被測定信号に基づき前記規定の周波数帯の無線信号に対する測定を行う模擬測定装置(20)と、をさらに備える。
この構成により、本発明の請求項4に係るアンテナ装置は、被試験対象アンテナの性能試験に合わせて、各区分周波数帯ごとのスプリアス測定を効率的に実施できる。
また、本発明の請求項5に係るアンテナ装置は、前記被試験対象の最大直線サイズをD、前記被試験用アンテナが使用する無線信号の波長をλとするとき、前記測定用アンテナは、前記基準点から下式で表わされるラジエィティブ近傍界の領域内の距離Rの位置に配置される構成である。
Figure 2020122678
この構成により、本発明の請求項5に係るアンテナ装置は、測定系の基準点から近すぎる距離に測定用アンテナを配置したときのスプリアス測定に関する精度低下を低減することができ、測定用アンテナの受信信号に基づく正確なスプリアス測定が実現できる。
また、本発明の請求項6に係るアンテナ装置は、前記走査手段は、アジマス軸を中心に回転可能なターンテーブル(56a)と、前記ターンテーブル上に垂直方向に設置される支柱部材(56b)と、前記支柱部材に対して前記ターンテーブルと平行に配置され、ロール軸を中心に回転可能な被試験対象載置部(56d)と、前記アジマス軸を回転駆動する第1の回転駆動手段(56f)、及び前記ロール軸を回転駆動する第2の回転駆動手段(56g)を有する駆動手段(56e)と、を有する。
この構成により、本発明の請求項6に係るアンテナ装置は、走査手段の簡略な構成を維持しつつ、第1及び第2の回転駆動手段を適宜駆動する制御により、被試験対象の全球面走査を容易に行うことができる。
また、本発明の請求項7に係るアンテナ装置は、前記内部空間に収容され、所定の回転放物面を有し、前記被試験対象アンテナ及び前記試験用アンテナにより送信あるいは受信される無線信号が前記回転放物面を介して反射されるリフレクタ(7)をさらに有する。
この構成により、本発明の請求項7に係るアンテナ装置は、被試験対象の性能試験のための試験用アンテナと被試験対象アンテナ間の距離を短縮でき、基準点から近傍界測定領域内の距離への測定用アンテナの配置と相俟って電波暗箱の大型化を回避することができる。
また、本発明の請求項8に係る測定方法は、請求項1から請求項7のいずれかに記載のアンテナ装置を用いる測定方法であって、前記被試験対象を、前記電波暗箱(50)内における前記走査手段(56)の被試験対象載置部(56d)に載置する載置ステップ(S1)と、前記模擬測定装置(20)により、前記試験用アンテナ(5)を介して前記被試験対象に試験信号を出力させる試験信号出力ステップ(S4)と、前記被試験対象載置部(56d)に載置された前記被試験対象に対する前記走査手段による前記全球面走査を実行する全球面走査ステップ(S5)と、前記全球面走査の実行中、前記試験信号が入力された前記被試験対象から前記被測定信号とともに出力される前記スプリアス周波数帯の無線信号を前記測定用アンテナにより受信する信号受信ステップ(S6)と、前記信号受信ステップにおける前記各測定用アンテナの受信信号に基づいて、前記スプリアス周波数帯の無線信号の電力に関する近傍界測定処理を行う近傍界測定処理ステップ(S7)と、を含む構成である。
この構成により、本発明の請求項8に係る測定方法は、測定用アンテナを被試験対象が配置される基準点から近傍界測定範囲内の距離に配置し、近傍界測定処理を行うことで、電波暗箱の大型化を回避しつつ、測定用アンテナと被試験対象間の距離に依存せず、かつ、電力ロスが少なく、測定時間が短縮されたスプリアス測定を行うことができる。
本発明は、電波暗箱の大型化、及び被試験対象と測定用アンテナ間の距離に依存した電力ロスの増大を回避しつつ効率的なスプリアス測定を実現可能なアンテナ装置及び測定方法を提供することができる。
本発明の一実施形態に係る測定装置全体の概略構成を示す図である。 本発明の一実施形態に係る測定装置の機能構成を示すブロック図である。 本発明の一実施形態に係る測定装置の統合制御装置の機能構成を示すブロック図である。 本発明の一実施形態に係る測定装置におけるNRシステムシミュレータ及び信号解析装置の機能構成を示すブロック図である。 本発明の一実施形態に係る測定装置のOTAチャンバに採用される複数の測定用アンテナの使用周波数分類を示す表図である。 アンテナと無線端末間の電波伝搬における近傍界及び遠方界を説明するための模式図である。 本発明の一実施形態に係る測定装置のOTAチャンバに採用されるリフレクタと同様の回転放物面を有するパラボラの信号経路構造を示す模式図である。 本発明の一実施形態に係る測定装置のOTAチャンバに採用されるリフレクタと同様の回転放物面を有するオフセットパラボラの信号経路構造を示す模式図である。 無線端末から遠方界測定領域に配置されるアンテナにおける電力ロスの特性を示す図である。 本実施形態に係る測定装置におけるスプリアス信号の近傍界測定を実現するための測定用アンテナの配置態様を示す模式図である。 本発明の一実施形態に係る測定装置のOTAチャンバにおけるDUTとスプリアス測定用のアンテナの配置に係る領域を説明するための模式図である。 本発明の一実施形態に係る測定装置のOTAチャンバ内におけるスプリアス測定用のアンテナの配置態様を立体的に示す模式図である。 本発明の一実施形態に係る測定装置におけるスプリアス信号の近傍界測定原理を説明するための模式図であり、(a)はDUTの全球面走査に係る球座標系を示す図であり、(b)は球座標系における角度標本点の分布を示す図である。 本発明の一実施形態に係る測定装置の統合制御装置によるDUTのスプリアス測定処理のための制御動作を示すフローチャートである。 DUTのサイズ、使用周波数、及び測定領域区間と電力ロスとの関係を示す表図である。
以下、本発明に係る測定装置及び測定方法の実施形態について図面を用いて説明する。
まず、本発明の一実施形態に係る測定装置1の構成について、図1〜図13を参照して説明する。測定装置1は、本発明のアンテナ装置に相当する。本実施形態に係る測定装置1は、全体として図1に示すような外観構造を有し、かつ、図2に示すような機能ブロックにより構成されている。但し、図1、図2において、OTAチャンバ50についてはその側面から透視した状態における各構成要素の配置態様を示している。
図1及び図2に示すように、本実施形態に係る測定装置1は、統合制御装置10、NRシステムシミュレータ20、信号処理部25、信号解析装置30A、30B、30C、30D、スプリアス信号処理部40A、40B、40C、40D、OTAチャンバ50を有している。
統合制御装置10は、NRシステムシミュレータ20、信号解析装置30A、30B、30C、30Dに対して、例えばイーサネット(登録商標)等のネットワーク19を介して相互に通信可能に接続されている。また、統合制御装置10は、OTAチャンバ50における被制御系要素、例えば、DUT走査制御部16にもネットワーク19を介して接続されている。
統合制御装置10は、ネットワーク19を介して、NRシステムシミュレータ20、複数の信号解析装置30A、30B、30C、30D、及びDUT走査制御部16を統括的に制御するものであり、例えば、パーソナル・コンピュータ(PC)により構成される。なお、DUT走査制御部16は、OTAチャンバ50に付随して独立に設けられる(図2参照)他、図3に示すように、統合制御装置10に設けられていてもよい。以下では、統合制御装置10が図3に示す構成を有するものとして説明する。
測定装置1は、例えば、図1に示す構造を有するラック構造体90の各ラック90aに前述したそれぞれの構成要素を載置した態様で運用される。図1においては、ラック構造体90の各ラック90aに、それぞれ、統合制御装置10、NRシステムシミュレータ20、信号解析装置30A、30B、30C、30D、OTAチャンバ50を載置した例を示している。
統合制御装置10、NRシステムシミュレータ20、信号解析装置30A、30B、30C、30Dの構成は後で詳述するものとし、ここではまず、OTAチャンバ50の構成について説明する。OTAチャンバ50は、5G用の無線端末の試験に際してのOTA試験環境、及びスプリアス測定環境を実現するものであって、上述したCATRの一例として用いられる。
図1、図2に示すように、OTAチャンバ50は、例えば、長方体形状の内部空間51を有する金属製の筐体本体部52により構成され、内部空間51に、アンテナ110を有するDUT100、試験用アンテナ5、複数のスプリアス測定用のアンテナ6A、6B、6C、6D(以下、アンテナ6と呼称することもある。)、リフレクタ7、DUT走査機構56を収容している。
OTAチャンバ50の内面全域、つまり、筐体本体部52の底面52a、側面52b及び上面52c全面には、電波吸収体55が貼り付けられている。これにより、OTAチャンバ50は、内部空間51内に配置される各要素(DUT100、試験用アンテナ5、複数のアンテナ6A、6B、6C、6D、リフレクタ7、DUT走査機構56)が外部からの電波の侵入及び外部への電波の放射を規制する機能が強化されたものとなっている。このように、OTAチャンバ50は、周囲の電波環境に影響されない内部空間51を有する電波暗箱を実現している。本実施形態で用いる電波暗箱は、例えば、Anechoic型のものである。
OTAチャンバ50の内部空間51に収容されるもののうち、DUT100は、例えばスマートフォンなどの無線端末である。DUT100の通信規格としては、セルラ(LTE、LTE−A、W−CDMA(登録商標)、GSM(登録商標)、CDMA2000、1xEV−DO、TD−SCDMA等)、無線LAN(IEEE802.11b/g/a/n/ac/ad等)、Bluetooth(登録商標)、GNSS(GPS、Galileo、GLONASS、BeiDou等)、FM、及びデジタル放送(DVB−H、ISDB−T等)が挙げられる。また、DUT100は、IEEE802.11adや5Gセルラ等に対応したミリ波帯の無線信号を送受信する無線端末であってもよい。
本実施形態において、DUT100のアンテナ110は、例えば、5G NR規格に準拠した規定の周波数帯の無線信号を使用するものである。具体的には、アンテナ110は、規定の周波数帯として、例えば、図5の表図中の番号2、3に跨る周波数帯域中、例えば、24.25GHz〜43.5GHzの周波数帯を使用するものであってもよい。DUT100、アンテナ110は、それぞれ、本発明における被試験対象、被試験対象アンテナを構成する。
