JP2020112844A - 画像処理装置及びこれを利用した空間内面形状の計測装置 - Google Patents

画像処理装置及びこれを利用した空間内面形状の計測装置 Download PDF

Info

Publication number
JP2020112844A
JP2020112844A JP2019000934A JP2019000934A JP2020112844A JP 2020112844 A JP2020112844 A JP 2020112844A JP 2019000934 A JP2019000934 A JP 2019000934A JP 2019000934 A JP2019000934 A JP 2019000934A JP 2020112844 A JP2020112844 A JP 2020112844A
Authority
JP
Japan
Prior art keywords
image
laser light
image processing
space
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019000934A
Other languages
English (en)
Other versions
JP7285645B2 (ja
Inventor
昌史 平田
Masashi Hirata
昌史 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2019000934A priority Critical patent/JP7285645B2/ja
Publication of JP2020112844A publication Critical patent/JP2020112844A/ja
Application granted granted Critical
Publication of JP7285645B2 publication Critical patent/JP7285645B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

【課題】 CCDカメラ等で撮影した画像から、特定波長帯のレーザー光を抽出する際に、設定により所望の波長帯のレーザー光を抽出できるとともに、製造が容易でかつ製造コストを低減することが可能な画像処理装置及び当該画像処理装置を利用した空間内面形状の計測装置を提供する。【解決手段】 画像処理装置は、物体に照射され、当該物体から反射してきた可視光線であるレーザー光の光像を撮像する撮像手段210と、撮像手段210により撮像したレーザー光の光像をRGB画像として認識するRGB画像認識手段220と、認識したRGB画像を色相、彩度、明度に変換するHSV変換手段230と、変換した明度に対して、特定の波長帯にあるレーザー光を抽出するためのフィルタ関数を適用するフィルタ手段240とを備える。空間内面形状の計測装置は、画像処理装置を利用して空間内面形状を計測する。【選択図】図1