OTAチャンバ50の内部空間51において、DUT100は、DUT走査機構56の一部機構により保持されている。DUT走査機構56は、OTAチャンバ50の内部空間51における筐体本体部52の底面52aに、鉛直方向に延在して設けられている。DUT走査機構56は、性能試験を行うDUT100を保持しつつ、該DUT100に対する後述の全球面走査を実施するものである。
DUT走査機構56は、図1に示すように、ターンテーブル56a、支柱部材56b、DUT載置部56c、駆動部56eを有している。ターンテーブル56aは、円盤形状を有する板部材で構成され、アジマス軸(鉛直方向の回転軸)を中心に回転する構成(図3参照)を有する。支柱部材56bは、ターンテーブル56aの板面上に垂直方向に延びるように配置される柱状部材により構成されている。
DUT載置部56cは、支柱部材56bの上端近傍にターンテーブル56aと平行に配置され、DUT100を載置する載置トレイ56dを有している。DUT載置部56cは、ロール軸(水平方向の回転軸)を中心に回転可能な構成(図3参照)を有している。
駆動部56eは、例えば、図3に示すように、アジマス軸を回転駆動する駆動モータ56fと、ロール軸を回転駆動する駆動モータ56gと、を有する。駆動部56eは、駆動モータ56fと駆動モータ56gとによって、アジマス軸とロール軸とをそれぞれの回転方向に回転させる機構を備えた2軸ポジショナにより構成されている。このように、駆動部56eは、載置トレイ56dに載置されたDUT100を、載置トレイ56dごと2軸(アジマス軸とロール軸)方向に回転させることができるものである。以下、駆動部56eを含むDUT走査機構56全体を2軸ポジショナと称することもある(図3参照)。駆動部56e、駆動モータ56f、56gは、それぞれ、本発明における駆動手段、第1の回転駆動手段、第2の回転駆動手段を構成する。載置トレイ56dは、本発明における被試験対象載置部を構成する。
DUT走査機構56では、載置トレイ56dに載置(保持)されているDUT100を、例えば、球体(図12の球体B参照)の中心O1に配置したと仮定し、球体表面の全ての方位に対してアンテナ110が向く状態にDUT100の姿勢を順次変化させる全球面走査を行うものである。DUT走査機構56におけるDUT走査の制御は、後述するDUT走査制御部16よって行われる。DUT走査機構56、及びDUT走査制御部16は、本発明における走査手段を構成する。
試験用アンテナ5は、OTAチャンバ50の筐体本体部52の底面52aの所要位置に、適宜な保持具(図示せず)を用いて取り付けられている。試験用アンテナ5の取り付け位置は、底面52aに設けられた開口67aを介してリフレクタ7から見透しが確保できる位置となっている。試験用アンテナ5は、DUT100のアンテナ110と同じ規定の周波数帯(24.25GHz〜43.5GHz)の無線信号を使用するものである。
試験用アンテナ5は、OTAチャンバ50内でのDUT100の性能試験に際し、DUT100に対する試験信号の送信、及び該試験信号を受信したDUT100から送信される被試験信号の受信を行う。試験用アンテナ5は、DUT100のアンテナ110と同様、規定の周波数帯の無線信号を使用する。試験用アンテナ5は、その受光面がリフレクタ7の焦点位置Fとなるように配置されている。
複数のアンテナ6A、6B、6C、6Dは、DUT100の性能試験中にDUT100のアンテナ110から放射されるスプリアス信号を受信するものである。複数のアンテナ6A、6B、6C、6Dは、それぞれ、所定のアンテナ取付具61を用いてOTAチャンバ50の内部空間51内に固定して取り付けられている。アンテナ6A、6B、6C、6Dは、試験用アンテナ5とDUT100のアンテナ110が使用する規定の周波数帯より低い周波数帯から高い周波数帯までの所定のスプリアス周波数帯の予め設定(区分)された複数の区分周波数帯(区分周波数帯)の無線信号を各々使用する。アンテナ6A、6B、6C、6Dは、本発明における複数の測定用アンテナを構成する。
図5は、本実施形態に係るOTAチャンバ50内に配置される複数のアンテナ6A、6B、6C、6Dの使用周波数分類を示す表図である。図5においては、複数のアンテナ6A、6B、6C、6Dが使用する6GHz〜90GHzの全周波数帯域が、例えば、番号1、2、3、4、・・・に対応して、6GHz〜20GHz、20GHz〜40GHz、40GHz〜60GHz、60GHz〜90GHz、・・・という複数の帯域(区分周波数帯域)に区分されている。本実施形態に係るOTAチャンバ50において、内部空間51に配置される4つのアンテナ6A、6B、6C、6Dは、例えば、図5における使用周波数分類中、番号1、2、3、4にそれぞれ対応する区分周波数帯を使用するものである。
リフレクタ7は、OTAチャンバ50の側面52bの所要位置にリフレクタ保持具58を用いて取り付けられている。リフレクタ7は、DUT100のアンテナ110により送受信される無線信号(試験信号、及び被測定信号)を、試験用アンテナ5の受光面へと折り返す電波経路を実現する。
リフレクタ7は、試験用アンテナ5から送信される試験信号、及びDUT100のアンテナ110から送信される被測定信号を回転放射面に入射することができる位置及び姿勢で取り付けられている。これにより、リフレクタ7は、試験用アンテナ5から送信される試験信号を回転放物面で受けてDUT100に向けて反射させる一方で、該試験信号を受信したDUT100が送信する被測定信号を回転放物面で受け、該回転放物面の焦点位置Fに配置されている試験用アンテナ5に向けて反射させることを可能にする。本実施形態において、リフレクタ7は、例えば、オフセットパラボラ(図8参照)型の構造を有するものである。
ここで、OTAチャンバ50にリフレクタ7を搭載することのメリット、及びリフレクタ7の好ましい形態について図6〜図8を参照して説明する。図6は、例えば、試験用アンテナ5と同等のアンテナATから放射された電波の無線端末100Aに対する電波の伝わり方を示す模式図である。無線端末100Aは、DUT100と同等のものである。図6において、(a)は、電波がアンテナATから無線端末100Aへ直接伝わる場合(Direct FAR Field:DFF)の例を示し、(b)は、電波がアンテナATから回転放物面を有する反射鏡7Aを介して無線端末100Aへ伝わる場合(Indirect FAR Field:IFF)の例を示している。
図6(a)に示すように、アンテナATを放射源とする電波は、放射源を中心にして波面が球状に拡がりながら伝搬する性質がある。また、放射源から近い距離では、波の同位相の点を結んだ面(波面)は湾曲した球面(球面波)であるが、放射源から遠くなると波面は平面(平面波)に近くなることも知られている。一般に、波面を球面と考える必要のある領域が近傍界(NEAR FIELD)と呼ばれ、波面を平面とみなしてよい領域が遠方界(FAR FIELD)と呼ばれている。図6(a)に示す電波の伝搬にあって、無線端末100Aは、良好な性能試験結果を得るために、球面波を送受信するよりも、平面波を送受信することが好ましい。
平面波の送受信を行うためには、無線端末100AをアンテナATから見た遠方界に設置する必要がある。ここで、無線端末100Aの最大直線サイズをD、波長をλとするとき、遠方界は、アンテナATから2D/λ以遠の距離となる。これにより、例えば、D=0.4メートル(m)、波長λ=0.01m(28GHz帯の無線信号に相当)とした場合には、アンテナATからおおよそ30mの位置が近傍界と遠方界との境界となり、それより遠い位置に無線端末100Aを置く必要が生じる。なお、本実施形態では、最大直線サイズDが、例えば、5cm(センチメートル)から33cm程度のDUT100の測定を想定している。
図6(a)に示すDFF方式の配置構造にあっては、アンテナATと無線端末100A間の伝搬距離が大きく、それに伴って電力ロスも大きい値とならざるを得ない。そこで、電力ロスを低減するための対処法として、例えば、図6(b)に示すように、アンテナATの電波を反射させて無線端末100Aの導入し得る位置に回転放物面を有する反射鏡7Aを配置するIFF方式がある。このIFF方式の配置構造によれば、アンテナATと無線端末100A間の距離を短縮し得るのみならず、反射鏡7Aの鏡面での反射後直ぐの距離から平面波の領域が拡がるため、電力ロスの低減効果も見込むことができる。電力ロスは、同位相の波の位相差で表すことができる。電力ロスとして許容し得る位相差は、例えば、λ/16である。位相差は、例えば、ベクトル・ネットワーク・アナライザ(VNA)で評価することを前提としている。
図6(b)に示す反射鏡7Aとして用い得るものとして、例えば、パラボラ(図7参照)、あるいはオフセットパラボラ(図8参照)がある。パラボラは、図7に示すように、アンテナ中心Oを通る軸に対して対称な鏡面(回転放物面)を有し、その回転放物面から定まる焦点位置Fに回転放物面の方向に指向性を有する一次放射器を設置することで、一次放射器から放射された電波を上記軸方向と平行な方向に反射する機能を有する。逆に、パラボラは、焦点位置Fに例えば本実施形態に係る試験用アンテナ5を配置することで、上記軸方向と平行な方向に回転放物面に対して入射する電波(例えば、DUT100が送信した無線信号)を反射させ、試験用アンテナ5へと導くことができることが理解できる。しかしながら、パラボラは、正面(Z方向)から見た平面形状が真円であって、構造が大きく、OTAチャンバ50のリフレクタ7として配置するには不向きである。
これに対し、オフセットパラボラは、図8に示すように、回転放射面の軸に対して非対称な鏡面(真円型のパラボラ(図7参照)の回転放物面の一部を切り出した形状)を有し、一次放射器を、そのビーム軸が回転放射面の軸に対して、例えば、角度α傾いた状態で設置することで、一次放射器から放射された電波を回転放射面の軸方向と平行な方向に反射する機能を有する。このオフセットパラボラは、焦点位置Fに例えば本実施形態に係る試験用アンテナ5を置くことで、回転放射面の軸方向と平行な方向に回転放物面に対して入射する電波(例えば、DUT100が送信した無線信号)を反射させ、試験用アンテナ5へと導くことができることが理解できる。オフセットパラボラは、鏡面が垂直に近づくような配置が可能であり、パラボラ(図7参照)よりも構造が大幅に小さくて済む。