Description

本発明は、画像処理装置及びこれを利用した空間内面形状の計測装置に関するものであり、詳しくは、CCDカメラ等で撮影した画像から、特定波長帯のレーザー光を抽出するための画像処理装置及び当該画像処理装置を利用した空間内面形状の計測装置に関するものである。
CCDカメラ等で撮影した画像から、特定波長帯のレーザー光を抽出するためには、光の波長帯の一部を選択的に透過し、その他の全ての波長帯の透過を遮断するバンドパスフィルタやレーザーラインフィルタを用いる。これらのフィルタは、特定のレーザー光を抽出することができるため、蛍光顕微鏡や分光解析、臨床化学やイメージングを始めとする様々なアプリケーションに用いられている。
従来のバンドパスフィルタやレーザーラインフィルタは、基本的に屈折率の異なる物質を層状に重ね合わせることで、特定の波長帯以外を反射する光学用フィルタレンズである。このため、対象とする波長帯の範囲や透過率等が特殊な場合には、その使用用途に合わせた光学用フィルタを個別に準備・製作しなければならず高額となってしまう。また、異なる波長帯のレーザー光を抽出するためには、各波長帯に合わせた光学用フィルタを複数準備する必要もある。例えば、外乱光が問題となるような状況下であっても、良好な信号雑音比を有する光切断画像を生成することが可能な形状測定装置及び形状測定方法が提案されている(特許文献1参照)。
特許文献1に記載された技術は、光を反射又は放射している被測定物の表面に対して、線状のレーザー光を照射するレーザー光源と、当該被測定物の表面でのレーザー光による光切断線を撮像して、光切断画像を生成する撮像装置とを有する測定装置と、測定装置により生成された光切断画像に対して画像処理を実施して、被測定物の形状を算出する演算処理装置とを備えている。
そして、撮像装置は、光切断線の像を撮像素子へと結像させる像側テレセントリックレンズと、像側テレセントリックレンズと撮像素子との間に配設される、所定のバンド幅を有する光学バンドパスフィルタとを有している。
特開2017−20876号公報
上述したように、使用用途に合わせた光学用フィルタを個別に準備・製作するには、コストが増大するだけではなく、制作期間も長期化するという問題があった。そこで、CCDカメラ等で撮影した画像から、特定波長帯のレーザー光を抽出する際に、レンズ系による光学処理ではなく、演算処理により所望の波長帯のレーザー光を容易に抽出するための技術の開発が望まれている。
また、本願の出願人は、コンクリート構造物の耐震補強等を行う際に、既設コンクリートに対して削孔を行い、孔壁内面を目粗し処理した後に、補強鉄筋の挿入及び充填材の注入を行う際に、孔壁内面の目粗し状態を確認する際に使用するための計測装置を開発している(特許第6138602号)。この孔壁内面形状の計測装置は、目粗し処理の状態を計測するために、削孔装置のコアチューブの先端部分に、削孔ビットや目粗しビットに代えて測定手段を取り付ける。そして、測定手段により、孔壁内面に対して円環状のレーザー光を発射して、孔壁内面に形成されたレーザー光の光像を撮影することにより、レーザー光の光像の径を計測するようになっている。
この孔壁内面形状の計測装置では、レーザー光を用いて孔壁内面形状を計測しているが、レーザー光のリングビームのみを撮影しなければならず、暗所での計測を前提としていたため、レーザー光以外の可視光線が存在する明るい場所での計測には不向きであった。このため、明るい場所であっても、特定波長帯のレーザー光を抽出することが可能な技術を開発した。
なお、特許文献1に記載された技術は、測定環境については何ら考慮されておらず、その示唆もない。
本発明は、上述した事情に鑑み提案されたもので、CCDカメラ等で撮影した画像から、特定波長帯のレーザー光を抽出する際に、設定により所望の波長帯のレーザー光を抽出できるとともに、製造が容易でかつ製造コストを低減することが可能な画像処理装置及び当該画像処理装置を利用した空間内面形状の計測装置を提供することを目的とする。
本発明に係る画像処理装置及びこれを利用した空間内面形状の計測装置は、上述した目的を達成するため、以下の特徴点を有している。すなわち、本発明に係る画像処理装置は、撮影画像に含まれる可視光線であるレーザー光から特定波長帯のレーザー光を抽出するための画像処理装置に関するものである。
この画像処理装置は、物体に照射され、当該物体から反射してきた可視光線であるレーザー光の光像を撮像する撮像手段と、撮像手段により撮像したレーザー光の光像をRGB画像として認識するRGB画像認識手段と、認識したRGB画像を色相、彩度、明度に変換するHSV変換手段と、変換した明度に対して、特定の波長帯にあるレーザー光を抽出するためのフィルタ関数を適用するフィルタ手段とを備えたことを特徴とするものである。
また、上述した画像処理装置において、フィルタ関数は、ガウジアンフィルタを実現するための関数であることが好ましい。
本発明に係る空間内面形状の計測装置は、上述した画像処理装置を利用して、空間内面形状を計測するための計測装置に関するものである。
すなわち、本発明に係る空間内面形状の計測装置は、空間内面に対して円環状にレーザー光を照射する照射部と、照射部と離隔して設けられ、空間内面に形成されたレーザー光像を撮像面に結像させる結像レンズ(広角レンズ)と、撮像面に結像したレーザー光像を画像データとして出力する撮像素子とを有する測定手段と、測定手段の位置及び向きを検出する位置検出手段と、測定手段及び位置検出手段を一体に収容するとともに、測定手段で測定に用いるレーザー光を透過可能な収容手段と、計測対象となる空間に対して、収容手段を移動させる移動手段と、測定手段及び位置検出手段からの検出信号を受信して演算処理を行うことにより空間内面の形状を求める形状演算手段とを備えている。また、測定手段は、孔壁内面に対して円環状にレーザー光を照射する照射部と、孔壁内面に形成されたレーザー光の光像を撮影する撮像部とを備えている。
そして、形状演算手段における形状演算において、物体に可視光線であるレーザー光を照射して、当該物体から反射してきたレーザー光の光像を撮像する撮像手段と、撮像手段により撮像したレーザー光の光像をRGB画像として認識するRGB画像認識手段と、認識したRGB画像を色相、彩度、明度に変換するHSV変換手段と、変換した明度に対して、特定の波長帯にあるレーザー光を抽出するためのフィルタ関数を適用するフィルタ手段とを備えた画像処理装置により画像処理を行うことを特徴とするものである。
本発明に係る画像処理装置によれば、CCDカメラ等で撮影したRGB画像をHSV(色相・彩度・明度)に変換し、その明度(V)に対して設定したフィルタ関数を適用することにより、特定の波長帯にあるレーザー光以外の部分は暗くなり、画像から特定の波長帯にあるレーザー光のみを抽出することが可能となる。
すなわち、CCDカメラ等で撮影した画像に対して演算によるフィルタ処理を行うため、従来のような高額な光学用フィルタレンズを準備する必要がない。また、フィルタ関数の範囲(設定値)を変えるだけで、任意の波長帯のレーザー光を抽出することが可能であるため、汎用性が高い。さらに、従来の光学用フィルタでは、特定の波長以外の部分の情報(画像)を取得することは出来なかったが、本発明に係る画像処理装置ではレーザー光周辺の情報(画像)も取得することが可能である。
また、ガウジアンフィルタを実現するためのフィルタ関数を使用することにより、レーザー光とその他の部分の境界線部分が滑らかになる。
また、本発明に係る画像処理装置を利用した空間内面形状の計測装置によれば、上述した画像処理装置が有する有利な効果を用いて、特に、明るい場所に存在する空間内面形状を適切に計測することができる。
本発明の実施形態に係る画像処理装置の構成を示すブロック図。 本発明の実施形態に係る画像処理装置で行う画像処理のフローチャート。 波長とスペクトル三刺激値の関係(等色関数)の説明図。 波長と色相の関係を示す説明図。 波長と彩度の関係を示す説明図。 色相のフィルタ関数の一例を示す説明図。 彩度のフィルタ関数の一例を示す説明図。 本発明の実施形態に係る空間内面形状の計測装置の主要部を示す説明図。 本発明の実施形態に係る空間内面形状の計測装置で用いる測定手段を示す模式図。 本発明の実施形態に係る空間内面形状の計測装置の使用例(1)を示す模式図。 本発明の実施形態に係る空間内面形状の計測装置の使用例(2)を示す模式図。
以下、図面を参照して、本発明の実施形態に係る画像処理装置及びこれを利用した空間内面形状の計測装置を説明する。図1〜図7は本発明の実施形態に係る画像処理装置を説明するもので、図1は画像処理装置のブロック図、図2は画像処理のフローチャート、図3は波長とスペクトル三刺激値の関係(等色関数)の説明図、図4は波長と色相の関係を示す説明図、図5は波長と彩度の関係を示す説明図、図6は色相のフィルタ関数の一例を示す説明図、図7は彩度のフィルタ関数の一例を示す説明図である。
また、図8〜図11は、本発明の実施形態に係る画像処理装置を利用した空間内面形状の計測装置を説明するもので、図8は空間内面形状の計測装置の主要部を示す説明図、図9は測定手段を示す模式図、図10及び図11は空間内面形状の計測装置の使用例を示す模式図である。
<画像処理装置の概要>
本発明の実施形態に係る画像処理装置200は、撮影画像に含まれる可視光線であるレーザー光から特定波長帯のレーザー光を抽出するための装置であり、図1に示すように、撮像手段210と、RGB画像認識手段220と、HSV変換手段230と、フィルタ手段240とを備えている。各手段は、それぞれの作用を奏するための装置と、コンピュータ及びその付属装置であるハードウェアと協働することにより機能を発揮するソフトウェアとからなる。
<撮像手段>
撮像手段210は、物体に照射され、当該物体から反射してきた可視光線であるレーザー光の光像を撮像するための手段であり、例えばCCDカメラ41からなる。CCDカメラ41については後に詳述するが、レンズ系及び撮像素子を主要な構成要素とする。
<RGB画像認識手段>
RGB画像認識手段220は、撮像手段210により撮像したレーザー光の光像をRGB画像として認識するための手段であり、例えば、撮像素子により形成したレーザー光の光像をRGB画像として認識するための機器及びプログラムからなる。
<HSV変換手段>
HSV変換手段230は、認識したRGB画像を色相、彩度、明度に変換するための手段であり、例えば、認識したRGB画像に対して演算処理を行うことにより、色相、彩度、明度を数値化するための機器及びプログラムからなる。
<フィルタ手段>
フィルタ手段240は変換した明度に対して、特定の波長帯にあるレーザー光を抽出するためのフィルタ関数を適用するための手段であり、例えば、演算処理により、特定の波長帯にあるレーザー光のみを取り出すプログラムからなる。この場合、フィルタ関数の設定により、ガウジアンフィルタを実現することができる。
<画像処理の手順>