上述した検討結果に基づき、本実施形態に係るOTAチャンバ50では、図1に示すように、オフセットパラボラ(図8参照)を用いたリフレクタ7を、DUT100と試験用アンテナ5との間の電波伝搬経路に配置している。リフレクタ7は、図1中、符号Fで示す位置が焦点位置となるように筐体本体部52の側面52bに取り付けられている。
リフレクタ7と、試験用アンテナ5とは、リフレクタ7の軸RS1に対して試験用アンテナ5のビーム軸BS1が所定の角度α傾いたオフセット状態となっている。リフレクタ7は、試験用アンテナ5のビーム軸BS1上に焦点位置Fを有し、試験用アンテナ5は、リフレクタ7の焦点位置Fを通過できるようになっている。上述した傾き角度αは、例えば、30度に設定することができる。この場合、試験用アンテナ5は、仰角30度でリフレクタ7に対向するように、すなわち、リフレクタ7に対向し、試験用アンテナ5の受信面が無線信号のビーム軸に対して直角となる角度で保持されることになる。オフセットパラボラ型のリフレクタ7を採用することで、リフレクタ7自体が小さくて済むうえに、鏡面が垂直に近づくような姿勢での配置が可能となり、OTAチャンバ50の構造を縮減させ得るというメリットが生まれる。
ここで、図6(a)に示すDFF方式の配置構造、及び図6(b)に示すIFF方式の配置構造における電力ロスについて検証してみる。図9は、例えば図6に示すように、アンテナATを無線端末100Aから遠方界測定領域内の距離に配置したときの電力ロスの特性を示している。図9において、P1が1GHz帯の無線信号を使用するアンテナATによる電力ロスの特性を示し、P2がミリ波帯(28GHz帯)の無線信号を使用するアンテナATによる電力ロスの特性を示している。
図9に示す特性、その中でも特に、本実施形態に係る測定装置1での測定対象であるDUT100のアンテナ110が使用するミリ波帯の無線信号の電力ロスの特性(図9におけるP2で示される特性)に着目すると、図6(a)に示すDFF方式の配置構造において、無線端末100Aからその遠方界領域の距離、例えば、30mの位置にアンテナATが配置された場合の電力ロスは、例えば、100dB程度の値となる。
これに対し、図6(b)に示すIFF方式の配置構造において、無線端末100Aからその遠方界領域の距離、例えば、1mの位置にアンテナATが配置された場合の電力ロスは、例えば、62dB程度の値となる。このことから、IFF方式の配置構造は、DFF方式の配置構造に比べて電力ロスを抑えられることは明らかである。
図6、図9に基づく電力ロスの説明からも分かるように、IFF方式の配置構造(図6(b)参照)によれば、DFF方式の配置構造(図6(a)参照)に比べて電力ロスは例えば62dB程度まで低減し得るものの、依然として電力ロスが大きいことが分かる。要するに、遠方界領域内での測定では、アンテナATと無線端末100Aのアンテナ110間の距離を短くするには限界があり、それによって、ある程度の電力ロスの発生が避けられないことも明らかである。
そこで、本願の発明者等は、OTAチャンバ50の内部空間51において、スプリアス測定用のアンテナ6を、例えば、図10に示すように、DUT100から近傍界測定領域の距離に配置することとした。そして、アンテナ6の具体的な配置位置については、例えば図11に示すような位置に決定した。
図11は、本実施形態に係る測定装置1のOTAチャンバ50におけるDUT100とアンテナ6A、6B、6C、6D間の領域を説明するための模式図である。図11に示すように、DUT100からの距離に応じて区分し得る領域としては、DUT100に隣接したリアクティブ近傍界(Reactive Near Field)領域と、該リアクティブ近傍界領域を超え遠方界(Far-Field)領域未満の距離までのラジエィティブ近傍界(Radiative Near Field)領域とが存在する。
本実施形態に係る測定装置1のOTAチャンバ50(図1、図2参照)では、スプリアス測定用のアンテナ6を、DUT100から図11におけるリアクティブ近傍界領域を超えかつ遠方界領域の距離未満のラジエィティブ近傍界(Radiative Near Field)の領域内に配置するものとしている。しかも、配置する数は、例えば、アンテナ6A、6B、6C、6Dの4つとしている。
図11において、DUT100の最大直線サイズをD、アンテナ110が使用する無線信号の波長をλとすると、リアクティブ近傍界(Reactive Near Field)領域は、DUT100から
Figure 2020122678
の距離までの領域に相当する。このときの遠方界領域は、前述したように、2D/λの距離までの領域に相当する。
本実施形態に係る測定装置1のOTAチャンバ50では、4つのアンテナ6A、6B、6C、6Dを、いずれも、DUT100からそれぞれ等距離の下式(1)に示す条件を満足する距離Rの位置に配置されることが望ましい(図11参照)。
Figure 2020122678
図12は、本実施形態に係る測定装置1のOTAチャンバ50内におけるアンテナ6A、6B、6C、6Dの配置態様を立体的に示す模式図である。図12において、球体Bは、後述する球座標系(γ,θ,φ)(図13参照)を規定し得るものであり、球体Bの表面のアンテナ6A、6B、6C、6Dが配置された各点は該球座標系(γ,θ,φ)の中心O1から一定の距離Rの位置に存在している。距離Rは、上記(1)式を満足する値である。このように、OTAチャンバ50の内部空間51において、アンテナ6A、6B、6C、6Dは、DUT100のアンテナ110の位置が図12における球体Bの中心O1に相当する位置であるとするとき、該中心O1から近傍界測定領域内の各距離に配置されている。
図13は、本実施形態に係る測定装置1のOTAチャンバ内で性能試験中のDUT100が放射するスプリアス信号の近傍界測定原理を説明するための模式図である。図13(a)は、DUT100の全球面走査に係る球座標系を示す図であり、図13(b)はその球座標系における角度標本点PSの分布を示す図である。
一般に、DUT100を対象とする放射電力測定に関しては、等価等方輻射電力(EIRP)を測定する方法と、全放射電力(TRP)を測定する方法が知られている。EIRPは、例えば、図13(a)に示す球座標系(γ,θ,φ)の各測定点(θ,φ)で測定した電力値である。これに対し、TRPは、上記球座標系(γ,θ,φ)の全ての方位、すなわち、DUT100の全球面走査の中心O1(以下、基準点)から等距離にある球面(図12の球体Bの表面に相当)上の予め規定した複数の角度標本点PS(図13(b)参照)でのEIRPを測定し、その総和を求めたものであり、例えば、Ptrpで表す。
全放射電力Ptrpは、上記球座標系(γ,θ,φ)のθ及びφ方向の分割数をそれぞれNθ及びNφとして、例えば下式(2)により表すことができる。
Figure 2020122678
また、上記(2)式に基づき全放射電力Ptrpを算出し得る角度標本数(N)は、下式(3)により求めることができる。
N=(Nθ−1)×Nθ ・・・ (3)
本実施形態において、全放射電力Ptrpを算出するための分割数Nθ及びNφは、それぞれ、例えば、12に設定されている。これにより、本実施形態においては、上記角度標本数(N)は、上記式(3)により、N=132(=(12−1)×12)として求められる。こうして求められた132個の角度標本点PSは、球体Bの表面上に表すと図13(b)に示すような位置となる。
本実施形態に係る測定装置1において、角度標本点PSとしては、例えば、図13(b)に示すような132(=(12−1)×12)が与えられ、上記球座標系(γ,θ,φ)の基準点から等距離の132ポイントの位置でそれぞれEIRPが測定され、さらに全てのポイント位置でのEIRPが加算される。そして、上記各EIRPの加算結果、すなわち、132ポイントの全ての角度標本点PSでのEIRPの総和に基づいて、DUT100の全放射電力Ptrpを求めるスプリアス測定が行われることになる。
スプリアス測定に際し、統合制御装置10は、DUT走査機構56を駆動制御することでDUT100の全球面走査を実施する。DUT100の全球面走査において、統合制御装置10は、駆動モータ56fの駆動/非駆動を繰り返しつつターンテーブル56aをアジマス軸中心に回転駆動する一方で、駆動モータ56gの駆動/非駆動を繰り返しつつ載置トレイ56dをロール軸中心に回転駆動させる。その際、統合制御装置10は、アンテナ110のアンテナ面が1つの角度標本点PSを向くタイミングごとに駆動モータ56f及び駆動モータ56gを非駆動とするように制御する。このDUT100の全球面走査制御により、載置トレイ56dに載置されているDUT100は、アンテナ110が球座標系(γ,θ,φ)を規定する球体Bの中心である基準点の位置に保たれたまま、アンテナ110のアンテナ面が球体Bの全ての角度標本点PSを順次向く(指向する)ように、基準点を中心に回転駆動される。
上記球座標系(γ,θ,φ)における特定の4つの角度標本点PSの位置には、それぞれ、4つのアンテナ6A、6B、6C、6Dが、互いに角度φの方向に適宜離間して配置されている(図12参照)。上述した全球面走査において、DUT100は、アンテナ110のアンテナ面が、4つのアンテナ6A、6B、6C、6Dの各受光面に順次に向くように駆動(走査)される。これにより、4つのアンテナ6A、6B、6C、6Dは、全球面走査が行われるDUT100のアンテナ110から放射される(但し、性能試験中)スプリアス周波数帯の無線信号を、それぞれ、受信することが可能となる。
また、統合制御装置10は、DUT100の全球面走査に合わせて各信号解析装置30A、30B、30C、30Dを駆動し、当該各30A、30B、30C、30Dにそれぞれ対応する4つのアンテナ6A、6B、6C、6Dから入力するそれぞれの受信信号に基づいて近傍界測定処理を実行するように制御する。