本発明の実施形態に係る画像処理装置200では、図2に示すように、撮像手段210により取得したレーザー光の光像に対して、RGB画像認識手段220の機能により元画像(RGB値)を認識し(S1)、HSV変換手段230によりHSV値へ変換する(S2)。続いて、フィルタ手段240によりフィルタリング(画像処理)を行う(S4)。フィルタリングしたレーザー光は、RGB値へ再変換し(S4)、所望のレーザー画像(RGB値)とする(S5)。このような一連の処理を行うことにより、特定の波長帯にあるレーザー光を抽出することができる。
<画像処理装置における画像処理の原理>
以下、図3〜図7を参照して、本発明の実施形態に係る画像処理装置200の原理を説明する。
半導体レーザーは、特定波長の光を増幅して照射する装置であり、可視光線の場合にはその波長帯によって半導体レーザーの色が決まることになる。CIE(国際照明学会)は、光の三原色RGB(Red:700nm、Green:546.1nm、Blue:435.8nm)を基準として、図3に示すような可視光線スペクトルのXYZ表色系(スペクトル三刺激値)を制定しており、これを用いることで各波長帯における半導体レーザーの色相(Hue)と彩度(Saturation)を求めることができる。
図4及び図5に、波長と色相Hと、彩度Sの関係を示す。例えば、緑色半導体レーザー(波長520nm)の場合、図4及び図5から色相は130度前後、彩度は0.9前後であることがわかる。CCDカメラ等で撮影した画像に対して、この半導体レーザーの色相H0および彩度S0と合致する部分を画像処理により抽出することで、リングビームの光セクショニング形状画像を得ることができる。
CCDカメラ等で撮影したデジタル画像(Bitmap、Jpeg等)は、基本的にRGB値で表されるデータであるため、このままでは色相Hや彩度Sで取り扱うことができない。そこで、デジタル画像の各ピクセルのRGB値をHSV値に変換する。まず、各ピクセルのRGB値に対して、最大値MAXおよび最小値MINを次式(1)のように規定する。
Figure 2020112844
上記式(1)に示した最大値MAXおよび最小値MINを用いると、色相Hは各ピクセルのRGB値から次式(2)が求められる。
Figure 2020112844
また、彩度Sは最大値MAXおよび最小値MINを用いて次式(3)が求められる。
Figure 2020112844
明度Vついては、次式(4)のように、RGBの最大値MAXで表される。
Figure 2020112844
なお、以上のようなRGB値からHSV値への変換は、直交座標系から円柱座標系への変換を意味する。
次に、HSV値に変換した画像に、半導体レーザーを抽出するためにフィルタリング処理を行う。ここでは、色相のフィルタ関数f(H)、彩度のフィルタ関数f(S)を次式(5)及び次式(6)のように定義する。
Figure 2020112844
Figure 2020112844
Hはフィルタ関数f(H)の最大強度、σHはフィルタ関数f(H)の半値幅、Hは各ピクセルの色相、H0は対象とする半導体レーザーの色相である。また、ISはフィルタ関数f(S)の最大強度、σSはフィルタ関数f(S)の半値幅、Sは各ピクセルの彩度、S0は対象とする半導体レーザーの彩度である。なお、nはこれらのフィルタ関数の次数であり、n=2の場合はガウジアンフィルタとなり、nの値が大きくなるとバンドパスフィルタに漸近する。図6および図7にフィルタ関数の一例を示す。これらの色相および彩度のフィルタ関数f(H)、f(S)を、明度Vに掛けることで画像処理を行う(次式(7))。
Figure 2020112844
上記式(7)に示したフィルタリングは、半導体レーザーに相当する色相H0および彩度S0付近以外の部分の明度をゼロにする画像処理であり、暗所で半導体レーザーのみを撮影することとほぼ等価な条件となる。
以上のような処理を施したHSV値を、再びデジタル画像の各ピクセルのRGB値に変換すると、上記式(1)に示した最大値MAXおよび最小値MINは、次式(8)のように置き換えられる。
Figure 2020112844
また、RGB値は、これらの最大値MAXおよび最小値MINを用いて、次式(9)のように求められる。
Figure 2020112844
<空間内面形状の計測装置への適用>
上述した画像処理は、図8〜図11に示す空間内面形状の計測装置に適用することができる。この空間内面形状の計測装置は、例えば、地下資源を採掘した後に放置された鉱山廃鉱の地下空洞や、廃棄された地下施設に適用できるが、特に明るい環境下に存在する空間の形状を迅速かつ正確に計測することにより、空洞充填工事を行う際に、充填材配合設計、充填材施工等を円滑に行うための装置である。
本発明の実施形態に係る空間内面形状の計測装置は、測定手段と、位置検出手段と、収容手段と、移動手段と、形状演算手段とを備えている。この計測装置は、種々の態様からなる空間内面形状を計測するための装置であり、以下に例を挙げて説明する地盤内に存在する空洞の内面形状だけではなく、トンネル、貯水タンク、下水管等の空間内面形状を計測することができる。
<収容手段>
本実施形態の空間内面形状の計測装置10は、図8及び図9に示すように、収容手段として、透光性を有するアクリル製の筒状体100を用いている。そして、筒状体100の内部に、測定手段20と、位置検出手段として機能する3Dモーションセンサー30を収容する。なお、計測対象が地下空間である場合には、地下水が存在し、あるいは湿度が高いことが考えられる。この場合、筒状体100の内部に収容した照射部60から、空間内面に向かってレーザー光を照射するため、筒状体100内に地下水が浸入したり、結露が生じたりしないようにする必要がある。このため、筒状体100の上部及び下部において十分なシールを行って地下水の浸入を防止し、さらに、筒状体100の内部を略真空状態として結露を防止することが好ましい。