その際、統合制御装置10では、図13(b)に示す球座標系(γ,θ,φ)において、DUT100があるθの角度を保ったままφ方向の各角度標本点PSを通過するように走査されるのに合わせて、各角度標本点PSで順次EIRPを測定するように各信号解析装置30A、30B、30C、30Dを制御する。こうしたEIRPの測定制御を、θの角度を変えて全ての角度標本点PSを通過するDUT100の全球面走査に合わせ実施することで、各信号解析装置30A、30B、30C、30Dでは、球座標系(γ,θ,φ)の全ての角度標本点PSについてのEIRPを測定することができる。また、統合制御装置10は、全ての角度標本点PSについてのEIRP測定値の総和であるTRP(Ptrp)を求めることができる。
以上の説明を踏まえ、図3及び図4に戻り、改めて、本実施形態に係る測定装置1の機能構成について説明する。本実施形態に係る測定装置1において、統合制御装置10は、例えば、図3に示す機能構成を有し、NRシステムシミュレータ20及び信号解析装置30A、30B、30C、30Dは、それぞれ、例えば、図4(a)及び(b)に示す機能構成を有する。
図3に示すように、統合制御装置10は、制御部11、操作部12、表示部13を有している。制御部11は、例えば、コンピュータ装置によって構成される。このコンピュータ装置は、測定装置1の機能を実現するための所定の情報処理や、NRシステムシミュレータ20及び信号解析装置30A、30B、30C、30Dを対象とする統括的な制御を行うCPU(Central Processing Unit)11aと、CPU11aを立ち上げるためのOS(Operating System)やその他のプログラム及び制御用のパラメータ等を記憶するROM(Read Only Memory)11bと、CPU11aが動作に用いるOSやアプリケーションの実行コードやデータ等を記憶するRAM(Random Access Memory)11cと、所定の信号が入力される入力インターフェース機能と所定の信号を出力する出力インターフェース機能を有する外部インターフェース(I/F)部11dと、図示しないハードディスク装置などの不揮発性の記憶媒体と、各種入出力ポートとを有する。
外部I/F部11dは、ネットワーク19を介して、NRシステムシミュレータ20、信号解析装置30A、30B、30C、30D、及びDUT走査機構(2軸ポジショナ)56の駆動部56eとそれぞれ通信可能に接続されている。入出力ポートには、操作部12、表示部13が接続されている。操作部12は、コマンドなど各種情報を入力するための機能部であり、表示部13は、上記各種情報の入力画面や測定結果など、各種情報を表示する機能部である。
上述したコンピュータ装置は、CPU11aがRAM11cを作業領域としてROM11bに格納されたプログラムを実行することにより制御部11として機能する。制御部11は、図3に示すように、呼接続制御部14、信号送受信制御部15、DUT走査制御部16、信号解析装置制御部17を有している。呼接続制御部14、信号送受信制御部15、DUT走査制御部16、信号解析装置制御部17も、CPU11aがRAM11cの作業領域でROM11bに格納された所定のプログラムを実行することにより実現されるものである。
呼接続制御部14は、NRシステムシミュレータ20、信号処理部25を介して試験用アンテナ5を駆動してDUT100との間で制御信号(無線信号)を送受信させることにより、NRシステムシミュレータ20とDUT100との間に呼(無線信号を送受信可能な状態)を確立する制御を行う。
信号送受信制御部15は、操作部12におけるユーザ操作を監視し、ユーザによりDUT100の送信及び受信特性の測定に係る所定の測定開始操作が行われことを契機に、呼接続制御による呼の確立後のNRシステムシミュレータ20に対して信号送信指令を送信し、NRシステムシミュレータ20から試験用アンテナ5を介して試験信号を送信させる制御、及び信号受信指令を送信し、試験用アンテナ5を介して被測定信号を受信させる制御を行う。
DUT走査制御部16は、DUT走査機構56の駆動モータ56f及び56gを駆動制御することにより、DUT載置部56cの載置トレイ56dに載置されているDUT100の全球面走査を行わせるものである。この制御を実現するために、例えば、ROM11bには、予め、DUT走査制御テーブル16aが用意されている。DUT走査制御テーブル16aは、例えば、DUT100の全球面走査に係る球座標系(図13(a)参照)における各角度標本点PS(図13(b)参照)の座標、各角度標本点PSの座標に対応付けられた駆動モータ56f及び56gの駆動データ、及び各角度標本点PSでの停止時間(測定時間)などが関係付けられた制御データを格納している。駆動モータ56f及び56gが例えばステッピングモータの場合には、上記駆動データとして例えば駆動パルス数が格納される。
DUT走査制御部16は、DUT走査制御テーブル16aをRAM11cの作業領域に展開し、該DUT走査制御テーブル16aに記憶されている制御データに基づき、DUT走査機構56の駆動モータ56f及び56gを駆動制御する。これにより、DUT載置部56cに載置されるDUT100の全球面走査が行われる。全球面走査では、球座標系における角度標本点PSごとにDUT100のアンテナ110のアンテナ面が該角度標本点PSに向いて規定の時間(上記停止時間)だけ停止し、その後、次の角度標本点PSに移動する動作(DUT100の走査)が、全ての角度標本点PSを対象にして順次実施される。
信号解析装置制御部17は、DUT100の全球面走査時に、各アンテナ6A、6B、6C、6Dが受信した無線信号に基づき、DUT100のアンテナ110から放射されるスプリアス周波数帯の無線信号の近傍界測定処理を行わせるように信号解析装置30A、30B、30C、30Dをそれぞれ制御する。
NRシステムシミュレータ20は、図4(a)に示すように、信号測定部21、制御部22、操作部23、表示部24を有している。信号測定部21は、信号発生部21a、デジタル/アナログ変換器(DAC)21b、変調部21c、RF部21dの送信部21eにより構成される信号発生機能部と、RF部21dの受信部21f、アナログ/デジタル変換器(ADC)21g、解析処理部21hにより構成される信号解析機能部とを有している。
信号測定部21の信号発生機能部において、信号発生部21aは、基準波形を有する波形データ、具体的には、例えば、I成分ベースバンド信号と、その直交成分信号であるQ成分ベースバンド信号を生成する。DAC21bは、信号発生部21aから出力された基準波形を有する波形データ(I成分ベースバンド信号及びQ成分ベースバンド信号)をデジタル信号からアナログ信号に変換して変調部21cに出力する。変調部21cは、I成分ベースバンド信号と、Q成分ベースバンド信号とのそれぞれに対してローカル信号をミキシングし、さらに両者を合成してデジタル変調の周波数として出力する変調処理を行う。RF部21dは、変調部21cから出力されたデジタル変調の周波数を各通信規格の周波数に対応した試験信号を生成し、生成した試験信号を送信部21eにより信号処理部25へと出力する。信号処理部25は、送信部21eから入力する試験信号に対し、周波数変換(例えば、アップコンバート)、増幅、周波数選択等の各処理を施したうえで、該試験信号を試験用アンテナ5によりDUT100に向けて出力する。
その後、試験用アンテナ5は、試験信号を受信したDUT100が送信する被測定信号を受信し、該受信した被測定信号を信号処理部25に出力する。信号処理部25は、試験用アンテナ5から入力する被測定信号に対し、周波数変換(例えば、ダウンコンバート、増幅、周波数選択等の各処理を施したうえで、該被測定信号をNRシステムシミュレータ20に出力する。
NRシステムシミュレータ20では、信号処理部25から送られてくる被測定信号を信号測定部21の信号解析機能部により処理する。この処理においてまず、RF部21dは、上記被測定信号を受信部21fで受信したうえで、該被測定信号をローカル信号とミキシングすることで中間周波数帯の信号(IF信号)に変換する。ADC21gは、RF部21dの受信部21fでIF信号に変換された被測定信号を、アナログ信号からデジタル信号に変換して解析処理部21hに出力する。
解析処理部21hは、ADC21gが出力するデジタル信号である被測定信号を、デジタル処理によって、I成分ベースバンド信号とQ成分ベースバンド信号とにそれぞれ対応する波形データを生成したうえで、該波形データに基づいてI成分ベースバンド信号及びQ成分ベースバンド信号を解析する処理を行う。
制御部22は、上述した統合制御装置10の制御部11と同様、例えば、CPU、RAM、ROM、各種入出力インターフェースを含むコンピュータ装置によって構成される。CPUは、信号発生機能部、信号解析機能部、操作部23及び表示部24の各機能を実現するための所定の情報処理や制御を行う。
操作部23、表示部24は、上記コンピュータ装置の入出力インターフェースに接続されている。操作部23は、コマンドなど各種情報を入力するための機能部であり、表示部24は、上記各種情報の入力画面や測定結果など、各種情報を表示する機能部である。上述した構成を有するNRシステムシミュレータ20、及び信号処理部25は、本発明における模擬測定装置を構成する。
また、本実施形態に係る測定装置1において、信号解析装置30A、30B、30C、30Dは、図4(b)に示すように、それぞれ、信号解析部31、制御部32、操作部33、表示部34を有している。信号解析装置30A、30B、30C、30Dは、いずれも同じ構成を有する。また、入力する信号(アンテナ6A、6B、6C、6Dの各受信信号)の種別は同じであり、その処理動作も同じである。以下においては、代表として信号解析装置30Aを挙げ、その構成(図4(b)参照)及び動作について説明する。
図4(b)に示すように、信号解析装置30Aにおいて、信号解析部31は、RF部31a、ADC31b、解析処理部31cを有し、スプリアス信号処理部25Aから入力されるスプリアス信号に対して信号解析処理を施す。ここで、スプリアス信号処理部25Aから入力されるスプリアス信号は、OTAチャンバ50内のアンテナ6Aによる受信信号である。信号解析装置30Aは、信号解析部31において、スプリアス信号処理部25Aから入力されるアンテナ6Aの受信信号に対する測定処理を実施する。同様に、信号解析装置30B、30C、30Dも、スプリアス信号処理部25B、25C、25Dからそれぞれ入力されるアンテナ6B、6C、6Dの各受信信号に対する測定処理を行う。