<測定手段>
測定手段20は、撮像素子40の撮像面にレーザー光像を結像させるための広角レンズ50と、空間内面に対して円環状にレーザー光を照射する照射部60とを備えている。各部材等については、後に詳述する。
<位置検出手段>
本実施形態の位置検出手段は、3Dモーションセンサー30からなる。3Dモーションセンサー30は、例えば、互いに直行する3軸方向の傾きを検知するジャイロセンサー、加速度センサー、地磁気センサーを備えており、収容手段の位置情報を取得するようになっている。なお、位置検出手段は、どのような構成の機器であってもよく、赤外光を用いて位置を検出する装置、GPSを用いて位置を検出する装置等、計測対象となる空間に合わせて適宜選択することができる。
<撮像素子>
撮像素子40は、撮像手段210の構成要素であり、一般的に市販されているCCDカメラ41が備えているものを利用することができる。CCDカメラ41は、撮像素子40として、CCDセンサーやCMOSセンサーを備えており、撮像素子40の撮像面に結像した物体像を光電変換して画像データを得ることができる。撮像素子40から出力された画像データは、信号ケーブル70を介してコンピューター80に入力される。また、CCDカメラ41を利用する場合には、撮像光学系(広角レンズ50)の画角を調整するため、レンズ交換可能なものを使用することが好ましい。
<結像レンズ>
本実施形態の空間内面形状の計測装置10は、空間内面に形成されたレーザー光像を撮像面に結像させるためのレンズ系であり、本実施形態では広角レンズ50を用いている。レーザー光の照射部60と、空間内面に形成されたレーザー光像を撮像面に結像させるためのレンズ系とは、同一位置に設置することはできず、離隔して設ける必要がある。この際、レンズ系の画角が大きいほど照射部60とレンズ系とを近接させることができる。広角レンズ50の画角は、計測対象となる空間内面との距離、筒状体100の許容長さ等に応じて設定する。なお、本発明における広角レンズ50は、いわゆる標準レンズに対して画角が大きいことを意味するものであり、狭義の広角レンズだけではなく、魚眼レンズも含んでいる。
<照射部>
照射部60は、図9に示すように、レーザーダイオード等からなる発光素子61と、発光素子61から発射されたレーザー光を反射して円環状に照射する円錐ミラー62(又は円錐プリズム)とにより構成する。このような構成を備えた計測装置10は、空間内面に沿ってレーザー光を円周方向に走査する必要がなく、照射部60の構造が単純なものとなるばかりでなく、計測時間を短縮することができる。
さらに詳細に説明すると、図9に示すように、発光素子61にはレーザー駆動回路63が接続されている。レーザー駆動回路63は、コンピューター80からの駆動信号により駆動され、発光素子61からレーザー光を発射する。発光素子61から発射されたレーザー光は、円錐ミラー62等により反射され、空間内面において円環状の光リング90を形成する。そして、広角レンズ50を装着したCCDカメラ41により、光リング90を撮影する。撮像素子40の撮像面に結像したレーザー光像は、イメージプロセッサー64を介してコンピューター80に入力される。なお、図9に示すように、測定手段20及び3Dモーションセンサー30とコンピューター80とは、信号ケーブル70により電気的に接続されている。
また、本実施形態の照射部60は、筒状体100内に収容したバッテリ65により駆動される。これにより、筒状体100内に余分なケーブルが存在しなくなり、CCDカメラ41により光リング90を撮影する際に、画像内にケーブルが映り込むことがない。
<移動手段>
移動手段は、照射部60、広角レンズ50、撮像素子40からなる測定手段20と、3Dモーションセンサー30からなる位置検出手段とを収容した筒状体100(収容手段)を、計測対象となる空間に対して移動させるための装置である。この移動手段は、筒状体100(収容手段)を移動させることができれば、どのような構成であってもよい。
例えば、筒状体100を鉛直方向に移動させる場合には、筒状体100の上部に接続したワイヤー111と、当該ワイヤー111を繰り出し、あるいは巻き取ることにより筒状体100を上下動させるウインチ112等により移動手段を構成する。図10に示す計測装置の使用例(1)では、地表面から地下空間に達するボーリング孔121の上部に、やぐら122を組み立てて、このやぐら122に滑車123を吊り下げ、滑車123にワイヤー111を掛け渡して、ウインチ112により、筒状体100の上部に接続したワイヤー111を繰り出し、あるいは巻き取るようになっている。
また、図11に示す計測装置の使用例(2)では、地表に開口した空間の上部を跨ぐようにして、支持レール131を掛け渡し、この支持レール131により筒状体100を支持し、ウォームギア、モータ等の駆動手段(図示せず)を用いて、支持レール131で支持した筒状体100を移動させるようになっている。
また、図11(A)、図11(B)に示すように、筒状体100(収容手段)の移動方向に対して、照射部60と広角レンズ50との位置関係が入れ替わるようにして筒状体100(収容手段)を移動させることにより、測定不能な領域(死角)がなくなり、当該計測対象となる空間のほぼ全域の空間内面形状を計測することができる。
<形状演算手段>
形状演算手段81は、測定手段20及び3Dモーションセンサー30からの計測信号を受信して、所定の演算処理を行うことにより空間内面の形状を求めるためのプログラムからなり、上述した画像処理装置の機能を利用して空間内面の形状を求めるようになっている。例えばコンピューター80に形状演算プログラムをインストールし、CPU等のハードウェアが形状演算プログラムの命令に従って動作することにより、形状演算手段81の機能が発揮され、この際、画像処理装置の機能が利用される。また、形状演算手段81は、形状演算プログラムに相当する論理回路により構成することもできる。
上述したように、発光素子61から発射したレーザー光を円錐ミラー62等で反射して、空間内面に円環状に照射することにより、レーザー光像(光リング90)が形成され、この円環状のレーザー光像(光リング90)を広角レンズ50により撮像素子40の撮像面上に結像させることにより、レーザー光像のイメージ情報を得ることができる。形状演算プログラムは、基本的な演算処理として、取得したイメージ情報と、その移動距離とに基づいて、空間内面の形状データ(断面形状データ)を取得することができる。また、測定手段20の移動速度、発光素子61におけるレーザー光の出射角度、広角レンズ50の画角等、種々のパラメータを設定することにより、一層正確に空間内面の形状を演算することができる。
具体的には、発光素子61から円錐ミラー62等を介して空間内面に照射された円環状のレーザー光により帯状の断面線(光切断面/光リング90)が形成される。そして、広角レンズ50により、断面線(光切断面/光リング90)を撮像素子40の撮像面に結像させ、空間内面に形成された座標を算出し、算出した座標データに基づいて断面線(光切断面/光リング90)の形状データを得ることができる。そして、測定手段20を、空間内面の所定方向に沿って移動させることにより、断面線(光切断面/光リング90)が空間内面の所定方向に連なり、空間内面の全体にわたって形状を計測することができる。なお、円周方向及び空間内面の所定方向における撮像間隔は、空間の内径や要求される計測精度等に応じて適宜設定することができる。
<表示手段>
形状演算手段81における演算結果は、表示手段140により表示することができる。この表示手段140は、例えば、コンピューター80に付帯した液晶ディスプレイにより構成することができる。すなわち、形状演算手段81における演算結果(空間内面の形状)は、液晶ディスプレイの表示画面に表示される。また、プリンタ等の印刷手段により、演算結果(空間内面の形状)を印刷してもよい。さらに、空間内面の形状を表示又は印刷する場合に、立体表示することにより、空間内面の形状を直感的に認識することができる。
<画像処理装置の他の適用例>
本発明に係る画像処理装置は、空間内面形状の計測装置以外にも適用することができる。すなわち、本発明に係る画像処理装置は、例えば、浅層混合処理土のセメント混合状態の評価や、タイル引張試験における接着剤破断面積の評価にも適用することができる。
<浅層混合処理土のセメント混合状態の評価>
トラフィカビリティの改善等を目的に実施される浅層混合処理では、セメントをバックホウなどの重機で攪拌するが、適切に混合されているか否かの評価が難しい。そこで、本発明に係る画像処理装置を用いて浅層混合処理土のセメント混合状態の評価を行うことにより、混合状態を適切に評価することができる。
浅層混合処理土のセメント混合状態を評価するには、セメントを混合したサンプルにフェノールフタレインを塗布する。そして、当該サンプルにレーザー光を照射して、反射してきた可視光線であるレーザー光の光像を撮像する。続いて、撮像したレーザー光の光像をRGB画像として認識して、認識したRGB画像を色相、彩度、明度に変換し、変換した明度に対して、フェノールフタレインの波長帯にあるレーザー光を抽出して、色の濃淡により混合状態の評価を行う。このような適用例では、セメントを混合したサンプルが十分攪拌されると、色の濃淡が正規分布に近づくため、混合状態を定量的に評価することが可能となる。
<タイル引張試験における接着剤破断面積の評価>
外壁タイルの接着基準は、タイル引張試験を実施した際のタイルと壁の接着剤の破断面積50%となっている。タイル引張試験における接着剤破断面積を評価するには、タイル面に残っている接着剤の破断面にレーザー光を照射して、反射してきた可視光線であるレーザー光の光像を撮像する。続いて、撮像したレーザー光の光像をRGB画像として認識して、認識したRGB画像を色相、彩度、明度に変換し、変換した明度に対して、接着剤の波長帯にあるレーザー光を抽出して、色の濃淡により接着剤は断面積の評価を行う。このような適用例では、タイル面に残っている接着剤の破断面の面積を計算することにより、接着剤破断面積を簡易に評価することが可能となる。
10 計測装置
20 測定手段
30 3Dモーションセンサー
40 撮像素子
41 CCDカメラ
50 広角レンズ
60 照射部
61 発光素子
62 円錐ミラー
63 レーザー駆動回路
64 イメージプロセッサー
65 バッテリ
70 信号ケーブル
80 コンピューター
81 形状演算手段
90 光リング
100 筒状体
111 ワイヤー
112 ウインチ
121 ボーリング孔
122 やぐら
123 滑車
131 支持レール
140 表示手段
200 画像処理装置
210 撮像手段
220 RGB画像認識手段
230 HSV変換手段
240 フィルタ手段