なお、スプリアス信号処理部25A、25B、25C、25Dは、それぞれ、ダウンコンバータ、増幅器、周波数フィルタを有している。スプリアス信号処理部25A、25B、25C、25Dは、それぞれ、アンテナ6A、6B、6C、6Dが受信した各区分周波数帯の無線信号(スプリアス信号)に対して、周波数変換、増幅、周波数選択の各処理を施したうえで、該無線信号を信号解析装置30A、30B、30C、30Dにおける信号解析部31のRF部31aにそれぞれ送信するようになっている。信号解析装置30A、30B、30C、30Dは、それぞれ、スプリアス信号処理部25A、25B、25C、25Dを組み込んだ構成であってもよい。信号解析装置30A、30B、30C、30D、及びスプリアス信号処理部25A、25B、25C、25Dは、本発明における近傍界測定処理手段を構成する。
従来ではOTAチャンバ50内にはアンテナを1つしか配置できず、区分周波数ごとにアンテナの交換作業が発生して、信号解析装置とスプリアス信号処理部が一つであったため、4つの区分周波数ごとに4回の全球面走査を繰り返して測定を行っていた。本実施形態では、このようにスプリアス信号処理部25A、25B、25C、25D及び信号解析装置30A、30B、30C、30Dを区分周波数ごとに複数備えることにより、1回の全球面走査にて4つの区分周波数のスプリアス信号を同時に測定することができる。このようにして、従来よりも測定時間が1/4となり、測定時間の短縮が実現できる。
次に、本実施形態に係る測定装置1におけるスプリアス測定処理について、図14を参照して説明する。図14においては、4つのアンテナ6A、6B、6C、6Dを用いて当該各アンテナ6A、6B、6C、6Dに対応するそれぞれ異なる区分周波数帯のスプリアス信号を測定する場合について説明する。また、図14においては、スプリアス測定を開始することを指示するスプリアス測定開始操作を統御制御装置10の操作部12で行う場合について説明する。スプリアス測定開始操作は、信号解析装置30A、30B、30C、30Dのそれぞれの操作部33で行うようにしてもよい。
測定装置1において、スプリアス測定を行うためには、まず、OTAチャンバ50の内部空間51内にDUT100をセットする必要がある。これにより、測定装置1では、スプリアス測定の最初の処理として、ユーザにより、OTAチャンバ50のDUT走査機構56のDUT載置部56cに対して試験対象となるDUT100をセットする作業が行われる(ステップS1)。
DUT100のセット作業が行われた後、統合制御装置10では、例えば、呼接続制御部14が、操作部12においてスプリアス測定開始操作が行われたか否かを監視する(ステップS2)。
ここで、スプリアス測定開始操作が行われていないと判定された場合(ステップS2でNO)、呼接続制御部14は上記ステップS1の監視を続行する。これに対し、スプリアス測定開始操作が行われたと判定された場合(ステップS2でYES)、呼接続制御部14は、試験用アンテナ5を使用し、DUT100との間で制御信号(無線信号)を送受信することにより呼接続制御を実施する(ステップS3)。
ここでNRシステムシミュレータ20は、DUT100に対して試験用アンテナ5を介して制御信号(呼接続要求信号)を無線送信させる一方で、該呼接続要求信号を受信したDUT100が接続要求された周波数を設定したうえで送信してくる制御信号(呼接続応答信号)を受信する呼接続制御を行う。この呼接続制御により、NRシステムシミュレータ20とDUT100との間には、リフレクタ7の焦点位置Fに配置された試験用アンテナ5、及びリフレクタ7を介して規定の周波数帯の無線信号を送受信可能な状態が確立される。これ以後、NRシステムシミュレータ20とDUT100とは、DUT100の能力試験のための無線信号を送受信できるようになる。
なお、上記能力試験のための無線信号の送受信については、DUT100側ではNRシステムシミュレータ20から試験用アンテナ5及びリフレクタ7を介して送られてくる無線信号を受信する処理がダウンリンク(DL)処理とされ、逆に、リフレクタ7及び試験用アンテナ5を介してNRシステムシミュレータ20に対して無線信号を送信する処理がアップリンク(UL)処理とされる。試験用アンテナ5は、リンク(呼)を確立する処理、ならびにリンク確立後のダウンリンク(DL)及びアップリンク(UL)の処理を実行するために用いられるものであり、リンクアンテナと称されることもある。
ステップS3での呼接続の確立後、信号送受信制御部15は、NRシステムシミュレータ20に対して信号送信指令を送信する。NRシステムシミュレータ20では、上記信号送信指令に基づき、DUT100に対し、試験用アンテナ5を介して試験信号を送信させる制御を行う(ステップS4)。
ここでの試験信号送信制御は、NRシステムシミュレータ20により以下のように実施される。NRシステムシミュレータ20(図4(a)参照)において、上記信号送信指令を受けた制御部22は、信号発生機能部を制御し、信号発生部21aで試験信号を生成するための信号を発生させる。その後、この信号をDAC21bでデジタル/アナログ変換処理し、さらに変調部21cで変調処理を行った後、RF部21dで該デジタル変調された周波数を各通信規格の周波数に対応した試験信号を生成し、当該試験信号を送信部21eから信号処理部25、試験用アンテナ5を介してDUT100に向けて出力する。なお、信号送受信制御部15は、ステップS4で試験信号送信の制御を開始した後、測定対象のスプリアス周波数帯の各区分周波数帯に対応するスプリアス測定が終了するステップS9までの間、試験信号を送信し続けるように制御する。
ステップS4で試験信号の送信を開始した後、NRシステムシミュレータ20では、制御部22によって、上記試験信号を受信したDUT100がアンテナ110から送信する被測定信号を測定する制御を行う。この制御に際しては、試験用アンテナ5を介して受信された被測定信号が、NRシステムシミュレータ20(図4(a)参照)におけるRF部21dの受信部21fに入力する。NRシステムシミュレータ20において、制御部22は、信号発生機能部を制御して、まず、RF部21dの受信部21fに入力した被測定信号をIF信号に変換する。次いで、ADC21gによりアナログ信号からデジタル信号に変換して解析処理部21hに入力し、該解析処理部21hにより、I成分ベースバンド信号とQ成分ベースバンド信号とにそれぞれ対応する波形データを生成し、該波形データに基づいてI成分ベースバンド信号及びQ成分ベースバンド信号を解析する処理を行う。
また、統合制御装置10では、ステップS4で試験信号の送信開始後、DUT走査制御部16が、DUT走査機構(2軸ポジショナ)56におけるDUT載置部56cの載置トレイ56dに載置されたDUT100の全球面走査のための制御を行う(ステップS5)。その際、DUT走査制御部16は、DUT走査制御テーブル16aに記憶されている制御データに基づいて駆動モータ56f及び56gを間欠的に駆動制御する。これにより、アンテナ110のアンテナ面が、球座標系(γ,θ,φ)(図13(a)参照)を規定する球体B(図13(b)参照)の1つの角度標本点PSに向いて規定の時間停止し、その後、次の角度標本点PSに移動する動作が、全ての角度標本点PSを対象にして順次繰り返し実行されるDUT100の全球面走査が行われる。DUT走査制御部16によるDUT100の全球面走査は、その後、スプリアス測定が終了するステップS9までに期間(全球面走査期間)中、継続して実施される。
この間、統合制御装置10の信号解析装置制御部17は、信号解析装置30A、30B、30C、30Dを対象とするスプリアス測定制御を実行する。このスプリアス測定制御ではまず、上記ステップS4以降、試験用アンテナ5との間で通信中のDUT100のアンテナ110が放射するスプリアス信号のアンテナ6A、6B、6C、6Dでの受信信号を、スプリアス信号処理部25A、25B、25C、25Dを介して、それぞれ、信号解析装置30A、30B、30C、30Dに入力する(受信させる)ように制御する(ステップS6)。
引き続き、信号解析装置制御部17は、信号解析装置30A、30B、30C、30Dにおいて、入力された各信号、すなわち、アンテナ6A、6B、6C、6Dの各受信信号に基づくスプリアス測定処理を実行させるように制御する。ここでのスプリアス測定処理は、アンテナ6A、6B、6C、6Dの各アンテナ面が指向している角度標本点PSに対応するEIRP(等価等方性放射電力)の測定処理である(ステップS7)。
ステップS7での制御により、信号解析装置30Aでは、アンテナ6Aの1つの角度標本点PSの受信信号に基づき、図5において番号1で識別される区分周波数帯のスプリアス信号のEIRP値が求められる。同様に、信号解析装置30B、30C、30Dにおいても、アンテナ6B、6C、6Dの1つの角度標本点PSの各受信信号に基づき、それぞれ、図5において番号2、3、4で識別される各区分周波数帯のスプリアス信号のEIRP値が求められる。信号解析装置制御部17はまた、信号解析装置30B、30C、30Dがそれぞれ測定した上記4つの区分周波数帯のスプリアス信号の測定結果を、各角度標本点PSに対応して、例えば、RAM11cの所定の記憶領域に記憶する制御を行う(ステップS8)。
次いで、信号解析装置制御部17は、全ての角度標本点PSのEIRP測定が終了したか否かを判定する(ステップS9)。ここで、全ての角度標本点PSのEIRP測定が終了していないと判定された場合(ステップS9でNO)、信号解析装置制御部17は、ステップS5以降の処理を続行する。
この間、全ての角度標本点PSのEIRP測定が終了したと判定された場合(ステップS9でYES)、信号解析装置制御部17は、信号解析装置30A、30B、30C、30Dに対して、それぞれ、アンテナ6A、6B、6C、6Dの全ての角度標本点PSでの受信信号に基づくEIRP測定結果を集計させる(EIRP測定結果の総和を算出させる)制御を実施する。次いで、信号解析装置制御部17は、信号解析装置30A、30B、30C、30Dごとの上記全ての角度標本点PSでのEIRP測定結果の集計結果をそれぞれ取込み、該集計結果を上述した全放射電力Ptrpとして、例えば、RAM11cのTRP記憶領域に記憶する制御(近傍界測定処理)を実施する(ステップS10)。