Claims (3)

  1. 撮影画像に含まれる可視光線であるレーザー光から特定波長帯のレーザー光を抽出するための画像処理装置であって、
    物体に照射され、当該物体から反射してきた可視光線であるレーザー光の光像を撮像する撮像手段と、
    撮像手段により撮像したレーザー光の光像をRGB画像として認識するRGB画像認識手段と、
    認識したRGB画像を色相、彩度、明度に変換するHSV変換手段と、
    変換した明度に対して、特定の波長帯にあるレーザー光を抽出するためのフィルタ関数を適用するフィルタ手段と、
    を備えたことを特徴とする画像処理装置。
  2. 前記フィルタ関数は、ガウジアンフィルタを実現するための関数であることを特徴とする請求項1に記載の画像処理装置。
  3. 空間内面に対して円環状にレーザー光を照射する照射部と、前記照射部と離隔して設けられ、前記空間内面に形成されたレーザー光像を撮像面に結像させる結像レンズと、前記撮像面に結像したレーザー光像を画像データとして出力する撮像素子とを有する測定手段と、
    前記測定手段の位置及び向きを検出する位置検出手段と、
    前記測定手段及び前記位置検出手段を一体に収容するとともに、前記測定手段で測定に用いるレーザー光を透過可能な収容手段と、
    計測対象となる空間に対して、前記収容手段を移動させる移動手段と、
    前記測定手段及び前記位置検出手段からの検出信号を受信して演算処理を行うことにより空間内面の形状を求める形状演算手段と、
    を備え、
    前記測定手段は、前記孔壁内面に対して円環状にレーザー光を照射する照射部と、
    前記孔壁内面に形成されたレーザー光の光像を撮影する撮像部と、
    を含み、
    前記形状演算手段における形状演算において、物体に可視光線であるレーザー光を照射して、当該物体から反射してきたレーザー光の光像を撮像する撮像手段と、撮像手段により撮像したレーザー光の光像をRGB画像として認識するRGB画像認識手段と、認識したRGB画像を色相、彩度、明度に変換するHSV変換手段と、変換した明度に対して、特定の波長帯にあるレーザー光を抽出するためのフィルタ関数を適用するフィルタ手段とを備えた画像処理装置により画像処理を行う、
    ことを特徴とする空間内面形状の計測装置。
JP2019000934A 2019-01-08 2019-01-08 画像処理装置及びこれを利用した空間内面形状の計測装置 Active JP7285645B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019000934A JP7285645B2 (ja) 2019-01-08 2019-01-08 画像処理装置及びこれを利用した空間内面形状の計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019000934A JP7285645B2 (ja) 2019-01-08 2019-01-08 画像処理装置及びこれを利用した空間内面形状の計測装置