ステップS10の処理においては、信号解析装置30A、30B、30C、30Dのそれぞれで集計された全放射電力Ptrpは、例えば、各アンテナ6A、6B、6C、6Dにそれぞれ使用する区分周波数帯に対応してTRP記憶領域に記憶される。記憶された全放射電力Ptrpは、必要に応じて、TRP記憶領域から読み出し、例えば、統合制御装置10の表示部13に適宜な表示態様で表示することができる。なお、ステップS10の処理に関しては、全放射電力Ptrpは、信号解析装置30A、30B、30C、30DでのEIRP測定結果に基づいて信号解析装置制御部17が算出する構成であってもよい。
統合制御装置10は、上記ステップS10で測定された全放射電力PtrpをTRP記憶領域に記憶した後、上述した一連のスプリアス測定処理を終了する。
上述したように、本実施形態に係る測定装置(アンテナ装置)1は、周囲の電波環境に影響されない内部空間51を有するOTAチャンバ50と、内部空間51内で、球座標系の中心O1を基準点とし、アンテナ110を有するDUT100を、球座標系の予め設定された全ての方位を順次向くように基準点を中心に回転駆動する全球面走査を実行する走査手段であるDUT走査機構56及びDUT走査制御部16と、基準点から近傍界測定範囲内の距離に配置されるアンテナ6A、6B、6C、6Dと、全球面走査の実行中、規定の周波数帯の無線信号を送受信中のDUT100のアンテナ110から放射されるスプリアス周波数帯の無線信号をアンテナ6A、6B、6C、6Dで受信し、該アンテナ6A、6B、6C、6Dの受信信号に基づいて、スプリアス周波数帯の無線信号の電力に関する近傍界測定処理を行う信号解析装置30A、30B、30C、30Dと、を有している。
この構成により、本実施形態に係る測定装置1は、アンテナ6A、6B、6C、6DをDUT100が配置される基準点から近傍界測定範囲内の距離に配置することで、OTAチャンバ50の大型化を回避できる。また、近傍界測定範囲内の距離に配置したアンテナ6A、6B、6C、6Dの受信信号に基づく近傍界測定処理によれば、アンテナ6A、6B、6C、6DとDUT100間の距離に依存せず、電力ロスが少なく、測定時間が短縮されたスプリアス測定を行うことができる。
また、本実施形態に係る測定装置1は、信号解析装置30A、30B、30C、30Dは、アンテナ6A、6B、6C、6Dの受信信号に基づいて球座標系の予め設定された全ての方位についてのEIRP(等価等方性放射電力)を測定するとともに、上記全ての方位のEIRPの総和であるTRP(全球面放射電力)を測定する構成である。
この構成により、本実施形態に係る測定装置1は、球座標系の全ての方位についてそれぞれEIRPを測定し、当該各EIRPの総和を求める演算によってTRPを求めることができ、信号解析装置30A、30B、30C、30Dにおけるスプリアス測定処理を簡略化することができる。
また、本実施形態に係る測定装置1は、複数のアンテナ6A、6B、6C、6Dを有し、各アンテナ6A、6B、6C、6Dは、規定の周波数帯より低い周波数帯から高い周波数帯までを含むスプリアス周波数帯の予め区分された複数の区分周波数帯の無線信号をそれぞれ使用する一方で、複数の信号解析装置30A、30B、30C、30Dを有し、これら信号解析装置30A、30B、30C、30Dは、全球面走査の実行中、各アンテナ6A、6B、6C、6Dの受信信号に基づいて、スプリアス周波数帯の予め区分された複数の区分周波数帯ごとに近傍界測定処理を実行する。
この構成により、本実施形態に係る測定装置1は、複数のアンテナ6A、6B、6C、6Dを用いる場合でも、OTAチャンバ50のコンパクト化を維持しつつ、各アンテナ6A、6B、6C、6Dを切り替える手間を要せずにDUT100の1回の全球面走査によって該DUT100のアンテナ110について広範な周波数帯域の効率的なスプリアス測定を実現できる。
また、本実施形態に係る測定装置1は、規定の周波数帯の無線信号を使用する試験用アンテナ5と、全球面走査時、試験用アンテナ5を介してDUT100に試験信号を出力するとともに、試験信号が入力されたDUT100から出力される被測定信号を試験用アンテナ5で受信し、受信した被測定信号に基づき規定の周波数帯の無線信号に対する測定を行うNRシステムシミュレータ20と、をさらに備える。
この構成により、本実施形態に係る測定装置1は、DUT100のアンテナ110の性能試験に合わせて、各区分周波数帯ごとのスプリアス測定を効率的に実施できる。
また、本実施形態に係る測定装置1は、DUT100の最大直線サイズをD、DUT100のアンテナ110が使用する無線信号の波長をλとするとき、アンテナ6A、6B、6C、6Dは、上記基準点から下式で表わされるラジエィティブ近傍界の領域内の距離Rの位置に配置される構成である。
Figure 2020122678
この構成により、本実施形態に係る測定装置1は、測定系の基準点から近すぎる距離に測定用アンテナを配置したときのスプリアス測定に関する精度低下を低減することができ、アンテナ6A、6B、6C、6Dの受信信号に基づく正確なスプリアス測定が実現できる。
また、本実施形態に係る測定装置1は、DUT走査機構56は、アジマス軸を中心に回転可能なターンテーブル56aと、ターンテーブル56a上に垂直方向に設置される支柱部材56bと、支柱部材56bに対してターンテーブル56aと平行に配置され、ロール軸を中心に回転可能な載置トレイ56dと、アジマス軸を回転駆動する駆動モータ56f、及びロール軸を回転駆動する駆動モータ56gを有する駆動部56eと、を有する。
この構成により、本実施形態に係る測定装置1は、DUT走査機構56の簡略な構成を維持しつつ、駆動モータ56f、56gを駆動部56eによって適宜駆動する制御により、DUT100の全球面走査を容易に行うことができる。
また、本実施形態に係る測定装置1は、OTAチャンバ50の内部空間51に収容され、所定の回転放物面を有し、DUT100のアンテナ110及び試験用アンテナ5により送信あるいは受信される無線信号が回転放物面を介して反射されるリフレクタ7をさらに有している。
この構成により、本実施形態に係る測定装置1は、DUT100の性能試験のための試験用アンテナ5とアンテナ110間の距離を短縮でき、基準点から近傍界測定領域内の距離へのアンテナ6A、6B、6C、6Dの配置と相俟ってOTAチャンバ50の大型化を回避することができる。
また、本実施形態に係る測定方法は、上述した各構成を有する測定装置1を用いる測定方法であって、DUT100を、OTAチャンバ50内におけるDUT走査機構56の載置トレイ56dに載置する載置ステップ(図14のステップS1参照)と、NRシステムシミュレータ20により、試験用アンテナ5を介してDUT100に試験信号を出力させる試験信号出力ステップ(同、ステップS4参照)と、載置トレイ56dに載置されたDUT100に対するDUT走査機構56及びDUT走査制御部16による全球面走査を実行する全球面走査ステップ(同、ステップS5参照)と、全球面走査の実行中、試験信号が入力されたDUT100のアンテナ110から被測定信号とともに出力されるスプリアス周波数帯の無線信号をアンテナ6A、6B、6C、6Dにより受信する信号受信ステップ(同、ステップS6参照)と、信号受信ステップにおける各アンテナ6A、6B、6C、6Dの受信信号に基づいて、スプリアス周波数帯の無線信号の電力に関する近傍界測定処理を行う近傍界測定処理ステップ(同、ステップS7参照)と、を含む構成である。
この構成により、本実施形態に係る測定方法は、アンテナ6A、6B、6C、6DをDUT100が配置される基準点から近傍界測定範囲内の距離に配置し、近傍界測定処理を行うことで、OTAチャンバ50の大型化を回避しつつ、アンテナ6A、6B、6C、6DとDUT100(アンテナ110)間の距離に依存せず、かつ、電力ロスが少なく、測定時間が短縮されたスプリアス測定を行うことができる。
なお、上記各実施形態では、例えば、6GHz〜90GHzのスプリアス測定周波数帯(図5参照)を4つのアンテナ6A、6B、6C、6Dでカバーする例を挙げているが、本発明は、これに限らず、任意のスプリアス測定周波数帯を任意の数のアンテナ6でカバーする構成としてもよい。また、測定標本点PS(図13(a)参照)の位置及び数は任意に設定することができるものである。なお、本発明は、電波暗箱だけではなく電波暗室にも適用できる。
以上のように、本発明に係るアンテナ装置及び測定方法は、電波暗箱の大型化、及び被試験対象と測定用アンテナ間の距離に依存した電力ロスの増大を回避しつつ効率的なスプリアス測定を実現可能であるという効果を奏し、5G用無線端末等の高速通信能力を有する無線端末のスプリアス測定を行うアンテナ装置及び測定方法全般に有用である。
1 測定装置(アンテナ装置)
5 試験用アンテナ
6、6A、6B、6C、6D アンテナ(測定用アンテナ)
7 リフレクタ
10 統合制御装置
16 DUT走査制御部(走査手段)
20 NRシステムシミュレータ(模擬測定装置)
30A、30B、30C、30D 信号解析装置(近傍界測定処理手段)
40A、40B、40C、40D スプリアス信号処理部(近傍界測定処理手段)
50 OTAチャンバ(電波暗箱)
51 内部空間
56 DUT走査機構(走査手段)
56a ターンテーブル
56b 柱状部材
56d 載置トレイ(被試験対象載置部)
56e 駆動部(駆動手段)
56f 駆動モータ(第1の回転駆動手段)
56g 駆動モータ(第2の回転駆動手段)
100 DUT(被試験対象)
110 アンテナ(被試験用アンテナ)

Claims (8)

  1. 周囲の電波環境に影響されない内部空間(51)を有する電波暗箱(50)と、
    前記内部空間内で、球座標系の中心を基準点とし、被試験用アンテナ(110)を有する被試験対象(100)を、前記球座標系の予め設定された全ての方位を順次向くように前記基準点を中心に回転駆動する全球面走査を実行する走査手段(56)と、
    前記基準点から近傍界測定範囲内の距離に配置される測定用アンテナ(6)と、
    前記全球面走査の実行中、規定の周波数帯の無線信号を送受信中の前記被試験対象アンテナから放射されるスプリアス周波数帯の無線信号を前記測定用アンテナで受信し、前記測定用アンテナの受信信号に基づいて、前記スプリアス周波数帯の無線信号の電力に関する近傍界測定処理を行う近傍界測定処理手段(30)と、
    を有することを特徴とするアンテナ装置。
  2. 前記近傍界測定処理手段は、前記測定用アンテナの受信信号に基づいて前記全ての方位についてのEIRP(等価等方性放射電力)を測定するとともに、前記全ての方位の前記EIRPの総和であるTRP(全球面放射電力)を測定することを特徴とする請求項1に記載のアンテナ装置。
  3. 複数の前記測定用アンテナ(6A、6B、6C、6D)を有し、
    前記各測定用アンテナは、前記規定の周波数帯より低い周波数帯から高い周波数帯までを含む前記スプリアス周波数帯の予め区分された複数の区分周波数帯の無線信号をそれぞれ使用し、
    前記近傍界測定処理手段は、前記全球面走査の実行中、前記各測定用アンテナの受信信号に基づいて、前記スプリアス周波数帯の予め区分された複数の区分周波数帯ごとに前記近傍界測定処理を行うことを特徴とする請求項1又は2に記載のアンテナ装置。
  4. 前記規定の周波数帯の無線信号を使用する試験用アンテナ(5)と、
    前記全球面走査時、前記試験用アンテナを介して前記被試験対象に試験信号を出力するとともに、前記試験信号が入力された前記被試験対象から出力される被測定信号を前記試験用アンテナで受信し、受信した前記被測定信号に基づき前記規定の周波数帯の無線信号に対する測定を行う模擬測定装置(20)と、をさらに備える請求項1から3のいずれかに記載のアンテナ装置。
  5. 前記被試験対象の最大直線サイズをD、前記被試験用アンテナが使用する無線信号の波長をλとするとき、前記測定用アンテナは、前記基準点から下式で表わされるラジエィティブ近傍界の領域内の距離Rの位置に配置されることを特徴とする請求項1から4のいずれかに記載のアンテナ装置。
    Figure 2020122678
  6. 前記走査手段は、
    アジマス軸を中心に回転可能なターンテーブル(56a)と、
    前記ターンテーブル上に垂直方向に設置される支柱部材(56b)と、
    前記支柱部材に対して前記ターンテーブルと平行に配置され、ロール軸を中心に回転可能な被試験対象載置部(56d)と、
    前記アジマス軸を回転駆動する第1の回転駆動手段(56f)、及び前記ロール軸を回転駆動する第2の回転駆動手段(56g)を有する駆動手段(56e)と、
    を有することを特徴とする請求項1から5のいずれかに記載のアンテナ装置。
  7. 前記内部空間に収容され、所定の回転放物面を有し、前記被試験対象アンテナ及び前記試験用アンテナにより送信あるいは受信される無線信号が前記回転放物面を介して反射されるリフレクタ(7)をさらに有することを特徴とする請求項1から6のいずれかに記載のアンテナ装置。
  8. 請求項1から請求項7のいずれかに記載のアンテナ装置(1)を用いて前記被試験対象(100)の測定を行う測定方法であって、
    前記被試験対象を、前記電波暗箱(50)内における前記走査手段(56)の被試験対象載置部(56d)に載置する載置ステップ(S1)と、
    前記模擬測定装置(20)により、前記試験用アンテナ(5)を介して前記被試験対象に試験信号を出力させる試験信号出力ステップ(S4)と、
    前記被試験対象載置部(56d)に載置された前記被試験対象に対する前記走査手段による前記全球面走査を実行する全球面走査ステップ(S5)と、
    前記全球面走査の実行中、前記試験信号が入力された前記被試験対象から前記被測定信号とともに出力される前記スプリアス周波数帯の無線信号を前記測定用アンテナにより受信する信号受信ステップ(S6)と、
    前記信号受信ステップにおける前記各測定用アンテナの受信信号に基づいて、前記スプリアス周波数帯の無線信号の電力に関する近傍界測定処理を行う近傍界測定処理ステップ(S7)と、
    を含むことを特徴とする測定方法。
JP2019013517A 2019-01-29 2019-01-29 アンテナ装置及び測定方法 Active JP6836607B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019013517A JP6836607B2 (ja) 2019-01-29 2019-01-29 アンテナ装置及び測定方法
CN202010017004.6A CN111490329B (zh) 2019-01-29 2020-01-08 天线装置及测量方法
US16/742,409 US10958361B2 (en) 2019-01-29 2020-01-14 Antenna apparatus and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013517A JP6836607B2 (ja) 2019-01-29 2019-01-29 アンテナ装置及び測定方法

Publications (2)

Publication Number Publication Date
JP2020122678A true JP2020122678A (ja) 2020-08-13
JP6836607B2 JP6836607B2 (ja) 2021-03-03

Family

ID=71732830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013517A Active JP6836607B2 (ja) 2019-01-29 2019-01-29 アンテナ装置及び測定方法

Country Status (3)

Country Link
US (1) US10958361B2 (ja)
JP (1) JP6836607B2 (ja)
CN (1) CN111490329B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021124432A (ja) * 2020-02-06 2021-08-30 アンリツ株式会社 試験装置及び試験方法
JP2021124431A (ja) * 2020-02-06 2021-08-30 アンリツ株式会社 試験装置及び試験方法
JP2022110838A (ja) * 2021-01-19 2022-07-29 アンリツ株式会社 アンテナ及びそれを備えたアンテナ装置
JP2022110839A (ja) * 2021-01-19 2022-07-29 アンリツ株式会社 アンテナ及びそれを備えたアンテナ装置
JP2023021639A (ja) * 2021-08-02 2023-02-14 アンリツ株式会社 試験装置及び試験方法
US11742595B2 (en) 2018-11-27 2023-08-29 Morita Tech Co., Ltd. Testing device
JP7469412B2 (ja) 2022-09-09 2024-04-16 アンリツ株式会社 試験装置及び試験方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583502B (zh) * 2019-09-27 2022-06-10 维沃移动通信有限公司 一种探头天线确定方法及装置
EP3866356B1 (en) * 2020-02-17 2023-08-23 Rohde & Schwarz GmbH & Co. KG Method of measuring a total radiated power of a device under test as well as test system
US11340278B2 (en) * 2020-03-31 2022-05-24 Rohde & Schwarz Gmbh & Co. Kg Measurement system for testing a device under test over-the-air
EP3926350B8 (en) * 2020-06-15 2024-03-20 Rohde & Schwarz GmbH & Co. KG Over-the-air test system and method of performing an over-the-air measurement
US11486918B2 (en) * 2020-10-22 2022-11-01 Rohde & Schwarz Gmbh & Co. Kg Fixture for a device under test
CN112630549A (zh) * 2020-12-10 2021-04-09 深圳市新益技术有限公司 多边形球面空间采样设备
CN113572545B (zh) * 2021-08-06 2023-04-18 福州物联网开放实验室有限公司 基于终端天线互易性的有源性能快速测试方法及其装置
WO2024148615A1 (zh) * 2023-01-13 2024-07-18 Oppo广东移动通信有限公司 定位装置、测试系统和测试方法
CN116366175A (zh) * 2023-05-26 2023-06-30 北京星河亮点技术股份有限公司 功率测量方法、装置、系统、电子设备及存储介质
CN118282537A (zh) * 2024-06-03 2024-07-02 昆山市金康电子有限公司 天线加工测试系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112173A (ja) * 1987-10-26 1989-04-28 A T R Koudenpa Tsushin Kenkyusho:Kk 近傍電界測定方法及び装置
JP2004233249A (ja) * 2003-01-31 2004-08-19 Ministry Of Public Management Home Affairs Posts & Telecommunications 無線機器の電磁波放射パターン測定用2軸ポジショナー