Publications (2)

Publication Number Publication Date
JP2020112844A true JP2020112844A (ja) 2020-07-27
JP7285645B2 JP7285645B2 (ja) 2023-06-02

Family

ID=71667226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000934A Active JP7285645B2 (ja) 2019-01-08 2019-01-08 画像処理装置及びこれを利用した空間内面形状の計測装置

Country Status (1)

Country Link
JP (1) JP7285645B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112419382A (zh) * 2020-11-16 2021-02-26 北京理工大学 一种基于激光雷达空洞率的待测矿石识别装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028723A (ja) * 2013-07-30 2015-02-12 富士通株式会社 生体特徴ベクトル抽出装置、生体特徴ベクトル抽出方法、および生体特徴ベクトル抽出プログラム
JP2015230301A (ja) * 2014-06-07 2015-12-21 前田建設工業株式会社 空間内面形状の計測装置及び計測方法
JP2017053790A (ja) * 2015-09-11 2017-03-16 新日鐵住金株式会社 欠陥検出装置及び欠陥検出方法
JP2018091696A (ja) * 2016-12-02 2018-06-14 ジャパンマリンユナイテッド株式会社 レーザセンサ、及び計測方法
JP2018128950A (ja) * 2017-02-10 2018-08-16 富士ゼロックス株式会社 画像処理装置及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028723A (ja) * 2013-07-30 2015-02-12 富士通株式会社 生体特徴ベクトル抽出装置、生体特徴ベクトル抽出方法、および生体特徴ベクトル抽出プログラム
JP2015230301A (ja) * 2014-06-07 2015-12-21 前田建設工業株式会社 空間内面形状の計測装置及び計測方法
JP2017053790A (ja) * 2015-09-11 2017-03-16 新日鐵住金株式会社 欠陥検出装置及び欠陥検出方法
JP2018091696A (ja) * 2016-12-02 2018-06-14 ジャパンマリンユナイテッド株式会社 レーザセンサ、及び計測方法
JP2018128950A (ja) * 2017-02-10 2018-08-16 富士ゼロックス株式会社 画像処理装置及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
天野 敏之: "第11章 色補正技術の応用 光沢&透明感!物体の見え方を変化させる照明", INTERFACE 2015年5月号, vol. 第41巻 第5号, JPN6023000100, 1 May 2015 (2015-05-01), pages 101 - 110, ISSN: 0004957500 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112419382A (zh) * 2020-11-16 2021-02-26 北京理工大学 一种基于激光雷达空洞率的待测矿石识别装置及方法

Also Published As

Publication number Publication date
JP7285645B2 (ja) 2023-06-02

Similar Documents

Publication Publication Date Title
TWI617797B (zh) Oil spill detection system
JP6441268B2 (ja) 穿孔検査装置
JP4542137B2 (ja) アンカーボアホールを調査するための装置
JP7246871B2 (ja) 分析装置、システム、分析方法、及びプログラム
JP2012220496A (ja) 目視される物体の表面に関する3次元データの品質の指示を表示するための方法およびデバイス
JP6399813B2 (ja) 空間内面形状の計測方法
US20150148630A1 (en) Method and device for detecting fluorescence radiation
KR20080103820A (ko) 하이브리드 터널 스캐닝 장치
EP3431966B1 (en) Display device for photometric analyzer
KR101736347B1 (ko) 스마트기기를 이용한 콘크리트 중성화 및 균열 측정 장치
JP2013250107A (ja) 埋設物探査装置
JP2012021968A (ja) 距離測定モジュール及びこれを含むディスプレイ装置、ディスプレイ装置の距離測定方法
JP6434249B2 (ja) コンクリートの評価装置および評価方法
US11754717B2 (en) Distance measurement device having external light illuminance measurement function and external light illuminance measurement method
JP7285645B2 (ja) 画像処理装置及びこれを利用した空間内面形状の計測装置
CN103308539B (zh) 荧光x射线分析装置和荧光x射线分析方法
CN215066222U (zh) 一种传输带系统
CN113155852B (zh) 一种传输带的检测方法、装置及电子设备
US20110206186A1 (en) X-ray analyzer and mapping method for an x-ray analysis
JP2008180579A (ja) 光ファイバ素線計数装置
JP2011191170A (ja) 画像処理装置
JP6652327B2 (ja) 検査対象物の状態評価装置
JP3453595B2 (ja) 多波長蛍光計測装置
JP7282307B2 (ja) 応力発光データ処理装置、応力発光データ処理方法、応力発光測定装置および応力発光試験システム
JP2003194521A (ja) 計測装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230523

R150 Certificate of patent or registration of utility model

Ref document number: 7285645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150