JP2005189045A (ja) * 2003-12-25 2005-07-14 Sony Corp 電磁界測定システム、電磁界測定方法及びその方法をコンピュータに実行させるためのプログラム
JP2008166474A (ja) * 2006-12-28 2008-07-17 Espec Corp 環境試験装置
JP2011019031A (ja) * 2009-07-08 2011-01-27 Nec Saitama Ltd 全放射感度測定方法およびシステム
JP2014016195A (ja) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp 不要輻射ノイズ測定方法
US20140256267A1 (en) * 2013-03-06 2014-09-11 Lite-On Technology Corp. Wireless testing system and method for controlling the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522102B2 (en) * 2004-12-16 2009-04-21 The Boeing Company Antenna beam steering
CN200941426Y (zh) * 2006-08-14 2007-08-29 西安电子科技大学 大型柔性射电望远镜天线多波束馈源自动切换装置
CN100504408C (zh) * 2006-10-17 2009-06-24 中兴通讯股份有限公司 无线数据卡辐射杂散频点测试方法
US8412112B2 (en) * 2009-05-06 2013-04-02 Ets-Lindgren, L.P. Systems and methods for simulating a multipath radio frequency environment
CN104569942A (zh) * 2014-12-18 2015-04-29 北京无线电计量测试研究所 一种单站雷达目标特性测量同步散射点位置识别方法
CN105511296B (zh) * 2015-12-02 2018-09-21 南京长峰航天电子科技有限公司 内场辐射式复杂电磁环境构建方法及模拟系统
US10156601B2 (en) * 2016-05-17 2018-12-18 Anritsu Corporation Antenna measurement system and antenna measurement method
CN107589306A (zh) * 2016-07-07 2018-01-16 鸿富锦精密工业(武汉)有限公司 电子设备屏蔽效能测试装置、系统及方法
US9985733B1 (en) * 2016-11-22 2018-05-29 Keysight Technologies, Inc. System and method for performing over-the-air (OTA) testing of a device under test (DUT) having an integrated transmitter-antenna assembly
JP6535046B2 (ja) * 2017-05-11 2019-06-26 アンリツ株式会社 無線端末のアンテナ指向特性測定システムおよび測定方法
EP4113868A1 (en) * 2017-06-16 2023-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and measurement systems for precisely evaluating a device under test
US10536226B1 (en) * 2018-07-16 2020-01-14 Litepoint Corporation System and method for over-the-air (OTA) testing to detect faulty elements in an active array antenna of an extremely high frequency (EHF) wireless communication device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112173A (ja) * 1987-10-26 1989-04-28 A T R Koudenpa Tsushin Kenkyusho:Kk 近傍電界測定方法及び装置
JP2004233249A (ja) * 2003-01-31 2004-08-19 Ministry Of Public Management Home Affairs Posts & Telecommunications 無線機器の電磁波放射パターン測定用2軸ポジショナー
JP2005189045A (ja) * 2003-12-25 2005-07-14 Sony Corp 電磁界測定システム、電磁界測定方法及びその方法をコンピュータに実行させるためのプログラム
JP2008166474A (ja) * 2006-12-28 2008-07-17 Espec Corp 環境試験装置
JP2011019031A (ja) * 2009-07-08 2011-01-27 Nec Saitama Ltd 全放射感度測定方法およびシステム
JP2014016195A (ja) * 2012-07-06 2014-01-30 Mitsubishi Electric Corp 不要輻射ノイズ測定方法
US20140256267A1 (en) * 2013-03-06 2014-09-11 Lite-On Technology Corp. Wireless testing system and method for controlling the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742595B2 (en) 2018-11-27 2023-08-29 Morita Tech Co., Ltd. Testing device
JP2021124432A (ja) * 2020-02-06 2021-08-30 アンリツ株式会社 試験装置及び試験方法
JP2021124431A (ja) * 2020-02-06 2021-08-30 アンリツ株式会社 試験装置及び試験方法
JP7104082B2 (ja) 2020-02-06 2022-07-20 アンリツ株式会社 試験装置及び試験方法
JP7149301B2 (ja) 2020-02-06 2022-10-06 アンリツ株式会社 試験装置及び試験方法
JP2022110838A (ja) * 2021-01-19 2022-07-29 アンリツ株式会社 アンテナ及びそれを備えたアンテナ装置
JP2022110839A (ja) * 2021-01-19 2022-07-29 アンリツ株式会社 アンテナ及びそれを備えたアンテナ装置
JP7122404B2 (ja) 2021-01-19 2022-08-19 アンリツ株式会社 アンテナ及びそれを備えたアンテナ装置
JP7136942B2 (ja) 2021-01-19 2022-09-13 アンリツ株式会社 アンテナ及びそれを備えたアンテナ装置
JP2023021639A (ja) * 2021-08-02 2023-02-14 アンリツ株式会社 試験装置及び試験方法
JP7379421B2 (ja) 2021-08-02 2023-11-14 アンリツ株式会社 試験装置及び試験方法
JP7469412B2 (ja) 2022-09-09 2024-04-16 アンリツ株式会社 試験装置及び試験方法

Also Published As

Publication number Publication date
US10958361B2 (en) 2021-03-23
JP6836607B2 (ja) 2021-03-03
CN111490329A (zh) 2020-08-04
CN111490329B (zh) 2021-04-30
US20200244377A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
JP6836607B2 (ja) アンテナ装置及び測定方法
US10763979B2 (en) Antenna apparatus and measurement method
US11462841B2 (en) Antenna apparatus and measurement method
JP6974411B2 (ja) アンテナ装置及び測定方法
US11500004B2 (en) Test apparatus and test method
CN112415282A (zh) 温度测试装置及温度测试方法
US11624765B2 (en) Test device and a test method
JP7104082B2 (ja) 試験装置及び試験方法
JP7149301B2 (ja) 試験装置及び試験方法
JP7128855B2 (ja) 移動端末試験装置、及び移動端末試験方法
JP7058697B2 (ja) 端末保持具、端末回転装置、及び移動端末試験装置
JP2022045682A (ja) 通信アンテナ及びそれを備えたアンテナ装置
JP7379421B2 (ja) 試験装置及び試験方法
JP7088995B2 (ja) アンテナデバイス、それを備えたアンテナ装置、及びそれの製造方法
JP7469412B2 (ja) 試験装置及び試験方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210205

R150 Certificate of patent or registration of utility model

Ref document number: 6836607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250